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Barcodes distinguishing morphology of neuronal tauopathy
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The geometry of neurons is known to be important for their functions. Hence, neurons are often classified by
their morphology. Two recent methods, persistent homology and the topological morphology descriptor, assign
a morphology descriptor called a barcode to a neuron equipped with a given function, such as the Euclidean dis-
tance from the root of the neuron. These barcodes can be converted into matrices called persistence images, which
can then be averaged across groups. We show that when the defining function is the path length from the root,
both the topological morphology descriptor and persistent homology are equivalent. We further show that persis-
tence images arising from the path length procedure provide an interpretable summary of neuronal morphology.
We introduce topological morphology functions, a class of functions similar to the Sholl functions, that can be
recovered from the associated topological morphology descriptor. To demonstrate this topological approach, we
compare healthy cortical and hippocampal mouse neurons to those affected by progressive tauopathy. We find
a significant difference in the morphology of healthy neurons and those with a tauopathy at a postsymptomatic
age. We use persistence images to conclude that the diseased group tends to have neurons with shorter branches
as well as fewer branches far from the soma.
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I. INTRODUCTION

Neurons are essential for cognitive function, and their ac-
tivity is dependent on their morphology [1]. For example,
when two simultaneous signals reach a neuron’s dendrites,
their mutual distance affects the combined signal that reaches
the soma. In particular, nearby signals have a weaker total
effect than those that are far apart [2]. Similarly, the length
of the dendrites is known to affect the signal received by the
soma, with signals that have traveled a long distance along the
dendrites being weaker and more spread out than those that
travel a short distance to the soma [3]. To further confound the
study of neurons, it is known that neuronal morphology—even
within the same animal [4]—can be highly heterogeneous,
suggesting that different neurons have morphologies suited
for different functions.

These observations have naturally led to attempts to clas-
sify large sets of neurons via their geometry. Computationally,
neurons are typically represented by trees, collections of
vertices in the two or three-dimensional Euclidean space con-
nected by linear edges, with one such point denoting the
location of the soma. Comparison of large classes of neurons
can then be achieved by extracting numerical morphological
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descriptors, such as the number of bifurcations and branch-
ing angles, from these reconstructions [5–8]. However, these
individual numerical descriptors cannot describe neuronal
morphology in detail (e.g., the number of bifurcations cannot
recover a neuron’s tortuosity). Another approach consists in
computing density maps that capture the distribution of neu-
rites in a neuron [9–11]. One drawback of this approach is that
if we have two classes of neurons with different density maps,
it is difficult to accurately measure the difference between two
density maps (i.e., minimize the integral of their difference
over all possible rotations and translations).

A classical morphological descriptor is the Sholl function
of a neuron [12], which assigns for every positive number r the
number s(r) of times a spherical shell of radius r intersects a
given neuron. The Sholl function can be interpreted visually
when plotted as a function of r. By taking averages of Sholl
functions, researchers are able to visualize the average struc-
ture of large classes of neurons.

Given a neuron, represented mathematically as a rooted
tree, and a function on its nodes, taken to be the Euclidean
distance to the soma, two groups proposed independently the
use of barcodes to compare morphologies [13,14]. Barcodes
are mathematical objects used in topological data analysis
as multiscale morphology descriptors. For instance, Li et al.
[14] computed a barcode of neuronal data by applying per-
sistent homology (PH) [15–17], a technique in computational
mathematics for extracting multi-scale topological features
from data. Li et al also show that the Sholl function of a
neuron can be computed from the union of two particular
barcodes arising from PH. In a separate work, Kanari et al.
[13] developed an algorithm that takes a tree and function as
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input, and calculates a PH inspired barcode, called a topo-
logical morphology descriptor (TMD). The TMDs of neurons
are then converted to matrices called unweighted persistence
images [18], to compare different classes of neurons [13,19].
Unweighted persistence images are representations of smooth
two-dimensional functions called unweighted persistence sur-
faces. These unweighted persistence images are visualized
as two-dimensional images with the intensity of the (i, j)th
pixel representing the magnitude of the corresponding (i, j)th
matrix entry.

Here, we build on the work of both groups. We compute
TMDs, but we use the path distance, or intrinsic distance to
the soma rather than the radial (Euclidean) distance from the
soma as done in Ref. [13]. The intrinsic distance to the soma
has already been suggested as a relevant choice of function
[13,14] and briefly demonstrated on an example in Ref. [13,
SI]; however, to the authors’ knowledge it has not been thor-
oughly investigated for neuronal morphology.

A. Contributions

We show that different regions in the persistence images of
TMDs generated with the path distance to the soma function
can be interpreted to understand the morphology of large
groups of neurons. Specifically, we discuss how weighted
persistence images, derived from functions called persistence
surfaces, record information about neuronal branches, includ-
ing their length within a population of neurons as well as their
distance from the soma. Based on this framework we have the
following contributions.

(1) We prove that for a class of functions containing the
path distance to the soma the barcodes of Refs. [13,14] are
equivalent (Theorem 1).

(2) We define a new class of morphology descriptors,
the topological morphology functions, and show that they
can be recovered from barcodes derived using path length.
Moreover, we show that topological morphology functions
can be approximated from persistence surfaces via integration
(Theorem 2).

(3) We apply these techniques to neurons from control
mice and mice that model tauopathies, a form of neurodegen-
erative disorders in which tau protein forms deposits in the
brain. This topological framework finds that neurons in mice
with a postsymptomatic tauopathy are on average shorter than
controls; furthermore, these neurons exhibit less branching far
from the soma than controls.

The remainder of the paper is organized as follows. In
Sec. II, we recall the how one constructs the TMD from a
neuron equipped with a function, and how to represent a TMD
as a persistence image. Section III describes the morpho-
logical information recorded by the TMD and its associated
persistence images when a neuron is equipped with the path
distance from the soma function. Further, this section ex-
poses how the definition of topological morphology functions
arises naturally from these TMDs, and shows how topological
morphology functions may be approximately recovered from
persistence images. Sections IV and V consist of an appli-
cation of TMDs to study diseased mice. In the Appendix,
we define the barcodes of [14], which are given by persis-
tent homology. Here we also define some technical metrics

FIG. 1. A tree with root r. Nodes a, b and c are branch points,
while nodes e, f , g, and h are leaves. Nodes r and d are neither. The
two child branches of a are colored in blue and orange.

on the space of persistence diagrams and prove theoretical
statements made in Sec. III.

II. THEORY

A. The topological morphology descriptor (TMD)

Consider a neuron be represented by a tree T with nodes
N (T ), and any function f : N (T ) → [0,∞) which returns
a measure of distance from the soma. The topological mor-
phology descriptor (TMD) of this neuron equipped with the
function f is a collection of intervals in the real line that
describes the branching pattern of the dendrites with respect
to f [13]. To understand how the TMD is computed, we first
introduce basic definitions regarding the tree T . In this paper,
we consider only finite trees, i.e., trees with finitely many
nodes. We also assume that all trees are equipped with em-
beddings in R2 or R3, sending edges to line segments, unless
stated otherwise. Computationally, a neuron is represented by
a tree T , with nodes associated to locations in R3, and with
a distinguished node r that represents the soma, as shown in
Fig. 2(a). We refer to the distinguished node as the root of T .
From the root we induce an orientation of the edges of T . We
orient any edge e incident to the r away from r. Inductively,
if v is incident to an edge we have already oriented, we orient
any edges incident to v and v′, but not yet oriented, away from
v towards v′. If, for a given v and v′, in the resulting directed
graph there is a directed edge e from v to v′, denoted (v, v′),
we say that v is the parent of v′ and v′ is a child of v. If a
vertex v has three or more incident edges, we say that v is a
branch point. If the root r has two or more incident edges then
we say that r is a branch point. Similarly, if a vertex v �= r has
exactly one incident edge, we say that v is a leaf of T . If r in
a rooted tree has no incident edges, then r is a leaf. Suppose
that v′ is a child of v, i.e., there is a directed edge e = (v, v′).
We can associate to v′ the induced subtree T ′ generated by
v′, its children, its children’s children, and so on. We say that
the union T ′ ∪ {e} is a child branch of v. Examples of these
definitions are shown in Fig. 1. In Ref. [13], the function f on
T is chosen to be the Euclidean distance radial distance from
the root r.

The methodology of Ref. [13] yields a local-to-global topo-
logical summary of the morphology of T using the function f
as follows. At each branch point b in a tree T we inspect each
child branch of b. We leave untouched the child branch that
attains the greatest value of the function f on its leaves, and
detach every other child branch of the branch point. It may
be the case that at a given branch point, two or more different
child branches attain the greatest value of the function f on
their leaves. In such a case, we select, arbitrarily, one of these
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FIG. 2. Retrieving the barcode from a neuron. (a) A simple computer generated neuron, with its soma identified by a red node. (b) depicts
the neuron represented as a tree with its root colored red. In (b), we also label each node by the values of a function f . (b) through (e) show the
process of extracting a barcode from a rooted tree with labeled edges. In the transition from (b) to (c), we remove a branch at the branch point
indicated by the number 2. Here, it does not matter which branch we remove since both branches attain the same maximal value of 3 on their
leaves. In the transition between (c) and (d), we remove a branch at the branch point labeled 1. This time we do not have any choice of which
branch to remove: one branch has a leaf with a value of 4, so we must remove the branch that only has a leaf with a value of 3. (e) shows the
barcode we acquire after this process. Each interval corresponds to a branch in the original neuron, with its left endpoint given the f value at
the branch point where the branch initiates, and the right endpoint given the f value at the leaf where the same branch terminates.

child branches to keep connected to the tree and we detach
the other branches. This choice has no effect on the output
of the algorithm. We then iterate over all branch points. Once
this process has been completed at each branch point, what
will remain is a collection of intervals, with endpoints given
by their associated f values, which we denote by TMD(T, f ).
It may be the case that some interval appears more than one
time in TMD(T, f ). When this happens we record the num-
ber of times that the interval appears. We show this process
applied to an example neuron in Fig. 2. Kanari et al. [13]
choose a specific order in which their algorithm inspects the
branch points; however, the chosen order does not change
the resulting TMD, since applying the detaching procedure
at one branch point has no effect on either the number of
child branches any other branch point has, or the maximal
leaf values of f on these child branches. In general, a multiset
of intervals with endpoints indexed by real numbers, such as
TMD(T, f ), is referred to as a barcode. We summarize the
procedure of generating TMD(T, f ) in the following steps.

(1) Choose a branch point, and identify a child branch of
that branch point that attains the greatest value of f on its
leaves.

(2) Detach every child branch from this branch point except
for the identified branch.

(3) If there is branch point in the resulting collection of
trees, return to step 1.

(4) Label the endpoints of the resulting collection intervals
with their associated f values.

Notably, there is a bijective correspondence between right
endpoints of intervals and leaves of T . Hence the right end-
points must be closed. All but one of the left endpoints of
TMD(T, f ) are constructed by detaching a child branch from
a branch point, and so must be open. The only interval with a
closed left endpoint must be [ f (r), L], with L the maximum
value of f on the leaves. To see this, consider the unique path
along directed edges from r to a leaf l with f (l ) = L. At each
branch point on this path we can choose not to detach the child
branch containing l during the TMD algorithm. Therefore the
interval [ f (r), L] will be one of the remaining intervals after
the TMD algorithm terminates. For an arbitrary function f ,
the intervals [x, y] or (x, y] of the TMD(T, f ) are not always
technically intervals in the real line, since it can be the case
that x > y. However, if f is strictly increasing on paths along

directed edges away from the root, branch points have lesser
values of f than their descendants, and so left endpoints of
intervals will always be less than right endpoints of intervals,
provided T has more than one node.

B. Methods for analyzing TMDs

A barcode can be visualized as multisets of intervals
(see Fig. 2). Barcodes can also be visualized as multisets
of points in the real plane by sending each interval [x, y] or
(x, y] to the point (x, y). We remark that this multiset records
the multiplicities of points in the plane (i.e., the number of
intervals with the same endpoints), and these multiplicities
can be visualized (see e.g., Ref. [20, Fig. 2]). We call the
disjoint union of this multiset of points with a copy of each
(x, x) on the diagonal with infinite multiplicity a persistence
diagram. These diagonal points are included for the technical
purpose of defining distances between persistence diagrams,
and are typically either not depicted visually or represented by
a diagonal line. The bottleneck distance and the q-Wasserstein
distances (both defined in the Appendix) are two frequently
used distance functions between persistence diagrams which
make use of these diagonal points. However for our purposes
the diagonal points are not morphologically relevant. In Fig. 3,
we show the example neuron from Fig. 2, its barcode, and its
persistence diagram in panels (a), (b), and (c), respectively.
The height of each point (x, y) above the line y = x, dashed in
Fig. 3(c), is y − x, which is also the difference in f values of
the endpoints of the corresponding interval in the barcode. By
convention, we refer to x as the birth of the interval, y as the
death of the interval, and the length y − x as its persistence.
The persistence diagram of TMD(T, f ) is known to be stable
for the bottleneck distance against perturbations of f , addition
of short branches to T , and removal of short branches from T
[13, SI, Theorem 1]. The same persistence diagram is also
known to be stable for the 1-Wasserstein distance against
a similar, somewhat more restrictive class of perturbations
[21, Theorem 2].

Since the persistence of an interval is an important quantity,
an intuitive transformation to apply is

(x, y) �→ (x, y − x). (1)
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FIG. 3. Turning a tree into a persistence image. (a) shows an example tree with nodes labeled by their path length distance to the root, which
is colored red. (b) and (c) show the barcode diagram and persistence diagram of this neuron, respectively. (d) shows the resulting transformed
persistence diagram. Lastly, (d) and (e) show the resulting persistence surface and persistence image respectively. Note that the points with
greater y values are weighted more heavily in the construction of (e) and (f).

In Fig. 3(d), we show the above transform applied to the
persistence diagram in Fig. 3(c). This transformation leaves
the birth value of each point unchanged, but replaces the
death value of a point with its persistence. Note that this
transformation is invertible with inverse (x, y) �→ (x, x + y),
and so does not lose any information from the persistence
diagram.

Barcodes, diagrams, and their transformed counterparts
can be convenient to visualize, but computing averages in the
space of barcodes can be a rather complicated matter. Indeed,
while averages (in particular Fréchet means) of persistence
diagrams are known to exist [22, Theorem 12] and moreover
can be computed [23], they are also known to be unstable and
nonunique in general. These pathological traits of averages
between barcodes are a result of the complex metric structure
with which barcodes are equipped. For a simple example
nonuniqueness and instability, we refer the reader to Fig. 4
of Ref. [24]. One solution proposed by Adams et al. [18]
is to define a two-dimensional function that is the sum of
Gaussian functions of a fixed standard deviation σ centered
at each point in the transformed (birth, persistence) diagram.
Each Gaussian function involved in this sum is given a weight
equal to the height above the x axis of the corresponding point.
Such a function associated to a barcode is called a persistence
surface [18]. Figure 3(e) shows the persistence surface for the
example neuron. As a result of the choice of weighting, the
area under each such function is proportional to the sum of
the lengths of intervals in TMD(T, f ). In practice, persistence
surfaces are often reduced to finite dimensional vectors called
persistence images. Persistence images are matrices computed
by fixing a grid of relevant values in the plane and defining

the (i, j)th entry to be the integral of the persistence surface
in question over the (i, j)th square in the grid1 [18]. If the
sizes of the squares in the grid are small relative to σ , then
persistence images can be approximated by sampling points
in the centers of each square. Most commonly, persistence
images are displayed as heat maps, as in Fig. 3(f). An advan-
tage of analyzing persistence images instead of barcodes or
diagrams is the ability to efficiently compute differences and
averages across of sets of neurons. The choice of standard de-
viation affects the resulting persistence image of a persistence
diagram, and so should be regarded as an input parameter.
While in Ref. [18, Sec. 6] the authors find experimentally
that classification via persistence images is insensitive to the
choice of σ , there are immediate consequences to choosing
σ too high or too low. In the extreme limit σ → ∞, the
persistence surface approaches a constant function over the
grid of interest. Meanwhile, if σ is chosen too low, it may
be the case that resolution of the grid defining the persistence
image is too coarse to approximate the persistence image by
sampling a point in each grid square.

1Weighting the Gaussian functions is standard practice when gen-
erating a persistence image. As the authors of Ref. [13] skip the
weighting step, they refer to persistence images of the TMDs they
study as unweighted persistence images. The authors also do not
transform their data prior to generating persistence images, since
intervals can have negative persistence in an arbitrary TMD. Since
we will restrict to barcodes with intervals of only positive persistence
in the methods section, we transform the persistence diagram first,
which is also standard.
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FIG. 4. Persistence images of toy neuronal trees. (Top row) Five toy neuronal trees with roots indicated by a red vertex. (Bottom row)
Persistence images corresponding to the TMD(T, d ) of the toy neuronal trees in the top row. All persistence images of these trees have a
feature centered at (0,4), indicating that the furthest path length from the root (soma) of the toy neurons is 4 units. The remaining pixels with
positive values correspond to the remaining branches of each toy neuron. (a) There are two additional branches of total length 6 that originate
at the soma, which correspond to a feature centered at the coordinates (0,3) in (f). The relative pixel intensities reflect that these branches
correspond to a total length of 6 while the longest branch only corresponds to a total length of 4. (b) Two shorter branches are a distance of 1
unit from the soma, which corresponds to a birth value of 1 and branch length 3 in (g). (c) Six branches of length 1 all initiate at a distance of 1
from the soma, which corresponds to birth and persistence value of 1. In (d) and (i), six branches of length 1 that initiate at distance 3 from the
root causes an increase in pixel intensity near the coordinates (3,1). [(e) and (j)] Six branches of length 1 initiate at different distances from the
root which correspond to positive pixels along the line with a y value of one, however, since they initiate at different distances from the root,
the pixel intensity is dispersed across birth values.

While the distance of persistence images is not stable
against perturbations to the bottleneck distance on the space
of persistence diagrams, it is stable against perturbations to
the 1-Wasserstein distance [18, Theorem 10] thanks to the
weights applied to the Gaussian functions. A more subtle
implication of changing σ than those detailed in the previous
paragraph is that the stability guarantees of [18, Theorem 10]
become weaker as σ approaches zero.

III. THEORETICAL RESULTS

A. Interpretation

We restrict our attention to barcodes given by TMD(T, d ),
where d (v) is the intrinsic distance from r to v in T as a subset
of R3. In other words, the function d returns the length of
the path along the neuron from the point given by v to the
soma. For example, d is used to obtain the TMD in Fig. 2.
Since the TMD algorithm decomposes T into a collection
of branches, the sum of the lengths of all the intervals gives
the total branch length of the neuron. Further, the only closed
interval in TMD(T, d ) will be [0, L], where L is the greatest
value of d , since d attains all of its local maxima on leaves
and d (r) = 0. All other intervals (x, y] represent a branch in
the barcode decomposition of T that initiates at an intrinsic
distance x from the root and terminates at an intrinsic dis-
tance of y from the root. Therefore, the persistence of each
interval in TMD(T, d ) is exactly the length of the branch
that the interval represents, which must be positive. Hence
our choice of weights ensures the area under the persistence

surface of TMD(T, d ) is exactly the cumulative branch length
of T .

A persistence surface of TMD(T, d ) can be analyzed and
interpreted back to its associated neuron in other ways as well.
By identifying regions in the xy-plane where persistence sur-
face F (x, y) is large, we can read off the types of branches in
TMD(T, f ) that contribute to the total branch length. Indeed,
regions where F is large with large y values correspond to
longer branches, while regions where F is large with small
y values correspond to the contribution of shorter branches.
Similarly, regions where F is large with large x values corre-
spond to branches that initiate close to the root. By contrast,
regions where F is large with small x values correspond to
branches that initiate far from the root, in the sense that the
path from the root to the branch point at which they initiate
is long. Note that the persistence image will always have a
Gaussian contribution of weight L centered at (0, L), since
TMD(T, d ) must contain the interval [0, L]. Since persistence
images are discrete approximations of persistence surfaces,
they inherit similar interpretations. These concepts are illus-
trated with artificial neurons, each with the same total branch
length, in Fig. 4. In Fig. 5, we show how persistence images
can summarize the traits of real morphologically distinct neu-
rons. As mentioned, an advantage of persistence images over
persistence diagrams is that it is straightforward to compute
and visualize the average persistence image of a collection of
neurons. From average persistence images, we can identify
the types of branches that tend to appear in an entire class of
neurons.

043006-5



DAVID BEERS et al. PHYSICAL REVIEW RESEARCH 5, 043006 (2023)

FIG. 5. Persistence images of Drosophila neurons. (a) A class I neuron characterized by few main branches and many long secondary
branches growing perpendicularly to the main branch. (b) An area-covering class IV sensory neuron with many small branches far from the
root. In both (a) and (b), the soma is indicated by a red node. Below each in (c) and (d) are the corresponding persistence images. There are
several bright regions substantially above the x axis in (c) resulting from the many long secondary branches in (a). The brightest region of (d) is
far to the right and close to the x axis since many of the branches of (b) are far from the root and short. The digital reconstructions of these
neurons from Ref. [25] are freely available, see Ref. [26]. These neurons are named 02-16-09-Class1-B40X and 02-16-09-ClassIV on the site,
respectively.

B. The TMD versus persistent homology

As previously mentioned, Li et al. [14] have developed
a method distinct from the TMD which also takes a tree T
equipped with a function f and returns a barcode, which we
denote by EPH0(T, f ). We show that these methods are highly
related.

Theorem 1. Let T be a finite rooted tree with root r, and
f be a function which is strictly increasing along the directed
edges induced by r. We have that

TMD(T, f ) = −EPH0(T,− f ).

Here, the negative of a barcode denotes the operation which
takes the negative of interval endpoints and reverses their or-
der. In particular, d is a function satisfying the requirements of
this theorem, and so calculation of TMD(T, d ) can be recast
as a calculation using the methods of Li et al. [14]. For the
sake of succinctness, we defer the technical details of calcu-
lating EPH0(T, f ) and a proof of Theorem 1 to the Appendix.
When f does not satisfy the hypothesis of the theorem, there is
no guarantee that these two methods are related. For example,

when f is radial distance, the existence of branches that grow
towards the soma may cause the equality of Theorem 1 to
not hold.

C. Proposing topological morphology functions

It was shown in Ref. [14] that a neuron’s Sholl function
can be reconstructed from a barcode obtained via an alternate
methodology. We show that a similar function can be recov-
ered from the barcode TMD(T, d ). With the function d we
lose information about the radial distance of branches from
the soma necessary for the construction of Sholl functions.
However, we can construct another family of functions which
similarly describe the branching morphology of a given neu-
ron. Explicitly, we define the topological morphology function
p of a neuron to be the function which associates to each
positive number t the number of points on the neuron which
have an intrinsic distance of t to the soma. This is an exam-
ple of a Sholl descriptor, a kind of morphological descriptor
defined and studied in [27]. The value p(t ) is the number of
intervals in TMD(T, d ) containing t , since this is the number
of branches in the TMD decomposition of T containing points
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FIG. 6. Recovering p(1.5) from a standard and transformed
persistence diagram. On the left, p(1.5) is recovered from the per-
sistence diagram by counting the number of points above and to the
left of the point (1.5, 1.5). This region is shaded blue. On the right,
p(1.5) is recovered from the corresponding transformed persistence
diagram by counting the number of points in Rt , shaded blue. In both
cases, the number of points in the blue region is 2, so p(1.5) = 2.

a distance of t from the soma. We call a number t generic if
it is not an endpoint of an interval in TMD(T, d ). For generic
t , the number p(t ) is easily obtained from both persistence
diagrams and transformed persistence diagrams, as shown in
Fig. 6. In a persistence diagram, p(t ) for a generic t is the num-
ber of points above and to the left of (t, t ). In a transformed
persistence diagram, p(t ) is the number of points in the region
Rt , given by the equations

x < t, y > t − x, (2)

for generic t . The reason why we can only deduce p(t ) from
persistence diagrams for generic t is that persistence diagrams
do not retain information about the openness or closedness of
the intervals in their corresponding barcode.

The following theorem shows that the topological mor-
phology function p of a neuron represented by T can be
approximated from persistence surfaces of TMD(T, d ) via
integration.

Theorem 2. Let p be the topological morphology func-
tion associated to a neuron represented by a tree T . Let
d : N (T ) → [0,∞) be the intrinsic distance to the soma.
Let Fσ (x, y) be the persistence surface corresponding to
TMD(T, d ) constructed with Gaussian functions of standard
deviation σ . For any generic positive number t ,

p(t ) = lim
σ→0

∫
Rt

Fσ (x, y)

y
dx dy. (3)

Further the integral in the above expression converges and is
an infinitely differentiable function of t for all σ > 0.

This theorem shows that we may use the persistence sur-
face of a barcode to retrieve a smooth approximation of the
topological morphology function, which improves in accuracy
as the standard deviation σ used to generate the persistence
surface approaches zero. We show on an example in Fig. 7
that approximation of the integral in Theorem 2 by numerical
integration over a persistence image can also recover an ap-
proximation of the function p. Note that if every branch of a
neuron grows in a straight line exactly radially outward from
the soma, then the topological morphology function of the

FIG. 7. The topological morphology function (orange) for the
neuron in Fig. 5(a) along with the approximate topological morphol-
ogy function obtained by numerical integration of the persistence
image for σ = 10 (blue) and 2 µm (purple).

neuron is equal to the neuron’s Sholl function s. In situations
where this is a reasonable approximation, we expect that p
and s are similar. Under such an assumption regarding the
direction of neurite outgrowths, this theorem shows that we
can use a persistence image to approximate the Sholl function
s smoothly.

We defer the proof of Theorem 2 to the Appendix, where
we also prove an analogous result for the barcodes of Li et al.
[14].

IV. METHODS

A. Data

We study Tau35 mice, a transgenic mouse line which has
been used as a model to reproduce biological and cognitive
features of human tauopathies [28]. In particular, we analyze
topologically a set of 316 digitally reconstructed mouse neu-
rons (as .DAT files), 170 wild type (WT) and 146 Tau35 mouse
variant, to study the effect of tauopathy on morphology. These
reconstructed neurons are further divided into groups by age
(e.g., presymptomatic 4 month neurons or postsymptomatic
10–12 month neurons) and type (e.g., cortical or hippocampal
neurons). All neurons in the dataset were grown in live mice
and measured via a staining technique. We refer the reader to
Sec. A of the Appendix for the details of the data acquisition.
A portion of this data is recorded via its projection onto the
xy plane, while remainder of the data is recorded as a shape in
three-dimensional space.

B. Preprocessing

We convert the data from .DAT to .swc format using
NLMorphologyConverter. In .swc format, neurons are rep-
resented by a point cloud of points on the cell, with adjacent
points on neurites indicated. Each .swc representation also
features a collection of points representing the boundary of
the soma. Since our methods do not take into account the
morphology of the soma, we further preprocess the data by
contracting these boundary points to a single point at their
center of mass. By visual inspection, we find that the con-
verted .swc converted files often attach neurites to the soma
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TABLE I. The counts of neurons of different types in the dataset. The rightmost four columns denote the percentage of random regroupings
which had an L1 distance of group averages less than the L1 distances of the WT and Tau35 averages for different values of the parameter σ

used to define persistence images.

Percent Percent Percent Percent
Age(Months) Region WT Count Tau35 Count σ = 5 µm σ = 10 µm σ = 15 µm σ = 20 µm

10-12 Cortex 64 43 99.57 99.06 98.65 97.94
10-12 Hippocampus 38 49 97.38 99.68 99.76 99.79
4 Cortex 38 33 99.08 98.54 96.98 93.55
4 Hippocampus 30 21 85.20 94.87 94.46 91.51

at inaccurate locations. To correct for this, we further prepro-
cess the data by removing edges between each neurite and
the soma, and adding a new connection between the point
representing the soma and each neurite, at the point on the
neurite that is closest to the contracted soma point.

C. Computations

Since a portion of the data is projected into two dimen-
sions, we use projected path length to the soma as a proxy
for path length to the soma. We define the projected distance
between any two adjacent points in a .swc representation
of a neuron to be their mutual distance once projected in
the xy plane. The projected path length between a point z
and the soma is then defined to be the sum of projected
distances between pairs of adjacent points along the shortest
path between z and the point representing the soma. Letting
d̃ denote projected path length to the soma, we compute
persistence images of TMD(T, d̃ ) associated to each neuron
in the data set and take in-group averages. Each persistence
image is generated from the persistence surfaces2 of Gaussian
functions with a standard deviation of 5 µm. We hypothesize
that the difference between group averages of WT and Tau35
neurons of the same age and type is significant. Since we do
not know the distribution underlying the persistence images
of our data, we opt to perform a nonparametric test of our
hypothesis. Therefore we compute the L1 distance between
average persistence images of the Tau35 and WT neurons in
question. We then compare this L1 distance to the L1 distances
for averages of 10000 randomized regroupings of the data.
We then repeat the above computations with the value of
the parameter σ changed to 10, 15, and 20 µm to study the
sensitivity of our analysis to the parameter σ .

V. RESULTS ON TAUOPATHY VS WT NEURONS

To test the hypothesis that WT neurons and tauopathy
neurons are on average morphologically distinct, we average

2For computations we generated persistence images with 231×231
entries. The entries of these persistence images evenly cover the
region [−0.15Lmax, Lmax]2 ⊆ R2, where Lmax is 1.1 times the max-
iumim in-group projected branch length, across Tau35 and WT
neurons. Note that the persistence images we use for computation
sample values outside the first quadrant to assure that relevant infor-
mation of points on the associated persistence diagram near the x or
y axis is captured.

the persistence images of each group of neurons and perform
a randomization test as explained in the Methods. We show
the results of our randomization tests in Table I, where the
rightmost column is the percent of times the randomized L1

distance was less than or equal to the same distance be-
tween the average Tau35 and WT neurons. For each of the
four randomization tests we choose to accept the between-
average difference as significant if less than 5/4 percent of
the regroupings had a greater between-average distance. We
divide by 4 to account for the multiple comparisons problem,
since we perform four tests for each value of σ . Under this
criterion, the between-average difference of the persistence
images of Tau35 and WT neurons was significant for 3/4 tests
on 10–12 month hippocampal neurons, 2/4 tests on 10–12
month cortical neurons, and 1/4 tests on 4 month cortical
neurons. In Fig. 8, we show the average persistence images
(for σ = 10 µm) of the Tau35 and WT neurons of each 10–12
month group with their in-group differences.

We analyzed in-group averages of persistence images to
identify features which distinguish WT neurons from Tau35
neurons on average at 10–12 months. For both hippocampal
and cortical neurons in this age range [Figs. 8(c) and 8(f),
respectively], we observe that the average Tau35 persistence
images have a greater intensity towards the origin, while WT
persistence images have greater pixel intensity for larger x and
y values. From these observations we deduce that branches
tend to not only be longer in WT neurons, but also often
initiate further along the neuron than in Tau35 neurons. These
findings are in accord with previous work associating presence
of toxic tau with the inhibited ability of neurons to maintain
long range connections in tau35 neurons [29] and neurode-
generative disease in general [30–34].

In Fig. 9, we plot the associated Sholl and topological mor-
phology functions of the Tau35 and WT 10–12 month cortical
and hippocampal neurons. We observe from both the Sholl
and persistence functions that there are less branches far from
the root in Tau35 neurons than WT neurons. The observation
that the topological morphology and Sholl functions are in-
creasing at greater distances from the soma for WT neurons,
suggests that branching tends to occur at greater distances
from the root in WT neurons. The analysis of the persistence
images, which capture the joint distribution between branch
initiation and branch termination confirms this conclusion.

VI. CONCLUSION

Barcodes and persistence images are powerful tools for the
analysis of tree-like geometries in biological systems, such
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FIG. 8. In-group average persistence images and the difference between Tau and WT groups for 10-12 month cortical (first row) and
hippocampal (second row) neurons. (First column) average WT persistence images, (second column) average Tau35 persistence images, (third
column) difference between WT and Tau35 average persistence images.

FIG. 9. Average (left column) topological morphology and (right column) Sholl functions for (top row) 10–12 month cortical and (bottom
row) 10–12 month hippocampal neurons of both WT (blue) and Tau35 (orange) classes.
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as neurons. An advantage of persistence images is that they
can be used to study statistically groups of neurons. Here, we
have further shown that persistence images based on a notion
of path length capture key features of neuronal morphologies
and can be used to discriminate statistically distinct classes of
neurons, however in contrast with the work of Ref. [18], we
find that the choice of the parameter σ plays a decisive role
in our analysis. Unlike the Sholl functions, persistence images
are able to describe the joint relationship between branch initi-
ation and termination in neurons. Once two groups of neurons
have been shown to be statistically distinct, the difference
between the two groups can be determined through visual
inspection of their respective averaged persistence images and
their differences. When applied to neurons in healthy and
diseased groups, we have shown that the quantitative features
of the branches of a neuron or a group of neurons can be easily
interpreted from our persistence images.

The natural choice of path length from the soma as an
input to the topological morphological descriptor leads to the
definition of a topological morphology function similar to the
Sholl function. Smooth approximations of this function can be
obtained directly from persistence images and in the particular
case when branches mostly grow away from the soma, this
topological morphology function produces an approximation
of the Sholl function. By presenting an alternative function
for the TMD, we are able to precisely connect the TMD algo-
rithm to persistent homology and contribute an interpretable
descriptor of intrinsic neuronal morphology that complements
the toolkit of neuronal analysis.
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APPENDIX

1. Data Acquisition

a. Tissue harvest and processing

Tau35 mice were generated by targeted knock-in to the
Hprt locus under the control of the human tau promoter
as described previously [28]. Mice, Tau35 and wild-type
(WT) controls, were sacrificed at two time-points, presymp-
tomatic (four month old) and post-symptomatic (10–12 month
old), using terminal anaesthesia, perfused with 1x PBS and
post-fixed in 4% (w/v) PFA overnight at 4 °C. Brain sec-
tions (200 µm) were prepared using a VT1000 S Vibrating

blade microtome (Leica Biosystems) and stored free-floating
in cryoprotectant (30% (v/v) ethylene glycol, 15% (w/v) su-
crose in PBS) at −20 °C. All procedures were carried out
in accordance with the Animals (Scientific Procedures) Act,
1986, following approval by the local ethical review commit-
tee.

b. Tissue staining and image acquisition

To quantify dendritic morphology, Golgi-stained neurons
[35] were imaged using a 60x objective (NA=1.4) on a
Nikon microscope. Using the live acquisition feature images
were collected at a depth starting at 20 µm below the sur-
face of the specimen. Z-stack images (30–90 µm total on
the Z axis; z-stack step size=0.3 µm; 90–270 images per
stack) were acquired. Each image stack was extracted using
NIS-Elements (Nikon) software and imported to Neurolucida
(MBF Bioscience) software for analysis. Neurolucida was
used to identify cell bodies and their outgrowth for each of
the sections in the z-stack for stacks below 50 µm. For stacks
above 50 µm, due to the image size, an average intensity
projection image was generated by calculating the average
intensity (AIP) values of each pixel along the z axis for all
the layers and combining them into the 2D AIP image. The
resulting AIP images were then used to identify cell bodies
and outgrowth with the NEUROLUCIDA software.

2. Zero-dimensional persistent homology for graphs

This section of the Appendix constitutes a brief outline
of the concepts from persistent homology that are necessary
for other sections of the Appendix. We refer the interested
reader to Refs. [36] and [16, Chap. VII] for a more complete
overview.

Suppose we have a tree T and a map f : N (T ) → R. We
can define the sublevel sets Tt to be the subgraphs of T , gen-
erated by all of the nodes v satisfying f (v) � t . Any function
on T has only finitely many distinct sublevel sets Tt , each of
which has a lowest corresponding t value ti. Hence we have a
nested inclusion of graphs

∅ ⊆ Tt1 ⊆ Tt2 ⊆ . . . ⊆ Ttn = T,

which we can also write as

∅ → Tt1 → Tt2 → . . . → Ttn = T, (A1)

with each arrow denoting the inclusion map. This sequence of
graphs is called the sublevel set filtration of f . We depict an
example sublevel set filtration in Fig. 10.

Each forest Tti has an associated vector space C0(Tti ) given
by the R-span of the nodes of Tti . The inclusion maps in the
sequence of Tti then induce linear maps in the sequence

{0} → C0(Tt1 ) → C0(Tt2 ) → . . . → C0(Ttn ) = C0(T ).

We can quotient each vector space C0(Tti ) via the relation v ∼
v′ whenever v and v′ are in the same connected component in
C0(Tti ). We call the resulting vector spaces H0(Tt ), the zero-
dimensional homology of Tt . Hence, H0(Tt ) has dimension
equal to the number of trees in the forest Tt . If v and v′ are
both in the same connected component of Tt , it follows that
they are also both in the same connected component of Ta for
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FIG. 10. The sublevel set filtration of the height function on the nodes of the rightmost tree.

any a � t . Therefore the inclusion maps above induce maps
between homology groups, giving us the sequence

{0} → H0(Tt1 ) → H0(Tt2 ) → · · · → H0(Ttn ) = H0(T ).

This sequence connected by the linear maps induced by in-
clusion is called the dimension zero persistence module of T
with respect to f . We would like to decompose this sequence
of vector spaces into simpler sequences of form

{0} → · · · → {0} → R → · · · → R → {0} → · · · → {0}
with identity maps between the spaces R and zero maps else-
where. We refer to such a sequence of vector spaces with R
first appearing at the location for ti and last appearing at the
location of t j as I (ti, t j+1), and we call this type of sequence
an interval module. For when j = n in this definition, we
define tn+1 = ∞. It was shown in [37] that if M is a zero-
dimensional persistence module of T with respect to f , then
M decomposes uniquely into a direct sum of interval modules

K⊕
k=1

I (ti(k), t j(k) ).

From this decomposition, we associate a barcode, a collec-
tion of intervals in the real line, by the mapping

K⊕
k=1

I (ti(k), t j(k) ) �→
K⊔

k=1

[ti(k), t j(k)+1).

We refer to this barcode as the persistent homology of T and f ,
or PH(T, f ). It follows from this decomposition that there are
exactly as many infinite intervals, intervals with right endpoint
tn+1 = ∞, in PH(T, f ) as there are connected components
in T . Since we assume T to be connected, exactly one of
these intervals is infinite. Sometimes it is useful to make the
resulting barcode only consist of bounded intervals, and we
can achieve this, for example, by sending the one instance
of ∞ to max( f ) and replacing the open endpoint with a
closed endpoint. We call the resulting barcode EPH0(T, f ).

Readers familiar with extended persistence [38] will note that
this is the zero-dimensional extended persistence barcode of
T , justifying the notation. We show the barcodes PH( f ) and
EPH0( f ) of the sublevel set filtration from Fig. 10 in Fig. 11.

In Ref. [14], barcodes of bounded intervals for a tree T and
a function f are obtained by first computing PH(T, f ) and
then transforming the result to the barcode of bounded inter-
vals EPH0(T, f ) as described above. In this setting, PH(T, f )
is computed by the following procedure under the assumption
of certain genericity conditions. It is well known that there
is a bijection between intervals in PH(T, f ) and the local
minima of f . The local minima are the subtrees of T on
which f takes exactly one value which is less than its value
on all neighboring nodes. If f is generic then all local minima
of f are nodes. The values f (v) for minima are the values
of the left endpoints of their associated intervals, since they
correspond to t values where their associated connected com-
ponents first appear. Suppose that at time ti in the sequence
given by Eq. (A1), two or more connected components {Cl}N

l=1
of Tti−1 merge. Additionally, suppose there exists a unique
global minimum of f restricted to each Cl , denoted vl , and
one of the vl has the lowest f value, without loss of generality
f (vl ) < f (v1) for l � 2. In this generic case, then the Elder
Rule [39, Theorem 4.4] determines that the right endpoint of
the interval corresponding to vl to be f (tl ) for l � 2, giving
rise to the interval [ f (vl ), f (ti )). If our assumptions hold
whenever connected components merge, we can compute the
persistent homology by this procedure. Indeed, after applying
this process to every merging of connected components in
Eq. (A1), every local minimum whose corresponding right
endpoint has yet to be assigned must be the global minimum
of its connected component in T . Since T is connected, there
must only be one such local minimum. Hence, the value of this
local minimum must be paired with an infinite right endpoint,
as H0(T ) is a one-dimensional vector space.

We can still compute PH(T, f ) in a similar fashion when
f is not generic. If M1, · · · , Mk are the local minima of f ,
then we have k intervals in PH(T, f ), each with left endpoint

FIG. 11. (a) The example tree T from Fig. 10. (b) The barcode PH(T, f ), where f is the height function on the nodes. (c) The barcode
EPH0(T, f ).
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f (Mk ). This time inducting on i, suppose again that at time ti,
connected components {Cl}N

l=1 of Tti−1 merge, but by induction
suppose exactly one of the local minima in each Cl has not yet
been assigned a right endpoint. Indeed, there must be exactly
one such local minimum for the base case i = 1 where every
Ci must be a local minimum. For general i, refer to this distin-
guished local minimum in Cl by Mnl . By reordering indices,
we can have that f (Mn1 ), · · · , f (MnN ) is weakly increasing.
The Elder Rule [39, Theorem 4.4] then determines the right
endpoint of the interval associated to Mni to be ti for i � 2,
leaving the right endpoint or Mn1 undecided. There was a
choice in our ordering of the Mni of which local minimum was
assigned to Mn1 if multiple of the Mni have f (Mni ) = f (Mn1 ).
However, according to the Elder Rule, regardless of the choice
we make, we will get the same barcode. Our inductive hy-
pothesis is satisfied, as we have exactly one local minimum,
namely, Mn1 , which has a right endpoint yet to be determined
in the connected component of Tti containing each Cl . As
before, only one interval will remain with undecided right
endpoint after this procedure, and we label this right endpoint
with ∞ to produce the barcode PH(T, f ). Replacing ∞ with
max( f ) we can use this algorithm to compute EPH0(T, f ).

We can easily define the negation operation on barcodes
to be the map which swaps and takes the negative value of
interval endpoints. For example, we have

− ([1,∞) 
 [2, 5) 
 [3, 4))

= (−∞,−1] 
 (−5,−2] 
 (−4,−3].

Similarly, we can also define a switching map S which
switches the endpoints of each interval. For example,

S([1,∞) 
 [2, 5) 
 [3, 4)) = (∞, 1] 
 (5, 2] 
 (4, 3].

The switching map does not send intervals in R to intervals
in R since the right endpoint of a genuine interval will, after
switching, be less than or equal to its left endpoint. Neverthe-
less, this is a useful notion to consider.

In the sequence of Eq. (A1), we constructed T sequentially
via the sublevel sets of f . We could proceed analogously
using the superlevel sets of f , the subgraphs T t generated by
the nodes v satisfying f (v) � t , this time with t decreasing
with each inclusion map. The exact same procedure gives
us a barcode corresponding to the sublevel sets of f , with
the caveat that the so-called intervals [x, y) in this barcode
satisfy x � y. Similarly, we can make these intervals finite
by replacing the −∞ in the resulting barcode with min( f ),
and replacing the open endpoint corresponding to −∞ with a
closed endpoint. It is readily verified that applying persistent
homology to the superlevel sets of f gives us the barcode
−S(PH(T,− f )). Applying persistent homology to the su-
perlevel sets composed with the map −∞ �→ min( f ), which
changes the infinite endpoint to be closed, is then easily seen
to be −S(EPH0(T,− f )).

3. Metrics on the space of persistence diagrams

We first recall the definition of a persistence diagram.

Definition 1. A persistence diagram is a multiset of
points in R̄2 that contains every diagonal point (x, x) for x ∈ R

with infinite multiplicity. Here, R̄ denotes the extended real
line R ∪ {−∞} ∪ {∞}.

Every barcode induces a persistence diagram by the map
which sends each interval with left endpoint x and right end-
point y to the point (x, y) and then includes every diagonal
point (x, x) with infinite multiplicity. This map is well defined
even if y < x for some subcollection of intervals. We re-
strict our attention to persistence diagrams with finitely many
off-diagonal points, each with finite multiplicity. Indeed, all
finite trees T must have persistence diagrams associated to
TMD(T, f ) and EPH0(T, f ) of this type since T has finitely
many nodes.

Given pairs of persistence diagrams D1 and D2, it is often
useful to have a numerical measure of how different they are.
Two popular such measurements of the difference between
pairs of persistence diagrams are the q-Wasserstein and bot-
tleneck distances.

Definition 2. For q � 1 the q-Wasserstein distance be-
tween persistence diagrams D1 and D2 is given by

Wq(D1, D2) := inf
φ

( ∑
x∈D1

‖x − φ(x)‖q
∞

)1/q

,

where the infimum is taken over all bijective maps φ : D1 →
D2. If the term inside the infimum is never finite then we let
Wq(D1, D2) = ∞. We define the bottleneck distance simi-
larly by

dB(D1, D2) = W∞(D1, D2) := inf
φ

sup
x∈D1

‖x − φ(x)‖∞.

We say a bijective map φ : D1 → D2 satisfying

sup
x∈D1

‖x − φ(x)‖∞ � δ

is a δ-matching of D1 and D2.

For this definition, we take |∞ − ∞| = 0 and |∞ − t | =
∞ for any t ∈ R̄ − {∞}, and similarly define the absolute
value for −∞.

The bottleneck distance is shown to be an extended metric
on the space of persistence diagrams with finitely many off-
diagonal points in Ref. [16, p. 219]. The Wasserstein distances
are shown to be extended metrics similarly.

When comparing two barcodes B1 and B2 we abuse nota-
tion and let Wq(B1, B2) and dB(B1, B2) denote the Wasserstein
and bottleneck distances of their associated persistence dia-
grams. It should be noted that distance these functions are not
metrics on the space of barcodes, for two barcodes can have
the same persistence diagram and yet differ on the openness
or closedness of their endpoints. As this information is all that
is lost in the mapping from barcodes to persistence diagrams,
this is the only way two barcodes of bottleneck or Wasserstein
distance zero can differ.

4. The TMD versus persistent homology

The TMD algorithm also produces a barcode TMD(T, f )
from a tree T equipped with a function f [13]. We recall that
the algorithm can be paraphrased as follows.
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(1) Choose a branch point and identify a child branch of
that branch point that attains the greatest value of f on its
leaves.

(2) Detach every child branch from this branch point except
for the identified branch.

(3) If there are any branch points in the resulting collection
of trees, return to step 1.

(4) Label the endpoints of the resulting collection intervals
with the f values associated to their endpoints.

Our goal is to connect the TMD operation to the EPH0

operation for a certain class of functions on T including d ,
the intrinsic distance from the root. Prior related work, for
example [40] and [14], has remarked and alluded that for
functions f which increase along paths moving away from
the root, the TMD and EPH0 coincide. We provide a proof of
this fact.

Proof of Theorem 1. Let l0 be one of the leaves with the
largest f value, and let f (l0) = L. From the fact that f is
increasing with respect to the directed edges of T , it follows
that the leaves of T are the only local minima of − f , and so
the intervals of PH(T,− f ) bijectively correspond to leaves of
T . Similarly, the TMD algorithm also associates an interval to
each leaf of T . Connected components merge in the sublevel
set filtration of T and − f only when a branch point b is in-
cluded, and the components that are merged correspond to the
child branches of b. We show the theorem holds by computing
TMD(T, f ) and PH(T,− f ) concurrently. For each iteration
of the TMD algorithm, choose b, one of the branch points
with the greatest value of f , in order to ensure that every
detached child branch is actually an interval, and thus contains
a single leaf. Then, choose one of the child branches which
attains the largest value of f on its leaf l . The Elder Rule
[39, Theorem 4.4] then dictates that each leaf l ′ �= l of a child
branch of b may be associated to the interval [− f (l ′),− f (b))
in PH(T,− f ). Meanwhile the TMD algorithm associates to
the child branch containing l ′ �= l the interval ( f (b), f (l ′)].
The TMD algorithm then dictates that we detach the child
branch containing each l ′ �= l . This does not change the left
endpoint given by the Elder Rule for an interval corresponding
to any other leaf since removing the branch from b to l ′ does
not change the minimal value of − f at any of the remaining
child branches of branch points of T , nor the value of − f the
remaining branch points of T themselves. After completing
this procedure for every branch point of T , what remains to be
computed is the infinite interval [−L,∞) in PH(T,− f ) and
the finite interval [ f (r), L] in TMD(T, f ). From the mono-
tonicity assumption, f (r) = max(− f ), and so it is immediate
that TMD(T, f ) = −EPH0(T,− f ). �

An immediate consequence of this result is that the meth-
ods of Refs. [13,14] can record identical information for
functions f satisfying the requirements of the theorem. In
particular, the function d , the path distance to the root, sat-
isfies the requirements of this theorem, and so TMD(T, d ) =
−EPH0(T,−d ).

E. Topological morphology functions from persistence surfaces

For a neuron represented by a tree T , recall that the associ-
ated topological morphology function p(t ) returns the number
of points on the neuron with an intrinsic distance of t from the
root.

We can transform the persistence diagram of TMD(T, f )
by the map (x, y) �→ (x, y − x). If d is the intrinsic distance
from the root function, we have shown in the main text that
for t not an endpoint of an interval of TMD(T, d ), p(t )
is the number of points in transformed persistence diagram
of TMD(T, d ) in the region given by x < t and y > t − x,
which we call Rt . Adding together two-dimensional Gaussian
functions with standard deviation σ centered at each point
on the transformed persistence diagram of TMD(T, d ), each
weighted by the y value of their center, we produce the per-
sistence surface Fσ (x, y). Theorem 2, which remains to be
proven, shows that an approximation of p can be constructed
from Fσ .

We will formally restate this theorem shortly, but first we
will need a definition and a lemma.

Definition 3. Consider the family of boxes Bδ (μ) of width
and height δ centered around μ = (μx, μy). Let gσ (x, y; μ) be
a family of functions for positive σ satisfying the following
properties:

(1) The function gσ (x, y; μ) is positive, and is bounded for
fixed σ .

(2)
∫
R2 gσ (x, y; μ) dx dy = 1.

(3) gσ (x, y; μ) → 0 uniformly as σ → 0 on BC
δ (μ), the

complement of Bδ (μ).
(4)

∫
Bδ (μ) gσ (x, y; μ) dx dy → 1 as σ → 0.

(5) Every partial derivative of gσ (x, y; μ) with respect to
x is continuous, and for fixed σ and μ is bounded in absolute
value both by some constant and by M/(x2 + y2) for some
other constant M.

Then we say that gσ (x, y; μ) ∈ F .

Lemma 1. If gσ (x, y; μ) ∈ F , then

lim
σ→0

∫
Rt

gσ (x, y; μ)

y
dx dy (A2)

is equal to zero if μ is in the exterior of Rt and is equal to μ−1
y

if μ is in the interior of Rt . Further, for each positive σ ,∫
Rt

gσ (x, y; μ)

y
dx dy

is infinitely differentiable as a function of t .

Proof. We only use property 5 to show the differentiability
condition holds at the end. From properties 2 and 4, we im-
mediately have that

∫
BC

δ (μ) gσ (x, y; μ) dx dy → 0 as σ → 0.
We first show that the integral in the theorem converges

regardless of t . For positive h let �h denote the triangular
subset of Rt of points (x, y) additionally satisfying that y < h.
Let M be a bound for gσ (x, y; μ) for a given σ . We have∫

�h

gσ (x, y; μ)

y
dx dy =

∫ h

0

∫ t

t−y

gσ (x, y; μ)

y
dx dy

�
∫ h

0

∫ t

t−y

M

y
dx dy = Mh,∫

Rt −�h

gσ (x, y; μ)

y
dx dy �

∫
Rt −�h

gσ (x, y; μ)

h
dx dy � 1

h
.

To establish the limiting value in the theorem, first consider
gσ (x, y; μ) fixing μ in the exterior of Rt . For such μ, there

043006-13



DAVID BEERS et al. PHYSICAL REVIEW RESEARCH 5, 043006 (2023)

exists a δ sufficiently small that Bδ (μ) is disjoint from Rt . Let
S(σ ) be the supremum of gσ (x, y; μ) on BC

δ (μ) as a function
of σ . Property 3 implies that this approaches 0 as σ does. We
have∫

�h

gσ (x, y; μ)

y
dx dy =

∫ h

0

∫ t

t−y

gσ (x, y; μ)

y
dx dy

�
∫ h

0

∫ t

t−y

S(σ )

y
dx dy = hS(σ ),∫

Rt −�h

gσ (x, y; μ)

y
dx dy �

∫
Rt −�h

gσ (x, y; μ)

h
dx dy � 1

h
.

Letting h = S(σ )−1/2, we observe

0 �
∫

Rt

gσ (x, y; μ)

y
dx dy � 2S(σ )1/2,

which tends to zero as σ does.
If on the other hand μ lies in Rt , again we can choose δ

small enough that Bδ (μ) is a subset of Rt . Define S(σ ) as
before. Once again we obtain bounds∫

�h−Bδ (μ)

gσ (x, y; μ)

y
dx dy �

∫
�h

S(σ )

y
dx dy

=
∫ h

0

∫ t

t−y

S(σ )

y
dx dy

= hS(σ ),∫
Rt −�h∪Bδ (μ)

gσ (x, y; μ)

y
dx dy �

∫
Rt −�h

gσ (x, y; μ)

h
dx dy

� 1

h
.

Combining these two results and letting h = S(σ )−1/2, we
observe

0 �
∫

Rt −Bδ (μ)

gσ (x, y; μ)

y
dx dy � 2S(σ )1/2,

which approaches zero as σ approaches zero. Meanwhile, we
also have∫

Bδ (μ)

gσ (x, y; μ)

y
dx dy �

∫
Bδ (μ)

gσ (x, y; μ)

μy − δ
dx dy

� 1

μy − δ
,∫

Bδ (μ)

gσ (x, y; μ)

y
dx dy �

∫
Bδ (μ)

gσ (x, y; μ)

μy + δ
dx dy

→ 1

μy + δ
,

with the limit in the last line taken as σ → 0. Since δ can be
taken arbitrarily small, this implies∫

Bδ (μ)

gσ (x, y; μ)

y
dx dy → 1

μy
.

Hence, ∫
Rt

gσ (x, y; μ)

y
dx dy → 1

μy
.

In summary, we have shown that the above integral ap-
proaches μ−1

y when μ is interior to Rt and approaches zero
when μ is exterior to Rt .

All that remains to be shown is the differentiability state-
ment of the lemma, i.e., we must show that the integral

I (t ; μ) :=
∫

Rt

gσ (x, y; μ)

y
dx dy=

∫ ∞

0

∫ t

t−y

gσ (x, y; μ)

y
dx dy

is an infinitely differentiable function of t.
To begin, notice that by continuity of g we can extend the

integrand to y = 0 via

lim
y→0

∫ t

t−y

gσ (x, y; μ)

y
dx = gσ (t, y; μ).

Further, we have the estimate for positive C:∫ ∞

C

∫ t

t−y

gσ (x, y; μ)

y
dx dy �

∫ ∞

C

∫ t

t−y

gσ (x, y; μ)

C
dx dy

�
∫
R2

gσ (x, y; μ)

C
dx dy � 1

C
,

showing uniform convergence of the same integral with C
taken to be 0, since g is positive valued. We also have that

∂n

∂t n

∫ t

t−y

gσ (x, y; μ)

y
dx

= ∂n−1

∂t n−1

gσ (t, y; μ) − gσ (t − y, y; μ)

y

= 1

y

[
∂n−1

∂t n−1
gσ (t, y; μ) − ∂n−1

∂t n−1
gσ (t − y, y; μ)

]
.

This expression is bounded by any constant bounding of
| ∂n

∂t n gσ (t, y; μ)|. Hence, applying
∫ ∞

0 dy to this expression, the
lower limit converges uniformly. Meanwhile, letting M be a
bound for the integral of | ∂n−1

∂t n−1 gσ (t, y; μ)| over linear domains
in t and y, we observe that the upper limit converges uniformly
as well since∣∣∣∣ ∫ ∞

C

1

y

[
∂n−1

∂t n−1
gσ (t, y; μ) − ∂n−1

∂t n−1
gσ (t − y, y; μ)

]
dy

∣∣∣∣
�

∫ ∞

C

1

y

[∣∣∣∣ ∂n−1

∂t n−1
gσ (t, y; μ)

∣∣∣∣+∣∣∣∣ ∂n−1

∂t n−1
gσ (t − y, y; μ)

∣∣∣∣] dy

�
∫ ∞

C

1

y

[
M

t2 + y2
+ M

(t − y)2 + y2

]
dy

�
∫ ∞

C

2M

y3
dy � 4M

C2
.

From this we know we can interchange the partial derivative
and integral in the expression for I (t ; μ), giving us the formula

∂n

∂t n
I (t ; μ) =

∫ ∞

0

1

y

[
∂n−1

∂t n−1
gσ (t, y; μ)

− ∂n−1

∂t n−1
gσ (t − y, y; μ)

]
dy,

completing the proof. �
With this Lemma we can easily show Theorem 2.
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Theorem 2. Let p be the topological morphology func-
tion associated to a neuron represented by a tree T . Let
d : N (T ) → [0,∞) be the intrinsic distance to the soma.
Let Fσ (x, y) be the persistence surface corresponding to
TMD(T, d ) constructed with Gaussian functions of standard
deviation σ . For any generic positive number t ,

p(t ) = lim
σ→0

∫
Rt

Fσ (x, y)

y
dx dy. (3)

Further the integral in the above expression converges and is
an infinitely differentiable function of t for all σ > 0.

Proof of Theorem 2. Let μ1, · · · , μN be the coordinates of
the off-diagonal points in the transformed persistence diagram
of TMD(T, f ). The persistence surface is then given by the
formula

Fσ (x, y) =
N∑

i=1

(μi )y gσ (x, y; μi ). (A3)

Each function gσ (x, y; μi ) is a two-dimensional Gaussian
function, for which the requirements of Lemma 1 are ele-
mentary properties. Each statement of theorem 2 is immediate
from the fact that Fσ is a finite linear combination of functions
satisfying the requirements of Lemma 1. Indeed, in light of
Eq. (A3), Eq. (3) is clearly infinitely differentiable from the
previous lemma. When t is generic with respect to B, it is
easily seen that each μi is not on the boundary of Rt . Applying
Lemma 1 and Eq. (A3), we see that the limit

lim
σ→0

∫
Rt

Fσ (x, y)

y
dx dy

evaluates to the number of μi in Rt , which is equal to p(t ). �
Let T be a tree with an embedding P to Rn and f be the

Euclidean distance of each point represented by v to the root r.
Recall that we define the Sholl function s(t ) to be the number
times the n-sphere of radius t centered about P(r) intersects
with P(T ). Let B be the barcode

EPH0(T, f ) 
 −S(EPH0(T,− f )), (A4)

the disjoint union of barcodes given by persistent homology of
the superlevel and sublevel sets of f . We say that t is generic
if it is not an endpoint of an interval in B. Let DB be the
persistence diagram associated to B. If instead of assuming
the embedding of edges of T in Rn is linear, we assume that
P is such that f is weakly increasing or decreasing on edges,
Li et al. show in Ref. [14, Sec. 2.4] that the value s(t ) can
be recovered from DB for any generic t . For the remainder
of this section, we only consider T with such an embedding.
For generic t between 0 and max( f ), Li et al. prove that the
Sholl function s(t ) is the number of points above and to the
left or below and to the right of (t, t ) in DB minus one. More
formally written, if Qt is the set of (x, y) such that (x < t and
y > t) or (x > t and y < t), then

s(t ) = ∣∣B ∩ Qt

∣∣ − 1. (A5)

If t is generic, but t is not between 0 and max( f ) it is easily
seen that the left side of this equation is 0 while the right side
of this equation is −1. We show how s(t ) may be calculated
from DB visually in Fig. 12.

FIG. 12. Calculating the s(2.5) from the persistence diagram DT .
Shown in blue is the region Q2.5, within which there are three points.
Hence, s(2.5) = 2.

One may define a persistence surface Fσ for the barcode
B defined in Eq. (A4) by adding a two-dimensional Gaussian
function for each point in DB, with multiplicity, each weighted
by the vertical distance of the point from the diagonal.3 We
can use our Lemma 1 to show that an approximate Sholl
function can be recovered from this persistence surface.

Theorem 3. Let T be a rooted tree with Sholl function s
and f be the associated Euclidean distance from the root func-
tion. Assume that between adjacent vertices, the embedding
of T in R2 or R3 is such that f is either weakly increasing
or decreasing along each edge. Let B be the barcode given
by Eq. (A4) and DB be the associated persistence diagram.
Let Fσ (x, y) be the persistence surface corresponding to DB

constructed with Gaussian functions of standard deviation σ ,
without the transformation step (x, y) �→ (x, y − x). For any
generic positive number t between 0 and max( f ),

s(t ) = lim
σ→0

∫
Qt

Fσ (x, y)

|x − y| dx dy − 1.

Otherwise, if t is generic, the left side of this equation is
0 and the right side of this expression is −1. Further, the
integral in the above expression converges and is an infinitely
differentiable function of t for all σ > 0.

Proof. Let μ1, · · · , μN be the coordinates of the off-
diagonal points in DB, with x and y values (μi )x and (μi )y

respectively. By definition the persistence surface Fσ is given
by a weighted sum of Gaussians:

Fσ (x, y) =
N∑

i=1

|(μi )y − (μi )x| gσ (x, y; μi ).

We denote by Q+
t the portion of Qt satisfying y > x and

similarly denote by Q−
t the portion of Qt satisfying x > y. We

3It is common to skip the transformation step when there are points
below the diagonal in the initial barcode.
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have the equation∫
Qt

Fσ (x, y)

|x − y| dx dy=
∫

Q+
t

Fσ (x, y)

y − x
dx dy+

∫
Q−

t

Fσ (x, y)

x − y
dx dy.

Examining the first term, we have∫
Q+

t

Fσ (x, y)

y − x
dx dy =

∫ ∞

0

∫ t

−∞

Fσ (x, y)

y − x
dx dy

=
∫ ∞

0

∫ t

t−v

Fσ (u, u + v)

v
du dv

via the transform (x, y) �→ (x, y − x) := (u, v). Noting that
linear transformations of Gaussian density functions are still
Gaussian density functions and that this last integral is over
the region Rt in the uv plane, we have∫ ∞

0

∫ t

t−v

Fσ (u, u + v)

v
du dv

=
N∑

i=1

|(μi )y − (μi )x|
∫

Rt

gσ (u, u + v; μi )

v
du dv.

We may now apply Lemma 1 as each gσ is Gaussian with
mean ((μi )x, (μi )y − (μi )x ) in the uv plane and therefore up-
holds the requirements of the lemma. Thus the integrals on the
right are well defined and infinitely differentiable. Consider
the ith of these integrals on the right. Taking the limit σ → 0
this integral evaluates to ((μi)y − (μi )x ) if ((μi )x, (μi )y −
(μi )x ) is interior to Rt and 0 if it is exterior to Rt . Equivalently,
the integral evaluates to ((μi )y − (μi )x ) if μi is interior to Q+

t
and 0 if it is exterior to Q+

t .

No μi lies on the boundary of Q+
t . Hence, the limit

lim
σ→0

∫
Q+

t

Fσ (x, y)

|x − y| dx dy

evaluates to the number of μi in Q+
t for generic t .

Similarly, we may show via the transformation (x, y) �→
(y, x − y) that the limit

lim
σ→0

∫
Q−

t

Fσ (x, y)

|x − y| dx dy

is the number of μi in Q−
t for generic t , and that the inte-

gral here is always well defined and infinitely differentiable
regardless of t .

Hence the integral∫
Qt

Fσ (x, y)

|x − y| dx dy =
∫

Q+
t

Fσ (x, y)

|x − y| dx dy+
∫

Q−
t

Fσ (x, y)

|x − y| dx dy

is well defined and infinitely differentiable for any σ .
Now consider generic t . We have

lim
σ→0

∫
Qt

Fσ (x, y)

|x − y| dx dy − 1 = lim
σ→0

∫
Q+

t

Fσ (x, y)

|x − y| dx dy

+ lim
σ→0

∫
Q−

t

Fσ (x, y)

|x − y| dx dy − 1,

which is the number of points in the barcode that also lie
in Qt minus one. This value has been shown to be s(t ) in
Ref. [14] when t is between 0 and max( f ). When t is not
between 0 and max( f ), there can be no points in Q+

t or
Q−

t , and so this expression evaluates to −1. Clearly for such
t , s(t ) = 0. �
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