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Variational quantum algorithms (VQAs) provide a promising approach to achieving quantum advantage for
practical problems on near-term noisy intermediate-scale quantum (NISQ) devices. Thus far, most studies on
VQAs have focused on qubit-based systems, but the power of VQAs can be potentially boosted by exploiting
infinite-dimensional continuous-variable (CV) systems. Here, we implement the CV version of one VQA, a
quantum approximate optimization algorithm, by developing an automated collaborative computing system
between a programmable photonic quantum computer and a classical computer. We experimentally demonstrate
that this algorithm solves the minimization problem of simple continuous functions by implementing the
quantum version of gradient descent to localize an initially broadly distributed wave function to the minimum.
This method allows the execution of a practical CV quantum algorithm on a physical platform. Our work can
be extended to the minimization of more general functions, providing an alternative to achieve the quantum
advantage in practical problems.
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I. INTRODUCTION

Variational quantum algorithms (VQAs) have recently
emerged as the leading approach to achieving quantum advan-
tage for practical problems under the constraints of near-term
noisy intermediate-scale quantum (NISQ) devices [1,2]. In
VQAs, such constraints are avoided by the common strategy
to repeatedly run shallow-depth quantum circuits with the cir-
cuit parameters updated by classical optimizers. This strategy
enables us to mitigate the accumulation of errors and fully
exploit the computational space offered by the limited-scale
devices. Thus far, a wide variety of VQAs have been pro-
posed theoretically for qubit-based systems, such as ones for
combinatorial optimization [3], chemistry simulation [4], and
machine learning [5]. They have already been demonstrated
experimentally on several physical platforms [4,6–10].

In contrast, there have been much fewer proposals [11–15]
and no experimental implementations on continuous-variable
(CV) VQAs, although CV quantum computing can poten-
tially offer superior computational power in the NISQ era.
The potential of CV systems lies in the ability to process
infinite-dimensional quantum information even on single-
mode devices, while in qubit-based systems each qubit
provides only two-dimensional computational space. Further-
more, CV systems natively and efficiently handle continuous
real parameters that often appear in real-world problems.
In general, fully exploiting such infinite dimensionality and
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continuous degree of freedom in CV systems for quantum
computation has been regarded as impractical due to their
noise sensitivity and difficulty in error correction [16]. How-
ever, this can be in turn a promising approach to extracting
high computational power in the NISQ era when the error
correction is not assumed.

In this paper, we implement the CV version [11] of one
of the most typical VQAs, a quantum approximate opti-
mization algorithm (QAOA) [3], by developing an automated
collaborative computing system between a programmable
photonic quantum computer and a classical computer. We
choose the simplest problem for the CV-QAOA and exper-
imentally demonstrate it, where this algorithm minimizes
one-variable continuous quadratic functions by working as
the quantum version of gradient descent and localizing an
initially broadly distributed wave function to the minimum.
The algorithm is shown to robustly find approximate answers
to the problem with a noisy shallow-depth quantum circuit,
thus confirming that a VQA works also in CV systems.
This method showcases a CV quantum algorithm that can be
used to solve practical problems, except for Gaussian boson
sampling [17–19], which is designed for achieving quantum
supremacy and has been partially linked to some practical
problems [20,21]. We also show that our implementation can
be extended to the minimization problems of arbitrary-order
functions by adding optical resources [22]. It can also be ex-
tended to multivariable functions by incorporating multimode
interactions. Thus our work highlights an approach using CV
quantum computing in the NISQ era, offering an alternative
to achieve the quantum advantage in practical problems.

II. THEORY OF CV-QAOA

Many practical problems in various fields come down
to optimization or minimization, which often require high
computational costs for classical computers. The QAOA is
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a heuristic algorithm that could potentially offer a quantum
speedup to solve such problems on NISQ devices [3]. Theoret-
ical aspects and experimental implementations of the QAOA
have been recently studied intensively on qubit-based sys-
tems to solve discrete combinatorial optimization problems
[6–9,23,24].

Later, a CV version of the QAOA was proposed to solve
continuous optimization problems on CV systems [11]. This
algorithm is designed for minimizations of continuous real-
valued functions, which have many practical applications in
finance [25], machine learning [26], and engineering [27].
This proposal [11] indicates that the CV-QAOA has the po-
tential of a quantum speedup as its circuits can encode CV
Grover’s search algorithm [28], which achieves a quadratic
speedup over the classical algorithms.

The CV-QAOA is formulated as follows. The goal of the
algorithm is to find an approximate minimum of a real-valued
function f (x) with x = (x1, x2, . . . , xN ) ∈ RN . Let us con-
sider a quantum-mechanical particle in the N-dimensional
space with [x̂i, p̂ j] = iδi j , where (x̂1, x̂2, . . . , x̂N ) = x̂ and
( p̂1, p̂2, . . . , p̂N ) = p̂ are position and momentum of the par-
ticle, respectively. The initial state is |p = 0〉, which is an
eigenstate of p̂ and thus equally weighted superposition of |x〉
for all x. The unitary operator given by

Û (η, γ ) =
P∏

j=1

e−iγ j ĤM e−iη j ĤC , (1)

where ĤC = f (x̂) and ĤM = p̂2/2, transforms the initial state
to the final state. P determines the circuit depth. ĤC and ĤM

are called cost and mixer Hamiltonians, respectively, and η =
(η1, η2, . . . , ηP ) and γ = (γ1, γ2, . . . , γP ) are the tunable real
positive parameters. The final state is then measured in the x̂
basis, the measurement outcome x being a candidate of the
minimum of the function. This algorithm can be considered
as a quantum version of the gradient descent method; a pair of
the cost and mixer Hamiltonians transforms x̂ as

x̂ → x̂ + γ j p̂ − η jγ j∇ f (x̂) (2)

and indeed Û (η, γ ) represents the Trotterized approximation
of the time evolution of a particle trapped in a potential of f (x̂)
in an N-dimensional space [3,11]. Thus, while the distribution
of x is initially uniform, it moves under the influence of the
potential f (x̂) and then localizes around the minimum if the
parameters (η, γ ) are properly chosen.

For the demonstration of the algorithm, we adopt the sim-
plest problem setup, minimizing a quadratic function of one
variable with the shallowest depth. Specifically, we choose
f (x) = (x − a)2 with a ∈ R (N = 1) and set P = 1.

III. PHOTONIC-CIRCUIT IMPLEMENTATION

We implement the CV-QAOA on a programmable pho-
tonic quantum computer, where optical amplitude and phase
are identified with position and momentum in the algo-
rithm, respectively. Our implementation is enabled by recent
technological advances in photonic CV quantum computing,
including state preparations, gate operations, and measure-
ments [29]. Specifically, programmable and multistep CV gate
operations have been demonstrated very recently, which are

indispensable for implementing the CV-QAOA [30–32]. Such
previous studies have been limited to the proof-of-principle
demonstrations of predetermined quantum gates. Here, we
implement the CV-QAOA by developing an automated collab-
orative computing system between such a programmable CV
photonic quantum computer and a classical computer, where
the latter assesses the output of the former and automatically
updates the program of the former in real time.

A. Concept of our implementation

Our implementation can be conceptually shown in
Fig. 1(a). The input state is a p-squeezed state, which approx-
imates |p = 0〉. After the parametrized operation of the cost
and mixer on the input state, the output state is measured in the
x̂ basis. According to Eq. (2), Û (η, γ ) in our specific problem
setting transforms x̂ as

x̂out = (1 − 2ηγ )x̂in + γ p̂in + 2aηγ , (3)

(x̂in, p̂in ) and (x̂out, p̂out ) being the quadrature amplitude of the
input and output states, respectively. The parameters η and γ

are iteratively updated according to the sampling results of the
output state.

To realize the concept of Fig. 1(a), we design and im-
plement an optical and electrical setup shown in Fig. 1(b).
To perform a gate operation of Eq. (3) in a programmable
way, we use a measurement-induced gate composed of an
ancillary state, measurement, and feedforward. In fact, this
setup can be regarded as the simplest version of a more
general setup to implement the CV-QAOA for arbitrary-order
functions [22], as we show in Appendix B. The following is
a specific description of the current setup. The input state is
produced by an optical parametric oscillator (OPO) named
OPO-1. The wave function of the state is squeezed in the p
direction in the sense that 〈x̂2

in〉 = e2r+/2 and 〈p̂2
in〉 = e−2r−/2

with r+, r− > 0. The ancillary state from OPO-2 is an or-
thogonally squeezed state with 〈x̂2

a 〉 = e−2r−/2 and 〈p̂2
a〉 =

e2r+/2. These two fields interfere at the beam splitter hav-
ing variable transmissivity T and then they are sent to two
homodyne detectors. The homodyne detectors measure the
quadrature amplitudes x̂1,θ = x̂1 cos θ + p̂1 sin θ and x̂2,φ =
x̂2 cos φ + p̂2 sin φ. Here (x̂1, p̂1) and (x̂2, p̂2) are the quadra-
ture amplitudes of the upper and lower beams coming out
of the variable beam splitter, respectively. The parameters of
the processor T , θ , and φ can be varied via the applied volt-
age to the corresponding electro-optic modulators (EOMs).
Then x̂1,θ is fed forward to x̂2,φ with a certain gain. To let
the above-described circuit act as the gate designated by
(η, γ ) as Eq. (3), the parameters of the optical circuit are de-
termined by T = 1/(1 + γ 2), tan θ = γ 2/[γ − 2η(1 + γ 2)],
and tan φ = γ , and correspondingly the feedforward gain is
set by g =

√
γ 2 − 4ηγ + 4η2(1 + γ 2), in which settings the

contribution of the antisqueezed quadrature of the ancilla p̂a to
the gate output is canceled so that the measurement-induced
gate operates properly. The constant displacement of xd =
2aηγ is also performed for the constant term in Eq. (3). The
feedforward and constant displacing are numerically done by
postprocessing in the classical computer, which is justified
because it gives the same results as those given by optical
displacing. In fact, feedforward operations were performed by
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FIG. 1. Experimental implementation of the CV-QAOA. (a) Conceptual diagram of our demonstration. The input state is a squeezed state.
The cost operator ÛC (η) and the mixer operator ÛM (γ ) are applied to it, and the output state is measured in the x̂ basis. The cost and mixer
operators are updated following a certain protocol according to the circuit output xout. (b) Experimental setup. The input state is produced by
OPO-1, and the ancillary state for the measurement-induced operation is produced by OPO-2. They interfere at the beam splitter having a
variable transmissivity of T , and each of the two beams from the beam splitter is measured by the homodyne detector with a programmable
measurement basis x̂1,θ and x̂2,φ . The feedforward operation proportional to x̂1,θ and the constant displacement operation are applied to x̂2,φ in a
post process, which yields the circuit output xout. The circuit parameters (T, θ, φ), the feedforward gain g, and the constant displacement xd are
determined according to a set of (η, γ ) so that the measurement-induced gate is performed in a consistent way. EOM, electro-optic modulator;
PBS, polarizing beam splitter; QWP, quarter-wave plate.

postprocessing in recent demonstrations of one-way quantum
computation [30,31]. After the above classical postprocessing,
the gate output x̂out becomes

x̂out = (1 − 2ηγ )x̂in + γ p̂in + 2aηγ − 2ηx̂a, (4)

which asymptotically coincides with Eq. (3) in the high
squeezing limit r− → ∞ in the sense that the variance of the
noise term −2ηx̂a approaches zero (see Appendix A for the
derivations). Therefore, our photonic processor depicted in
Fig. 1(b) is capable of obtaining the x-measurement result of
the output state, x̂out, with the gate parameters η and γ varied.

B. Experimental setup

Here we describe the details of our experimental setup
in Fig. 1(b). We use a continuous-wave laser of wavelength
1545.3 nm. Two OPOs are pumped by the second harmonic
fields with wavelength of 772.7 nm. The pump power is set
to 200 mW. The full width at half maximum of the OPOs is
60 MHz. The variable beam splitter is composed of a bulk
electro-optic modulator named EOM-1, a quarter-wave plate,
and a pair of polarizing beam splitters. EOM-1 serves as a
variable polarization rotator and thus works as a variable beam
splitter with polarization optics. We inserted the quarter-wave
plate so that the transmissivity is 50% when no voltage is
applied to EOM-1, which makes it easy to lock the relative
phase between the input and the ancillary beams.

Each homodyne detection is performed by interfering the
local oscillator field with the signal field at a 50:50 beam
splitter. Two beams from the beam splitter are received by two
photodiodes, the photocurrents of which are subtracted with
each other and amplified in the electric circuit. The bandwidth
of the circuit is about 200 MHz. The optical power of the local
oscillator field is set to 10 mW. A fiber-coupled electro-optic

modulator EOM-2 or 3 shifts the optical phase of each local
oscillator for the control of the homodyne angle θ or φ.

The outcome of the homodyne detection is acquired by
an oscilloscope and then sent to the classical computer. The
time series from the oscilloscope is converted to a quadrature
amplitude by convoluting it with a mode function h(t ) defined
by

h(t ) =
{

te−�2t2
(|t | < t1)

0 (otherwise),
(5)

where � = 3 × 107/s and t1 = 50 ns. The purpose of using
this mode function is to eliminate undesirable effects from
low-frequency electrical noise from homodyne detectors [33].
Based on the measured quadratures and the subsequent analy-
sis, the classical computer can automatically reprogram the
photonic quantum circuit by changing the voltages applied
to EOM-1, 2, and 3. This enables the classical computer to
collaborate with the photonic quantum computer updated in
real time and perform the CV-QAOA.

As a preliminary measurement, the outputs of OPO-1 and
OPO-2 are measured by the homodyne detectors with the
transmissivity of the variable beam splitter set to zero. The
squeezing level and the antisqueezing level of these modes
are measured to be −5.3 dB and +9.0 dB on average. This
measurement result indicates that the overall optical loss of
the experimental setup is estimated to be 22%.

IV. OPTIMIZATION LANDSCAPE
AND ALGORITHM PERFORMANCE

The CV-QAOA is performed on the processor as follows:
first, we repeatedly run the circuit and sample x̂out with the
parameters η and γ fixed to calculate the mean value 〈 f (x̂out )〉;
then, an outer-loop optimizer in the classical computer sug-
gests new parameters to decrease 〈 f (x̂out )〉. These two stages
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FIG. 2. Experimental and simulated landscapes of the CV-QAOA. The landscape structure of the experiment (left) agrees with that of
the simulation (right). Each grid is evaluated by 1000 samples of x̂out . f (x) = (x − 1)2 is used for the landscape evaluations. Each red dot
on the landscapes shows the parameter set that records the smallest 〈 f (x̂out )〉 during the 100-step Bayesian optimization. The white stars
denote the theoretical optimum of (η, γ ) = (1/2, 1). See Appendix E for the simulation condition.

are repeated alternately. To experimentally demonstrate the
capability of the above, we operate the whole system in three
different conditions for the parameter update: (i) the parame-
ters η and γ are scanned like a grid search; (ii) the parameters
are fixed at their optimum; and (iii) the parameters are updated
according to the protocol of the Bayesian optimization. Each
result is shown in the following.

First, to qualitatively diagnose that the processor operates
properly for the full search range of the outer-loop optimizer,
〈 f (x̂out )〉 is evaluated with the parameters η and γ scanned
like a grid search. The landscapes of 〈 f (x̂out )〉 as a function
of η and γ are obtained from the experiment or the numer-
ical simulation as shown in Fig. 2. The landscape structure
of the experiment reasonably well agrees with that of the
simulation. Specifically, 〈 f (x̂out )〉 is small around ηγ = 1/2
and the smallest around (η, γ ) = (1/2, 1), which is the the-
oretical optimum in the high squeezing limit indicated by
white stars in the figure. Note that the optimal point in the
finite-squeezing case is (η, γ ) = (

√
1 − δ/2,

√
1 − δ), where

δ = e−2r−/(e2r+ + 2a2), and thus the deviation from (1/2, 1)
is less than 2% with the values of r+ and r− for our experiment
no matter the value of a. The overall landscape structure is
also independent of the value of a because it only affects the
steepness of the valley of ηγ ∼ 1/2.

Next, to visualize how the algorithm works like the gra-
dient descent method to reshape the wave function of x̂, we
run the processor with the parameters fixed at the optimal
point (η, γ ) = (1/2, 1). Figure 3 shows the histogram of the
sampled x̂out for a specific a. The sampling results of the
input state x̂in are also plotted. It can be found that the input
state has a broad distribution, and the optimal gate operation
localizes the distribution around a, the exact solution. In fact,
the standard deviation of x̂out is 0.5767(4), smaller than that
of the vacuum state 1/

√
2 thanks to the quantumness of the

processor. Also, the gap between the mean output and the
exact solution is 〈x̂out〉 − a = −7.1(5) × 10−3, the absolute
value of which is much smaller than the standard deviation.
This indicates that the systematic shift from the exact solution

is negligible with respect to the statistical broadening of the
distribution. These results visually prove that the experimen-
tally implemented gate for Û (η, γ ) in our problem setting
properly localizes the distribution around the minimum like
the gradient descent method when the parameters are optimal.

Finally, to evaluate the performance of the CV-QAOA in
a realistic condition where the optimum of the parameters
is unknown, we perform the algorithm with the parameter
updated by the Bayesian optimization. The optimizer suggests
new parameters every 1000 samples of x̂out so that ln〈 f (x̂out )〉
is minimized (see Appendix C). We repeat such a process
many times with the value of a changed to see the statistical

FIG. 3. Histogram of the output distribution. The normalized
frequencies of the sampled xout in the experiment are shown. The
green bars are the output distribution with the optimal parameters of
(η, γ ) = (1/2, 1) while the red ones are the distribution of the input
state, which corresponds to (η, γ ) = (0, 0). The number of the sam-
pled xout is 1.1 × 106 for each. The curve of f (xout ) = (xout − a)2 is
overlaid. We use a = 2.745 for these measurements. The comparison
of two distributions demonstrates how the CV-QAOA works.
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(a) (b)

(c)

FIG. 4. Algorithm performance with parameter updates. (a) Typical trace of the parameters updated by the Bayesian optimization.
The initial search uniformly spans the full range but gradually the search becomes concentrated around the optimum, which is depicted
by the dashed lines. (b) Convergence of the classical optimization. The solid traces show the average of the target function ln〈 f (x̂out )〉 from the
experiment and the simulation. The black dashed line is the theoretical values for the case where the parameters are fixed at (η, γ ) = (1/2, 1).
(c) Success probability to sample xout such that f (xout ) < 1 × 10−9. The solid line is derived by averaging the probability for the 11 sets of
such trials. The shaded area shows the ±1σ region around the average. The green and blue plots are the experimental and simulated results of
the CV-QAOA, respectively. As a reference, the red and orange plots show the experimental and simulated results of random sampling. They
indicate that the CV-QAOA finds the minimum of f (x) significantly more efficiently than the random sampling.

behavior of the algorithm (see Appendix D). In Fig. 2,
the overlaid red dots show the distribution of the classi-
cally optimized pair of (η, γ ). Each dot corresponds to the
pair of parameters that gives the smallest 〈 f (x̂out )〉 among
100 suggestions by the optimizer for each execution of the
CV-QAOA. These figures show that the classical optimizer
reaches the point around the optimum within the 100 steps
as the simulation predicts. Figure 4(a) shows the typical trace
of the parameter update by the Bayesian optimization, where
a wide area is initially explored but gradually the search
becomes concentrated around the optimum. The behavior
of ln〈 f (x̂out )〉, which is the target function of the Bayesian

optimization, is shown in Fig. 4(b). The traces denote the
average of ln〈 f (x̂out )〉 for all the CV-QAOA trials. The ob-
served decreasing trend of the average of the target function
is comparable to the simulation expectation. The small differ-
ences between the experimental and simulated traces can be
attributed to imperfections of the optical setup such as inten-
sity fluctuations and/or alignment drifts of the local oscillator
beams for the homodyne detectors.

To quantify the performance in minimizing the function,
the success probability of finding the minimum is evalu-
ated experimentally and numerically. Figure 4(c) shows the
cumulative success probability of finding the minimum of
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f (x) up to a certain step of the parameter updates. Here we
set the criterion of the success by f (xout ) = (xout − a)2 <

1 × 10−9. The success probability is calculated by the success
frequency for 30 different values of a in f (x) = (x − a)2. The
solid line is derived by averaging the success probability for
11 sets of the trials while the shaded area denotes the ±1σ

region around the average derived from the 11 trials. These
results show that the experimental results of the increase of the
cumulative success probability coincide with the numerically
simulated ones. They also show that the success probability
obtained by the CV-QAOA is significantly better than that by
random sampling, where the input state is directly measured.

V. DISCUSSION

In conclusion, we demonstrate the successful imple-
mentation of the CV-QAOA with the parameters of the
programmable photonic quantum processor updated. The
demonstration experimentally shows that the performance of
the algorithm for the minimization of quadratic functions is
significantly better than that of the random sampling and
comparable to what the numerical simulation predicts. Even
though the experimental system is influenced by various
imperfections including optical loss, the CV-QAOA still suc-
cessfully finds the minimum of the function, indicating that
the algorithm works robustly.

Such imperfections limit the effective squeezing levels.
The optimum effective squeezing level for the overall perfor-
mance is nontrivial. In fact, with higher squeezing levels, the
width of the output distribution in Fig. 3 gets narrower and this
increases the probability of finding the optimal point of x. On
the other hand, it is also observed in our numerical simulation
that the parameters η and γ are optimized more slowly with
higher squeezing levels due to the landscape change in Fig. 2.
The former (the latter) is advantageous (disadvantageous) to
the algorithm. Optimum squeezing level should be investi-
gated, but its detailed analysis is left for future work.

Our experiment in this paper can be simulated efficiently
with classical computers because our system is entirely built
with Gaussian building blocks [34]. However, we show that
our implementation can be extended to arbitrary-order func-
tions by adding non-Gaussian ancillary states other than
squeezed states [22] (Appendix B). This may push the CV-
QAOA to the non-Gaussian regime beyond efficient classical
simulation. It can also be extended to multivariable functions
by using beam splitters for multimode interactions. In this
way, more complex functions can be minimized to address
the practical problems. For such more complex functions, we
may set P > 1 with a deeper circuit at the cost of the increased
number of the classical parameters to be optimized (η, γ ).
The current system took ∼100 s to perform one CV-QAOA
trial with 100 optimization steps. This runtime was mainly
dominated by the measurement time, which can be shortened
by increasing the bandwidths of the OPOs and the homodyne
detectors.

This work is an experimental realization of a quantum
algorithm using CV information, which proves the usefulness
of CV quantum systems for natively solving CV problems.
In general, CV problems can also be solved with qubit-based
quantum computers [35], but it requires more resources to

represent discretized CV parameters with many qubits and
also introduces quantization errors. CV quantum computers
can avoid such difficulties and efficiently encode CV prob-
lems. This demonstration sheds light on the advantages of CV
quantum computing that its infinite-dimensional space can be
exploited in NISQ applications. It stimulates the realizations
of other VQAs in CV systems such as quantum machine learn-
ing [12,13] and thus opens a promising way toward quantum
advantage.
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APPENDIX A: INPUT-OUTPUT RELATION
OF THE OPTICAL CIRCUIT

Let us describe why the optical circuit in Fig. 1(b) works
as the unitary operation Û (η, γ ) = e−iγ p̂2/2e−iη(x̂−a)2

for our
problem setting and the successive measurement in x̂ basis.
Here we recall that this unitary transforms the input state
represented by (x̂in, p̂in ) into the output state represented by
(x̂out, p̂out ) as

[
x̂out

p̂out

]
=

[
1 − 2ηγ γ

−2η 1

][
x̂in

p̂in

]
+

[
2aηγ

2aη

]
. (A1)

One of the possible implementations of such a linear
transformation is shown in Fig. 5, which is based on the
squeezing gate in Ref. [36]. First, we explain how this
measurement-induced implementation works. The ancillary
state represented by (x̂a, p̂a ) is an x-squeezed state. The output
of this circuit is calculated as

[
x̂out

p̂out

]
=

[
cos φ sin φ

− sin φ cos φ

][
x̂2

p̂2 + g′x̂1,θ + x′
d

]
(A2)

=
[

x̂2,φ + g′x̂1,θ sin φ + x′
d sin φ

p̂2,φ + g′x̂1,θ cos φ + x′
d cos φ

]
, (A3)

where g′ is the feedforward gain and x′
d is the constant dis-

placement. Here, (x̂i, p̂i ) and (x̂i,ψ , p̂i,ψ ) (i = 1, 2, and ψ ∈
R) denote the quadrature amplitudes of the beams coming out
of the beam splitter defined by

x̂1 = √
1 − T x̂in +

√
T x̂a, (A4)

p̂1 = √
1 − T p̂in +

√
T p̂a, (A5)

x̂2 =
√

T x̂in − √
1 − T x̂a, (A6)

p̂2 =
√

T p̂in − √
1 − T p̂a, (A7)

[
x̂i,ψ

p̂i,ψ

]
=

[
cos ψ sin ψ

− sin ψ cos ψ

][
x̂i

p̂i

]
. (A8)
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Disp. p

Input

Ancilla Output

FIG. 5. Optical circuit for a measurement-induced linear transformation. The input state interferes with the ancilla at the beam splitter
having the transmissivity of T . One outgoing beam from the beam splitter is measured by homodyne detection, and the measurement outcome
is fed forward to the other beam. The quadrature p̂2 is displaced by g′x̂1,θ + x′

d , and then a phase rotation by φ is applied.

If we set the feedforward gain by g′ = √
(1 − T )/T / sin θ , the

output described by Eq. (A3) becomes

[
x̂out

p̂out

]
= 1√

T

[
(1 − T ) cot θ sin φ + T cos φ sin φ

(1 − T ) cot θ cos φ − T sin φ cos φ

][
x̂in

p̂in

]

+
[

sin φ

cos φ

]
x′

d + √
1 − T

[
cot θ sin φ − cos φ

cot θ cos φ + sin φ

]
x̂a.

(A9)

Note that g′ is chosen so that the antisqueezed quadrature p̂a

disappears in this expression. This expression indicates that,
apart from a noise term proportional to the squeezed quadra-
ture x̂a, the circuit in Fig. 5 is capable of performing various
linear transformations by changing T , θ , φ, and x′

d . In fact, by
setting T = 1/(1 + γ 2), tan θ = γ 2/[γ − 2η(1 + γ 2)] (0 �
θ < π ), tan φ = γ (0 � φ < π/2), and x′

d = 2aη
√

1 + γ 2,
Eq. (A9) becomes

[
x̂out

p̂out

]
=

[
1 − 2ηγ γ

−2η 1

][
x̂in

p̂in

]
+

[
2aηγ

2aη

]

+
[ −2η

(γ − 2η)/γ

]
x̂a, (A10)

which asymptotically coincides with Eq. (A1) in the high
squeezing limit of x̂a → 0. Note that the upper row of this
equation is identical to Eq. (4).

Given that we eventually measure the quadrature amplitude
x̂out, the phase rotation by φ can be achieved instead by
changing the homodyne angle for the measurement of the
output state. In addition, the displacing operation can be
replaced by numerical postprocessing after the homodyne
measurement as the displacing operation only shifts the mean
value of the measurement outcome. For this reason, the
circuit in Fig. 1(b) is equivalent to the one in Fig. 5 as long
as the quadrature amplitude of the output state is measured.
In the circuit in Fig. 1(b), x̂out is in fact provided using the
two homodyne-measurement outcomes by x̂2,φ + gx̂1,θ + xd ,
which corresponds to the upper row of Eq. (A3). Here we

redefined g := g′ sin φ =
√

γ 2 − 4ηγ + 4η2(1 + γ 2) and
xd := x′

d sin φ = 2aηγ .

APPENDIX B: IMPLEMENTATION
OF HIGHER-ORDER FUNCTIONS

Let us show that our setup can be extended to a quantum
circuit for minimizing a higher-order function. As can be seen
from Eq. (2), if the minimized function f (x) is an nth-order
polynomial, the transformation by a pair of the cost and mixer
Hamiltonians in the QAOA involves an (n − 1)th-order poly-
nomial of x̂:

x̂ → x̂ + γ p̂ − ηγ

n∑
k=1

kakx̂k−1, (B1)

p̂ → p̂ − η

n∑
k=1

kakx̂k−1, (B2)

where we express f (x) = ∑n
k=0 akxk with real coefficients ak .

The above transformation can be implemented by the circuit
shown in Fig. 6. In contrast to Fig. 5, where one beam from the
beam splitter is measured by simple homodyne detection, the
beam is nonlinearly measured with the help of the ancillary
states. The working principle can be made clear by dividing
the circuit into two parts: the nonlinear measurement followed
by the feedforward, and the phase rotation by φ.

The combination of the nonlinear measurement and feed-
forward provides an (n − 1)th-order polynomial of x̂ in
the following way. The ancillary states Ak (3 � k � n) are
kth-order phase states with reduced fluctuations in quadra-
tures p̂k − kχk x̂k−1

k , where (x̂k, p̂k ) are canonical pairs of the
quadrature operators of the corresponding modes. The beam is
sequentially coupled with the ancillary states Ak by the beam
splitters having transmissivity of Tk . Then, one outgoing mode
from each beam splitter is measured by homodyne detection
in x̂ quadrature, the outcome of which is labeled as qk . The
transmissivity Tk is adaptively controlled depending on the
past outcomes q j , where k < j � n. The rightmost homo-
dyne measurement is done with the homodyne angle of θ ,
which is also controlled depending on the past outcomes. The
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Disp. p

Input

A0 Output
An An-1 A3

Nonlinear measurement

FIG. 6. Implementation of a higher-order function. The outgoing beam from the first beam splitter is nonlinearly measured with the help of
the ancillary nonlinear phase states, and the measurement outcomes are fed forward before the phase rotation by φ. Instead of also preparing a
quadratic phase state and an additional beam splitter at the right end of the nonlinear measurement block as proposed in Fig. 1(d) in Ref. [22],
the homodyne angle θ of the rightmost homodyne measurement is made variable. In fact, the implementation of the fourth-order nonlinear
phase gate is proposed in this way (Fig. 2 in Ref. [22]).

quadratures after appropriate feedforwards from the nonlinear
measurement block are expressed, in the limit that the ancillae
are ideal, as

x̂′
out = √

T0x̂in, (B3)

p̂′
out = 1√

T0
p̂in +

n∑
k=1

kCkx̂k−1
in , (B4)

where Ck depends on q j (k < j � n), Tl (k � l � n), and
θ [see Eqs. (5) and (9) in Ref. [22]]. Here, by recurrently
determining Tn, Tn−1, . . . , T3 in the order from n to 3 and then
θ , the coefficient Ck (2 � k � n) can be arbitrarily chosen.
As the coefficient C1 corresponds to constant displacing for
p̂, it is also arbitrarily determined at the displacing operation.
Therefore, the above process realizes nth-order nonlinearity
with arbitrary coefficients Ck .

The phase rotation by φ transforms (x̂′
out, p̂′

out ) as

x̂out = √
T0x̂in cos φ + p̂in√

T0
sin φ + sin φ

n∑
k=1

kCkx̂k−1
in , (B5)

p̂out = −√
T0x̂in sin φ + p̂in√

T0
cos φ + cos φ

n∑
k=1

kCkx̂k−1
in .

(B6)

Here, by setting tan φ = γ , T0 = 1/(1 + γ 2), C2 = [γ /2 −
a2η(1 + γ 2)]/

√
1 + γ 2, and Ck = −akη

√
1 + γ 2 (k 
= 2),

these equations become

x̂out = x̂in + γ p̂in − ηγ

n∑
k=1

kakxk−1
in , (B7)

p̂out = p̂in − η

n∑
k=1

kakxk−1
in , (B8)

which realize the transformation of Eqs. (B1) and (B2). In this
way, the transformation by a pair of the cost and mixer Hamil-
tonians for a given polynomial f (x) can be implemented.
Thus, in the viewpoint of implementing generic higher-order
functions, our experimental setup can be regarded as the sim-
plest case of Fig. 6.

APPENDIX C: PARAMETER SEARCH CONDITION
WITH THE BAYESIAN OPTIMIZATION

For the update of the circuit parameters (η, γ ) in Fig. 1, we
adopt the Bayesian optimization, which has been commonly
used among the derivative-free optimization methods in the
parameter optimization of the QAOA [6,7]. The following
conditions of the Bayesian optimization are set after checking
the convergence of the circuit parameters in numerical simula-
tions. log10 η and log10 γ are handed to the Bayesian optimizer
as free parameters. The target function to be optimized is
ln〈 f (x̂out )〉. We use a PYTHON package for the Bayesian op-
timization [37]. The Matérn kernel with ν = 2.5 is chosen as
the covariance kernel function. The acquisition function is a
type called the upper confidence bound given by μ + κ (t )σ ,
where μ and σ are the estimated mean and standard deviation
of the target function, respectively. We set κ (t ) = κ0 × 0.97t ,
where κ0 = 2.576 and t is the number of optimization steps.

As for the QAOA of the qubit system, the parameter range
of the unitary operations is often limited by [0, 2π ). How-
ever, the CV case does not have such a limit. Since it is
difficult to optimize parameters with unlimited search range,
we limit the range by estimating the order of the optimum of
the parameters using a generic prescription described below.
The search range of the parameters is set by 0.1 < η < 10
and 0.1 < γ < 10 because the optimum is estimated to be
(ηopt, γopt ) ∼ (1, 1).

Here we explain the prescription for the estimation.
Let us consider the CV-QAOA with P = 1 for a one-
variable function f (x). If implemented by a combination of
measurement-induced gates [22], a pair of the cost and mixer
operations transforms the quadratures as

x̂out = x̂in + γ p̂in − ηγ∇ f (x̂in ) + N (η, γ ; x̂a, p̂a ), (C1)

where N is a noise term arising from nonideal ancillary states.
x̂a and p̂a formally denote the quadrature amplitudes of the
ancillary states. Let us assume that the ancillary states are
linearly or nonlinearly squeezed sufficiently and thus |〈N〉| �
|xmin|, where xmin = argmin f (x). We can also assume that the
optimal parameters, namely, (ηopt, γopt ), localize the distri-
bution of x̂out around xmin, and thus provide two conditions:
〈x̂out〉 ∼ xmin and 〈�x̂2

out〉 is minimized. By assuming that the
optimal parameters (ηopt, γopt ) are adopted and taking the
expectation value of Eq. (C1), the assumption 〈x̂out〉 ∼ xmin
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reduces to

ηoptγopt ∼ − xmin

〈∇ f (x̂in )〉 . (C2)

Here we assume 〈x̂in〉 = 0 and 〈p̂in〉 = 0 since the input state
is the squeezed vacuum. In this way, if the prior information
on the order of magnitude of xmin and 〈∇ f (x̂in )〉 is available,
the product ηoptγopt can be inferred. Let us next consider
the variance of x̂out. Since Eq. (C2) estimates the product of
the optimal parameters, we evaluate the variance under the
constraint of ηγ = c, where c denotes the estimated value of
the product ηoptγopt. By substituting ηγ = c into Eq. (C1) to
eliminate η, we have〈

�x̂2
out

〉 ∼ 〈�[x̂in − c∇ f (x̂in )]2〉

+ γ 2
〈
p̂2

in

〉 +
〈
�N2

(
c

γ
, γ ; x̂a, p̂a

)〉
. (C3)

As the first term does not depend on γ , γopt can be esti-
mated by minimizing the sum of the second and third terms.
The third term can be calculated if the specific form of
N (η, γ ; x̂a, p̂a ) is known. Once the third term is calculated,
the sum of the second and third terms becomes a one-variable
function of γ , which should be able to be minimized.

Let us consider the specific case of f (x) = (x − a)2, and
estimate the order of magnitude of the optimal parameters by

using the typical magnitude of x̂in. We denote
√

〈x̂2
in〉 = σ ,

which we regard as the typical magnitude of x̂in. As the
function f (x) is quadratic in x and its leading term is x2, the
order of magnitude of the variation of f (x) in the range of ±σ

can be estimated by σ 2. We then estimate the gradient of the
function by dividing the typical range of the function output
σ 2 by the typical range of the function input σ : |〈∇ f (x)〉| ∼
σ 2/σ = σ . We can also assume that |xmin| ∼ σ . Using these
estimations, we can estimate ηoptγopt as

ηoptγopt ∼ 1 (C4)

from Eq. (C2). Let us then calculate the variance under ηγ =
1. Since N (η, γ ; x̂a, p̂a ) = −2ηx̂a from Eq. (4), the sum of
the second and third terms of Eq. (C3) becomes γ 2〈p̂2

in〉 +
(4/γ 2)〈x̂2

a 〉. By minimizing this in terms of γ , γopt can be
estimated as

γopt ∼ (
4
〈
x̂2

a

〉/〈
p̂2

in

〉)1/4 =
√

2 ∼ 1. (C5)

In this way, the optimal parameters are estimated as
(ηopt, γopt ) ∼ (1, 1), which is why we set the search range by
[0.1, 10]⊗2 with a margin of about a factor of 10.

The above discussion is only a rough estimation of the
order of magnitude, and although it works in our case, there

is no guarantee that the optimal parameters exist in the search
range. For this reason, a general strategy may be to perform
the CV-QAOA within the initial search range and, if there
seems to be the optimal point outside the search range, expand
or change the search range by observing the behavior of the
parameter optimization.

APPENDIX D: REPEATED EXECUTION
OF THE CIRCUITS

In the demonstration of the CV-QAOA with parameters
updated (Fig. 4), the iterations of the circuit execution are
hierarchical. For clarity, the conditions for that hierarchical
execution are summarized here. For each pair of the parame-
ters, we repeatedly run the circuit and sample x̂out 1000 times
with the parameters fixed to obtain 〈 f (x̂out )〉. The Bayesian
optimizer suggests 100 pairs of the parameters by using the
results of 〈 f (x̂out )〉. Such 100-step classical optimization is
repeated 11 times for the same value of a [in f (x) = (x − a)2].
Finally, this repeat is done for 30 different values of a.

The values of a are randomly sampled from the Gaussian
distribution of zero mean and the standard deviation equal to

1.99, which corresponds to
√

〈x̂2
in〉. This is because we intend

to mimic the following situation. Suppose that the range of
x that gives the minimum of f (x) (xmin) can be roughly es-
timated by some conditions in the problem settings such as,
for example, physical conditions or features of f (x). In this
case, the distribution of the initial state can be set so that
it covers the estimated range for xmin. In this demonstration,
mimicking the situation where the range estimation is correct
and the solution a is in fact in the estimated range, we repeat-
edly execute the CV-QAOA with many different a sampled
from that range to statistically evaluate the performance of the
algorithm. Note that the range for xmin can always be matched
to the range of the initial state distribution by rescaling and
translating x, and resultantly redefining f (x). Generally, if the
estimation is incorrect, one can perform the algorithm again
with an effectively broader initial state.

APPENDIX E: SIMULATION CONDITION

In the simulation, the optical circuit is numerically sim-
ulated by expressing the quadratures of the initial and
ancillary states using Gaussian random numbers. Based on the
measured squeezing level, we set 〈x̂2

in〉 = 〈p̂2
a〉 = 109.0/10/2

and 〈p̂2
in〉 = 〈x̂2

a 〉 = 10−5.3/10/2. The asymmetry between the
squeezing and antisqueezing implies that optical loss is taken
into account. No other imperfections are included in the sim-
ulation.

[1] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[2] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[3] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[4] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

043005-9

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s42254-021-00348-9
http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.1038/ncomms5213


ENOMOTO, ANAI, UDAGAWA, AND TAKEDA PHYSICAL REVIEW RESEARCH 5, 043005 (2023)

[5] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii,
Quantum circuit learning, Phys. Rev. A 98, 032309
(2018).

[6] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M.
Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong,
P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson,
G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M.
Scheer, E. A. Sete et al., Unsupervised machine learning on a
hybrid quantum computer, arXiv:1712.05771.

[7] A. Bengtsson, P. Vikstål, C. Warren, M. Svensson, X. Gu, A. F.
Kockum, P. Krantz, C. Križan, D. Shiri, I.-M. Svensson, G.
Tancredi, G. Johansson, P. Delsing, G. Ferrini, and J. Bylander,
Improved success probability with greater circuit depth for the
quantum approximate optimization algorithm, Phys. Rev. Appl.
14, 034010 (2020).

[8] G. Pagano, A. Bapat, P. Becker, K. S. Collins, A. De,
P. W. Hess, H. B. Kaplan, A. Kyprianidis, W. L. Tan, C.
Baldwin, L. T. Brady, A. Deshpande, F. Liu, S. Jordan,
A. V. Gorshkov, and C. Monroe, Quantum approximate op-
timization of the long-range Ising model with a trapped-ion
quantum simulator, Proc. Natl. Acad. Sci. USA 117, 25396
(2020).

[9] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute,
K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo, M.
Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell,
Y. Chen, Z. Chen, Ben Chiaro, R. Collins, W. Courtney et al.,
Quantum approximate optimization of non-planar graph prob-
lems on a planar superconducting processor, Nat. Phys. 17, 332
(2021).

[10] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[11] G. Verdon, J. M. Arrazola, K. Brádler, and N. Killoran, A
quantum approximate optimization algorithm for continuous
problems, arXiv:1902.00409.

[12] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N.
Quesada, and S. Lloyd, Continuous-variable quantum neural
networks, Phys. Rev. Res. 1, 033063 (2019).

[13] J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Brádler,
and N. Killoran, Machine learning method for state preparation
and gate synthesis on photonic quantum computers, Quantum
Sci. Technol. 4, 024004 (2019).

[14] T. Volkoff, Z. Holmes, and A. Sornborger, Universal
compiling and (no-)free-lunch theorems for continuous-
variable quantum learning, PRX Quantum 2, 040327
(2021).
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