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In open quantum systems, topological edge states rapidly lose coherence, making them unsuitable for
topological quantum computation and quantum memory. In this study, we demonstrate that topologically non-
Hermitian Liouville-Majorana edge modes (LMEMs) can persist in the extended Liouville-Fock space (LFS)
of dissipative quantum spin or fermionic systems. This finding extends the scope of topological modes beyond
typical Hermitian systems. By vectorizing the Lindblad equation of a dissipative Ising-type spin system using
third quantization, we prove that it can be reduced to a series of non-Hermitian Kitaev chains in the extended
LFS and that topologically protected LMEMs emerge due to internal symmetry. Furthermore, we present an
explicit method for detecting these modes and demonstrate that the purity of the density matrix characterizes the
long-range correlation of LMEMs. Our work offers a new direction for identifying stable topological states in
open quantum systems induced by quantum jumps.
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I. INTRODUCTION

The realization and manipulation of topological quantum
states has been a subject of enduring interest in various
branches of physics [1–10]. Due to their nonlocal orders
that are robust against local perturbations, topological phases
offer intrinsic stability and may serve as ideal platforms
for topological quantum computation and quantum memory.
Moreover, these systems enable the construction of various
quantum devices that cannot be covered by traditional materi-
als [11–13].

However, topological phases are inevitably coupled to their
surroundings in natural systems, resulting in quantum dissipa-
tion that can destroy these phases and contaminate the signals
induced by their topological features [14–24]. Therefore, it is
essential to search for novel, robust topological effects, even in
dissipation, to implement various topological phases of matter
and quantum computing tasks within current systems [25–28].

Recently, there has been a growing interest in talking
about topological physics in non-Hermitian dissipative
systems [29–38]. However, in most discussions, dissipation is
characterized only by introducing an effective non-Hermitian
Hamiltonian. The influence and back action of detections and
quantum jumps on the dynamics of the system are only less
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considered. For dissipative systems under the Markovian
approximation, the general dynamics are governed by
Lindblad equations [37–46], where both the dissipators and
the influence of quantum jumps are explicitly considered.
Although topological Majorana modes can be stationary
states of the system by carefully designing the dissipative
Lindblad operators, in general cases, Majorana modes are
unstable in the presence of dissipation [26,47,48]. Therefore,
it is natural to ask: What topological properties will be stable
in dissipative systems?

Answering this question is a highly nontrivial task, as the
master equation for dissipative many-body systems is still
analytically and numerically challenging to solve [49–51].
Therefore, finding exactly solvable dissipative models with
stable topological characteristics becomes a key ingredient
in understanding nontrivial topological effects induced by
dissipations, which is also less considered in current studies
[52,53].

In this work, we present an analytically solvable dissipative
Ising-type model (in spin language) or Kitaev chain described
by Lindblad equation with site-dependent couplings and dissi-
pations. Specifically, we vectorize the density matrix and map
the Lindblad equation into a Schrödinger-like equation in the
extended Liouville-Fock space (LFS) with an effective non-
Hermitian Hamiltonian [42–44,48]. As a result, topological
properties that are discussed for non-Hermitian Hamiltonians
can also be applied to open quantum systems described by
Lindblad equations. We note that although similar models
have also been discussed in the literatures [52,53] using dif-
ferent methods on a periodic system, however, the topological
properties of edge states and their detections in open system
are less considered there, which will be the main focus of this
work.
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The main results of our study can be summarized as
follows:

(1) We prove that for open boundaries, the system
supports novel topological Liouville-Majorana edge modes
(LMEM) in LFS, which is beyond the scope of the usual
Hermitian Majorara modes discussed in a closed system.

(2) The proposed LMEMs are robust to symmetry-
preserving disturbances and can be verified by examining
fixed ratios of the mean values of carefully designed physical
observables (product operators in LFS) over time evolution.
Additionally, the correlations within LMEMs can be extracted
through quadratic forms of physical observables [54–59].

(3) Our work highlights the significance of quantum
jumps in creating new topological states in dissipative sys-
tems.

II. THE MODEL AND NON-HERMITIAN LIOUVILLIAN

We begin by examining the Lindblad equation governing
the spin system under local dissipations (h̄ = 1)

iρ̇ = [H, ρ] + i
N∑

j=1

(
LjρL†

j − 1

2
{L†

j L j, ρ}
)

, (1)

where the Hamiltonian and Lindblad operators read

H =
N−1∑
j=1

Jjσ
x
j σ

x
j+1, Lj = √

γ jσ
z
j . (2)

Here Jj is the coupling strength between nearest-neighboring
spins, and γ j is the local dephasing rates. We stress that in
the current system, all nontrivial dissipative dynamics can
be attributed to the presence of quantum jump terms LjρL†

j ,
since the relevant non-Hermitian Hamiltonian contains only
homogeneous dissipations due to L†

j L j = LjL
†
j = γ j I j .

In the absence of dissipation, the model can be solved by
applying the celebrated Jordan-Wigner transformation, which
is defined as

σ x
j =

∏
k< j

(−iw2k−1w2k )w2 j−1, (3)

σ
y
j =

∏
k< j

(−iw2k−1w2k )w2 j, (4)

where w j denotes the usual single-site Majorana fermion and
satisfies {wi,w j} = 2δi j . The Hamiltonian can then be written
as

H =
∑

j

J j iw2 jw2 j+1, (5)

where two isolated edge Majorana fermions w1 and w2N

decouple from H as [H,w1] = [H,w2N ] = 0, and can be
combined to form a Dirac fermion. Since w1 and w2N are
spatially separated, this fermionic excitation is nonlocal and
robust to local perturbations, making it an ideal platform to
encode a qubit for topological quantum computation. How-
ever, the introduction of onsite dissipation (Lj = −iw2 j−1w2 j)
destabilizes the aforementioned edge modes.

Throughout the article, we alternatively use the spin rep-
resentation and Majorana fermion representation to discuss

TABLE I. Definitions of different symbols.

Symbol Meaning

σ x
j Pauli matrices in the Lindblad equation

w j Majorana fermions obtained by Jordan-Wigner
transformation of Pauli matrices

c j Fermion annihilation operators in the LFS
κ j Majorana fermions in the LFS (obtained by

Jordan-Wigner transformation of c j)

the problem. We also remind readers that although the spe-
cific physical content under these two representations differs
greatly (topological edge states can only be discussed in the
fermion representation, while the spin representation has no
corresponding topological states), mathematically, they can be
transformed into each other through Jordan-Wigner transfor-
mations.

The density matrix ρ can be expressed as a combination of
4N Majorana operators

wa := w
a1
1 w

a2
2 ...w

a2N
2N , (6)

with a j = (0, 1). To solve the model in this case, we em-
ploy the third quantization formalism proposed by Prosen
[42–44,48] and vectorize the density matrix ρ → |ρ〉〉, by
introducing wa → |wa〉〉 as the basis vectors of the ex-
tended LFS. The master equation can then be recast into a
Schrödinger-like equation, namely i∂|ρ〉〉/∂t = L|ρ〉〉, where
the corresponding non-Hermitian Liouvillian reads (see
Appendix A for details)

L = −2i
N−1∑
j=1

Jj[c
†
2 jc2 j+1 + c2 jc

†
2 j+1]

+ i
N∑

j=1

γ j[(2n2 j−1 − 1)(2n2 j − 1) − 1]. (7)

Here c j and c†
j are redefined fermion operators in the LFS

c†
j |wa〉〉 = δ0,a j |w jw

a〉〉, c j |wa〉〉 = δ1,a j |w jw
a〉〉 (8)

and satisfy the standard anticommutation relation {ci, c†
j } = δi j

and {ci, c j} = {c†
i , c†

j } = 0.
The equation above represents a dissipative spinless Hub-

bard model in the extended lattice fermion system, with
staggered hoppings and interactions. To facilitate the distinc-
tion of different symbols, we list them in detail along with
their physical correspondences in Table I. In comparison to the
Hermitian case, the lattice size has doubled. The number oper-
ator of fermion particles on lattice j is denoted by nj = c†

j c j .

The explicit forms of applying ci and c†
i to the vector |ρ〉〉 can

be expressed as follows:

(c2i−1 + c†
2i−1)|ρ〉〉 →

∏
j<i

σ z
j σ

x
i ρ, (9)

(c2i + c†
2i )|ρ〉〉 →

∏
j<i

σ z
j σ

y
i ρ. (10)
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The presence of local dissipations leads to imaginary nearest-
neighbor interactions of iγ j between the nearest lattice pairs
(2 j − 1, 2 j). Without loss of generality, we assume Jj = J
and γ j = γ for all j in the following.

The non-Hermitian Liouvillian L has an internal symme-
try, which significantly simplifies the model. For each

Pj = (2n2 j − 1)(2n2 j+1 − 1), (11)

with j = (1, 2, . . . , N − 1), it is easy to check that

[Pj,L] = 0, [Pj, Pk] = 0. (12)

As a result, the right eigenvectors of L can be chosen as the
common eigenvectors of all Pj . Since P2

j = I , the correspond-
ing eigenvalues Pj can only be +1 or −1. The entire LFS
can then be divided into different subspaces labeled by the list
{p} = {P1, P2, . . . , PN−1} with (N − 1) entries. Since there are
2N−1 different lists, the dimension of each subspace is 2 × 2N .
Therefore, solving the eigensystem of L is reduced to finding
all the eigenvectors of L within each subspace, which greatly
simplifies the computation.

III. EFFECTIVE NON-HERMITIAN
KITAEV CHAINS IN LFS

To illustrate the system’s hidden topological features, we
utilize two cascaded Jordan-Wigner transformations defined
as (see Appendix A for further details)

JW-I:

⎧⎨⎩c†
2i−1 = 1

2

∏2i−2
j=1 Zj (X2i−1 − iY2i−1),

c†
2i = 1

2

∏2i−1
j=1 Zj (Y2i − iX2i );

(13)

JW-II:

{
κ2i−1 = −∏i−1

j=1 XjZi,

κ2i = ∏i−1
j=1 XjYi.

(14)

Here {Xk,Yk, Zk} are the intermediate local Pauli matrices
defined in LFS at site k, and we also introduce a set of 4N
Liouville-Majorana fermions in the LFS, denoted by κk with
k = 1, . . . , 4N . This allows us to rephrase the Liouvillian
operator L as follows:

L =
N−1∑

j

iJ (Pj − 1)κ4 j−1κ4 j+2 + iγ
N∑
j

(iκ4 j−2κ4 j−1 − 1).

(15)

To make the above deduction process easier to understand,
we illustrate the basic procedure of the transformations in
Eqs. (1) to (15), as shown in Fig. 1.

Equation (15) represents one of the main results of the
current work. It is easy to verify that within each Liouville
subspace defined by {Pj = iκ4 jκ4 j+1}, the effective Liouvil-
lian L takes the form of a non-Hermitian Kitaev chain with
site-dependent couplings J (Pj − 1) (2J or 0) and dissipation
rate iγ . Although it remains challenging to analytically diag-
onalize L{p} for given {Pj}, the effective coupling Jj (Pj − 1)
vanishes when Pj = 1, indicating that the chain is broken
at these sites. As a result, the model can be simplified by
diagonalizing L{p} within each subchain. In particular, in the
subspace defined by Pj = 1 for 1 � j � N − 1, the effective

FIG. 1. The diagrammatic representation of Majorana fermions
and Liouville-Majorana fermions based on third quantization. In
(a) → (b), the Liouvillian of the system is obtained in the extended
Liouville-Fock space, where two isolated Hermitian Majorana
fermions correspond to four isolated Liouville-Majorana fermions.
However, due to dissipations with γ �= 0, two of these Liouville-
Majorana fermions couple to the bulk modes, leaving only two
isolated Liouville-Majorana fermions, namely, κ1 and κ4N , in the
system, as shown in (b) → (c). Upon mapping back to the original
Hilbert space, a Liouville-Majorana fermions can be viewed as a
“half-Majorana fermion,” as shown in (c) → (d ).

Liouvillian can be written as

L{p j=1} =
N∑

j=1

iγ j (iκ4 j−2κ4 j−1 − 1). (16)

This describes a series of isolated dissipative coupled pairs
of Liouville-Majorana operators. The stationary states of the
whole system can also be found in this subspace and satisfies
iκ4 j−2κ4 j−1|ρs〉〉 = |ρs〉〉. Their general form can be written as
ρs = (I + ζM)/2N with −1 � ζ � 1 and

M = (−1)N
N∏

j=1

σ z
j . (17)

To illustrate the topological features in this model, in
Fig. 2, we also provide a diagrammatic representation of the
reduced non-Hermitian Kitaev chain in LFS.

IV. LMEMs FOR OPEN BOUNDARIES

For finite lattice, the system supports topological LMEMs
in the extended LFS. Specifically, the two Liouville-Majorana
modes κ1 and κ4N are decoupled from L as

[L, κ1] = [L, κ4N ] = 0. (18)

FIG. 2. The reduced non-Hermitian Kitaev chain within the
Liouville-Fock subspace defined by {p1, p2, . . . , pN−1}. For specific
given {p}, this chain is broken at the lattice site satisfying pj = 1,
and becomes an assembly of subchains with shorter length.
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Therefore, we can introduce new Liouville fermionic opera-
tors in this subspace He defined by

de = 1
2 (κ1 + iκ4N ), d†

e = 1
2 (κ1 − iκ4N ), (19)

with the corresponding number states |0〉〉 and |1〉〉 satis-
fying d†

e de|0〉〉 = 0 and d†
e de|1〉〉 = |1〉〉. This allows us to

express the whole LFS HL as the tensor-product of the two
Liouville-Fock subspaces H′

L ⊗ He, where H′
L denotes the

Liouville-Fock subspace expanded by other (2N − 1) Liou-
ville fermionic operators defined by the remaining (4N − 2)
Liouville-Majorana modes κ j with j = 2, . . . , (4N − 1). In
Appendix C, we have provided the explicit method to obtain
the corresponding vectorized forms of N-site Pauli operators
Ôμ (in the original spin basis) in the extended LFS HL, where
Ôμ is defined as

Ôμ = σ
μ1
1 ⊗ σ

μ2
2 ⊗ · · · ⊗ σ

μN
N , (20)

with μi ∈ {0, x, y, z} and σ 0 = I the usual identity matrix.
Furthermore, since ρ can always be expanded as the combi-
nation of N-site Pauli operators, a general state vector |ρ〉〉 in
LFS can then be rewritten as

|ρ〉〉 = |ρ ′
1〉〉 ⊗ |1〉〉 + |ρ ′

0〉〉 ⊗ |0〉〉, (21)

where |ρ ′
1〉〉 and |ρ ′

0〉〉 represent the corresponding vectors in
H′

L. For an initial product state (see Appendices C and D for
the detailed constructions)

|ρ(0)〉〉 = |ρ ′〉〉 ⊗ (a|1〉〉 + b|0〉〉), (22)

since the edge modes are decoupled from the system, |ρ(t )〉〉
remains unentangled during the evolution as

|ρ(t )〉〉 = [exp(−iLt )|ρ ′(0)〉〉] ⊗ (a|1〉〉 + b|0〉〉). (23)

This allows us to find appropriately selected physical ob-
servables to verify the existence of the edge modes, as will
be discussed in latter sections. We note that the stationary
states ρs of the whole system also take the product form with
a ∼ 1 + ξ and b ∼ −(1 − ξ ), which is consistent with the
dynamics analysis mentioned above.

We emphasize that the LMEMs we discuss in this paper
are fundamentally different from the conventional Majorana
modes found in Hermitian Kitaev chains. Specifically, while
the conventional Majorana edge modes are defined within
the original Hilbert space, LMEMs are instead defined in the
extended LFS. This key difference allows LMEMs to survive
for longer periods of time, as opposed to the usual Hermitian
Majorana modes which are unstable and decay rapidly in the
presence of dissipations.

In a Hermitian system, the existence of topological Ma-
jorana modes allows for the definition of a two-dimensional
Hilbert space that can support both qubit pure and mixed
states. However, in a dissipative system, even though the
presence of LMEMs enables the definition of a Hilbert space
within the LFS, this does not necessarily imply the existence
of a well-defined qubit subspace in the original Hilbert space
defined by H . As a result, general LMEMs can only be de-
scribed as mixed states, which thus motivate us to explore the
nontrivial topological features in dissipative systems based on
mixed states.

(a) (b)

FIG. 3. (a) The evolution of the ratio 〈X1〉/〈X2〉 for an initial
bulk-edge product states ρ0 (solid line) and nonproduct states ρ̃0

(dashed lines) respectively. In the latter case, two different homo-
geneous couplings with J = 1 and J = 2 are considered. (b) This
figure shows the robustness of LMEMs in the presence of different
noises discussed in Eq. (32). The solid blue line shows the robustness
of 〈X1〉/〈X2〉 against symmetry-preserving perturbations in Eq. (32)
with randomized couplings {Jj, bj, γ j, γ

′
j} when μ = 0. We have

computed numerous cases for distinct values of {Jj, bj, γ j, γ
′
j}, all

of which coincidentally align along the same curve. For μ �= 0,
〈X1〉/〈X2〉 becomes time-dependent, as shown by solid black and
red lines with fixed {Jj = 1, μ = 0.2, bj = 0} and different decay
rates {γ j, γ

′
j}. Here, the black line represents the case without any

dissipation γ j = γ ′
j = 0. The red line represents the result obtained

by calculating the evolution of 〈X1〉/〈X2〉 200 times and taking the
average when the dissipation coefficients γ j and γ ′

j are randomly
distributed between 0 and 1. All dashed lines represent the time
evolution of 〈X1〉/〈X2〉 under some specific randomly chosen values
of {γ j, γ

′
j}. In both figures, we also fix the lattice size to N = 8.

Finally, it should be noted that the correlation of LMEMs
defined in the LFS does not correspond directly to a measur-
able observable

〈〈ρ|iκ1κ4N |ρ〉〉 = tr
(
ρMσ x

1 σ x
Nρσ x

1 σ x
N

)
. (24)

This correlation can always be expressed as a quadratic form
by suitably chosen observables, as we will demonstrate in the
subsequent discussions.

V. DETECTION OF TOPOLOGICALLY
PROTECTED LMEMs

The existence of LMEMs can be demonstrated by consid-
ering an initial product state |ρ(0)〉〉 as defined in Eq. (22).
To illustrate this novel property, we select two Hermitian
operators X1, X2 that satisfy |X1〉〉 = |X ′〉〉 ⊗ |φ1〉〉 and |X2〉〉 =
|X ′〉〉 ⊗ |φ2〉〉, namely, |X1〉〉 and |X2〉〉 are product vectors in
the LFS, and |φi〉〉 is the corresponding state vector in He.
In Appendices C and D, we provide a detailed construction
method for these operators ρ, X1, X2 in the original spin basis.
Then using the identity

〈X1〉
〈X2〉 = Tr(X1ρ)

Tr(X2ρ)

= 〈〈X1|ρ〉〉
〈〈X2|ρ〉〉

= 〈〈φ1|(a|1〉〉 + b|0〉〉)

〈〈φ2|(a|1〉〉 + b|0〉〉)
, (25)

we conclude that the ratio 〈X1〉/〈X2〉 is time-independent and
determined solely by the edge modes. However, if the edge
modes are coupled with the bulk modes, or the initial state is
entangled in the LFS, then 〈X1〉/〈X2〉 become time-dependent
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and approach a stable value only in the long-time limit as
ρ(∞) = ρs is also a product vector.

Figure 3 shows the evolution of the ratio defined in Eq. (25)
for different initial states. Here the initial bulk-edge product
state ρ0 and its vectorized form for even N reads

ρ0 =
⎡⎣I +

N−1∑
j=2

0.2
(
σ x

j σ
x
j+1 + σ z

j

)⎤⎦(I + 0.5M)/2N

−→ |ρ ′
0〉〉 ⊗ (3|1〉〉 − |0〉〉)/

√
10, (26)

where |ρ ′
0〉〉 = A(|I+〉〉 + 0.2

∑N−1
j=2 |(σ x

j σ
x
j+1 + σ z

j )+〉〉), A is
normalization constant, and the operator with (· · · )+ rep-
resents the operator in H′

L after vectorization. The two
observables in the spin basis can be chosen as

X1 =
N−1∑
j=2

(
σ x

j σ
x
j+1 + σ z

j

)
M

−→ |X ′〉〉 ⊗ (|1〉〉 + |0〉〉) = |X1〉〉, (27)

X2 =
N−1∑
j=2

(
σ x

j σ
x
j+1 + σ z

j

)
−→ |X ′〉〉 ⊗ (|1〉〉 − |0〉〉) = |X2〉〉, (28)

where |X ′〉〉 = A
∑N−1

j=2 |(σ x
j σ

x
j+1 + σ z

j )+〉〉 with A the normal-
ization constant. The numerical calculation shows that

〈X1〉t

〈X2〉t
= 〈〈ρ ′

0|eiLt |X ′〉〉 ∗ (3〈〈1| − 〈〈0|)(|1〉〉 + |0〉〉)

〈〈ρ ′
0|eiLt |X ′〉〉 ∗ (3〈〈1| − 〈〈0|)(|1〉〉 − |0〉〉)

= (3〈〈1| − 〈〈0|)(|1〉〉 + |0〉〉)

(3〈〈1| − 〈〈0|)(|1〉〉 − |0〉〉)

= 〈X1〉0

〈X2〉0
(29)

is fixed during the evolution, as depicted by the solid line in
Fig. 3(a). However, for a nonproduct initial state ρ̃0 with the
vectorized form

ρ̃0 =
⎡⎣⎛⎝I +

N−1∑
j=2

0.1σ x
j σ

x
j+1

⎞⎠(I − 0.5M)

+
N−1∑
j=2

0.2σ z
j (I + 0.5M)

⎤⎦/2N (30)

→ |X ′〉〉 ⊗ (|1〉〉 − 3|0〉〉) + |X ′′〉〉 ⊗ (3|1〉〉 − |0〉〉),

where X ′ = A′[I+ + ∑N−1
j=2 0.1(σ x

j σ
x
j+1)+] and X ′′ =

A′′ ∑N−1
j=2 (σ z

j )+ with A′ and A′′ the relevant normalization
constants (see Appendix D for details). The dashed lines in
Fig. 3(a) show that the ratio 〈X1〉t/〈X2〉t changes with time,
indicating the entanglement between the edge and bulk modes
in this case.

The edge modes are topologically protected by the internal
symmetry in LFS. For any perturbations characterized by in-
troducing additional Hamiltonian H ′ or dissipators L′

j into the
Lindblad equation, the edge modes become decoupled from
the bulk modes as long as the corresponding Lindbladians in
the LFS commute with κ1 and κ4N . Using spin language, we

can choose these operators such that

[
H ′(L′), σ x

1

] = [
H ′(L′), σ x

N

] =
⎡⎣H ′(L′),

N∏
j=1

σ z
j

⎤⎦ = 0. (31)

For comparative purposes, in Fig. 3(b), we also plot the evo-
lution of 〈X1〉/〈X2〉 for Lindblad equation with

H =
N−1∑
j=1

Jjσ
x
j σ

x
j+1 +

N−1∑
j=2

b jσ
z
j + μ

N∑
j=1

σ x
j . (32)

The two different types of dissipators are Lj = √
γ jσ

z
j ( j =

1, . . . , N) and L′
j =

√
γ ′

jσ
x
j σ

x
j+1 ( j = 1, . . . , N − 1). For the

initial bulk-edge product state ρ0 shown in Eq. (26), our cal-
culations show that 〈X1〉/〈X2〉 remains fixed for all coefficients
{Jj, b j, γ j, γ

′
j} randomly distributed between 0 and 1 when

μ = 0. Here Lj , L′
j and

∑N−1
j=2 b jσ

z
j satisfy the constraints of

Eq. (31). Thus, the presence of local random magnetic fields
or other random special dissipators will not disrupt the edge
states, which signifies the topological feature of the LMEMs.

For nonzero μ �= 0, since
∑N

j=1 σ x
j does not satisfy

Eq. (31), the edge modes becomes unstable in this case. Cor-
respondingly, 〈X1〉/〈X2〉 changes during the evolution as the
edge modes couple to the bulk due to the perturbations, which
indicates the failure of topological protection in the system.

VI. PURITY AS THE DETECTION OF LONG-RANGE
CORRELATION IN LFS

The initial state |ρ(0)〉〉 described in Eq. (22) can also be
used to examine the correlation defined by 〈〈ρ|iκ1κ4N |ρ〉〉.
Since iκ1κ4N |ρ〉〉 = |ρ ′〉〉 ⊗ (a|1〉〉 − b|0〉〉), the correlation
can be simplified as

〈〈ρ|iκ1κ4N |ρ〉〉 = |a|2 − |b|2
|a|2 + |b|2 〈〈ρ|ρ〉〉 ∝ Tr(ρ2), (33)

where Tr(ρ2) = 〈〈ρ|ρ〉〉 is the purity of the state ρ. After
inserting the completeness relation in LFS, we have

〈〈ρ|ρ〉〉 =
∑

μ

〈〈ρ|Ôμ〉〉〈〈Ôμ|ρ〉〉
2N

=
∑

μ

|〈Ôμ〉|2
2N

, (34)

where Ôμ are the usual N-site Pauli operators (see Appendix E
for details). The correlation 〈〈ρ|iκ1κ4N |ρ〉〉 can then be ex-
pressed as a quadratic form of observables defined by Ôμ. For
dissipative systems, the dynamics in the long-time limit can
be expressed as

|ρ(t )〉〉 =
∑

j

e−iλ j t |ρ ′
j〉〉 ⊗ (a|1〉〉 + b|0〉〉), (35)

which is mainly determined by eigenvectors |ρ ′
j〉〉 with mini-

mal |Im(λj )| such that L|ρ ′
j〉〉 = λ j |ρ ′

j〉〉 and Im(λj ) � 0. This
indicates that the summation in Eq. (34) can be well approx-
imated by choosing a subset Ôm(m = 1, . . . , M ) with much
fewer observables (M � N), thereby simplifying the detec-
tion in experiments.
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(a)

(b) (c)

FIG. 4. (a) The evolution of Tr(ρ2) for an initial bulk-edge prod-
uct state with lattice size N = 8. The dotted line is the approximated
purity obtained by Eq. (37), which is compared with the precise
values obtained by solving the Lindblad equation directly (solid line).
The two results match well for larger γ t . Panels (b) and (c) are the
real and imaginary parts of Liouville spectrum for (N = 6, J = 2).
The circles are the eigenvalues within the subspace defined by
{Pj �=2 = 1(∀ j), P2 = −1}.

In Fig. 4, we present the time evolution of 〈〈ρ(t )|ρ(t )〉〉 for
the initial product state

ρ(0) = I + 0.3M
(
σ z

1 + σ
y
1 σ x

2 + σ
y
1 σ x

3 + σ z
2σ x

2 σ x
3

)/
2N

−→ |X ′〉〉 ⊗ (|1〉〉 − |0〉〉), (36)

where X ′ = A(I+ − 0.3(σ z
1 + σ

y
1 σ x

2 + σ
y
1 σ x

3 + σ z
2σ x

2 σ x
3 )+)

with A the normalization constant. This state has nonzero
components in subspaces defined by Pj = 1(∀ j) and
Pj �=1 = 1(∀ j), P1 = −1. As we increase the dissipation
rate γ , the Lindblad spectra λ j exhibit exceptional points,
as illustrated in Figs. 4(b) and 4(c). In addition, the system
supports numerous quasi-stable states with Im(λ) → 0− as
γ → ∞. The correlation 〈〈ρ|iκ1κ4N |ρ〉〉 can be approximated
as

〈〈ρ|iκ1κ4N |ρ〉〉 ∼ (
1 + 〈

σ
y
1 σ x

2

〉2 + 〈
σ z

1

〉2)
. (37)

Hence, to obtain the long-time evolution of Tr(ρ2), we can
rely on detecting only short-range correlations defined by
〈σ y

1 σ x
2 〉 and 〈σ z

1 〉. When the decay rate γ is large, the obtained
result fits well with the exact result, as shown in Fig. 4(a) by
the dashed line.

VII. DISCUSSION AND CONCLUSION

To summarize, we have investigated an exactly solvable
model of an open system described by Lindblad mas-
ter equations and discovered a novel type of topologically
protected Liouville-Majorana mode hidden within the Liou-
villian. Specifically, we demonstrate that the mode generally
corresponds to mixed states of the system, a feature that
differs from Hermitian systems, where it can be described
in terms of pure states. Remarkably, this mode is found to
be robust and stable throughout the entire dynamic process,

contrasting with the stationary state of the Liouville equation.
Our findings pave the way for further exploration of nontrivial
topological states defined in the extended LFS and expand
the investigation of topological physics for mixed states in
dissipative systems.
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APPENDIX A: NON-HERMITIAN EFFECTIVE
LIOUVILLIAN IN THE EXTENDED

LIOUVILLE-FOCK SPACE

In this Appendix, we present the explicit derivation of the
effective Liouvillian in the extended Liouville Fock space
using the third quantization formalism.

For an open system under the Markov approximation, the
dynamics of its density matrix ρ are governed by the Lindblad
master equation,

i
dρ

dt
= φ̂L[ρ]= [H, ρ] + i

∑
j

(
LjρL†

j −
1

2
{L†

j L j, ρ}
)

. (A1)

This equation describes the nonunitary time evolution of the
system due to interactions with the external environment. The
first term represents the unitary dynamics, where H is the sys-
tem’s Hamiltonian. Lj is the corresponding Lindblad operator
that characterizes the jth dissipation channel with a decay
rate γ j .

By treating ρ as a vector |ρ〉〉 and considering the linearity
of the system, we can rewrite the equation as

i
d|ρ〉〉

dt
= L|ρ〉〉, (A2)

which takes a similar form to the conventional Schrödinger
equation, with the effective non-Hermitian Liouvillian L. The
explicit form of L depends on how we vectorize the matrix ρ.
Specifically, for a quadratic spin/Fermi system, the process of
vectorization can be easily discussed using the Majorana rep-
resentation. Notably, Prosen introduced the third quantization
formalism in Refs. [42–44], which provides an elegant and
systematic approach to solving this dissipative system.

For a 1D system of N spins/Fermions, the density matrix
can be expressed in terms of Majorana operators as

ρ = 1

22N

∑
a1,...,a2N

ca1,a2,a3,...,a2N w
a1
1 w

a2
2 w

a3
3 . . . w

a2N
2N , (A3)

where w j represents the Majorana operators that satisfy the
anticommutation relation {w j,wk} = 2δ jk . The variable a j

corresponds to the excitation number of the w j operator and
can take values of either 0 or 1. The coefficients ca1,a2,a3,...,a2N

are real numbers. Notably, for the spin-1/2 system discussed
in the main text, this representation is always possible thanks
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to the Jordan-Wigner transformation. The Pauli matrices σ x
j

and σ
y
j can be expressed in terms of Majorana operators as

σ x
j =

∏
k< j

(−iw2k−1w2k )w2 j−1, (A4)

σ
y
j =

∏
k< j

(−iw2k−1w2k )w2 j . (A5)

For later convenience, we introduce the following defini-
tion:

wa := w
a1
1 w

a2
2 . . . w

a2N
2N , (A6)

where na represents the total count of Majorana operators in
the basis vector |wa〉〉 and is given by the sum over index j as
na := ∑

j a j . To perform vectorization of the master equation,
we associate the Hilbert space HL with the defined basis given
by

|wa〉〉 := ∣∣wa1
1 w

a2
2 ...w

a2N
2N

〉〉
. (A7)

In this context, we consider the 4n-dimensional space of
operators denoted as wa. Importantly, the Hamiltonian and
relevant Lindbladians can also be expressed as combinations
of Majorana operators wa. Consequently, the Liouville su-
peroperator L can be represented as an operator within this
newly defined Liouville-Fock space (LFS). Specifically, for
each Majorana operator wk that appears in H or Li and acts on
the basis |wa〉〉, we can introduce fermionic operators c j and
c†

j , defined as

c†
j

∣∣wa1
1 w

a2
2 ...w

a2N
2N

〉〉 = δ0,a j

∣∣w jw
a1
1 w

a2
2 ...w

a2N
2N

〉〉
, (A8)

c j

∣∣wa1
1 w

a2
2 ...w

a2N
2N

〉〉 = δ1,a j

∣∣w jw
a1
1 w

a2
2 ...w

a2N
2N

〉〉
, (A9)

where the fermionic operators satisfy the standard canonical
anticommutation relations

{c j, ck} = 0, {c j, c†
k} = δ jk, {c†

j , c†
k} = 0. (A10)

For an N-site spin/fermionic system, the dimension of the
Fock space HL is 4N . Therefore, we have 2N fermionic oper-
ators, denoted as c j with j = (1, 2, . . . , 2N ).

The master equation of the system can be expressed using
Majorana operators as follows:

i ˙|ρ〉〉 = −i
N−1∑
j=1

Jj (w2 jw2 j+1ρ − ρw2 jw2 j+1)

+i
N∑

j=1

γ j (w2 j−1w2 jρw2 jw2 j−1 − ρ). (A11)

Based on the preceding discussions, it can be verified that
when mapped into the LFS, operators acting on ρ can be
redefined using fermionic operators

ω jρ �⇒ (c j + c†
j )|ρ〉〉, (A12)

ρωiω j �⇒ (c j − c†
j )(c j − c†

j )|ρ〉〉. (A13)

By employing these substitutions, we can readily obtain the
corresponding Liouvillian L, which can be expressed as

L = −2i
N−1∑
j=1

Jj (c
†
2 jc2 j+1 + c2 jc

†
2 j+1)

− i
N∑

j=1

γ j + i
N∑

j=1

γ j (2n2 j−1 − 1)(2n2 j − 1), (A14)

where nj = c†
j c j is the number operator on site j. Since

L commutes with all Pj = (2n2 j − 1)(2n2 j+1 − 1) for j =
(1, 2, . . . , N − 1), and P2

j = I , the right eigenvectors of L can
be chosen as the common eigenvectors of all Pj . The corre-
sponding eigenvalues p j can only be +1 or −1. Consequently,
the entire LFS can be divided into different subspaces, which
are labeled by the list {p} = {p1, p2, . . . , pN−1} with (N − 1)
entries.

To obtain the effective interactions of L, we intro-
duce another set of Jordan-Wigner transformations (JW-I)
defined as c†

2i−1 = 1
2

∏2i−2
j=1 Zj (X2i−1 − iY2i−1) and c†

2i =
1
2

∏2i−1
j=1 Zj (Y2i − iX2i ). After employing these transforma-

tions, we can map the system into an effective spin model,
defined as follows:

L =
N−1∑

j

J (Pj − 1)Y2 jY2 j+1 − iγ
N∑
i

(Z2 j−1Z2 j + 1). (A15)

Here, {Xk,Yk, Zk} are the local Pauli matrices defined in the
LFS at site k. We have also set the homogeneous decay rates
as γ j = γ . Therefore, within each subblock denoted by {p},
L takes the form of a non-Hermitian spin model with site-
dependent couplings J (pj − 1) and a dissipation rate of iγ .

To illustrate the hidden topological features of the system,
we employ another Jordan-Wigner transformation (JW-II)
again and define the local Liouville-Majorana operators as
κ2i−1 = −∏i−1

j=1 XjZi and κ2i = ∏i−1
j=1 XjYi, and finally we ar-

rive at

L =
N−1∑

j

iJ (Pj − 1)κ4 j−1κ4 j+2 + iγ
N∑
j

(iκ4 j−2κ4 j−1 − 1),

(A16)

with Pj = iκ4 jκ4 j+1. Therefore, for given {p}, L reduces to
an effective non-Hermitian Kitaev chain with site-dependent
couplings.

We stress that although both ω j and κ j are Majorana oper-
ators (MOs), they are defined in different spaces. Specifically,
ω j is the MO defined in the original Hilbert space, and κ j

is another type of MO defined in the extended LFS (denoted
by HL in the paper). For N-site chain, we have 2N ω-type
MOs, but 4N κ-type Liouville-MOs. So generally speaking,
one ω-type MO maps to two κ-type MOs. In this sense, we
claim that a Liouville-Majorana fermion can be viewed as a
half-Majorana fermion in the original Hilbert space. In the
spin basis defined in Eq. (1), the Liouville-Majorana edge
modes discussed in the paper can only be described as mixed
states, which is different from the case for the usual Hermitian
Majorana modes.
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APPENDIX B: THE SPECTRA AND DYNAMICAL
FEATURES OF LIOUVILLIAN L

To explore the dynamical properties of system, we consider
the eigenmatrices and eigenvalues of the Liouville superoper-
ator φ̂L and its counterpart L in the Liouville Fock space HL,

φ̂L[ρm] = λmρm → L|ρm〉〉 = λm|ρm〉〉. (B1)

For a master equation in the Lindblad form, it has been shown
that the spectrum {λm} satisfies the following properties which
are useful for later discussions.

First, since the imaginary part of λm is linked with
the dissipation dynamics toward stationary states, we have
Im[λm] � 0. The stationary state ρs of the system corre-
sponds to the eigenmatrix ρ0 with λ0 = 0. So we have ρs =
ρ0/Tr[ρ0]. Additionally, if stationary states are degenerate,
then the system can evolve toward different steady states
depending on the initial conditions.

Second, since ρ is Hermitian, and φ̂L[σ †] = −(φ̂L[σ ])†

for any matrix σ , the eigenvalues must come in anticomplex
conjugate pairs {λm,−λ∗

m}. Therefore, if λm is pure imaginary,
then the eigenmatrix ρm must be Hermitian and vice versa.

Finally, if Im[λm] �= 0, since the Liouvillian evolution is
trace-preserving, the eigenmatrix evolves as e−iλmtρm → 0
when t → ∞. This leads to Tr[ρm] = 0.

Equipped with the eigensystem of the Lindblad equation,
we can then discuss the dynamics of the system in a more
convenient manner. Since any physical state of the system can
always be decomposed as

ρ = g0ρs +
∑
m �=0

gmρm, (B2)

the time-evolution of ρ(t ) in LFS HL can then be simplified
as

|ρ(t )〉〉 = g0|ρs〉〉 +
∑
m �=0

gme−iλmt |ρm(t )〉〉. (B3)

We stress that the dynamical properties of a quantum sys-
tem with the effective Liouvillian L is very different from
the usual non-Hermitian system solely driven by an effective
non-Hermitian Hamiltonian He = H − iγ

∑
m L†

mLm/2. In the
later case, the effect of quantum jump LmρL†

m has been ne-
glected. We also note that the non-Hermiticity of He can result
in many novel effects. For instance, pseudo-Hermitian or PT-
symmetric He has been widely discussed in the past decades,
which gives rise to rich exotic phenomena in different subjects
of physics. However, in many cases, this jump term LmρL†

m
cannot be dropped and can change the dynamical behavior of
the system dramatically.

APPENDIX C: BULK-EDGE PRODUCT VECTORS
OF PAULI OPERATORS IN LFS

In this Appendix, we show that all the Pauli operators in the
original spin basis map to bulk-edge product vectors in LFS.
This allows us to construct various initial product vectors and
detection operators discussed in the main text.

Specifically, the two edge Liouville-Majorana operators κ1

and κ4N can be used to define the Dirac fermionic operator
de = 1

2 (κ1 + iκ4N ) and d†
e = 1

2 (κ1 − iκ4N ). The corresponding

number operator reads d†
e de and satisfies the following prop-

erties after acting on its local Fock basis

d†
e de|1〉〉 = |1〉〉, d†

e de|0〉〉 = 0. (C1)

Since de and d†
e commute with the Liouvillian L, |0〉〉 and |1〉〉

correspond to the two local dark modes of the system, and
defined as the basis of the local Fock space denoted by He. For
the remaining Liouville-Majorana operators κ j with 2 � j �
(4N − 1), they can be combined similarly to define (2N − 1)
Dirac fermionic operators with the corresponding Fock space
denoted by H′

L. Therefore, the whole LFS HL can then be
expressed as the tensor product of H′

L and He. Using these
notations, we can then rewrite the state vector |ρ〉〉 in LFS as

|ρ〉〉 = |ψ1〉〉|1〉〉 + |ψ0〉〉|0〉〉. (C2)

For operators acting on |ρ〉〉 in LFS, they can be mapped
to the corresponding linear operations in the original Hilbert
space defined by the spin basis. For later convenience, we list
the explicit correspondence as follows:

d†
e de|ρ〉〉 → 1

2

(
ρ + Mσ x

1 σ x
Nρσ x

1 σ x
N

)
, (C3)

de|ρ〉〉 → 1
2Mσ x

1

(
Mσ x

1 σ x
Nρσ x

Nσ x
1 + ρ

)
Mσ x

1 , (C4)

d†
e |ρ〉〉 → − 1

2Mσ x
1

(
Mσ x

1 σ x
Nρσ x

Nσ x
1 − ρ

)
Mσ x

1 , (C5)

where M = (−1)N
∏N

j=1 σ z
j . One can check that if |ρ〉〉 =

|ρ1〉〉 = |ψ1〉〉|1〉〉, then we have

d†
e de|ρ1〉〉 = |ρ1〉〉 → Mσ x

1 σ x
Nρ1σ

x
1 σ x

N = ρ1. (C6)

Similarly, if |ρ〉〉 = |ρ0〉〉 = |ψ0〉〉|0〉〉, then we have

d†
e de|ρ0〉〉 = |ρ0〉〉 → Mσ x

1 σ x
Nρ0σ

x
1 σ x

N = −ρ0. (C7)

This also indicates that if ρi is Hermitian, then we must have
[ρi,M] = 0.

To obtain the explicit form in LFS for a given density
matrix, we consider the following N-body Pauli operator in
the original Hilbert space Ô = σ

μ1
1 ⊗ σ

μ2
2 ⊗ · · · ⊗ σ

μN
N with

μi ∈ {0, x, y, z} and σ 0 = I the usual identity matrix. The
relevant state vector in LFS reads

|Ô〉〉 = |Ô1〉〉|1〉〉 + |Ô0〉〉|0〉〉. (C8)

To show that |Ô〉〉 can be written as a product state in LFS, we
define the following two projectors

P+ = 1
2 (I + M), P− = 1

2 (I − M),

with P2
± = I . Since Ô is commuted (δo = +1) or anticom-

muted (δo = −1) with
∏N

i σ z
i σ x

1 σ x
N as

Ô
N∏

i=1

σ z
i σ x

1 σ x
N = δo

N∏
i=1

σ z
i σ x

1 σ x
N Ô, (C9)

we have

Mσ x
1 σ x

N ÔP±σ x
1 σ x

N = δoÔP±M = ±δoÔP±. (C10)

Using Eqs. (C6) and (C7), we conclude that |ÔP+〉〉 and
|ÔP−〉〉 can be written as

|ÔP±〉〉 = |Ô±〉〉
∣∣∣∣1 ± δo

2

〉〉
, (C11)
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where |Ô±〉〉 represent the corresponding state vectors in H′
L,

whose explicit forms are irrelevant to the latter discussion.
Therefore, the vectors related to Ô and ÔM then read

|Ô〉〉 = |Ô+〉〉
∣∣∣∣1 + δo

2

〉〉
+ |Ô−〉〉

∣∣∣∣1 − δo

2

〉〉
, (C12)

|ÔM〉〉 = |Ô+〉〉
∣∣∣∣1 + δo

2

〉〉
− |Ô−〉〉

∣∣∣∣1 − δo

2

〉〉
. (C13)

To show that both |Ô〉〉 and |ÔM〉〉 can be written as
product vectors in LFS, we need to show that |Ô+〉〉 ∝ |Ô−〉〉.
This can be achieved by noticing that

de|ÔP+〉〉 = 1 + δo

2
|Ô+〉〉|0〉〉, (C14)

which is nonzero only when δo = +1. The corresponding
matrix form in the original Hilbert space reads

−1

2
Mσ x

1

(
Mσ x

1 σ x
N ÔP+σ x

Nσ x
1 + ÔP+

)
σ x

1M

= −1 + δo

2
σ x

N ÔP+σ x
N

= −1 + δo

2
σ x

N Ôσ x
N P−. (C15)

By setting δo = +1 and noticing σ x
N Ô = γoσ

x
N Ô with γo = ±1,

we have

|Ô+〉〉|0〉〉 = −γo|Ô−〉〉|0〉〉, (C16)

which leads to |Ô+〉〉 = −δoγo|Ô−〉〉.
We note that similar result can also be obtained if we

consider

d†
e |ÔP+〉〉 = 1 − δo

2
|Ô+〉〉|1〉〉, (C17)

for δo = −1. The corresponding matrix form reads

−1

2
Mσ x

1 (−Mσ x
1 σ x

N (Ô + ÔM)σ x
Nσ x

1 + Ô + ÔM)σ x
1M

= −δo − 1

2
σ x

N ÔP+σ x
N

= −δo − 1

2
γoÔP−. (C18)

After writing back to the LFS, we again obtain |Ô+〉〉 =
−δoγo|Ô−〉〉.

Summing up all the above discussions, we conclude that
both |Ô〉〉 and |ÔM〉〉 are product and read

|Ô〉〉 = |Ô+〉〉
[∣∣∣∣1 + δo

2

〉〉
− δoγo

∣∣∣∣1 − δo

2

〉〉]
, (C19)

|ÔM〉〉 = |Ô+〉〉
[∣∣∣∣1 + δo

2

〉〉
+ δoγo

∣∣∣∣1 − δo

2

〉〉]
, (C20)

where other relevant coefficients are defined as follows:

σ x
N Ô = γoσ

x
N Ô, (C21)

ÔMσ x
1 σ x

N = δoMσ x
1 σ x

N Ô. (C22)

The above derivation indicates that the 4N Pauli operators Ôμ

can be divided into 22N−1 different pairs up to a constant phase

factors as (Ôμ, ÔμM). For any two different pairs (Ô1, Ô1M)
and (Ô2, Ô2M), since

tr(ÔiÔ jM) = 0, tr(MÔiÔ jM) = 2Nδi j, (C23)

we have

〈〈Ôi|Ô j〉〉 = 2Nδi j, 〈〈Ôi,+|Ô j,+〉〉 = 2N−1δi j . (C24)

Given the state vector in LFS shown as Eq. (C8), we also
can easily obtain the matrix form in the original spin basis
using the following maps:

δo = +1:

{|Ô+〉〉|1〉〉 → ÔP+,

|Ô+〉〉|0〉〉 → −γo|Ô−〉〉|0〉〉 = −γoÔP−,

(C25)

δo = −1:

{|Ô+〉〉|0〉〉 → ÔP+,

|Ô+〉〉|1〉〉 → γo|Ô−〉〉|0〉〉 = γoÔP−.
(C26)

APPENDIX D: CONSTRUCTING BULK-EDGE PRODUCT
STATES IN LFS AND THE ORIGINAL SPIN BASIS

In this Appendix, we provide how bulk-edge product vec-
tors in LFS can be obtained using pairs of Pauli operators. The
robustness of edge modes and their internal symmetry can be
also be easily discussed based on these constructions.

For the system consider in the main text, the general form
of the stationary states ρs can be written as the combination of
Pauli operators (Ô, ÔM) with Ô = I and δo = γo = 1. This
means

ρs = 1

2N
(I + ζM) = 1

2N
[(1 + ζ )IP+ + (1 − ζ )IP−], (D1)

where ζ is real and satisfies |ζ | � 1 to ensure the positivity of
ρs. The corresponding vectorized form in LFS reads

|ρs〉〉 = 1

2N
|I+〉〉[(1 + ζ )|1〉〉 − (1 − ζ )|0〉〉]. (D2)

For a given initial state vector |ρ(t = 0)〉〉 in LFS, if
|ρ(t = 0)〉〉 = |ρ ′〉〉 ⊗ (a|1〉〉 + b|0〉〉) is product, then |ρ(t )〉〉
remains unentangled in LFS under time evolution. Since the
system tends to its stationary state defined by Eq. (D2) in the
long-time limit, we conclude that the product state can always
be rewritten as

|ρ〉〉 = |ρ+〉〉 ⊗ [(1 + ζ )|1〉〉 − (1 − ζ )|0〉〉]/2N , (D3)

where the most general form of |ρ+〉〉 reads

|ρ+〉〉 = |I+〉〉 +
∑

χm|Ôm,+〉〉. (D4)

Here the coefficients χm and the N-body Pauli operators Ôm

should be carefully chosen so that the corresponding ρ in the
original Hilbert space represents a valid density matrix of the
system.

We note that the operators Ô can be classified into different
groups according to the factors (δo, γo) defined in Eqs. (C21)
and (C22). Therefore, due to the two-valued properties of δo

and γo, all the Pauli operators Ô can be divided into four
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categories (Â, B̂, Ĉ, D̂) and are listed as follows:
(1) Class A: (δo, γo) = (1, 1)

|Â + ζ ÂM〉〉 = |Â(1 + ζM)〉〉
= |Â+〉〉[(1 + ζ )|1〉〉 − (1 − ζ )|0〉〉];

(2) Class B: (δo, γo) = (−1, 1)

|−ζ B̂ + B̂M〉〉 = |B̂M(1 − ζM〉〉
= |B̂+〉〉[−(1 + ζ )|1〉〉 + (1 − ζ )|0〉〉];

(3) Class C: (δo, γo) = (1,−1)

|ζĈ + ĈM〉〉 = |ĈM(1 + ζM〉〉
= |Ĉ+〉〉[(1 + ζ )|1〉〉 − (1 − ζ )|0〉〉];

(4) Class D: (δo, γo) = (−1,−1)

|D̂ − ζ D̂M〉〉 = |D̂(1 − ζM))〉〉
= |D̂+〉〉[(1 − ζ )|0〉〉 − (1 + ζ )|1〉〉].

We also note that to ensure the Hermiticity of ρ, these
operators {Â, B̂, Ĉ, D̂} also should be chosen to commute with
M. Therefore, the most general form of |ρ+〉〉 reads

|ρ+〉〉 = |I+〉〉 +
∑

i

ai|Âi,+〉〉 +
∑

j

b j |B̂ j,+〉〉

+
∑

k

ck|Ĉk,+〉〉 +
∑

l

dl |D̂l,+〉〉, (D5)

with real coefficients ai, b j , ck , and dl . The corresponding
density matrix can be obtained accordingly,

ρ = 1

2N

[(
I +

∑
i

aiÂi +
∑

k

ckĈkM
)

(I + ζM)

−
⎛⎝∑

j

b j B̂ jM +
∑

l

dl D̂l

⎞⎠(I − ζM)

⎤⎦, (D6)

where both the coefficients (ai, b j, ck, dl ) and the operators
(Âi, B̂ j, Ĉk, D̂l ) are carefully chosen so that ρ is a positive
operator. In the special case with b j = dl = 0 for all j and
l , the positivity of ρ is reduced to find (ai, ck ) and (Âi, Ĉk )
such that (I + ∑

i aiÂi + ∑
k ckĈkM) is positive definite. For

general case, to ensure the positivity of ρ, a sufficient condi-
tion can be chosen such that both (I + ∑

i aiÂi + ∑
k ckĈkM)

and −(
∑

j b j B̂ jM + ∑
l dl D̂l ) are positive operators.

We note that any Hermitian observable operator X̂ which
maps to a product form in LFS can also be constructed follow-
ing the above discussions. For instance, all operators defined
in Eq. (D6) are product in LFS. If we choose the two operators
X̂1 and X̂2 as (X̂1, X̂2) = (Ô, ÔM), then the ratio 〈X̂1〉/〈X̂2〉
can be simplified as

〈X1〉
〈X2〉 = 〈〈X1|ρ〉〉

〈〈X2|ρ〉〉 = δ0 + γ0 + δ0ζ (δ0 − γ0)

δ0 − γ0 + δ0ζ (δ0 + γ0)
= δ0ζ

−δ0 , (D7)

where in the last step, we have used the two-valued properties
of δo and γo. Therefore, 〈X̂1〉/〈X̂2〉 is time-independent during

the evolution for an initial product state. This can be used to
clarify the existence of LMEMs in this dissipative system.

The edge modes are topologically protected by the internal
symmetry of the system. The influences of perturbations on
the system can be characterized by introducing additional
interaction H ′ to the Hamiltonian H , or new dissipator L′ into
the Lindblad equation. The edge modes are decoupled from
the bulk modes as long as the corresponding Lindbladians
XH ′ and XL′ in LFS are commuted with κ1 and κ4N , namely,
[XH ′ , κ1] = [XH ′ , κ4N ] = [XL′, κ1] = [XL′ , κ4N ] = 0. Since

κ1|ρ〉〉 → −σ x
1MρMσ x

1 , (D8)

κ4N |ρ〉〉 → iσ x
NρMσ x

N , (D9)

XH ′ |ρ〉〉 → [H ′, ρ], (D10)

XL′ |ρ〉〉 → 2L′†ρL′ − L′L′†ρ − ρL′L′†, (D11)

using the spin language, we can rewrite [XH ′ , κ1]|ρ〉〉 = 0 as[
Mσ x

1 H ′σ x
1M − H ′, ρ

] = 0, (D12)

which is valid for any given density matrix ρ. This leads to
the following constraints for H ′ as[

H ′, σ x
N

] = [
H ′, σ x

1

] = [H ′,M] = 0. (D13)

Similar discussions also hold for additional dissipator L′ by
noticing [XL′ , κ1]|ρ〉〉 = 0, and we have

2
(
Mσ x

1 L′†σ x
1MρMσ x

1 L′σ x
1M − L′†ρL′)

−(
Mσ x

1 L′L′†σ x
1M − L′L′†)ρ

−ρ
(
Mσ x

1 L′L′†σ x
1M − L′L′†) = 0. (D14)

To ensure that the above identity holds for any density matrix
ρ, we have [

L′, σ x
N

] = [
L′, σ x

1

] = [L′,M] = 0. (D15)

In the main text, the existence of LMEMs is verified for
different initial states and observables. Both of them can be
re-expressed as bulk-edge product vectors in LFS. Specif-
ically, for N = 8 and ρ0 = [I + ∑N−1

j=2 0.2(σ x
j σ

x
j+1 + σ z

j )]

(I + 0.5
∏N

j=1 σ z
j )/2N , all the corresponding operators Mj =

σ x
j σ

x
j+1 + σ z

j (2 � j � N − 1) satisfy (δM, γM ) = (1, 1) and
belongs to A-class discussed above. The relevant vector of ρ0

is product and reads

|ρ0〉〉 = (|I+〉〉 + 0.2
N−1∑
j=2

|Mj,+〉〉)(1.5|1〉〉 − 0.5|0〉〉)/2N ,

(D16)

with ζ = 0.5, and Mj = σ x
j σ

x
j+1 + σ z

j . Similarly, using the
maps

σ z
j �⇒ ∣∣σ z

j,+
〉〉

(|1〉〉 − |0〉〉), ( j �= 1, N ), (D17)

σ x
j σ

x
j+1 �⇒ ∣∣(σ x

j σ
x
j+1

)
+
〉〉

(|1〉〉 − |0〉〉), (D18)

we can find that the relevant vectors in LFS for observables
X1 = ∑N−1

j=2 (σ x
j σ

x
j+1 + σ z

j )M and X2 = X1M can be written
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as

|X1〉〉 = |M+〉〉(|1〉〉 + |0〉〉), (D19)

|X2〉〉 = |M+〉〉(|1〉〉 − |0〉〉), (D20)

where

|M+〉〉 =
∣∣∣∣∣∣
N−1∑
j=2

(
σ x

j σ
x
j+1 + σ z

j

)
+

〉〉
. (D21)

APPENDIX E: CORRELATION 〈〈iκ1κ4N〉〉
IN LFS AND THE PURITY OF ρ

In this Appendix, we show that the correlation 〈〈iκ1κ4N 〉〉
defined in LFS is closely linked with the purity Tr(ρ2) of the
density matrix ρ. We also show how the correlation can be
detected using only local observables in spin basis.

Since any density matrix ρ can be expanded using pairs of
Pauli operators (Ô j, Ô jM), the corresponding vector in LFS
can always be written as

|ρ〉〉 =
∑

j

r j |ρ j〉〉 =
∑

j

r j |Ô j,+〉〉(a j |1〉〉 + b j |0〉〉). (E1)

Therefore, the occupation number 〈〈ρ(t )|d†
e de|ρ(t )〉〉 of the

edge mode for the given vector |ρ(t )〉〉 in LFS reads

〈〈ρ(t )|d†
e de|ρ(t )〉〉 =

∑
i j

r∗
i r j〈〈ρi|d†

e de|ρ j〉〉

=
∑

i j

r∗
i r ja

∗
i a j〈〈Ôi,+|Ô j,+〉〉. (E2)

Using the relations 〈〈Ôi,+|Ô j,+〉〉 = 2N−1δi j and iκ1κ4N =
2c†

ece − 1, we immediately obtain

〈〈ρ(t )|iκ1κ4N |ρ(t )〉〉 = 2N−1
∑

i

r2
i

(
a2

i − b2
i

)
. (E3)

Meanwhile, the purity Tr(ρ2) of the density matrix ρ can be
re-expressed in LFS as

〈〈ρ(t )|ρ(t )〉〉 =
∑

i j

r∗
i r j〈〈ρi|ρ j〉〉 = 2N−1

∑
i

r2
i

(
a2

i + b2
i

)
.

(E4)

This means that for bulk-edge product state in LFS with
(a j, b j ) = (a, b) for all j, the correlation 〈〈iκ1κ4N 〉〉 =
〈〈ρ(t )|iκ1κ4N |ρ(t )〉〉 is directly linked with Tr(ρ2), and sat-
isfies

〈〈iκ1κ4N 〉〉 = a2 − b2

a2 + b2
Tr(ρ2). (E5)

Specifically, for the initial state discussed in the main text,

ρ0 =
⎡⎣I + 0.3

N∏
j=1

σ z
j

(
σ z

1 + σ
y
1 σ x

2 + σ
y
1 σ x

3 + σ z
2σ x

2 σ x
3

)⎤⎦
∗
⎛⎝I + ζ

N∏
j=1

σ z
j

⎞⎠/2N , (E6)

the corresponding product vector in LFS can be written as

|ρ0〉〉 = |ρ0,+〉〉 ⊗ [(1 + ζ )|1〉〉 − (1 − ζ )|0〉〉]/2N (E7)

and

|ρ0,+〉〉 = |I+〉〉 + 0.3
(∣∣(σ z

1

)
+
〉〉 + ∣∣(σ y

1 σ x
2

)
+
〉〉

+ ∣∣(σ y
1 σ x

3

)
+
〉〉 + ∣∣(σ z

2σ x
2 σ x

3

)
+
〉〉)

. (E8)

This state has nonzero components in subspaces defined by
{p j = 1(∀ j)} and {p j �=1 = 1(∀ j), p1 = −1}.

For larger γ , the eigenvectors of L for eigenvalue λ with
the minimum |Im(λ)| > 0 are degenerate in the subspace
{pj �=1 = 1(∀ j), p1 = −1} and read

ρ0
1 = (

ασ z
1 + σ

y
1 σ x

2

) N∏
j=1

σ z
j , (E9)

ρ1
1 = ασ

y
1 σ x

2 + σ z
1 , (E10)

with α = (iγ ±
√

γ 2 − J2)/J . The above excited states and
the stationary state can then be viewed as the combinations of
following operators:

M =
{

I,
∏

i

σ z
i , σ

y
1 σ x

2 , σ z
1

}
∪
{

I,
∏

i

σ z
i , σ

y
1 σ x

2 , σ z
1

}∏
i

σ z
i .

The purity Tr(ρ2) can be approximated as

〈〈ρ|ρ〉〉 = Tr(ρ2) � 1

2N

∑
Oi∈M

〈Oi〉2. (E11)

For the given initial state |ρ0〉〉, since the following relations
hold, 〈

σ
y
1 σ x

2

∏
i

σ z
i

〉
= ζ

〈
σ

y
1 σ x

2

〉
, (E12)〈

σ z
1

∏
i

σ z
i

〉
= ζ

〈
σ z

1

〉
, (E13)〈∏

i

σ z
i

〉
= ζ , (E14)

we finally have

〈〈ρ|iκ1κ2N |ρ〉〉 � 1

2N−1
ζ
(
1 + 〈

σ z
1

〉2 + 〈
σ

y
1 σ x

2

〉2)
. (E15)

[1] T. Ozawa and H. M. Price, Topological quantum matter in
synthetic dimensions, Nat. Rev. Phys. 1, 349 (2019).

[2] X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, and
Z.-W. Zhou, Quantum simulation of 2D topological physics
in a 1D array of optical cavities, Nat. Commun. 6, 7704
(2015).
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