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Digital programming of reciprocity breaking in resonant piezoelectric metamaterials
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We demonstrate a digitally controlled piezoelectric metamaterial waveguide leveraging resonant, spatiotem-
porally modulated synthetic impedance circuits for programmable reciprocity breaking. Piezoelectric meta-
materials have effective stiffness that depends on the shunt circuitry connected to each unit cell, offering
greatly increased design freedom over their purely mechanical counterparts. By connecting a digitally controlled
synthetic impedance shunt circuit to each unit cell of the metamaterial domain, the effective stiffness is externally
programmed according to a desired profile in space and time. Specifically, we present threefold capabilities
in this electromechanical system: (1) smooth parameter modulation (no abrupt switching) through synthetic
impedance circuits that eliminate cumbersome analog electrical components, (2) resonant electromechanical
modulation in space and time so that one does not have to operate near the Bragg band gap, and (3) precise
digital programming by numerically entering the space and time properties of the domain. We also demonstrate
the frequency conversion in narrow-band excitation centered at a directional band gap. The experimental results
are compared against high-fidelity multiphysics finite-element simulations, yielding excellent agreement for this
class of digitally programmable nonreciprocal elastic metamaterials.
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I. INTRODUCTION

Conventional media with linear time-invariant material
properties allow waves to propagate symmetrically in space
from one point to another, as a fundamental law in electro-
magnetics and acoustics known as the law of reciprocity [1,2].
Because of this inherent reciprocity, using linear time-
invariant systems and materials to achieve transmission in
one direction is impossible. Yet, the idea of breaking reci-
procity in elastic and acoustic systems is of great interest in
science and engineering [3,4] as it enables many potential
applications in wave control [5]. The objective of achieving
unidirectional wave propagation by breaking reciprocity has
attracted researchers’ attention and opened different research
directions. Some of these research areas include investigations
of propagating waves in acoustic and elastic media comprising
(i) moving parts [6–9], (ii) nonlinearities [10–21], and (iii)
time-varying properties [22–31]. Under each of these gen-
eral research areas, there are several approaches to break the
reciprocity of acoustic and elastic waves. Examples include
a moving fluid with constant speed which enables reciprocity
breaking in acoustic media [8], use of a linear elastic phononic
crystal followed by a nonlinear one [32], and modulating the
media properties in space and time by coupling membranes
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to external electromagnetic fields in acoustic metamaterials
to dynamically modulate the acoustic impedance [33] or by
coupling the elastic media with, for example, piezoelectric
elements [34] and magnetic electrical coil elements [35].
These approaches share similarities with recent work on active
metamaterials, which use smart or active components to vary
and/or enhance the effective material properties of a metama-
terial [36–40].

Space-time (or spatiotemporally) modulated linear systems
are an effective platform to break wave reciprocity. For ex-
ample, Trainiti and Ruzzene [23] numerically studied wave
propagation in space-time modulated rods and beams in which
modulation is performed on the density of the structures,
reporting the appearance of unidirectional band gaps in the
dispersion relations. Nassar et al. [26] analyzed resonant
mass-in-mass discrete systems by modulating the inner stiff-
ness of the unit cells in space and time, showing nonreciprocal
wave propagation. Sugino et al. [41] presented a general-
ized plane-wave-expansion-based computational framework
for piezoelectric shunt circuit strategies in nonreciprocal wave
propagation by taking into consideration continuous modula-
tion of circuit parameters.

The first experimental realization [42] of a nonrecipro-
cal acoustic metamaterial used a mass-spring chain of
repelling magnets controlled by a modulated array of elec-
tromagnets. In another work, Chen et al. [35] designed an
elastic beam with embedded magnets coupled to adjacent
electrical coils in which the ac current is modulated in
space and time. Spatiotemporal modulation in conventional
elastic structures is challenging to realize experimentally
without complex designs. This has led researchers to ex-
plore piezoelectric metamaterials as means for demonstrating
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FIG. 1. Nonreciprocal propagation of elastic waves in a piezo-
electric metamaterial by smooth parameter variation in space and
time. (a) Schematic illustration of a spatiotemporally modulated
piezoelectric metamaterial enabled by varying the inductance in
space and time in a wavelike fashion. At frequency f0, transmission
from A to B is possible, but no transmission from B to A. (b) The
band structure is obtained by using the plane-wave expansion method
(cf. Appendix A).

reciprocity breaking in elastic media. Marconi et al. [34]
used piezoelectric elements shunted to analog negative ca-
pacitance circuits to modulate the effective stiffness of the
elastic medium via switching logic, and observed reci-
procity breaking. Both constructing and tuning analog circuits
on a breadboard can be cumbersome, and smooth varia-
tion of material properties is not possible using switching
circuits. In this paper, we demonstrate a class of non-
reciprocal piezoelectric metamaterials with digital control
through numerical simulations and experiments. Specifically,
we demonstrate spatiotemporal modulation of resonant (in-
ductive) shunts for substantial tunability, enabled by synthetic
impedance circuits [43] for precise programming and smooth
parameter variation unlike analog circuits with switches.
Finite-element simulations are performed to guide the experi-
ments, and the numerical results are validated through detailed
comparisons.

II. RESULTS

A. Piezoelectric metamaterial and experiments

Figure 1(a) shows a schematic illustration of a nonre-
ciprocal piezoelectric metamaterial domain with unit cells

connected to inductive shunts. Upon varying the inductance
values in a wavelike fashion, directional band gaps open per-
mitting waves at frequency f0 to propagate in one direction
as shown by the dispersion relation in Fig. 1(b). The detailed
derivation of the dispersion relation for the fully coupled elec-
tromechanical system is presented in Appendix A along with
a comparison of the resulting dispersion curves using smooth
and square-wave modulation profiles. The experimental setup
and the individual setup components are shown in Fig. 2.
In the experiments, we consider a clamped-free piezoelectric
metamaterial beam with 31 separately bonded pairs of piezo-
electric patches. The last piezoelectric pair (at the free end)
is reserved for actuation, leaving 30 piezoelectric pairs (i.e.,
30 unit cells) that are connected to a synthetic impedance
system based on a fully programmable gate array (FPGA)
with 32 individually addressable shunt circuits operating at
400 kHz. The impedance of each unit cell is determined by
a digital filter F (z), which is connected to a Howland current
pump (see Fig. 2). Nearly smooth time modulation is achieved
by rapidly updating the digital filter coefficients for each unit
cell. The circuit impedances are entered in LABVIEW as an-
alytical expressions of the unit cell index i and an auxiliary
index j which represents each time step of the modulation.
The corresponding digital filter coefficients are calculated in
LABVIEW using the Tustin continuous-to-discrete transforma-
tion. To achieve a sufficiently fast update rate (i.e., much faster
than the modulation frequency), the full array of coefficients is
transferred to memory on the FPGA, such that the coefficients
only need to be calculated once per modulation profile. On the
FPGA, the digital filter runs continuously, and the filter coef-
ficients are determined by an internal counter that tracks the
time step of modulation. The counter is updated by a digital
trigger and external pulse train, such that the update rate for
the stored impedances (and hence the modulation frequency)
can be varied by a waveform generator. The smoothness of the
resulting modulation is limited by the number of time steps
that can be stored in memory on the FPGA, which in turn
depends on the digital filter order and the required numerical
precision (e.g., the smallest change in coefficients for each
time step). Vibration measurements in terms of the out-of-
plane velocity of 300 points along the beam are taken using a
Polytec PSV-500 scanning laser Doppler vibrometer (SLDV).
The lattice constant of the system is a = 10.25 mm, and each
unit cell is numbered with index r. The space and time mod-
ulation of the piezoelectric metamaterial is performed on the
electrical inductance, or equivalently the resonant frequency,
associated with each unit cell to generate a pump wave
traveling in the positive or negative x directions according
to

fr = f0

[
1 + αm sin

(
2π fmt − 2π

3
r

)]
, r = 1, 2, . . . , 30,

(1)
where f0 is a mean resonant frequency around which mod-
ulation takes place, αm is the modulation amplitude, fm is
the modulation frequency, and r is an index denoting the
unit cell number. The system is excited by sending a voltage
signal of wideband tone burst to the amplifier connected to
the last piezoelectric pair at the free end of the beam. Spa-
tial and temporal Fourier transforms are performed on the
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FIG. 2. Illustration of the programmable piezoelectric metamaterial beam and setup components along with a schematic of one unit cell
showing a parallel connection of the piezoelectric pair and shunted to a synthetic impedance circuit. The desired circuit impedance values are
computed using a LABVIEW script and stored in the digital controller. The power supply is connected to four printed circuit boards, emulating
the synthetic impedance circuits. The waveform generator sends a train pulse to switch between impedance values and is synchronized with
the measurements taken by the SLDV.

measured out-of-plane velocity field to extract the frequency
contents of propagating waves. Note that since excitation oc-
curs at the right end of the waveguide, positive fm represents
a modulation wave traveling in the opposite direction to the
excitation while negative fm represents a modulation wave
traveling in the same direction. In order to guide and support
the experiments and for a detailed understanding, we use the
commercial finite-element software COMSOL MULTIPHYSICS

5.5 (see more details in Appendix B).

B. Dispersion curves and programmable reciprocity breaking

To investigate the nonreciprocal propagation of elastic
waves, the experimental setup is tested for the case when
the mean resonant frequency is f0 = 7500 Hz, and each
experimental run is carried out for positive and negative mod-
ulation frequency fm to reveal the nonreciprocal behavior.
Figures 3–5 show the normalized dispersion contours and av-
erage frequency spectrum of all points along the piezoelectric
metamaterial. In order to clearly compare the experimental
results against the numerical simulations, the experimental re-
sults are plotted in Figs. 3(a), 4(a), and 5(a), and the numerical
simulation results are plotted in Figs. 3(b), 4(b), and 5(b).
The modulation frequency fm is first selected as 0 Hz with
modulation amplitude αm of 0.1 as shown in Fig. 3. At zero
modulation frequency, we have spatial modulation only, and
the resulting dispersion curves are symmetric with multiple
band gaps corresponding to the resonant frequencies of the
supercell. Figure 3(b) shows the numerical results which agree
well with the experimental results. When the modulation fre-
quency increases to fm = 750 Hz as shown in Fig. 4, the
resulting positive and negative band gaps do not overlap,
and they open at different frequencies. This results in non-
reciprocal behavior in the corresponding dispersion contours.
That is, this modulation frequency is sufficient to break the
symmetric dispersion curves of Fig. 3 at the same modulation

amplitude. Since nonreciprocal wave propagation is proved
to exist for fm = 750 Hz, we next increase the modulation
amplitude to αm = 0.15 as shown in Fig. 5. At this modula-
tion amplitude, the positive and negative band gaps separate
farther from each other. The positive band gap opens around
8000 Hz for the experimental and numerical results. The neg-
ative band gap opens around 7000 Hz. Interestingly, we also
observe the opening of an additional negative band gap around
9000 Hz. It is evident from these findings that increasing
the modulation amplitude results in strong nonreciprocity as
the separation between the positive and negative band gaps
becomes larger. Particularly, the negative band gaps shrink in
size and shift to lower frequencies. Note that in these results,
reciprocity breaking takes place near the resonant frequencies
of the unit cells, an advantage over, for example, modulating
the capacitance to observe nonreciprocity near Bragg band
gaps. Additionally, the inductive modulation considered here
would still open nonreciprocal Bragg band gaps due to the
impedance mismatch in the unit cells, something not captured
in the experimental and numerical results due to the finite
size of the system and the limited number of available unit
cells. (This is shown later in Fig. 11 under the assumption
of infinite piezoelectric metamaterial where directional Bragg
band gaps are observed in addition to the directional band gaps
observed here.) One unique feature of leveraging synthetic
impedance circuits is the ease of control of the modulation pa-
rameters such that the mean frequency, modulation frequency,
and amplitude can be modified in the LABVIEW interface.
Figure 6 shows the dispersion contours corresponding to the
case when the mean frequency f0 = 4000 Hz, modulation
amplitude αm = 0.2, and modulation frequency fm = 400 Hz.
As expected, the dispersion curves are nonreciprocal, show-
ing negative and positive band gaps that open at different
frequencies. Note that since the modulation amplitude αm is
large, multiple band gaps are clearly shown in the dispersion
curves.
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FIG. 3. Results [two-dimensional (2D) fast Fourier transform
(FFT) to extract space-time behavior] for f0 = 7500 Hz, fm = 0 Hz,
and αm = 0.1. (a) Experimental results. (b) Numerical simulations.
Here, the dashed gray lines indicate the mean frequency of band
gaps.

C. Narrow-band excitation and frequency conversion

The experimental and numerical findings discussed above
highlight the negative and positive frequency band gaps for
different levels of modulation frequency and amplitude. We
aim to have more understanding of what would happen for
propagating waves with a central frequency that lies within
one of the highlighted band gaps. For this purpose, we exam-
ine the case when the modulation parameters are fm = 750 Hz
and αm = 0.15 (same modulation parameters used in Fig. 5)
but this time by sending a narrow-band excitation with a
central frequency of fc = 8000 Hz. We then examine the
frequency spectrum of spatial points within 15 and 85% of the
beam length, after the clamped end and before the actuation
piezo near the beam’s tip. The goal here is to see the frequency
spectrum of the propagating waves away from the dominant
frequency spectrum at the excitation position, the last unit
cell at x/L = 1. The frequency spectrum is shown in Fig. 7
for positive and negative modulation frequencies. For negative
modulation, fm = −750 Hz, the waves propagate through the
metamaterial beam as indicated by the high amplitude at the
central frequency shown by the black horizontal dashed line
in Figs. 7(a) and 7(c). On the other hand, when the modu-
lation frequency is positive, fm = 750 Hz, wave attenuation

FIG. 4. Results (2D FFT to extract space-time behavior) for
f0 = 7500 Hz, fm = 750 Hz, and αm = 0.1. (a) Experimental results.
(b) Numerical simulations. The resulting frequency band gaps under
positive and negative modulation are separated and do not overlap,
indicating nonreciprocal wave propagation. Here, the dashed blue
lines indicate the mean frequency of band gaps under negative mod-
ulation, while the dashed red lines indicate the mean frequency of
band gaps under positive modulation.

is observed through the metamaterial beam at the central
frequency. In addition, for both positive and negative modula-
tions, we observe propagating waves with central frequencies
above and below the center frequency of the excitation (shown
by magenta dashed lines). This is an indication of the fre-
quency conversion of the incident waves from the excitation
source. This frequency conversion is related to the modulation
frequency fm as it is centered at fc ± fm. Figures 7(b) and 7(d)
show the frequency spectrum at the center of the beam under
positive and negative modulations compared with that under
no modulation (i.e., fm = 0 Hz), along with the excitation
spectrum. The frequency spectrum in each case is normalized
with respect to the highest amplitude among the three cases.
Again, the amplitude of the propagating waves under positive
modulation at fc is smaller than that under negative modula-
tion but higher at fc ± fm. Moreover, the unmodulated case
( fm = 0 Hz) does not show any frequency conversion of the
excited waves with the highest amplitude at the central fre-
quency fc. Note that the differences in the average frequency
spectrum between the positive modulation in the numerical
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FIG. 5. Results (2D FFT to extract space-time behavior) for
f0 = 7500 Hz, fm = 750 Hz, and αm = 0.15. (a) Experimental results.
(b) Numerical simulations. At this increased modulation amplitude,
the positive and negative band gaps shift even farther. Here, the
dashed blue lines indicate the mean frequency of band gaps under
negative modulation, while the dashed red lines indicate the mean
frequency of band gaps under positive modulation.

and experimental results are expected to be a result of the
mismatch between the experimental and numerical band-gap
frequencies [cf. Figs. 5(a) and 5(b) for positive modulation
band gaps]. However, this mismatch is not pronounced in
the case of negative modulation, as the 8000 Hz frequency
lies within the propagation band for negative modulation. The
emergence of waves with central frequencies shifted by ± fm

with respect to fc is explained as a Doppler-like effect [44].
The positive modulation of the resonant frequencies induces
a pump wave traveling in the opposite direction to the ex-
citing waves; as a result, the waves decay faster at fc and
are reflected at frequencies fc ± fm. This is clearly shown in
Figs. 7(a) and 7(c), in which the amplitudes of the reflected
waves are prominent over a distance close to the excitation
end (from x/L = 0.5 to x/L = 0.85). To further illustrate
this, we increase the modulation frequency to fm = 900 Hz
(see Fig. 8). The resulting frequency spectrum confirms the
frequency conversion of waves, only this time the reflected
waves under positive modulation have central frequencies that
are shifted farther from the fc as the modulation frequency, in
this case, is fm = 900 Hz. Note that in both Figs. 7 and 8 there

FIG. 6. Results (2D FFT to extract space-time behavior) for
f0 = 4000 Hz, fm = 400 Hz, and αm = 0.2. (a) Experimental results.
(b) Numerical simulations. Here, the dashed blue lines indicate the
mean frequency of band gaps under negative modulation, while the
dashed red lines indicate the mean frequency of band gaps under
positive modulation.

is significant attenuation both at the center frequency fc and
the shifted frequencies fc ± fm. There are numerous sources
of damping in the experimental system, most notably the
thin layer of epoxy between the piezoelectric patches and the
underlying aluminum structure (see Appendix B). Although
a vacuum-bonding process was used to minimize the thick-
ness of this epoxy layer, it introduces significant attenuation,
especially near the local resonance frequency, where the cur-
vature of the piezoelectric patches is highest. Additionally, the
synthetic impedance system allows variation of the damping
in the electrical circuit: Here, we apply identical electrical
damping to each unit cell such that the overall system is stable,
but further minimization on a cell-by-cell basis would further
minimize the attenuation in the system.

Figure 9 illustrates the average numerical frequency
spectra at x/L = 0.5, covering both positive and negative
modulation frequencies within the range 600–1000 Hz. The
figure highlights the negligible frequency conversion observed
at low modulation frequencies, as indicated by the dashed
magenta lines representing the amplitude at fc ± fm for each
case. The absence of significant frequency conversion can be
attributed to the central frequency lying outside the directional
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FIG. 7. Results for f0 = 7500 Hz, fm = 750 Hz, and αm = 0.15 under a narrow-band excitation centered at fc = 8000 Hz. Experimental
(a) and numerical (c) frequency spectra within 15–85% of the beam length. The horizontal black and magenta lines denote fc and fc ± fm,
respectively. Experimental (b) and numerical (d) average frequency spectra of three points at x/L = 0.5. The thin dashed gray response
corresponds to the case fm = 0.

band gaps. As previously demonstrated, the directional band
gaps occur around a modulation frequency of approximately
750 Hz in this particular scenario.

III. DISCUSSION

We have developed a resonant, nonreciprocal, and fully
programmable piezoelectric metamaterial waveguide using
unit cells shunted to inductive synthetic impedance circuits
digitally controlled for modulation in space and time. The
experimental setup offers smooth spatiotemporal modulation
of the properties of the metamaterial unit cells (without re-
quiring analog switches) as well as the precise selection
of the relevant spatiotemporal modulation parameters, al-
lowing for digitally programmable reciprocity breaking. In
addition, through locally resonant modulation, nonreciproc-
ity is observed independent of the Bragg band-gap location.

The experimental and numerical results show the effects
of spatiotemporal modulation in terms of directional band
gaps in the dispersion contours. The directional band gaps
were observed for different modulation parameters such as
mean resonant frequency, modulation amplitude, and mod-
ulation frequency. The results suggest that increasing the
modulation amplitude results in strong nonreciprocity break-
ing. Also, when a narrow-band excitation is centered at
one of the directional band gaps, we observe propagating
waves with central frequencies shifted by approximately
the modulation frequency value. This class of synthetic-
impedance-based programmable piezoelectric metamaterials
offers a platform that allows for the exploration of many
concepts concerned with time and/or space modulation of
unit cells’ properties to achieve, for example, frequency
conversion, topological pumping, parity-time symmetry,
and roton-like dispersion [45,46].
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FIG. 8. Results for f0 = 7500 Hz, fm = 900 Hz, and αm = 0.15 under a narrow-band excitation centered at fc = 8000 Hz. Experimental
(a) and numerical (c) frequency spectra within 15–85% of the beam length. The horizontal black and magenta lines denote fc and fc ± fm,
respectively. Experimental (b) and numerical (d) average frequency spectra of three points at x/L = 0.5. The thin dashed gray response
corresponds to the case fm = 0.

FIG. 9. Numerical average frequency spectra of three points at x/L = 0.5 under a narrow-band excitation centered at fc = 8000 Hz, with
f0 = 7500 Hz and αm = 0.15. The spectra are shown for two ranges of modulation frequencies: (a) 600–1000 Hz and (b) −600 to −1000 Hz.
These spectra provide insights into the frequency conversion phenomenon resulting from the interaction between the narrow-band excitation
and the system.
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APPENDIX A: DISPERSION CURVES OF THE
ELECTROMECHANICAL UNIT CELLS

Consider an infinite piezoelectric Euler-Bernoulli beam
composed of repeated piezoelectric layers bonded on the top
and bottom surfaces of the beam shown in Fig. 10. Pairs of
segmented electrode layers, of negligible thickness, cover the
top and the bottom surfaces of the top and bottom piezo-
electric layers, respectively. The electrode pairs are separated
by a distance of 2a. The governing electromechanical equa-
tions describing the transverse displacement of the beam
w(x, t ) and the output voltage vrq(t ) across the qth electrode
pair are

EI
∂4w(x, t )

∂x4
+ m

∂2w(x, t )

∂t2
− θ

Q−1∑
q=0

∞∑
r=−∞

vrq(t )

× d2

dx2

[
H

(
x − xL

rq

) − H
(
x − xR

rq

)] = 0 (A1)

and

Cp,rq
∂vrq(t )

∂t
+ θ

∫ xR
rq

xL
rq

∂3w(x, t )

∂x2∂t
dx = −irq(t ), (A2)

where r goes from −∞ to ∞, H (x) is the Heaviside function,
and xL

rq and xR
rq are the coordinates of the left-hand-side edge

and the right-hand-side edge of the qth electrode pair in the r
array given as

xL
rq = rλm + qL + a, (A3)

xR
rq = rλm + (q + 1)L − a, (A4)

where the spatial period λm = QL defines the supercell’s size.
The short-circuit flexural rigidity of the structure (substructure

FIG. 10. Schematic of an undamped infinite bimorph piezoelec-
tric beam covered by segmented electrodes. The primitive unit cell
consists of a single pair of electrodes, two piezoelectric layers, and
the central shim (substructure). A group of Q primitive unit cells
forms the repeated supercell of the system.

+ piezoelectric layers) is

EI = 2b

3

(
cs

h3
s

8
+ c̄E

11

[(
hp + hs

2

)3

− h3
s

8

])
, (A5)

and the equivalent mass per unit length is

m = b(ρshs + 2ρphp), (A6)

where b is the beam’s width (also the piezoelectric layers’
width), cs is the substructure’s (beam’s) elastic modulus, hs

is the substructure’s thickness, c̄E
11 is the piezoelectric lay-

ers’ elastic modulus at constant electric field, and hp is the
piezoelectric layers’ thickness. The electromechanical cou-
pling coefficient is

θ = ē31be

hp

[(
hp + hs

2

)2

− h2
s

4

]
, (A7)

and the inherent piezoelectric capacitance across the nth elec-
trode pair is

Cp,qr = ε̄S
33be

xR
qr − xL

qr

2hp
, (A8)

where ē31 is the effective piezoelectric stress constant, be is
the electrode’s width (for convenience, we assume it is equal
to b and omit the subscript “e” in the following equations), and
ε̄S

33 is the permittivity component at constant strain. Note that
the difference xR

qr − xL
qr defines the electrode’s length, which

is constant in our case because we assumed geometrically
identical unit cells. In other words, the inherent piezoelectric
capacitance is identical in all unit cells; therefore the sub-
scripts q and r can be dropped, leading to

Cp = ε̄S
33b

l

2hp
, (A9)

where, again, l is the electrode layer’s length. Assume that the
voltage across unit cells changes periodically in time

vrq(t ) = eiωt
+∞∑

l=−∞
Vrql e

ilωmt . (A10)

Likewise, assume plane-wave solutions for the transverse dis-
placement of the beam w(x, t ) of the form

w(x, t ) = ei(ωt−kx)
+∞∑

n=−∞

+∞∑
l=−∞

Wnle
i(lωmt−nkmx), (A11)

where km = 2π
λm

is the reciprocal lattice vector, k is the Bloch
wave vector, and Wnl is the plane-wave amplitude. Substitut-
ing Eqs. (A10) and (A11) into the transverse displacement
and voltage equations and dropping the common exponent
ei(ω+lωm )t yield

+∞∑
n=−∞

+∞∑
l=−∞

[
EI(k + nkm)4 − mω2 − 2mlωmω − ml2ω2

m

]

× Wnle
−i(k+nkm )x − θ

+∞∑
l=−∞

Q−1∑
q=0

+∞∑
r=−∞

Vrql

× d2

dx2

[
H

(
x − xL

rq

) − H
(
x − xR

rq

)] = 0 (A12)
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FIG. 11. Dispersion curves for (a) and (b) space-only and (c) and (d) space-time modulated piezoelectric waveguides. Shaded yellow
regions represent Bragg band gaps, while shaded red, blue, and green regions represent locally resonant band gaps.

and

+∞∑
l=−∞

iCp(ω + lωm)Vrqle
ilωmt − iθ

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt

× (k + nkm)2(ω + lωm)Wnl

∫ xR
rq

xL
rq

e−i(k+nkm )xdx

= −e−iωt irq(t ). (A13)

Note that we can simplify the integral in the above equation by
realizing that the system is periodic, meaning the integral over
the qth unit cell in the rth supercell is equivalent to that in the
0th supercell. Thus we can shift the spatial coordinates in the
exponential by rλm. That is,

∫ xR
0q

xL
0q

e−i(k+nkm )(x−rλm )dx = e−irλm

∫ xR
0q

xL
0q

e−i(k+nkm )xdx. (A14)

Evaluating the integral

∫ xR
0rl

xL
0rl

e−i(k+nkm )xdx = i

(k + nkm)
e−iLq(k+nkm )

× [
e−iL(k+nkm )eia(k+nkm ) − e−ia(k+nkm )] (A15)

and substituting the result into Eq. (A13),

+∞∑
l=−∞

iCp(ω + lωm)Vrqle
ilωmt

+ θe−irλm

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt (k + nkm)(ω + lωm)Wnl

× e−iLq(k+nkm )[e−iL(k+nkm )eia(k+nkm ) − e−ia(k+nkm )]
= −e−iωt irq(t ). (A16)

This implies

Vrql = V0qle
−irλm , (A17)

which means it is sufficient to know the voltage across the qth
unit cell to compute all voltages across the qth unit cell in the

rth supercell. Multiply by eirλm :

+∞∑
l=−∞

iCp(ω + lωm)V0qle
ilωmt + θ

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt

× (k + nkm)(ω + lωm)Wnle
−iLq(k+nkm )

× [
e−iL(k+nkm )eia(k+nkm ) − e−ia(k+nkm )]

= eirλm e−iωt irq(t ) (A18)

or
+∞∑

l=−∞
iCp(ω + lωm)V0qle

ilωmt + θ

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt

× (ω + lωm)WnlD(n) = −eirλm e−iωt irq(t ), (A19)

where

D(n) = (k + nkm)e−iLq(k+nkm )

× [
e−iL(k+nkm )eia(k+nkm ) − e−ia(k+nkm )]. (A20)

The input current i0ql in Eq. (A13) will be evaluated once
the circuit components are determined. Multiply Eq. (A12) by
eikx:

+∞∑
n=−∞

+∞∑
l=−∞

[
EI(k + nkm)4 − mω2 − 2mlωmω − ml2ω2

m

]

× Wnle
−inkmx + θ

+∞∑
l=−∞

Q−1∑
q=0

V0ql

+∞∑
r=−∞

ei(kx−rλm )

× d2

dx2

[
H

(
x − xL

rq

) − H
(
x − xR

rq

)] = 0. (A21)

The summation over r produces a periodic function in space
with periodicity λm that can be expanded in a Fourier series.
That is,

+∞∑
r=−∞

ei(kx−rλm ) d2

dx2

[
H

(
x − xL

rq

) − H
(
x − xR

rq

)]

= i

λm

∞∑
n=−∞

D∗(n)e−inkmx, (A22)
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where ( )∗ denotes the complex conjugate. Substituting
Eq. (A22) into Eq. (A21),

+∞∑
n=−∞

+∞∑
l=−∞

[
EI(k + nkm)4 − mω2 − 2mlωmω − ml2ω2

m

]

× Wnle
−inkmx − iθ

λm

+∞∑
l=−∞

Q−1∑
q=0

V0ql

+∞∑
n=−∞

D∗(n)e−inkmx

= 0. (A23)

Dropping the common exponent e−inkmx yields

+∞∑
n=−∞

+∞∑
l=−∞

[
EI(k + nkm)4 − mω2 − 2lωmω − l2ω2

m

]

× Wnl − iθ

λm

+∞∑
l=−∞

Q−1∑
q=0

V0ql

+∞∑
n=−∞

D∗(n) = 0. (A24)

The input current irq(t ) in Eq. (A19) depends on the external
circuit. If inductive circuits are used, then the input current is

irq(t ) =
∫

t
L−1

q (t )vrq(t )dt, (A25)

where Lq(t ) is the time modulated inductance in the external
circuit connected to the qth unit cell. Assuming that the recip-
rocal of the inductance is changing periodically in time with a
modulation frequency of ωm, it can be expanded with a Fourier
series of the form

L−1
q (t ) =

∞∑
p=−∞

L̂−1
qp eipωmt , (A26)

where

L̂−1
qp = 1

Tm

∫ Tm/2

−Tm/2
L−1

q (t )e−ipωmt dt (A27)

are the Fourier coefficients. Recall that the voltage is given as

vrq(t ) = eiωt
+∞∑

l=−∞
Vrql e

ilωmt . (A28)

Thus

irq(t ) =
∞∑

p=−∞

∞∑
l=−∞

1

i[(l + p)ωm + ω]
L̂−1

qp Vrqle
it[(l+p)ωm+ω],

(A29)
and Eq. (A19) becomes

+∞∑
l=−∞

iCp(ω + lωm)V0qle
ilωmt

+ θ

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt (ω + lωm)WnlD(n)

= −eirλm e−iωt
∞∑

p=−∞

∞∑
l=−∞

1

i[(l + p)ωm + ω]

× L−1
qp Vrqle

it[(l+p)ωm+ω]. (A30)

Simplify:

+∞∑
l=−∞

iCp(ω + lωm)V0qle
ilωmt

+ θ

+∞∑
n=−∞

+∞∑
l=−∞

eilωmt (ω + lωm)WnlD(n)

= −
∞∑

p=−∞

∞∑
l=−∞

1

i[(l + p)ωm + ω]
L̂−1

qp V0qle
i(p+l )ωmt .

(A31)

Exploiting the orthogonality of exponential functions, mul-
tiply Eq. (A31) by (1/Tm)e−ihωmt , where h is an arbitrary
integer, and integrate over time from −Tm/2 to Tm/2 to obtain

iCp(ω + hωm)V0qh + θ

+∞∑
n=−∞

(ω + hωm)WnhD(n)

= −
∞∑

p=−∞

1

i[hωm + ω]
L̂−1

qp V0q,h−p. (A32)

Multiply by (hωm + ω):

Cp(ω + hωm)2V0qh − iθ
+∞∑

n=−∞
(ω + hωm)2WnhD(n)

=
∞∑

p=−∞
L̂−1

qp V0q,h−p. (A33)

Since h is arbitrary, switch back to l . In summary, we have
+∞∑

n=−∞

+∞∑
l=−∞

[
EI(k + nkm)4 − mω2 − 2mlωmω − ml2ω2

m

]

× Wnl − iθ

λm

+∞∑
l=−∞

Q−1∑
q=0

V0ql

+∞∑
n=−∞

D∗(n) = 0, (A34)

Cp(ω + lωm)2V0ql −
∞∑

p=−∞
L̂−1

qp V0q,l−p

− iθ
+∞∑

n=−∞
(ω + lωm)2WnlD(n) = 0. (A35)

If the infinite sums in Eqs. (A34) and (A35) are truncated
at some finite value, one can solve a quadratic eigenvalue
problem (QEP). For a maximum plane-wave index N and
maximum harmonic index L the total number of unknown
coefficients that can be solved for is

Ntot = [(2N + 1) + Q](2L + 1). (A36)

1. Sinusoidal modulation

The resonant frequency of the qth unit cell is assumed to
take the form

fq(t ) = f0[1 + αm sin(2π fmt − Lkmq)], (A37)
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where q = 1, 2, . . . , Q − 1, km = 2π/λm, fm is the modula-
tion frequency, and αm is the modulation amplitude. Since
(2π fq)2 = 1/(LqCp), the sinusoidal modulation in Eq. (A37)
can be achieved by modulating the corresponding inductance
reciprocal as

L−1
q (t ) = 4π2 f 2

0 Cp[1 + αm sin(2π fmt − Lkmq)]2. (A38)

With this, the Fourier coefficients in Eq. (A27) are given as

L̂−1
qp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2Cpα
2
m f 2

0 ei2Lkmq for p = −2

i4π2Cpαm f 2
0 eiLkmq for p = −1

2π2Cp f 2
0

(
α2

m + 2
)

for p = 0

−i4π2Cpαm f 2
0 e−iLkmq for p = 1

−π2Cpα
2
m f 2

0 e−i2Lkmq for p = 2

0 otherwise.

(A39)

The dispersion curve for the case when the modulation fre-
quency fm = 0 and modulation amplitude αm = 0.1 is shown
in Fig. 11(a). As expected, in the absence of the mod-
ulation frequency, the dispersion curve is symmetric with
multiple band gaps corresponding to the resonant frequencies
of the three primitive unit cells and the well-known Bragg
band gap occurring at the points QkL/π = ±2 due to the
variation of the impedance within the supercell. When the
modulation amplitude increases to αm = 0.15, the impedance
mismatch increases, and the Bragg band gap becomes wider
[see Fig. 11(b)]. For αm = 0.1 and fm = 750 Hz shown in
Fig. 11(c), the dispersion curve is no longer symmetric, and
we observe multiple nonreciprocal band gaps. The left Bragg
band gap shifts to a higher frequency, while the right one shifts
to a lower frequency. In addition, the highest left-hand-side
resonant band gap becomes wider, while the right-hand-side
resonant band gap closes, resulting in nonreciprocal wave
propagation at 8000 Hz (waves propagate in the right direction
only). Increasing the modulation amplitude to αm = 0.15 re-
sults in wider band gaps as shown in Fig. 11(d). Note that due
to the finite size of the experimental piezoelectric metamate-
rials and the limited number of unit cells (31 unit cells), the
Bragg band gaps shown here do not appear in the dispersion
curves of Figs. 3–5.

2. Square-wave modulation

Instead of the sinusoidal modulation profile given by
Eq. (A37), consider the following square-wave modulation:

fq(t ) = f0(1 − αm) + 2 f0αmH[sin(2π fmt − Lkmq)], (A40)

with the Fourier coefficients given by

L̂−1
qp = 4π2Cp f 2

0

(
α2

m + 1
)

for p = 0 (A41)

and

L̂−1
qp = − i8π

p
Cpαm f 2

0 ((−1)p − 1)e−ip(Lkmq+π ) (A42)

otherwise. Figure 12 shows a comparison of the resulting dis-
persion curves using sinusoidal and square-wave modulation
profiles with a maximum harmonic index of L = 10, a modu-
lation amplitude of αm = 0.15, and a modulation frequency

FIG. 12. Dispersion curves for (a) sinusoidal and (b) square-
wave modulation profiles. In (b), more dispersion branches are
apparent due to the larger number of harmonics.

of fm = 750 Hz. The dispersion curves of the square-wave
modulation case are more polluted due to the large number
of harmonics compared with the sinusoidal case.

APPENDIX B: METHODS

1. Fabrication and design of the experiment

The programmable piezoelectric metamaterial is made
of a conductive shim (aluminum 6061) with dimensions
307×10×0.75 mm hosting square piezoelectric patches
[lead zirconate titanate (PZT-5A)], each with dimensions
of 10×10×0.3 mm. The piezoelectric patches are vacuum
bonded to the conductive shim with epoxy (3M DP460) to
minimize the thickness of the bonding layer. The offset be-
tween adjacent piezoelectric patches is 0.1 mm to reduce the
stiffness mismatch between the bonded and unbonded areas
of the beam. To obtain the dispersion curves of Figs. 3–6, a
wideband voltage signal is applied to the last piezoelectric
pair to excite the system. The wideband excitation signal is
centered at 6500 Hz in Figs. 3–5 and at 5000 Hz in Fig. 6.
We use a Polytec PSV-500 scanning laser Doppler vibrometer
to measure the out-of-plane velocity of 300 points along the
beam. Fast Fourier transformation is applied to the recorded
velocity field in space and time to obtain the dispersion curves.
Figure 13 shows the measured velocity field along with the
input signal and its frequency spectrum corresponding to the
results shown in Figs. 3–5, 7, 8.

2. Finite-element model and numerical simulations

We used the commercial finite-element software COMSOL

MULTIPHYSICS 5.5 to model the spatiotemporal piezoelectric
metamaterial. The model’s material properties and size align
with those of the experiment. Aluminum 6061 (solid, T6)
was chosen from the material library for the central shim,
with dimensions of 0.317 75 m in length, 0.745 mm in thick-
ness, and 0.5 cm in width. The shim has a mass density of
2700 kg/m3, a Young’s modulus of 70 GPa, and a Poisson
ratio of 0.33. Lead zirconate titanate (PZT-5A) was also se-
lected from the library and applied to 31 piezoelectric pairs
with a mass density of 7600 kg/m3. Solid Mechanics physics
includes a damping attribute, with an isotropic loss factor
of 0.01, for both the central shim and piezoelectric pairs to
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FIG. 13. (a) and (f) Input voltage signal and (b) and (g) the corresponding frequency spectrum. (c)–(e), (h), and (i) Measured out-of-plane
velocity under positive and negative modulation frequencies normalized with respect to the largest velocity amplitude of the two cases. Fourier
transform of (c), (d), and (e) in space and time yields the dispersion curves of Figs. 3–5, respectively. Fourier transform of (h) and (i) in time
yields the frequency spectra of Figs. 7 and 8, respectively.

match the unavoidable damping present in the experimental
setup. To reduce the model size, a symmetry boundary was
selected, and the left boundary was fixed to simulate the
clamped end. A thin elastic layer was added to represent
the epoxy layers formed during bonding, with a Young’s
modulus of 2.3 GPa and a thickness of 0.0432 mm. In Elec-
trostatics physics, the outer surfaces of the central shim were
designated as terminals with zero voltage, and 31 separate
terminals (of type Circuit) were created, each representing
the outer surfaces of a piezoelectric pair. In Electrical Circuit
physics, a resistor in series with an inductor was added for

each unit cell, with the resistor having a small value of 10

 for numerical stability. The inductor value varies in space
and time according to the desired parameters. The segregated
option is added under the time-dependent solver with two
steps to accelerate solution convergence. The model is ex-
cited by applying a 2 V peak-to-peak wideband voltage signal
centered at 6500 and 5000 Hz across the outer boundaries of
the last piezoelectric pair. The resulting out-of-plane velocity
field of 200 points along the beam is then exported, and the
corresponding dispersion contours are obtained by applying
2D FFT.
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