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We develop an adaptive method for quantum state preparation that utilizes randomness as an essential
component and that does not require classical optimization. Instead, a cost function is minimized to prepare
a desired quantum state through an adaptively constructed quantum circuit, where each adaptive step is informed
by feedback from gradient measurements in which the associated tangent space directions are randomized. We
provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for
almost all initial states. We investigate different randomization procedures and develop lower bounds on the
expected cost function change, which allows for drawing connections to barren plateaus and for assessing the
applicability of the algorithm to large-scale problems.
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I. INTRODUCTION

Methods for preparing quantum states are an integral
component of any quantum technology. For example, the
preparation of states that encode ground, excited, and thermal
states of many-body systems is a key element in quantum
simulation [1,2]. Ground state preparation can also be lever-
aged to solve combinatorial optimization problems, with a
variety of applications including in routing and scheduling [3].
Although the task of ground state preparation is known to be
hard, including for quantum computers, there is nonetheless
significant interest in algorithms for quantum state prepara-
tion [4,5]. In particular, the growing availability of noisy,
intermediate-scale quantum [6] devices has inspired immense
interest in variational methods for preparing desired quantum
states [7–10]. These variational quantum algorithms (VQAs)
are heuristics that function by classically optimizing over a
set of parameters that enter into a quantum circuit whose
structure is typically fixed. The parameterized quantum circuit
is executed on a quantum device and serves as an Ansatz
to minimize a cost function, J , whose global minimum is
achieved for the desired target state.

Even in the absence of noise, a variety of challenges are
present in VQAs. On the quantum device, for example, one
must select a quantum circuit Ansatz and associated initial
state out of a formidably large design space. Meanwhile,
the difficulty of the cost function minimization means that
the challenges on the classical side can be even more sig-
nificant [11], often involving the navigation of optimization
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landscapes that contain barren plateaus and suboptimal local
minima.

To overcome these challenges, approaches have been pro-
posed that utilize feedback from qubit measurements to
adaptively construct a quantum circuit to minimize J . The
first such algorithm was the Adaptive Derivative-Assembled
Problem-Tailored Variational Quantum Eigensolver (ADAPT-
VQE) [12,13], which was also adapted to combinatorial
optimization problems [14]. Instead of relying on a predefined
Ansatz, ADAPT-VQE grows it in a layer-wise manner tailored
to the problem, in tandem with classical optimization over the
quantum circuit parameters.

Other methods have considered defining the structure of
the Ansatz a priori and then performing layer-wise optimiza-
tion to adaptively set the circuit parameter values [15–18].
Adaptive methods that do not require any classical optimiza-
tion have also been developed, including the feedback-based
algorithm for quantum optimization [19–21] and methods
based on Riemannian gradient flows [22,23]. In methods

FIG. 1. Schematic representation of randomized adaptive quan-
tum state preparation. Each adaptive step k involves first estimating
the gradient dJ (0)

dθk
at θk = 0 of a cost function J with respect to a

parameter θk , e.g., a rotation angle, whose corresponding direction is
randomized through conjugation with a random unitary transforma-
tion Vk (brown). The parameter θk is then updated in the negative
direction of the gradient (blue arrow), which moves the system
closer to the target state, and the quantum circuit Uk is extended
accordingly.
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where each adaptive step is efficiently implementable, e.g.,
[12–20], and the approximate method in [22], the circuit
growth can get stuck when the gradient vanishes. This means
that these methods can face similar issues as conventional
VQAs that are prone to converge to suboptimal solutions.

Here, we propose randomized adaptive quantum state
preparation as a generic, adaptive quantum algorithm that
minimizes up-front design choices, does not require classical
optimization, and allows for preparing target quantum states
from arbitrary (random) initial states. As a consequence of
the latter point, the algorithm, or its key subroutine depicted
in Fig. 1, can be readily combined with other state prepara-
tion methods to improve convergence and state preparation
fidelities. We provide theoretical arguments and numerical ev-
idence that substantiate our claims about convergence, explore
different methods for achieving randomization in practice, and
develop lower bounds on the expected change in J at each
adaptive step. These bounds give guarantees for how much
the cost function value changes when randomization is used,
thereby allowing us to relate the efficiency of this randomized
approach to the existence of barren plateaus [24]. We go on to
discuss how this approach can be applied to cooling in open
quantum systems and mixed state preparation in general.

II. RANDOMIZED ADAPTIVE QUANTUM ALGORITHMS

We consider minimizing cost functions of the form

Jk = 〈ψk| Hp |ψk〉 , (1)

by creating states |ψk〉 = Uk |ψ0〉 via an adaptively con-
structed quantum circuit Uk , k = 0, 1, . . .. The goal is to apply
this circuit to a fixed initial state |ψ0〉 to achieve Jk+1 � Jk in
each adaptive step k. Here, Hp is a Hermitian operator whose
ground state |Emin〉, with corresponding eigenvalue Emin, is
taken to be the target state. We note that in general, knowledge
of the initial and target states |ψ0〉 and |Emin〉 is not required.
However, for the preparation of an arbitrary, known target
state |ψT 〉, Hp can be defined as Hp = 1 − |ψT 〉 〈ψT |.

We consider a quantum circuit that is adaptively created
according to

Uk+1 = e−iθkHkUk, U0 = 1, (2)

where in each step k we move into the negative direction of
the gradient of J with respect to θk by setting θk ← −γ dJ (0)

dθk
,

where dJ (0)
dθk

= i 〈ψk| [Hk, Hp] |ψk〉 is the gradient of J (θk ) =
〈ψk| eiθkHk Hpe−iθkHk |ψk〉 evaluated at θk = 0. Alternatively, in
situations where Jk can be estimated via repeated measure-
ments of Hp (e.g., for Hp = 1 − |ψT 〉 〈ψT | with known |ψT 〉),
the derivative dJ (0)

dθk
can be estimated via a finite difference

approximation, by estimating Jk for different perturbations
of θk . For sufficiently small learning rates γ , this ensures
that Jk+1 � Jk . References [12,14,19,20,22] consider adaptive
procedures similar to Eq. (2), and in cases where the circuit
growth gets stuck in suboptimal solutions, i.e., when the gra-
dient vanishes, the utility of incorporating randomness into the
circuit structure to escape these suboptima has been observed
numerically in [22].

In this work, we utilize randomness to overcome chal-
lenges associated with convergence through the introduction

of an intrinsically randomized framework for quantum state
preparation in which the Hk’s are selected at random. In the
following, we provide theoretical arguments that this random-
ization enables convergence from almost all initial states to
arbitrary target states.

We first note that the cost function gradient can be ex-
pressed as

dJ (0)

dθk
= 〈gradJ[Uk], iHk〉, (3)

where 〈·, ·〉 denotes the Hilbert-Schmidt inner product and
gradJ[Uk] = [|ψk〉 〈ψk| , Hp] is the (Riemannian) gradient
(up to multiplication with Uk from the right) of J[Uk] =
〈ψ0|U †

k HpUk|ψ0〉 with respect to the unitary transformation
Uk [23,25,26]. Both iHk and gradJ[Uk] belong to the spe-
cial unitary algebra su(2n) consisting of all traceless and
anti-Hermitian 2n × 2n matrices where n is the number of
qubits. From this geometric perspective we can now deduce
two different cases (i) and (ii) for when dJ (0)

dθk
vanishes [27].

In case (i), the gradient vanishes when iHk is orthogonal to
gradJ[Uk] �= 0, while in case (ii) gradJ[Uk] = 0, which hap-
pens when Hp commutes with |ψk〉 〈ψk|.

We first discuss case (i). Typically, no assumptions can be
made on whether gradJ[Uk] moves into a lower dimensional
subspace of su(2n) when growing the circuit. As such, the
situation that iHk has no overlap with gradJ[Uk] can oc-
cur, e.g., when iHk is an element of a subspace over which
gradJ[Uk] has no support. To overcome this issue, we propose
to create each Hk at random. This can be achieved by conju-
gating a traceless Hermitian operator H by a Haar random
unitary transformation Vk in each adaptive step, i.e., such
that Hk = V †

k HVk . Since Hk is created uniformly randomly
according to the Haar measure, the probability that iHk is
orthogonal to gradJ[Uk] is zero. That is, for almost all iHk ,
but a set of measure zero, case (i) does not occur. While Haar
random unitaries are not efficiently implementable, below we
discuss the efficient implementation via approximate unitary
2-designs [28].

We now focus on case (ii). For cost functions of the form
(1), the set of critical points where gradJ[Uk] vanishes con-
sists of global optima and saddle points only [29,30]. Under
mild assumptions on the nature of the saddle points (strict
saddles), relevant works from the classical machine learning
and optimization literature have found that saddle points are
avoided for almost all initial conditions [31–33]. We thus ex-
pect that randomized adaptive quantum state preparation will
almost surely converge to the ground state of Hp for almost
all initial states |ψ0〉. We remark that the convergence result
cannot hold for all initial states, as we immediately see that
for eigenstates of Hp, gradJ[U0] = 0. However, the situation
that gradJ[U0] = 0 can be avoided with probability one when
the initial state is randomized too.

Each step k of randomized adaptive quantum state prepa-
ration can now be summarized as follows. First, the unitary
transformation V †

k e−iθk HVk , whose generator H is randomized
through conjugation with a random unitary Vk , is applied to
the state |ψk〉. Second, the gradient, dJ (0)

dθk
, is estimated, e.g.,

using the parameter shift rule [34–38]. Third, the parameter
θk is updated in the negative direction of the gradient, i.e.,
θk ← −γ dJ (0)

dθk
.
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III. EFFICIENCY AND RELATION TO BARREN PLATEAUS

Randomized adaptive quantum state preparation is not ex-
pected to be efficient in general, as ground state preparation
is QMA complete [5,39]. Here, we show that for a given
problem, the efficiency can be related to the scaling of the
gradient (3) with the system size, and therefore, to the exis-
tence of barren plateaus [24], i.e., exponentially flat regions in
the optimization landscape where the variance of the gradient
vanishes exponentially in the number of qubits n.

In Appendix A, we show that if we select γ = 1/(4‖Hp‖2)
and assume ‖Hk‖2 = 1, where ‖ · ‖2 denotes the spectral
norm, then the cost function change �Jk = Jk − Jk+1 is lower
bounded by

�Jk � 1

8‖Hp‖2

(
dJ (0)

dθk

)2

. (4)

If we assume that it takes M steps to create the ground state
up to an error ε, i.e., JM = Emin + ε, we find from (4) that M
is upper bounded by

M � Cε

min
k∈[0,M]

〈gradJ[Uk], iHk〉2
, (5)

where the constant in the numerator is given by Cε =
8‖Hp‖2[J0 − (Emin + ε)]. Thus, if 〈gradJk[Uk], iHk〉2 does not
vanish faster than 1/poly(n), the ground state of Hp can be
prepared up to precision ε (in the corresponding eigenvalue)
in polynomially many steps. We remark that the minimum
in the denominator of Eq. (5) explicitly depends on M, and
thereby on the random path taken. It is interesting to note that
similar expressions are obtained in adiabatic state preparation
[40], where the scaling of the adiabatic state preparation time
T is determined by the smallest value of the spectral gap �(t ),
taken over all times, i.e., mint∈[0,T ] �(t ) [41].

We proceed by investigating the efficiency of different
randomization strategies. At each step k, the expected cost
function change EHk �Jk is lower bounded by the variance
EHk 〈gradJ[Uk], iHk〉2 of the gradient, up to the prefactor in
(4), assuming that the expectation vanishes. This suggests
that sampling Vk from unitary 2-designs suffices to obtain
convergence to the ground state. This observation is further
substantiated by the numerical simulations in Fig. 2, which
considers the task of preparing the ground state of an Ising
Hamiltonian. We specifically consider a model in which we
map each spin to a vertex on a 3-regular graph, and couplings
are present between spins whose corresponding vertices are
connected by an edge. This is equivalent to solving the com-
binatorial optimization problem MaxCut on an unweighted,
3-regular graph [42]. We consider the approximation ratio
α = Jk/Emin as our figure of merit. Figure 2 compares results
of randomized adaptive quantum state preparation when Vk is
sampled at random from the Haar measure, with results when
Vk is sampled from a unitary 2-design. The results that are
obtained are nearly identical, with the difference shown in the
inset.

The appearance of the variance in the bound (4) means that
we additionally expect the efficiency and practical utility of
this method to be closely related to the existence of barren
plateaus. While barren plateaus pose a major challenge to the

FIG. 2. Performance of randomized adaptive quantum state
preparation when Hp is an Ising Hamiltonian with n = 8 spins. We
map each spin to a vertex on a 3-regular graph with 8 vertices, and
couple spins whose corresponding vertices are connected by an edge.
Each data point corresponds to the average of the approximation
ratio, α, taken over 100 different algorithm realizations and initial
states. This is plotted as a function of the number of adaptive steps,
M, on a logarithmic scale. In each step, the randomization of Hk is
implemented by conjugating the Pauli operator X1I2 · · · In with a Haar
random unitary transformation (blue circles) and with a unitary trans-
formation sampled from an approximate unitary 2-design (orange
triangles), as depicted in Fig. 1, created using the sequence in [43]
with � = 1. The two curves are nearly superimposed. Inset shows
the difference between the two curves, computed as |αHaar − α2-design|,
which never exceeds 4×10−3.

scalability of VQAs [24,44,45], examples have been found
where the variance of the gradient does not vanish faster
than 1/poly(n) [46]. Leveraging these instances for efficient
realizations of randomized adaptive quantum state preparation
will be the subject of future studies.

We now consider lower bounds for EHk �Jk to derive guar-
antees for how much Jk can be improved when randomization
is used. When Hk is created through conjugation by a unitary
Vk sampled from a unitary 2-design, we show in Appendix B
that EVk �Jk is lower bounded by

EVk �Jk � Tr{H2}
4‖Hp‖2

Varψk (Hp)

22n − 1
, (6)

where Varψk (Hp) = 〈ψk| H2
p |ψk〉 − 〈ψk| Hp |ψk〉2 is the vari-

ance of Hp with respect to the state |ψk〉. Since Varψk (Hp)
is bounded from above by a constant that is independent of
the system dimension, we see that the bound in (6) vanishes
exponentially in n.

Another way of creating random Hk’s is by sampling uni-
formly from an operator pool A whose size we denote by |A|.
While in this case, situation (i) can occur when an operator is
selected that is orthogonal to gradJk[Uk], on average, we have
that

EHk∈A�Jk � 1

8‖Hp‖2|A|
∑

Hk∈A
〈gradJ[Uk], iHk〉2, (7)
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which suggests that situation (i) can be avoided on average
for sufficiently large operator pools, e.g., when span{A} =
su(2n). Note that in this case, convergence to the ground
state can also be obtained by simply continuing to sample
from A when (i) occurs. However, in this situation we expect
an exponential runtime, as M scales as 1/|A|. For |A| =
poly(n), on the other hand, convergence to the ground state
is no longer guaranteed, as the adaptive procedure can get
stuck in suboptima where the gradient vanishes, due to (i).
Furthermore, while the situation that |A| = poly(n) implies
polynomial scaling of the denominator of Eq. (7), it does
not necessarily imply that randomized adaptive quantum state
preparation would be efficient in this setting, as it does not
imply polynomial scaling of the numerator.

In Fig. 3, we numerically investigate this trade-off and
study the convergence of randomized adaptive quantum state
preparation for the problem of preparing the ground state of
an Ising Hamiltonian with equal couplings present between
all n spins, which is equivalent to solving the combinatorial
optimization problem MaxCut on an unweighted, complete
graph [42]. In Fig. 3(a), we plot the approximation ratio, α, as
a function of the number of adaptive steps M for the different
randomization strategies described above. In Fig. 3(b), we
consider fixed M = 35 000 and investigate α as a function
of the pool size |A|. The pool size is increased by adding
successively higher weight Pauli operators to A, until the full
pool used in Fig. 3(a) containing all 22n − 1 terms is formed.
We observe that the curves in Fig. 3(a) are almost identical,
suggesting that the three different randomization strategies
converge in the same manner to the ground state for which
α = 1. Furthermore, the curves in Fig. 3(b) suggest that a full
Pauli operator pool is not needed to obtain convergence to the
ground state. However, the inset semilog plots in Figs. 3(a)
and 3(b) do suggest an exponential scaling of the number of
adaptive steps, M, and the number of operators in the pool,
|A|, with respect to n.

IV. MIXED STATES

Thus far, we have discussed the preparation of pure
(ground) states from initial pure states. Here, we explore gen-
eralizations to preparing a target pure state from an initially
mixed state, and vice versa. Since it is not possible to create
pure quantum states from mixed quantum states in a closed
quantum system through unitary transformations, we consider
an extended, “dilated” space by coupling a set of system
qubits, S, to a set of auxiliary qubits, A. We assume that
the combined system is initially in a separable state ρSA

0 =
ρS

0 ⊗ ρA
0 , where we denote the initial states of S and A by ρS

0
and ρA

0 , respectively. We then consider growing a quantum
circuit over the full composite system according to (2), in
order to adaptively create the state ρSA

k = Ukρ
SA
0 U †

k . The state
ρS

k at the kth adaptive step is then obtained by tracing over the
degrees of freedom of the auxiliary qubits in subsystem A, i.e.,
ρS

k = TrA{ρSA
k }.

In this setting, we now consider the task of preparing the
system qubits in a target pure state |ψT 〉. The cost function
(1) becomes Jk = 1 − 〈ψT | ρS

k |ψT 〉, and an adaptive change
is described by J (θk ) = 1 − 〈ψT | TrA{eiθkHk ρSA

k e−iθk Hk } |ψT 〉.

FIG. 3. Performance of randomized adaptive quantum state
preparation when Hp is an Ising Hamiltonian with all-to-all couplings
between n spins. Each data point corresponds to the average taken
over 100 different algorithm realizations and initial states. In (a),
the approximation ratio, α, is plotted as a function of the number
of adaptive steps, M, shown on a logarithmic scale. In each step,
the randomization of Hk is implemented by conjugating the Pauli
operator X1I2 · · · In with a Haar random unitary transformation (right
triangles) and with a unitary transformation sampled from an approx-
imate unitary 2-design (left triangles), as depicted in Fig. 1, created
using the sequence in [43] with � = 1, and also by sampling Hk

uniformly from an operator pool A containing all 22n − 1 Pauli oper-
ators (circles). In (b), α is plotted as a function of the number of pool
elements, |A|, shown on a logarithmic scale, for fixed M = 35 000.
Insets show semilog plots of the scaling with respect to n for both
cases to achieve α > 0.99 in (a) and α > 0.9 in (b).

This yields the gradient

dJ (0)

dθk
= −〈[

ρSA
k , |ψT 〉 〈ψT | ⊗ 1A

]
, iHk

〉
, (8)

where we have made use of the fact that the cost func-
tion above can be obtained from (1) by setting Hp = 1 −
|ψT 〉 〈ψT | ⊗ 1A where 1A denotes the identity operator on
subsystem A. Decreasing Jk in each step can now be achieved
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by moving into the negative direction of the gradient given by
Eq. (8).

If the auxiliary qubits are initially in a pure state, then
due to the Stinespring dilation [47], there exists a unitary
transformation over the composite system that allows for
creating every state for the system qubits in subsystem S as
long as subsystem A has dimension at most d2

S , where dS

is the dimension of subsystem S. For uniformly randomized
Hk , the gradient can only vanish (with probability 1) when
gradJ[Uk] = [ρSA

k , |ψT 〉 〈ψT | ⊗ 1A] = 0, i.e., at critical points
that are given by saddle points and global optima, as in the
closed system case [30]. Thus, when the initial system state ρS

0
does not commute with the target system state |ψT 〉 〈ψT |, we
expect to obtain convergence almost surely to the target state.
Although the fully mixed state ρS

0 = 1/dA trivially commutes
with every target state, if we additionally apply a random
unitary transformation to ρSA

0 , we can almost surely obtain
convergence to a generic pure state. Thus, randomized adap-
tive quantum state preparation allows for “cooling” the system
from a state of infinite temperature, i.e., the fully mixed state,
to a pure state of zero temperature by adaptively “dumping”
entropy into the auxiliary system.

V. CONCLUSION

We have introduced an algorithm for preparing quantum
states that has favorable convergence properties and is appli-
cable to almost all initial states. Knowledge of the initial and
target quantum states is not required. The algorithm leverages
randomization as the primary innovation, and operates by
minimizing a cost function through an adaptively constructed
quantum circuit. Each adaptive update step is informed by
gradient measurements in which the associated tangent space
directions are randomized. We have presented lower bounds
on the average improvement that is obtained in each step, and
have numerically studied the behavior of the algorithm for
different randomization methods. We additionally discussed
a generalization to mixed states that could be leveraged for
thermal state preparation, an application area which is cur-
rently receiving significant interest [48–54].

A trade-off is that, on one hand, the consideration of a
uniformly random tangent space direction in each step allows
for convergence to the target state, while on the other hand, the
gradients may become exponentially small in the system size,
thereby causing the convergence time to diverge and mak-
ing the algorithm impractical for large-scale problems. This
should not be surprising, as selecting directions at random is
far from being optimal. The largest gradient, and thereby the
largest (guaranteed) cost function change, is obtained when
iHk = gradJ[Uk]. This situation corresponds to the full gradi-
ent flow, which is, in general, not efficiently implementable. It
is an interesting question how gradient flows can be efficiently
approximated [22] while maintaining convergence. To that
end, the algorithm we present could be modified to project into
random subspaces, rather than into a single random direction.

Furthermore, we emphasize that the algorithm possesses
significant design flexibility that can be harnessed to increase
its practicality, for example, by developing application-
specific adaptations that tailor the randomness to the problem
instance, e.g., by taking into account the symmetries of the

target state [55–58], and by studying how much the rate of
convergence can be improved by incorporating classical op-
timization in different ways [12]. More fundamentally, we
view the randomized adaptive circuit update, which can be
applied to arbitrary input states and is depicted in Fig. 1, as a
subroutine that could be incorporated into or appended onto
other algorithms [40,59] in a flexible way, e.g., those utilizing
problem-specific Ansätze that are not random, to improve
convergence and state preparation fidelities.

We conclude by noting that we have focused this work
on randomized adaptive quantum state preparation in the
circuit model of quantum computing. However, randomness
and adaptive constructions can also be created outside the
circuit model, e.g., through random fields [60,61]. Extensions
to this latter setting could open up new approaches for state
preparation in both closed and open quantum systems that can
be driven by an applied field, including qubit systems, analog
quantum simulators, molecules, and materials.
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APPENDIX A: LOWER BOUNDING
THE COST FUNCTION CHANGE

We consider

J (x) = 〈ψk| eixHk Hpe−ixHk |ψk〉 , (A1)
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and note that J (x = 0) = 〈ψk| Hp |ψk〉 = Jk and J (x =
−γ dJ (0)

dθ
) = Jk+1.

1. Recalling results from classical optimization

In order to lower bound the cost function change �Jk =
Jk − Jk+1, we first recall some standard tools from classical
optimization, particularly the gradient descent algorithm. For
a continuously differentiable cost function J (x), x ∈ R, with
Lipschitz continuous gradient ∂J (x)

∂x , a direct application of
Taylor’s theorem [62] yields

J (y) � J (x) + (y − x)
∂J (x)

∂x
+ L2

f

2
(y − x)2, (A2)

where L f is the Lipschitz constant satisfying

∣∣∣ ∂J (x)
∂x − ∂J (y)

∂y

∣∣∣
|x − y| � L f . (A3)

Setting x = 0 and y = −γ ∂J (x)
∂x |x=0 in (A2) and picking

γ = 1
L f

gives

Jk − Jk+1 � 1

2L f

(
∂J (0)

∂x

)2

, (A4)

which is a well known result for gradient algorithms [62].
Thus, in order to lower bound the cost function change �Jk , it
remains to determine the Lipschitz constant L f for our setting.

2. Determination of the Lipschitz constant

We first note that ∂J (x)
∂x = 〈ψk| eixHk [iHk, Hp]e−ixHk |ψk〉 ≡

〈ψ (x)| A |ψ (x)〉, where we defined |ψ (x)〉 = e−ixHk |ψk〉 and
A = [iHk, Hp]. We can than upper bound | ∂J (x)

∂x − ∂J (y)
∂y | by∣∣∣∣∂J (x)

∂x
− ∂J (y)

∂y

∣∣∣∣ = |〈ψ (x)| A |ψ (x)〉 − 〈ψ (y)| A |ψ (y)〉|
(A5)

= 1
2 |[〈ψ (x)| + 〈ψ (y)|]A[|ψ (x)〉 − |ψ (y)〉]
+ [〈ψ (x)| − 〈ψ (y)|]A[|ψ (x)〉 + |ψ (y)〉]| (A6)

� 2‖A[|ψ (x)〉 − |ψ (y)〉]‖2 � 2‖A‖2‖ |ψ (x)〉 − |ψ (y)〉‖2

(A7)

= 2‖A‖2‖(Ux − Uy) |ψk〉 ‖2 = 2‖A‖2‖(U †
y Ux − 1) |ψk〉‖2,

(A8)

where we used unitary invariance of the vector norm, Ux(s) =
e−ixsHk and Uy(s) = e−iysHk , using the shorthand notation
Ux(1) = Ux, Uy(1) = Uy, and ‖A‖2 and ‖ |ψ〉 ‖2 denote the
spectral norm of A and the Euclidean vector norm of |ψ〉,
respectively. Since

U †
y Ux − 1 = i

∫ 1

0
dsU †

y (s)(y − x)HkUx(s), (A9)

we have

‖(U †
y Ux − 1) |ψk〉‖2 �

∫ 1

0
ds ‖[U †

y (s)(y − x)HkUx(s)] |ψk〉‖2

(A10)

= |x − y|
∫ 1

0
ds ‖Hk‖2‖ |ψ (x)〉‖2

= |x − y|‖Hk‖2 = |x − y|‖H‖2. (A11)

In the last step we used unitary invariance of the spectral
norm, assuming that Hk = V †

k HVk , where Vk is unitary and
H is a Hermitian matrix. Since

‖A‖2 = ‖[Hk, Hp]‖2 � 2‖Hk‖2‖Hp‖2 = 2‖Hp‖2‖H‖2,

(A12)

we arrive at

∣∣∣ ∂J
∂x − ∂J

∂y

∣∣∣
|x − y| � 4‖Hp‖2‖H‖2

2, (A13)

from which we conclude that the Lipschitz constant is given
by L f = 4‖Hp‖2‖H‖2

2. Further assuming ‖H‖2 = 1, we arrive
at the lower bound (4) given in the paper.

APPENDIX B: EXPECTED COST FUNCTION CHANGE
WHEN SAMPLING FROM UNITARY 2-DESIGNS

We first note that the expected value of the gradient
EVk 〈gradJ[Uk], iHk〉 is given by

EVk 〈gradJ[Uk], iV †
k HVk〉 = 〈gradJ[Uk], i1〉Tr{H}

d
= 0,

(B1)

when Vk is sampled according to the Haar measure on
SU(d ) or from a unitary 2-design. Consequently, in this case
EVk 〈gradJ[Uk], iHk〉2 is equal to the variance.

In order to lower bound the expected cost func-
tion change EVk �Jk when Vk is drawn according to
the Haar measure on SU(d ) or sampled from a uni-
tary 2-design, we first note that from the lower bound
(4) we have EVk �Jk � 1

8‖Hp‖2
EVk 〈gradJ[Uk], iHk〉2 = 1

8‖Hp‖2

EVk 〈ψk| [iV †
k HVk, Hp] |ψk〉2.To calculate the expectation on

the right-hand side, we make use of the relation [46]

∫
V ∈SU(d )

dV Tr{V †BVCV †DVA}

= 1

d2 − 1
(Tr{A}Tr{C}Tr{BD} + Tr{AC}Tr{B}Tr{D})

− 1

d (d2 − 1)
(Tr{AC}Tr{BD}+Tr{A}Tr{B}Tr{C}Tr{D}).

(B2)
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We find

EVk 〈ψk| [iV †
k HVk, Hp] |ψk〉2

= EVk Tr{[iV †
k HVk, Hp] |ψk〉 〈ψk| [iV †

k HVk, Hp] |ψk〉 〈ψk|},

= −2Tr{H2}
(

1

d2 − 1
〈ψk| Hp |ψk〉2

− 1

d (d2 − 1)
〈ψk| Hp |ψk〉2

× − 1

d2 − 1
〈ψk| H2

p |ψk〉 + 1

d (d2 − 1)
〈ψk| Hp |ψk〉2

)

= 2Tr{H2}
d2 − 1

(〈ψk| H2
p |ψk〉 − 〈ψk| Hp |ψk〉2), (B3)

which yields the desired result given in (6) in the paper.
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