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Kibble-Zurek scenario and coarsening across nonequilibrium phase transitions
in driven vortices and skyrmions
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We investigate the topological defect populations for superconducting vortices and magnetic skyrmions on
random pinning substrates under driving amplitudes that are swept at different rates or suddenly quenched.
When the substrate pinning is sufficiently strong, the system exhibits a nonequilibrium phase transition at a
critical drive into a more topologically ordered state where there are few non-sixfold coordinated particles. We
examine the number of topological defects that remain as we cross the ordering transition at different rates. In the
vortex case, the system dynamically orders into a moving smectic, and the Kibble-Zurek scaling hypothesis gives
exponents consistent with directed percolation. Due to their strong Magnus force, the skyrmions dynamically
order into an isotropic crystal, producing different Kibble-Zurek scaling exponents that are more consistent with
coarsening. We argue that, in the skyrmion crystal, the topological defects can both climb and glide, facilitating
coarsening, whereas in the vortex smectic state, the defects cannot climb and coarsening is suppressed. We also
examine pulsed driving across the ordering transition and find that the defect population on the ordered side of
the transition decreases with time as a power law, indicating that coarsening can occur across nonequilibrium
phase transitions. Our results should be general to a wide class of nonequilibrium systems driven over random
disorder where there are well-defined topological defects.

DOI: 10.1103/PhysRevResearch.5.033221

I. INTRODUCTION

Phase transitions, such as the transition from solid to
fluid or the change from paramagnetic to ferromagnetic,
are well studied in equilibrium systems and may have dis-
continuous first-order character or continuous second-order
character [1,2]. Typically these transitions are identified via
an order parameter, symmetry breaking, or the formation of
topological defects. There has been growing interest in un-
derstanding whether nonequilibrium systems can also exhibit
phase-transition behavior and, if so, how this behavior can be
characterized [3]. There are now several systems that have
shown strong evidence for nonequilibrium phase transitions,
such as transitions among different turbulent states [4–7], re-
organization of periodically sheared colloidal systems [8], and
emergent behavior in systems with nonreciprocal interactions
[9].

Another phenomenon exhibiting behavior consistent with
a nonequilibrium phase transition is the depinning of par-
ticles coupled to random or disordered substrates [10–12].
For example, the depinning of elastic objects such as charge-
density waves from a random substrate shows scaling near
the depinning threshold [10,12]. Other models with strong
plasticity, such as the depinning of colloidal particles or vor-
tices in type-II superconductors, also exhibit scaling of the
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velocity-force curves near depinning with different exponents
than those found for elastic depinning [11,12]. A wide variety
of continuous and first-order behavior can occur during de-
pinning from ordered substrates due to the formation of kinks
or solitons that can produce hysteresis across the transition,
indicative of the type of metastability associated with a first-
order transition [12–14]. One of the most studied depinning
systems is vortices in type-II superconductors, which in the
absence of quenched disorder form a triangular lattice [15].
When the underlying disordered substrate is strong enough,
the vortices form a topologically disordered state where a sig-
nificant number of particles do not have sixfold ordering. This
disordered state can undergo plastic depinning, and at higher
drives there is a dynamical ordering transition into a moving
smectic or anisotropic crystal [16–25]. Above the ordering
transition, a large fraction of the vortices have six neighbors
as in a perfect lattice, but a moving isotropic crystal does not
form due to the anisotropic fluctuations produced by the pin-
ning on the moving vortex structure. In two-dimensional (2D)
systems, the strongly driven vortices organize into a smectic
state consisting of a series of chains of vortices that slide past
each other. In this case, there can still be several topological
defects present in the form of dislocations composed of pairs
of fivefold and sevenfold disclinations (5–7 pairs) that slide
in the direction of drive, so that in the dynamically reordered
state, the Burgers vectors of all of the dislocations are oriented
along the same direction.

The dynamical ordering of vortices at high drives has been
studied with neutron scattering and direct imaging [18,23],
but it can also be deduced from features in the velocity-force
curves and peaks in the differential conductivity [16,19,24].
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When thermal fluctuations are important, the vortices can
still dynamically order at higher drives, but the driving force
needed to order the system diverges as the temperature T
approaches the pin-free melting temperature [17,19]. The
dynamical ordering can also produce signatures in the con-
duction noise. Near depinning, the noise has a strong 1/ f α

signature and there is a large amount of low-frequency noise
power, while above the dynamical reordering transition, the
noise has narrow-band characteristics and the noise power
is low [24,26,27]. Similar dynamical ordering of particle-
like systems has also been studied for colloids [28], Wigner
crystals [29,30], pattern forming systems [31,32], frictional
systems [33], active matter [34], and magnetic skyrmions
[35–37].

Recently it was shown in simulations and experiments that
dynamical ordering transitions in driven vortices and colloids
can be examined within the framework of the Kibble-Zurek
(KZ) scenario [38,39]. Under equilibrium conditions, when
a phase transition occurs from a disordered to an ordered
phase as a function of some control parameter, there can be
well-defined topological defects such as domain walls, dislo-
cations, or, in the case of superfluid transitions, vortices. If
the control parameter is changed slowly so that the system
remains in the adiabatic limit, topological defects will be
absent on the ordered side of the transition. According to the
KZ scenario, however, if the control parameter is swept across
the transition sufficiently rapidly, topological defects persist
on the ordered side of the transition, and the defect density Pd

scales as a power law, Pd ∝ τ−β
q , where τq is the time duration

of the quench of the control parameter across the transition
[40–43]. The exponent β is related to the universality class
and scaling of the underlying second-order phase transition
according to β = (D − d )ν/(1 + zν), where D is the dimen-
sion of the system, d is the dimension of the defects, and
z and ν are the critical exponents that relate to the specific
universality class of the transition. The KZ scenario has been
studied in a variety of equilibrium systems such as liquid
crystals [44], superfluid vortices [45], ion crystals [46,47], 2D
colloidal systems [48], and cold atoms [49].

In principle, the KZ scenario can be applied to nonequilib-
rium phase transitions when well-defined topological defects
can be identified. There have been some applications of the
KZ scenario to nonequilibrium systems for which the under-
lying phase transition is in an equilibrium universality class
[50,51]; however, there are other examples of nonequilib-
rium phase transitions that have no equilibrium counterpart,
such as directed percolation [3,4,7,8]. Recently Reichhardt
et al. studied the defect populations across the dynamical
ordering transition of 2D driven superconducting vortices
for increasing drive sweep rates 1/τq, and found power-law
scaling consistent with the KZ scenario [38]. Interestingly,
the exponents in the vortex system were consistent with
(1 + 1)-dimensional directed percolation [3] rather than with
the 2D Ising model. Directed percolation is a universal-
ity class that is associated with many of the previously
observed nonequilibrium phase transitions [3,4,7,8]. In the
case of driven superconducting vortices, the ordered state
consists of one-dimensional (1D) chains forming a moving
smectic configuration. The topological defects are all aligned
in the direction of the drive and do not climb from one

chain to another, so the relevant distance between defects is
one-dimensional and not two-dimensional. As a result, the
nonequilibrium vortex system behaves more like a 1D system
then like a 2D system, so there is one spatial and one timelike
direction giving the (1 + 1)-dimensional directed percolation.
In Ref. [38] it was shown that colloidal particles driven over
quenched disorder form a moving smectic as well, producing
the same KZ scaling. Maegochi et al. observed similar expo-
nents in an experimental realization of the superconducting
vortex system [39].

Some of the next questions to address for driven systems
are whether the KZ scenario can also be applied in cases
where moving ordered 2D crystals form instead of 1D-like
moving smectics, so that the ordered dynamics are fully 2D.
For the 2D crystals, where defects can hop in two dimensions,
it would be interesting to determine whether the system would
fall into the class of 2D directed percolation, or into some
different universality class such as the 2D Ising model. An-
other general question is the possible role of coarsening in
these systems. Coarsening is typically studied in equilibrium
systems by taking an equilibrium state containing many de-
fects and rapidly or instantaneously changing the parameters
across a phase transition to values that in equilibrium would
give a defect-free state. For example, a fluid can be subjected
to a sudden temperature change that would place the system
in a solid regime, or the interactions between particles can be
changed suddenly from weakly interacting to strongly inter-
acting. If the final state is on the ordered side of the phase
transition, the defect density often decays as a power law.

In the case of an instantaneous quench across the ordering
transition, a specific defect population will be present imme-
diately after the quench, but it is not known if it is possible
for these defects to coarsen on the ordered side of the transi-
tion in systems with no thermal fluctuations. In equilibrium
systems, when an instantaneous quench is performed from
the disordered to the ordered phase, thermal fluctuations per-
mit the defect population to exhibit coarsening with different
types of power-law behavior that depend on the nature of the
defects [52–55]. Numerical studies of quenches in spin ices
also showed that coarsening dominates over the KZ scaling if
the topological defects interact sufficiently strongly with each
other on the ordered side of the transition [56].

In this work, we consider both continuous driving and in-
stantaneous quenching across dynamical ordering transitions
for superconducting vortices and magnetic skyrmions in two-
dimensional systems with quenched disorder. The skyrmions
are magnetic particle-like textures [57–61] that have many
similarities to vortices in type-II superconductors in that they
form a triangular lattice [57,58], can interact with pinning
[61], and can be set into motion with an applied drive [59–66].
There have been several numerical and experimental studies
that have demonstrated the dynamical ordering of skyrmions
into a crystal under an applied drive [35–37,67,68]. One of
the key differences between skyrmions and superconducting
vortices is that skyrmions have a strong Magnus force that
creates velocities that are perpendicular to the forces experi-
enced by the skyrmions. As a result, under a drive skyrmions
move at an angle with respect to the driving direction, called
the skyrmion Hall angle [35,37,59,67,69–73]. Additionally,
the Magnus force affects the fluctuations skyrmions experi-
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ence from moving over the pinning landscape [74]. In the
case of superconducting vortices where the overdamped dy-
namics cause the velocities to be aligned with the direction
of drive, the fluctuations produced by pinning are strongest
in the direction of motion, causing the vortices to adopt a
smectic configuration; however, for skyrmions, the Magnus
forces mix the fluctuations so that they are both parallel
and perpendicular to the direction of motion, permitting the
skyrmions to form an isotropic lattice [35,74]. As a result, the
moving ordered state is significantly different in the skyrmion
and superconducting vortex systems, so an open question is
whether the KZ scenario still applies to driven skyrmions and,
if so, whether it would fall in a different universality class
from that of the vortices. In principle, one would not expect
the skyrmions to be in the 1D directed percolation universality
class since the ordering of the skyrmion lattice is strongly
two-dimensional in character.

Here we show that the skyrmions form a lattice or poly-
crystalline structure rather than a moving smectic and can
reach a higher level of dynamical ordering than the super-
conducting vortices. As a function of the quench time τq, the
skyrmion defect populations obey a power-law scaling with
Pd ∝ τ−β

q , where the observed value of β = 0.5 is different
from the values β = 0.401 expected for 1D directed perco-
lation and β = 0.64 expected for 2D directed percolation.
We argue that the exponents are consistent with a coarsening
process that, in 2D, is expected to give β = 1/2, indicating
that the behavior is more like that of systems with strongly
interacting defects subjected to a quench [56]. Once the su-
perconducting vortices form moving 1D channels, the defects
are locked into the channels and are unable to climb, so the
defect density remains static in the smectic phase. Skyrmions
form an isotropic 2D lattice in which the topological defects
can both climb and glide. This permits defect annihilation
to occur and causes coarsening dynamics to dominate the
slow quenches. We cannot rule out the possibility that the
skyrmions simply fall into a different universality class of
phase transitions than the superconducting vortices; however,
we can directly observe coarsening dynamics on the ordered
side of the transition by considering instantaneous quenches
of the skyrmion system. These quenches reveal that the de-
fect annihilation has a power-law dependence on time that
is consistent with coarsening to a more ordered state. The
instantaneously quenched skyrmion system forms a polycrys-
talline arrangement rather than the smectic structure observed
for superconducting vortices. The coarsening of the skyrmion
lattice is most prominent just above the drive where the or-
dering transition occurs, while at drives much higher than the
ordering transition, it occurs in two stages. The first stage con-
sists of the annihilation of individual defects, while the second
stage involves the coarsening of the grain boundaries. In the
instantaneous quenches, the system can better order closer
to the critical points since the effective shaking temperature
produced from collisions of the particles with the pinning sites
is largest close to the transition, causing the defects to be more
mobile.

II. SIMULATION

We consider particle-based models of both superconduct-
ing vortices and magnetic skyrmions driven over a random

substrate in a two-dimensional system of size L × L with
L = 36 and periodic boundary conditions. In both cases, the
particles have repulsive interactions modeled as a Bessel
function [61,75]. Throughout this work the sample contains
Nv = 1296 particles. The skyrmion motion is obtained with
a modified Thiele equation that has been used extensively to
study collective skyrmion transport effects [35,61,67,74–77].
The dynamics of a single skyrmion or vortex are given by the
following equation of motion:

αd vi + αmẑ × vi = Fss
i + Fsp + FD + FT

i . (1)

The particle velocity is vi = dri/dt and dissipation arises
from the damping term αd that aligns the velocity in the
direction of the net applied force. The second term on the
left is a Magnus force of magnitude αm that creates a veloc-
ity component perpendicular to the net applied forces. One
way to characterize the relative importance of the Magnus
and damping terms is with the intrinsic skyrmion Hall an-
gle, θ int

sk = arctan(αm/αd ). Skyrmion Hall angles ranging from
θsk = 5◦ to 50◦ have been measured; however, it is likely that
larger skyrmion Hall angles are possible in samples contain-
ing smaller skyrmions where direct imaging of the skyrmion
dynamics is difficult. We fix α2

m + α2
d = 1, and for the vor-

tices, αm = 0 and αd = 1. The skyrmions and vortices have
repulsive interactions described by Fss

i = ∑N
j=1 AsK1(ri j )r̂i j ,

where ri j = |ri − r j | is the distance between particles i and
j, r̂i j = (ri − r j )/ri j , and K1(r) is the first-order Bessel func-
tion, which decays exponentially at long range. Experimental
evidence exists for repulsive skyrmion interactions that de-
cay exponentially at longer range [78]. The particles also
interact with random disorder from the substrate modeled as
Np nonoverlapping pinning sites in the form of finite range
attractive parabolic wells with a maximum strength of Fp

and a range of Rp = 0.35. Here, Fsp
i = ∑Np

k=1(Fp/Rp)�(r(p)
ik −

Rp)r̂(p)
ik , where the distance between particle i and pin k is

r(p)
ik = ri − rk , r̂(p)

ik = (ri − rk )/|r(p)
ik |, and � is the Heaviside

step function. All forces are measured in units of f0. For
the vortices, f0 = φ2

0/2π2μ0λ
3, where φ0 = h/2e is the flux

quantum and λ is the London penetration depth. For the
skyrmions, the force unit is given by the skyrmion-skyrmion
repulsive force per length at the average skyrmion spacing,
and this value is f0 ≈ 10−5 N/m in the case of a MnSi thin
film [35]. This model was shown in previous work to cap-
ture a variety of vortex and skyrmion behaviors observed in
experiment, including dynamic ordering and the velocity de-
pendence of the skyrmion Hall angle. We fix Nv/Np = 2. For
the particle density we consider, the average particle spacing
is a = 1.0, and we note that for ri j > 1.0, the Bessel function
interaction falls off exponentially with distance. The radius of
the pinning sites is equal to 0.35a.

The initial particle positions are obtained using simu-
lated annealing with a nonzero temperature represented by
Langevin kicks FT

i , where 〈FT
i 〉 = 0 and 〈FT

i (t )FT
j (t ′)〉 =

2αd kBT δi jδ(t − t ′). When the pinning is sufficiently strong,
the system forms a topologically disordered state in which
there are numerous non-sixfold-coordinated particles present
even at zero drive. After initialization, we set FT to zero and
apply a uniform driving force FD = FDx̂ on all the particles
in the x direction. To study the rate dependence, we increase
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the drive in increments of δFD = 0.002 and wait for τq sim-
ulation time steps between increments. We stop the sweep
at a particular maximum value of FD, and we take τq = 5
to 10 000. For most of this work, we set Fp = 1.0 so that
dynamical ordering occurs near a drive of FD = 1.325, and we
study the defect densities near FD = 1.8, above the dynamic
reordering transition. For slow sweep rates or large values
of τq, the system exhibits pinned, plastic, and dynamically
ordered phases, with a critical depinning force Fc marking
the transition from pinned to plastic flow, while the dynamical
ordering force Fcr is defined as the drive at which the system
dynamically orders into a moving smectic or moving crystal.
We pass across Fcr at different drive sweep rates and count
the number of topological defects for a fixed value of FD on
the ordered side of Fcr . For small τq, more defects are present,
and the KZ scenario predicts that the fraction of topological
defects will scale as a power law with the quench rate. The
vortices obey the same equation of motion as the skyrmions
but have αm = 0, giving θ int

sk = 0◦.

III. RESULTS

In Fig. 1(a), we show a Voronoi plot of the vortex positions
in a system with Fp = 1.0 at a drive of FD = 0.4. In this
case, the system is strictly overdamped with θ int

sk = 0◦, and the
drive is increased from FD = 0 to FD = 3.5 in increments of
δF = 0.002 with a waiting time of τq = 1000 simulation time
steps at each increment for a total time of τ = 1.75 × 106

simulation time steps. At this value of Fp, the system forms
a disordered state when FD = 0. At FD = 0.4, the system
has depinned and the particles are undergoing plastic flow
in a fluid-like state. Figure 1(b) shows that the corresponding
structure factor S(k) has a ring signature indicative of disor-
der.

At higher drives, the system dynamically orders into a
moving smectic, as illustrated in Fig. 1(c) at FD = 1.8, where
most of the particles form 1D chains and the topological
defects are aligned in the direction of the drive. Since the
motion is overdamped, when the drive is in the x direction,
the average direction of motion is in the x direction. This
gives a Hall angle of zero, indicating that there is no motion
at an angle with respect to the drive. The smectic phase can
still contain a finite number of topological defects, but these
defects are all aligned with the driving direction and can only
glide, permitting the 1D chains of moving particles to slip
past each other. This gives rise to the two strong peaks in the
structure factor S(k) in Fig. 1(d), indicating that the system
has ordering along only one direction, whereas in a crystal the
ordering would be two dimensional. For slower quench rates,
the system becomes more strongly ordered. Figures 1(e) and
1(f) show the Voronoi and S(k) plots for the same drive of
FD = 1.8 in a system with a finite Magnus force appropriate
for skyrmions, with αm = 0.8, αd = 0.6, and θ int

sk = 53.1◦. In
this case, near depinning the system is still disordered and
has the same features shown in Figs. 1(a) and 1(b), but at
high drives, the system becomes more strongly ordered and
develops six peaks in S(k), as shown Fig. 1(f), indicative of
a moving crystal. This demonstrates that the nature of the
driven ordered state in skyrmions is different from that of the
vortices.

FIG. 1. (a), (c), (d) Voronoi construction for particles driven over
quenched disorder with Fp = 1.0 at a waiting time of τq = 1000.
Polygons are colored according to coordination number: blue, five;
white, six; red, seven; gray, all other values. (b), (d), (f) The corre-
sponding structure factor S(k). (a), (b) The vortex case with θ int

sk = 0◦

at FD = 0.4 where the system is topologically disordered and there
are a large number of non-sixfold coordinated particles. S(k) has a
ring structure. (c), (d) The vortex case at FD = 1.8, where the system
forms a moving smectic and S(k) develops two distinct peaks. (e), (f)
The skyrmion case with θ int

sk = 53.1◦ at FD = 1.8 where the system
forms a more isotropic crystal and S(k) has an isotropic structure.

In Fig. 2 we plot the fraction P6 of particles with six
neighbors for the vortices and skyrmions from Fig. 1. Here
P6 = N−1

v

∑Nv

i δ(zi − 6) where zi is the coordination number
of particle i obtained from the Voronoi construction. There is
a critical drive Fcr at which the system shows an increase in
order, indicative of the dynamic ordering transition that occurs
near Fcr = 1.325 for the vortex case. For the vortices, the
increase in P6 corresponding to Fcr falls at a lower drive value
compared with the skyrmions, and the saturation value of P6 is
also lower for the vortices than for the skyrmions. The order-
ing transition is, however, somewhat sharper for the skyrmions
than for the vortices. The ordered state for the vortices is the
moving smectic illustrated in Figs. 1(c) and 1(d), where the
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FIG. 2. The fraction P6 of sixfold-coordinated particles vs FD for
the vortices with θ int

sk = 0◦ (blue) and skyrmions with θ int
sk = 53.1◦

(red) for the system from Fig. 1 with Fp = 1.0 and τq = 1000. The
skyrmions develop a larger amount of order at high drives. In both
cases, the dynamical ordering transition at which P6 reaches a nearly
saturated value occurs near Fcr = 1.325.

dislocations are locked in 1D channels and cannot climb. In
contrast, for the skyrmion case, the system forms a moving
crystal and the defects are able to climb, leading to the emer-
gence of a more ordered state. This further underscores the
fact that the dynamically reordered states for the skyrmions
and the vortices are different. At FD = 1.2, there is a kink in
P6 for the skyrmion system. This feature has been observed
in previous skyrmion simulations [37] and is a consequence
of the finite Magnus force. The kink occurs for drives at
which both pinned and moving particles are present and the
moving particles must make their way around the pinned par-
ticles. The Magnus force curves the resulting trajectories and
causes the generation of additional topological defects in the
system. This effect becomes more prominent for larger Mag-
nus forces and leads to a more extended fluid phase.

In Fig. 3(a), we plot 〈Vx〉 and 〈Vy〉, the velocities parallel
and perpendicular to the driving direction, respectively, versus
FD for the same skyrmion system from Figs. 1(e) and 1(f)
but for a quench rate that is ten times lower, τq = 10 000.
Here there is a nonlinear regime near depinning, and at high
drives, the velocity curves become linear. Figure 3(b) shows
the absolute value of the measured skyrmion Hall angle, θsk =
| arctan(〈Vy〉/〈Vx〉)|, which starts off at zero in the pinned
phase and increases linearly with increasing FD before satu-
rating at high drives to a value close to the intrinsic skyrmion
Hall angle θ int

sk . The velocity dependence of the skyrmion Hall
angle has been studied previously in simulations [35,37] and
observed in experiments [69–72]. The plot of P6 versus FD in
Fig. 3(d) shows that P6 is low in the plastic flow regime where
θsk is increasing, but that a dynamical ordering transition
occurs for FD > 1.325 and the system orders into a mostly
crystalline state with P6 ≈ 0.98. The skyrmion Hall angle is
close to its intrinsic value when the system is on the ordered
side of the transition.

Now that we have established the range of drives for which
the system is ordered, we can sweep through the ordering tran-

FIG. 3. Average velocities 〈Vx〉 (in the driving direction, blue)
and 〈Vy〉 (perpendicular to the driving direction, green) vs FD for
the skyrmion system in Figs. 1(e) and 1(f) with Fp = 1.0 and θ int

sk =
53.1◦ but for a quench rate that is 10 times lower, τq = 10 000.
(b) The corresponding absolute value of the measured Hall angle,
θsk = | arctan(〈Vy〉/〈Vx〉)|, vs FD. (c) P6 vs FD showing the disordered
and ordered regimes on either side of the dynamical reordering
transition. Here Fcr is near 1.325.

sition at different rates and count the defects. Figure 4 shows
P6 versus FD over the range FD = 0 to FD = 3.5 for quench
times of τq = 10, 20, 40, 70, 100, 1000, and 4000, where the
case of τq = 10 000 was already shown in Fig. 3. The quench
times correspond to total simulation times of 103τq. When

FIG. 4. P6 vs FD for the skyrmion system from Fig. 3 with Fp =
1.0 and θ int

sk = 53.1◦ over the range FD = 0 to FD = 3.5 for quench
times of τq = 5 (red), 10 (orange), 20 (light green), 40 (dark green),
70 (light blue), 100 (medium blue), 1000 (dark blue), and 4000
(purple). The curve for τq = 10 000 was already shown in Fig. 3.
The quench times correspond to a total time of 103τq.
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FIG. 5. The Voronoi construction at FD = 1.8 for τq = (a) 10,
(b) 40, (c) 100, and (d) 4000 for the skyrmion system in Fig. 4 with
Fp = 1.0 and θ int

sk = 53.1◦.

FD > 1.3, the system becomes more ordered as the value of
τq increases. In Fig. 5 we plot the Voronoi constructions at
FD = 1.8 for τq = 10, 40, 100, and 4000, showing that for a
given drive, fewer defects become trapped at lower quench
rates.

In Fig. 6, we plot the fraction of defects, Pd = 1 − P6,
versus τd for both vortices and skyrmions from the system
in Fig. 4 at a drive of FD = 1.8. The lines are fits to Pd ∝ τ−β

q
with β = 0.5 for the skyrmions and β = 0.36 for the vortices.
The steeper slope for the skyrmion case is a reflection of the
fact that the skyrmions can order more effectively than the

FIG. 6. The fraction of topological defects Pd = 1 − P6 vs τq for
the system from Fig. 4 with Fp = 1.0 at FD = 1.8 for vortices with
θ int

sk = 0◦ (blue) and skyrmions with θ int
sk = 53.1◦ (red). Lines indicate

power-law fits to Pd ∝ τ−β
q , with β = 0.36 for the vortices (blue) and

β = 0.5 for the skyrmions (red).

vortices. Previous simulations [38] of the KZ scenario for vor-
tices gave a value of β ≈ 0.385. The KZ scenario predicts that
across a second-order phase transition, β = (D − d )ν/(1 +
zν), making it possible to determine the universality class of
the system by identifying the values of ν and z that would give
the measured β. In the vortex case, the measured exponent
is close to the value β = 0.401 that would be expected for
(1 + 1)-dimensional directed percolation, where z = 1.58 and
ν = 1.097. The 2D Ising model [79] with z = 2 and ν = 1.0
gives β = 2/3, while β = 0.6 for 2D directed percolation
[38,43] with z = 1.73 and ν = 0.734. Both the 2D Ising and
2D directed percolation values of β are higher than what we
observe. Additionally, for very fast quenches in the skyrmion
case, the fits give even lower values of β, which argues
against the system being in the 2D Ising universality class.
This suggests that although the behavior of the skyrmions is
more 2D in character than that of the vortices, it is neither 2D
directed percolation nor Ising-like. An exponent of β = 1/2
was obtained from quenches of a 2D artificial spin ice system
[56], and it was argued that in that system, the dynamics is
dominated by coarsening of the defects through the quench,
leading to the formation of domain walls surrounding regions
of size R. As a function of time, R increases [80] according
to R(t ) = t1/2, and therefore the number of defects decreases
with time as 1/R(t ). In the skyrmion system, we find that some
of the topological defects form domain walls, as illustrated in
Fig. 5(b). In our simulations, once the skyrmion system is on
the ordered side of the transition with FD > Fcr , the topologi-
cal defects interact strongly with each other and can annihilate
through a coarsening process. As a result, different sweep
rates τq give access to different portions of the coarsening
process and produce exponents associated with coarsening.
For the vortex system where the particles form 1D chains,
the defects remain trapped in the chains and cannot climb,
reducing the amount of coarsening that occurs and allowing
a greater number of topological defects to survive on the
ordered side of the transition, as shown in Fig. 2(b). We cannot
rule out the possibility that the skyrmion system could fall
in some other universality class or that the coarsening might
compete with the critical dynamics.

In Fig. 7, we plot Pd versus τq for the skyrmion system with
θ int

sk = 53.1◦ from Fig. 6 at varied pinning strengths of Fp =
1.4, 1.0, 0.7, and 0.4. The solid line is a power-law fit with ex-
ponent β = 0.5. In this case, we examine the defect densities
at FD = 1.2Fcr since the value of the critical reordering force
Fcr varies as a function of Fp and the ratio αm/αd . In Fig. 8(a)
we plot Pd versus τq for the same system at Fp = 1.0 but
for varied Magnus force contributions giving θ int

sk = 84.26◦,
53.1◦, 37.95◦, and 23.58◦. The solid line is a power-law fit
with β = 0.5. When θ = 84.26◦, we observe significant de-
viations from the power law; however, in this case, αm is ten
times larger than αd , so the dynamics are heavily dominated
by gyrotropic motion. For the smaller skyrmion Hall angles,
the exponents become more robust, and these smaller values
of θ int

sk are well within the range of what has been observed
experimentally. Figure 8(b) shows the same variation of Pd

versus τq with skyrmion Hall angle in a system with weaker
pinning of Fp = 0.4. In general, we find that for skyrmion Hall
angles greater than 10◦, the system dynamically orders into
an isotropic crystal and exhibits a scaling exponent close to
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FIG. 7. Pd vs τq for the skyrmion system from Fig. 6 with θ int
sk =

53.1◦ for varied Fp = 1.4 (blue triangles), 1.0 (green diamonds),
0.7 (red squares), and 0.4 (brown circles). The defect densities are
measured at a drive of FD = 1.2Fcr where Fcr is the critical dynamic
reordering force. The solid line is a power-law fit to Pd ∝ τ−β

q with
exponent β = 0.5.

β = 0.5, while for smaller skyrmion Hall angles (not shown),
the system forms a moving smectic and β decreases toward
the value obtained for vortices with θ int

sk = 0◦.

IV. INSTANTANEOUS QUENCHES

Another method for examining the behavior of the defects
on the ordered side of the transition is to perform instanta-
neous quenches starting from a drive well below the critical
ordering transition drive Fcr , where the system is topologically
disordered with numerous non-sixfold coordinated particles.
We instantaneously increase the drive to a value above Fcr and
measure the time-dependent decay of the defect population.
We specifically consider the system from Fig. 2 with Fp = 1.0,
where the vortices with θ int

sk = 0◦ form a dynamically ordered
smectic state but the skyrmions with θ int

sk = 53.1◦ form a dy-
namically ordered crystal, and we instantaneously change the
driving from FD = 0.5 to FD = 1.7. The ordering transition
for the skyrmions occurs near Fcr = 1.325.

FIG. 8. Pd vs τq for the skyrmion system from Fig. 6 for varied
θ int

sk = 84.26◦ (blue triangles), 53.1◦ (green diamonds), 37.95 (red
squares), and 23.58◦ (brown circles). The defect densities are mea-
sured at FD = 1.2Fcr . (a) Fp = 1.0. (b) Fp = 0.4. The solid lines are
power-law fits to Pd ∝ τ

−β

1 with β = 0.5.

FIG. 9. The time dependence of the defect population Pd in
simulation time units after an instantaneous quench from FD = 0.5
to FD = 1.7 for vortices with θ int

sk = 0◦ (blue) and skyrmions with
θ int

sk = 53.1◦ (red) in a sample with Fp = 1.0. The defect density
saturates at shorter times for the vortices than for the skyrmions. The
solid line is a fit to Pd ∝ t−α with α = 0.57.

The plot of Pd versus simulation time in Fig. 9 for both
vortices and skyrmions shows that there is an extended regime
in which the population of defects continues to decrease for
the skyrmion system, indicative of coarsening, while in the
vortex system the defect population rapidly saturates. The
solid line is a power-law fit to Pd ∝ t−α with α = 0.57. This
exponent is close to the value β = 0.5 obtained in Fig. 6 as a
function of τq for finite rate quenches in the skyrmion system,
suggesting that coarsening on the ordered side of the transition
is occurring more strongly for the skyrmions than for the vor-
tices. This could be due to the fact that the skyrmions form a
more isotropic structure that allows both climb and glide of the
defects, while the vortices form a smectic structure containing
trapped defects that cannot annihilate. Generally, for any value
of FD in instantaneous quenches above the ordering drive, the
skyrmions show an extended regime of coarsening compared
with the vortices and reach a lower saturated value of Pd .

In Fig. 10 we plot Pd versus time for the skyrmion system
from Fig. 9 for quenches from FD = 0.5 to different final
values of FD. For final values of FD = 1.0 and 1.2, which are
below the critical ordering drive Fcr , the defect populations
show little change since the system remains in the disordered
phase. For a final value of FD = 1.325, which is just above
the ordering transition, coarsening extends out to long times
and can be described by a power law Pd ∝ t−α with α = 0.5,
as indicated by the dashed line. For a final value of FD = 1.7,
there is a similar extended range of coarsening, as also shown
in Fig. 9. At a final value of FD = 2.0, we start to see some
deviations and there is a sharp jump down in the defect density
at later times. In an isotropic driven system with quenched
disorder, the particles can be regarded as experiencing an
effective shaking temperature [17] Teff produced by the pin-
ning, where Teff ∝ 1/FD. As the final drive value increases,
this effective temperature decreases and the amount of acti-
vated defect hopping is reduced, leading to a reduction in the
amount of coarsening that occurs.
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FIG. 10. The time dependence of Pd in simulation time units for
the skyrmion system from Fig. 9 with θ int

sk = 53.1◦ and Fp = 1.0 after
an instantaneous quench from FD = 0.5 to FD = 1.0 (dark blue), 1.2
(light blue), 1.325 (dark green), 1.7 (light green), and 2.0 (red). The
dashed line is a power-law fit to Pd ∝ t−α with exponent α = 0.5.

V. DISCUSSION AND SUMMARY

We have examined the topological defect populations upon
passing through a nonequilibrium phase transition from a
disordered plastic flow state to a two-dimensional ordered
or partially ordered moving state for vortices and skyrmions
as a function of quench rate through the transition. In the
overdamped vortex system, which as shown in previous work
forms a moving smectic on the ordered side of the transition,
the defect density varies as Pd ∝ τ−β

q with β ≈ 0.36. It has
been argued that this is a result of the fact that the reordering
transition is an absorbing phase transition in the (1 + 1)-
dimensional directed percolation universality class since the
moving state forms 1D chains. Similar exponents were ob-
tained in both simulations [38] and experiments [39]. For the
case of skyrmions where there is a nondissipative Magnus
term, the ordered system forms a more isotropic moving crys-
tal rather than a smectic state. In general, we find that the
skyrmions can reach a much more ordered state than the vor-
tices and that for the skyrmions, β ≈ 0.5. This suggests that
the dynamical ordering transition for the skyrmions falls into

a different universality class than that of the vortices. We also
argue that coarsening may be occurring for the skyrmions on
the ordered side of the transition and that the difference in the
skyrmion and vortex exponents could be the result of coars-
ening dynamics. To test this, we performed instantaneous
quenches across the transition and found a similar decay in the
defect populations for vortices and skyrmions at short times;
however, at longer times, the defect population saturates much
sooner and at a higher level for the vortices as the defects
become trapped in the smectic structure, while for skyrmions
the system continues to coarsen for a much longer time. For
the skyrmions, the defect population after an instantaneous
quench decays as a power law with an exponent in the range
of α = 0.5 to 0.57. Our results suggest that the Kibble-Zurek
scenario can be applied to nonequilibrium phase transitions in
driven systems with quenched disorder, where depending on
the nature of the ordered state, different scaling behavior can
appear. For skyrmions, the dynamics may reflect coarsening
rather than a critical scaling due to the ability of defects to
annihilate even during the quench. It would be interesting to
apply the Kibble-Zurek scenario to other driven systems with
quenched disorder, such as those with periodic substrates,
to three-dimensional or layered systems, and also to explore
different types of driving protocols. Our results also suggest
that Kibble-Zurek scaling could arise in other nonequilibrium
systems. Several systems of this type have been shown to
exhibit different types of directed percolation and would make
good test cases. In many nonequilibrium systems the issue
is how to define the defects. In the systems we consider,
it was straightforward to define the defects as non-sixfold
coordinated particles, but other measures are possible such as
local soft spots or active regions. Another promising direction
would be to study other systems such as active nematics
[81,82] that contain well-defined topological defects.
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