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Physical images of relative timescales in coevolution dynamics
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In this paper, we propose three physical images, namely, asymmetric external inputs, discretization of the
low rate region, and secondary outbreak, to understand the mystery of the relative timescales in the coevolution
dynamics on multiplex networks. We carry out our analysis on an irreversible information-epidemic coevolution
dynamics. In this dynamics, we found five kinds of anomalous behaviors, which are that with the increase of
relative information processing speed, the final epidemic size may be monotonically increasing, monotonically
decreasing, first decreasing and then increasing, first increasing and then decreasing but increasing again, and
suddenly increasing with large fluctuation. Such complex behavior can be fully explained by our three physical
images. Moreover, these five behaviors may transform into one another, which is far more complex than cyclic
dynamics. Of course, our physical images easily provide an explanation for the results of cyclic coevolution
dynamics. Since our discussion does not rely on specific dynamics and networks, our research may readily be
extended to a broader field, rather than the network epidemiology in this paper.
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I. INTRODUCTION

With the maturity and reliability of the single epidemic
spreading model on networks [1–7], more and more re-
searchers have paid attention to the coupled evolution of
multiple dynamic models in the past decade [8–14], including
coevolution of two diseases [15–21], coevolution of informa-
tion and epidemic [22–24], and coevolution of resource and
epidemic [25–28]. In the real world, disease, behavior, and
information often coevolve through strong interactions [29].
For example, susceptibility to malaria is enhanced in HIV
infected patients [30]; disease related information generated
through first hand observation and word of mouth transmis-
sion can suppress the spread of the corresponding epidemic
disease [31]. For some special cases, such as multiple dis-
eases spreading in the same way, one can study on a single
layer network [32–34]. In most cases, however, it is more
convincing to use a multiplex network or multilayer network.
Compared with the universality of the concept of multilayer
networks [35–39], the multiplex network, as a special case of
the multilayer network, emphasizes that different layers have
the same set of nodes [40–43]. Most work on the coevolution
of information and disease uses multiplex networks [44–47],
because individuals can both be infected and be aware of
information.
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So far, a great deal of effort has been devoted to the study of
information-epidemic dynamics on multiplex networks and a
number of important results have been achieved [22–24,44–
54]. For example, Granell et al. extended the microscopic
Markov chain approach to the information-epidemic model
and found the emergence of a metacritical point from which
the transmission of information can control the epidemic
threshold [22]. Moreover, the metacritical point disappears
if one considers that the mass media can spread awareness
[23]. In Ref. [23], a surprising finding is that the results al-
ways satisfy a specific inverse linear expression when fitting
the threshold results. Inspired by this, Chang et al. gave the
theoretical relationship between the epidemic threshold on the
decoupled epidemic layer network and that on the multiplex
network [45]. Huang et al. modified the dynamic behav-
ior of aware individuals and found that such heterogeneous
interactions can induce hybrid phase transitions with the coex-
istence of both continuous and discontinuous phase transitions
[44]. Wang et al. found that there is an optimal information
transmission rate that minimizes the disease spreading in the
SIR framework [49]. Considering the effect of social rein-
forcement, many researchers have reached some interesting
results by introducing 2-simplices into the information layer.
For example, the introduction of 2-simplices can increase
the epidemic threshold [46–48]. Multiple susceptibility peaks
emerge in the susceptibility of the epidemic layer under the
combined effect of simplicial complexes and self-awareness
[47]. The differences between individuals for acceptance of
information and self-protection measures have important im-
pacts on dynamic behavior [48].

More recently, Wang et al. introduced the concept of
the relative timescales into information-epidemic dynam-
ics and they found that faster information dissemination
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FIG. 1. Schematic illustrations showing the states of the individuals for the UAU-SIR model in (a) and the UAU-SIS model in (b) on a
multiplex network and the associated transition rates between states. For the UAU-SIR model, individuals can be in six possible states: Unaware
and susceptible (US), aware and susceptible (AS), unaware and infected (UI), aware and infected (AI), unaware and recovered (UR), and aware
and recovered (AR). For UAU-SIS model, individuals can only be in the first four states. The dotted arrows within the dotted ellipses represent
state transitions occurring within the information layer, while the solid arrows represent state transitions occurring within the epidemic layer.

does not always better mitigate the epidemic spreading
which contradicts our intuition [50]. Meanwhile, in another
information-epidemic model, Ventura da Silva et al. found
that higher self-awareness can also lead to counterintuitive
results with higher epidemic prevalence when information
spreads much faster than disease [51]. To rule out the com-
plexity of the model, Velásquez-Rojas et al. used the simplest
UAU-SIS model to make it clear once again that the epi-
demic prevalence increases with the speed of information
processing [52]. In addition, the authors in Ref. [52] provided
analytical solutions of the mean field theory to understand
these phenomena, but as the authors state in the conclusion,
the counterintuitive phenomena are not fully explored and
understood. It is worth mentioning that Ventura da Silva
et al. also found a similar phenomenon on the coevolution
dynamics of two diseases, suggesting that the counterintuitive
phenomenon may be an intrinsic feature of such coevolu-
tion dynamics [20]. However, the lack of a clear physical
image for understanding the phenomenon has also hindered
its flexible application or prevention, as well as its extension
to other models. Meanwhile, it is unclear whether a similar
phenomenon would occur in irreversible models, such as the
SIR type model.

In this paper, we present three physical images, which
do not depend on specific dynamical models, to understand
the counterintuitive phenomena of the relative timescales in
the coevolution dynamics on multiplex networks. We also
find counterintuitive phenomena related to timescales in irre-
versible dynamics (UAU-SIR model), which are much more
complex and difficult to understand than cyclic dynamics.
Regardless of cyclic dynamics or irreversible dynamics, all
phenomena can be explained by the physical images presented
in this paper.

The rest of the paper is organized as follows. In Sec. II,
the information-epidemic dynamics used in this paper is de-
scribed in detail. In Sec. III, we present three physical images
related to timescales. In Sec. IV, we give a large number of

simulation results and numerical analysis results related to
the relative timescales and we explained these results in detail
using the physical images of Sec. III. Finally, we summarize
our results in this work in Sec. V.

II. MODEL

In this paper, we consider two kinds of information-
epidemic coevolution models on multiplex networks, namely,
the UAU-SIR model [Fig. 1(a)] and the UAU-SIS model
[Fig. 1(b)]. For the former, the process of the epidemic layer is
irreversible, while, for the latter, it is reversible (cyclic). Nodes
in different layers represent the same individuals, but they may
be connected differently in the two layers.

In the information layer, the population is divided into two
classes, unaware (U) and aware (A). Links between U and A
transmit the epidemic related information (i.e., the unaware
individual receives the information) with a rate α. Aware
individuals become unaware again with rate δ. Furthermore,
an unaware individual spontaneously becomes aware (self-
awareness) with rate κ when it is infected.

In the epidemic layer, we implement the SIR (or SIS)
epidemic dynamics in the following way. When a susceptible
(S) individual is in the U state or the A state, the susceptible
individual becomes infected by contact with infected (I) in-
dividuals at the rate β or ηβ multiplying the number of S-I
edges. Here, η ∈ [0, 1] denotes the strength of the reduction
in infection rates after an aware individual’s actions, such as
wearing a face mask. Infected individuals get cured to be
recovered (R) individuals (or susceptible individuals again)
with rate μ. The recovered individuals are not infected and
do not have the ability to infect others.

Finally, the relative timescales of the models are con-
trolled by introducing a parameter π [51,52], where π ∈
[0, 1]. Specifically, we multiply the transformation rates of
the information layer and the epidemic layer by π and 1 − π ,
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FIG. 2. Schematic illustration of discretization of the low rate region. �TS and �TD are the durations of solid and dashed windows,
respectively. βsum

S and βsum
D are the accumulation rates of solid and dashed windows, respectively. The beginning moment of the solid window

is in the high rate region with the value t + t ′, where t ′ ∈ [0,�τ ) in panels (a1) and (b1) and t ′ ∈ [0, �τ/2) in panels (a2) and (b2). The
beginning moment of the corresponding dashed window is in the low rate region and its value is t + �τ + t ′ in panels (a1) and (b1) and
t + �τ/2 + t ′ in panels (a2) and (b2). (a1),(a2) The average rate generated per unit time is analyzed by the fixed window duration �T = 1.
Because βsum

S + βsum
D is independent of t ′, the average rate generated per unit time is 1

2 (βsum
S + βsum

D ) = 0.5(β + ηβ ) for both panels (a1) and
(a2), which means that discretization of the low rate region does not affect the average rate generated per unit time. (b1),(b2) The average time
required per unit rate is analyzed by a fixed accumulation rate βsum = 1. Although �TS of panels (b1) and (b2) are equal, �TD of panel (b2) is
greater than �TD of panel (b1), so discretization of the low rate region reduces the average time required per unit rate. The red terms in panels
(b1) and (b2) represent the time it takes for the dashed window to go through the first low rate region, which is the source of the reduction in
the average time required per unit rate. Parameters: β = 1, η = 0.0, and �τ = 0.9.

respectively. Thus an increase in π represents an increase in
the speed of information processing.

We use two capital letters to denote the composite state
of an individual, the first denoting the information state and
the second denoting the epidemic state. For the UAU-SIR
model, individuals can be in six possible states: Unaware and
susceptible (US), aware and susceptible (AS), unaware and
infected (UI), aware and infected (AI), unaware and recov-
ered (UR), and aware and recovered (AR). For the UAU-SIS
model, individuals can only be in the first four states. The
transitions among all of the above states are shown in Fig. 1.

III. PHYSICAL IMAGES

We focus on the effect of the increased speed of informa-
tion processing on the epidemic layer. As π increases, two
immediate and obvious effects occur. One is that the informa-
tion layer reaches its steady state faster and the other is that the
individual changes its state more frequently in the information
layer. The latter results in the low rate region (suppression
effect) being more discrete in time in the epidemic layer.

A. Discretization of the low rate region

In Fig. 2, we first analyze the property that the low rate
region (the region of ηβ) of the epidemic layer tends to be
discrete, where panels (a2) and (b2) are more discretized than
panels (a1) and (b1). The duration interval of the low rate area
(while keeping the ratio of low to high rate constant), as the
only control variable in Figs. 2 and 3, represents the degree of
discretization.

In general, the higher the average infection rate per unit
time, the greater the epidemic size in the epidemic layer
will be. In Figs. 2(a1) and 2(a2), we analyze the average
rate generated per unit time with a fixed window duration
�T = 1. We define βsum

S and βsum
D as the accumulation rates

FIG. 3. Discretization of the low rate region for SIR and SIS
models. The network is the Erdős-Rényi network with network size
N = 105 and average degree 〈k〉 = 10. 37.7% of the individuals in
the system are labeled, the infection rate of the labeled individuals
is reduced to ηβ, and the labels are randomly selected again after
�τ intervals. The simulation results are obtained by averaging over
100 independent runs. Parameters: β = 0.5, μ = 1.0, η = 0.0, and
ρI (0) = 0.01.
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of solid and dashed windows, respectively. The beginning
moment of the solid window is in the high rate region (the
region of β) with the value t + t ′, where t ′ ∈ [0,�τ ) in
Fig. 2(a1) and t ′ ∈ [0,�τ/2) in Fig. 2(a2). The beginning
moment of the corresponding dashed window is in the low
rate region and its value is t + �τ + t ′ in Fig. 2(a1) and
t + �τ/2 + t ′ in Fig. 2(a2). The average rates in Fig. 2(a1)
and Fig. 2(a2) can be calculated by 1

2�τ

∫ �τ

0 (βsum
S + βsum

D )dt ′

and 1
�τ

∫ �τ
2

0 (βsum
S + βsum

D )dt ′. Notice that, for any given solid
window in either Fig. 2(a1) or Fig. 2(a2), we can always find
a dashed window so that the rate sum of the two windows
is βsum

S + βsum
D = β + ηβ. Therefore, the average rate gener-

ated per unit time is always equal to 0.5(β + ηβ ), which is
independent of the discretization of the low rate region. In the
above conventional way of thinking, one would assume that
the relative timescales do not affect the epidemic size, which
is why the counterintuitive phenomenon (faster transmission
of information increases the epidemic size) mentioned in the
Introduction was not understood.

In contrast to the common thinking, we next take into
account the average time it takes to accumulate the unit rate
βsum = 1; see Figs. 2(b1) and 2(b2). We define �TS and �TD

as the durations of solid and dashed windows, respectively.
The beginning moment of the solid window is in the high rate
region with the value t + t ′, where t ′ ∈ [0,�τ ) in Fig. 2(b1)
and t ′ ∈ [0,�τ/2) in Fig. 2(b2). The beginning moment of
the corresponding dashed window is in the low rate region
and its value is t + �τ + t ′ in Fig. 2(b1) and t + �τ/2 + t ′
in Fig. 2(b2). For the solid window, it is shown that �TS

in Fig. 2(b1) is equal to �TS in Fig. 2(b2). However, �TD

in Fig. 2(b2) is shorter than �TD in Fig. 2(b1). Thus dis-
cretization of the low rate region can reduce the average time
required per unit rate. The red terms in �TD of Fig. 2(b1)
and Fig. 2(b2) represent the time it takes for the dashed
window to pass through the first low rate region, which is the
source of the decrease in the average time required per unit
rate.

To sum up the above two aspects, although the discretiza-
tion of the suppression effect will not affect the average rate
generated per unit time, it will shorten the average time re-
quired per unit rate, thus making the disease easier to spread.
Some notes are as follows. First, the analysis of the physical
image applies not only to the suppression effect but also to
the promotion effect (see Sec. IV C), because they are both
composed of low rate regions and high rate regions. Thus we
call the physical image the discretization of low rate region.
Second, the low and high rate regions in Fig. 2 are propor-
tioned equally for illustrative purposes only and our analysis
is robust to any proportion. Last but not least, the physical
image in this subsection does not include any specific dynamic
model, which means that the image works on both irreversible
and cyclic dynamics.

To observe more directly the influence of discretization
of the low rate region on the dynamics, we plot Fig. 3 for
classical SIR and SIS models [55]. In Fig. 3, 37.7% of
the individuals were randomly selected as low infection rate
and were randomly reselected after each time interval �τ .
Figure 3 shows that the prevalence of both the SIR model
and the SIS model decreases with the increase of �τ , which

directly indicates that the higher the degree of discretization
(the smaller the �τ ), the larger the final epidemic size.

In addition, it can be seen from Fig. 3 that, when �τ

is small enough, the prevalence tends to a maximum value,
because the degree of discretization is uniform enough. For
the SIR model, when �τ is large enough, the prevalence is
fixed at a minimum value, because �τ is already longer than
the propagation time of the system.

B. Asymmetric external inputs

Now, we analyze the property that the information layer
reaches its steady state faster. The parameters of the informa-
tion layer are divided into two categories: α and δ regulate
the intensity of intralayer spreading (information prevalence);
ρA(0) and κ regulate the number of external inputs to aware
individuals [47].

Here, there are two kinds of asymmetry between intensity
of intralayer diffusion and the number of external inputs. For
ρA(0), there is an asymmetry between the continuous gener-
ation of aware individuals within the layer and the one-time
external input of individuals. For κ , there may be an asymme-
try in the multiplied magnification coefficients between the
parameters (κ , α, and δ).

For the UAU-SIR model, the number of aware individuals
generated by self-awareness is limited and, more importantly,
these individuals can only indirectly suppress the epidemic
layer through the information spreading on the information
layer, so the effect of κ in the UAU-SIR model is very weak. In
the information layer, the information prevalence ρA may be
different from ρA(0), resulting in different inhibitory effects
on the epidemic layer. We know that the information layer
reaches its steady state faster as π increases. Therefore, if ρA

is greater than ρA(0), the system will reach higher suppression
more quickly as π increases, while, if ρA < ρA(0), the system
will achieve lower inhibitory effect faster.

For the UAU-SIS model, the effect of ρA(0) is negligible
because the epidemic layer reaches its steady state. Mean-
while, the external input of the information layer is symmetric
with the propagation intensity within the layer, that is, α, δ,
and κ are multiplied by π at the same time. Therefore, we do
not need to consider the effect of asymmetric external input
in the UAU-SIS model. However, if the coefficient before κ is
not π , this effect needs to be considered.

C. Secondary outbreak

For irreversible dynamics, secondary outbreak is possible;
see Fig. 4. From Fig. 4(a), we can clearly see the first out-
break at ρR ≈ 0.43 and the second outbreak at ρR ≈ 0.52. In
Fig. 4(b), ρI reaches the first peak at t ≈ 3.6 and, after this
point, the effective reproduction number is less than 1 and
ρI gradually decreases. Meanwhile, Fig. 4(c) shows that ρA

decreases monotonically with time. The infection rate in many
susceptible individuals returns to β from ηβ, which increases
the effective reproduction number. When the effective repro-
duction number is greater than 1 again, a secondary outbreak
occurs. Since the effective reproduction number is also related
to the network structure of the remaining susceptible individ-
uals, the secondary outbreak cannot be guaranteed even when
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FIG. 4. Time series for the UAU-SIR model. The lines are ob-
tained from Eq. (A1), while scatters are obtained by Monte Carlo
simulations. The multiplex network consists of two independent
Erdős-Rényi networks with network size N = 105, both of which
have an average degree 〈k〉 = 10. Parameters: N = 105, β = 0.5,
μ = 1.0, α = 0.1, δ = 0.6, κ = 0.0, η = 0.0, π = 0.08, ρA(0) =
0.5, and ρI (0) = 0.01.

simulated under the same parameters, which is the source of
fluctuations. Figure 4 shows the results of two simulations,
where the square produces a secondary outbreak but the circle
does not.

Therefore, there are two necessary conditions for a sec-
ondary outbreak. On the one hand, after ρI reaches its first
peak, the proportion of aware individuals is gradually reduced

to release more protected individuals, as shown in Fig. 4(c).
On the other hand, the prevalence of the first outbreak must
not be too high to ensure that there are enough remaining
susceptible individuals to participate in the second outbreak.
This also creates a network size requirement and we have
not seen a secondary outbreak when running Monte Carlo
simulations for a population with N = 1000 (not shown here).

IV. RESULTS AND DISCUSSION

In this section, we use two independent Erdős-Rényi net-
work layers to build a multiplex network. The average degree
of both layers is fixed at 10 and the network size is fixed at
N = 105. Our key concern is how the final epidemic size ρR

(or ρI ) changes over the relative timescales in the UAU-SIR
(or UAU-SIS) model. For the UAU-SIR model, we give the
theoretical analysis and simulation procedure in Appendix A
and Appendix B, respectively.

A. Results for the UAU-SIR model

In Fig. 5, we plot the final epidemic size ρR as a function
of the relative timescales π for different awareness rate α

and initial seeds ρA(0). It can be seen from Fig. 5 that ρR

presents five different behaviors as the relative timescales π

increase, namely, monotonically increasing (MI), monotoni-
cally decreasing (MD), first decreasing and then increasing
(DI), first increasing and then decreasing but increasing again
(IDI), and suddenly increasing with large fluctuation (IF).

As can be seen from Fig. 5(a), the behavior of the curve
ρR(π ) transitions from DI to MI and then to IF with the
increase of ρA(0) [56]. From Fig. 5(b), the behavior of ρR(π )
changes from MI to IDI and then to MD with the increase
of α when ρA(0) = 0.1. But when ρA(0) increases to 0.5,
Fig. 5(c) shows that the behavior of ρR(π ) transitions from IF
to DI and then to MD as α increases, which is quite different
from Fig. 5(b). Such complexity means that there are several
physical mechanisms acting on these phenomena, not just one.
We will analyze all the phenomena in detail in Sec. IV B by
using the physical images in Sec. III.

FIG. 5. Final epidemic size ρR as a function of the relative timescales π for different awareness rate α and initial seeds ρA(0) in the
information layer. The lines are obtained from Eqs. (A1) and (A2), while scatters are obtained by Monte Carlo simulations, which are averages
over 100 independent runs. The multiplex network consists of two independent Erdős-Rényi networks with network size N = 105, both
of which have an average degree 〈k〉 = 10. Parameters: β = 0.5, μ = 1.0, δ = 0.6, η = 0.0, and ρI (0) = 0.01; (a) α = 0.1 and κ = 5.0;
(b) κ = 0.0 and ρA(0) = 0.1; (c) κ = 0.0 and ρA(0) = 0.5.
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FIG. 6. Final epidemic size ρR as a function of the relative timescales π for different η, κ , and β. The lines are obtained from Eqs. (A1)
and (A2), while scatters are obtained by Monte Carlo simulations, which are averages over 100 independent runs. The network is the same as
in Fig. 5. Parameters: μ = 1.0, δ = 0.6, and ρI (0) = 0.01. [(a)–(c)] β = 0.5, η = 0.0, and different shapes (or colors) represent different κ;
[(d)–(f)] β = 0.5, κ = 0.0, and different shapes (or colors) represent different η; [(g)–(i)] κ = 0.0, η = 0.0, and different shapes (or colors)
represent different β.

To further investigate the influence of the epidemic layer
parameters on these phenomena, in Fig. 6, we plot the ef-
fects of changing the η, κ , and β parameters on the three
nonmonotonic phenomena mentioned above. Specifically, the
left column of Fig. 6 shows the change of IF, the middle
column shows the change of DI, and the right column shows
the change of IDI.

It can be seen from Figs. 6(a)–6(c) that the change of κ

has little quantitative or even no qualitative influence on the
behavior of the curve, especially when ρA(0) is large. Due
to the irreversibility of the dynamics on the epidemic layer,
the number of aware individuals generated by self-awareness
is limited and, more importantly, these individuals can only
indirectly suppress the epidemic layer through the information

spreading on the information layer, so the effect of κ in the
UAU-SIR model is very weak. For the larger η in Figs. 6(d)–
6(f), ρR does not change much with π because the information
layer has a weak influence on the epidemic layer. For smaller
η, Figs. 6(e) and 6(f) cannot see the qualitative influence of
η on the curve behavior, while the behavior of IF in Fig. 6(d)
disappears with the increase of η. Figures 6(g)–6(i) show that
the three nonmonotonic curves become monotonic with the
decrease of β.

Apart from these complicated phenomena, there are some
general phenomena in Figs. 5 and 6. Figure 5 shows that ρR

decreases with the increase of ρA(0) or α, because the increase
of ρA(0) or α leads to an increase in the number of aware
individuals. Meanwhile, in Figs. 6(a)–6(c), ρR decreases as
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κ increases for the same reason. The increase of η means that
the suppression effect of the information layer on the epidemic
layer is weakened, which leads to more susceptible individu-
als being infected, so it can be seen in Figs. 6(d)–6(f) that ρR

increases with η. Figures 6(g)–6(i) show that ρR decreases as
β increases.

B. Discussion based on physical images
for the UAU-SIR model

For the sake of simplicity, we refer to the physical images
in Sec. III B, Sec. III A, and Sec. III C as image 1, image 2,
and image 3, respectively.

If ρA > ρA(0), image 1 tells us that ρR decreases as π

increases, while image 2 does the opposite. Therefore, there
is a competition between the two physical images. When
image 1 is fully dominant for any π , the curve will behave
as MD, while image 2 is completely dominant and the curve
will behave as MI. If neither is fully dominant for any π ,
the curve will behave as a complex nonmonotonic behavior.
For image 1, its effect increases as the difference between ρA

and ρA(0) increases. Meanwhile, the effect of image 1 will
also reach saturation when π is relatively large, because the
time for the information layer to reach its steady state will
reach the limit. As can be seen from the slope of the curve in
Fig. 3, with the increase of π from small to large (�τ from
large to small), the increase rate of the effect of image 2 will
gradually decrease. The above three points make IDI and DI
qualitatively understandable.

For Fig. 5(a), image 1 dominates when π is small, but
when π is large, image 2 dominates as the effect of im-
age 1 gradually decreases and reaches saturation. Thus the
curve shows the behavior of DI. As ρA(0) increases, image
1 changes to match image 2 and the disappearance of the
competition causes the curve to transition to MI. It should
be noted that, at this point, the first condition of image 3 has
been triggered, which is the increase of the infection rate of
susceptible individuals. With the further increase of ρA(0),
the gradual increase of the remaining susceptible individuals
finally triggers the second necessary condition for image 3, so
that the curve shows the behavior of IF.

In Figs. 5(b) and 5(c), we set κ = 0 to facilitate obtaining
the information prevalence ρA through theoretical calculation;
see Appendix C for details. We know that ρA increases as α

increases, which makes image 1 transition from ρA < ρA(0) to
ρA > ρA(0). So, as α increases, the curves generally transition
from increasing to decreasing. For the circle in Fig. 5(b), the
lower ρA(0) [compared to Fig. 5(c)] weakens the effect of
image 1, which gives image 2 an advantage in the competi-
tion when π is small. However, the increase in the effect of
image 2 decreases as π increases, making image 1 dominant.
When π is large, the increase in the effect of image 1 also
gradually decreases and reaches saturation, allowing image 2
to regain dominance. These are the reasons why the circle
curve with α = 0.1 in Fig. 5(b) produces the behavior of
IDI. The effect of image 1 is strong when ρA is much larger
than ρA(0). Comparing the triangle curves of Fig. 5(b) and
5(c), the difference between ρA and ρA(0) is different, which
determines whether image 1 can always dominate. In Fig. 5(c),
we increase ρA(0) to 0.5, at which point two necessary

conditions for image 3 are triggered. We see that, as α de-
creases, the behavior of IF becomes more pronounced, as the
protected individuals are released more and faster.

For Figs. 6(a)–6(c), due to the irreversibility of the epi-
demic layer, self-awareness has little effect on the behavior
of the curve, which is mentioned in Sec. IV. Meanwhile, there
is no qualitative change in curve behavior of Figs. 6(e) and
6(f).

For Fig. 6(d), an increase in η leads not only to a decrease
in β − ηβ (the increment of infection rate) as the suscepti-
ble individuals lose protection, but also to a decrease in the
number of remaining susceptible individuals. The latter is the
main reason for the disappearance of IF based on the analysis
of image 3. In Figs. 6(g)–6(i), a decrease in β also results
in a decrease in the value of β − ηβ. For Fig. 6(g), although
the number of remaining susceptible individuals does not
decrease, the decrease in β − ηβ affects the range of the
behavior of IF, causing the behavior to gradually disappear.
For Figs. 6(g)–6(i), the decrease in β − ηβ reduces the dif-
ference between the high- and the low-rate region in image
2, resulting in its weakening and the dominance of image 1.
By numerical calculation of Eqs. (C1) and (C2), we know
that ρA(0) is greater than ρA in Fig. 6(g) and ρA(0) < ρA in
Fig. 6(h) and Fig. 6(i). Thus, for a small β (e.g., β = 0.2), the
curve of Fig. 6(g) shows the behavior of MI, while the curves
in Fig. 6(h) and in Fig. 6(i) show the behavior of MD.

C. Discussion based on physical images for the UAU-SIS model

Our physical image analysis also applies to the UAU-SIS
model. Since the cyclic model reaches its dynamic equi-
librium, there is no secondary outbreak. Meanwhile, the
external input of the information layer is symmetric with the
propagation intensity within the layer; that is, α, δ, and κ are
multiplied by π at the same time. Therefore, in the UAU-SIS
model, only image 2 is at work and we mainly see that the epi-
demic prevalence ρI increases monotonically as π increases;
see an example in Fig. 7(a). This phenomenon was reported in
Ref. [52] and it is now well understood.

We know that the faster information transmission is
equivalent to the slower disease spreading. Since both the
suppression effect and the promotion effect follow image
2, the information prevalence ρA will decrease as 1 − π

decreases (or π increases). However, due to the presence
of self-awareness, ρA will increase as ρI increases. There-
fore, there are two competing physical mechanisms as π

increases and it can be predicted that ρA will show different
phenomena as the parameters change. For example, Fig. 7(b)
shows that the curve ρA changes from monotonically increas-
ing to almost constant and finally to monotonically decreasing
as η increases.

V. CONCLUSION

In summary, we unravel the mystery of the relative
timescales in the coevolution dynamics on multiplex net-
works through the analysis of physical images that are
asymmetric external inputs, discretization of low rate region,
and secondary outbreak. In particular, we have completely
solved the barrier to understanding the phenomenon that the
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FIG. 7. Epidemic prevalence ρI and information prevalence ρA as
a function of the relative timescales π in (a) and (b), respectively. The
simulation results are obtained by averaging over 100 independent
runs. The network is the same as in Fig. 5. Parameters: β = 0.5, μ =
1.0, α = 0.0, δ = 0.6, κ = 5.0, ρA(0) = 0.5, and ρI (0) = 0.01.

prevalence of epidemics increases with the speed of informa-
tion processing. We rely on information epidemic dynamics
for the analysis and description and, in fact, these physical
images are also applicable to other coevolution dynamics.

The physical image of discretization of the low rate region
is based on the fact that, as the relative timescale increases, the
state of the information layer changes more rapidly, resulting
in the dispersion of the suppression effect in the epidemic
layer. In the pioneering way of thinking, we found that the
reason this property makes it easier for the disease to spread
is that it reduces the average time required per unit rate, while
not changing the average rate per unit time. This physical
image applies to both irreversible and cyclic dynamics.

The physical image of asymmetric external inputs is based
on the property that the information layer reaches the steady
state faster as the relative timescales increase. Due to the
asymmetry of the intensity of intralayer spreading and ex-
ternal inputs, this property can accelerate the consumption of
external inputs or accelerate the growth of the intralayer itself.
For cyclic dynamics, when the external input is multiplied
by the same factor as the propagation intensity within the
layer, we do not need to consider the influence of the external
asymmetric input, such as the UAU-SIS model.

The physical image of the secondary outbreak is unique
to irreversible dynamics, which is based on the fact that the
effective reproduction number increases again due to some
factors in the process of decreasing.

For the UAU-SIR model, asymmetric external inputs can
produce a monotonically increasing or decreasing curve with
different parameters, while discretization of the low rate re-
gion will only produce a monotonically increasing curve.
With the competition between asymmetric external inputs and
discretization of the low rate region, dominance may shift
several times as the relative timescale increases. Specifically,
as the relative timescale increases, the increase (slope) of
the effect of discretization gradually decreases and the ef-
fect of external input asymmetry will reach saturation when

the relative timescale is relatively large. In addition, there
are two necessary conditions for a secondary outbreak: Suf-
ficient remaining susceptible individuals and an increase in
the effective reproduction number. Therefore, the curves of
the final epidemic size ρR(π ) show five types of behavior,
which are monotonically increasing, monotonically decreas-
ing, first decreasing and then increasing, first increasing and
then decreasing but increasing again, and suddenly increasing
with large fluctuations. Moreover, with the increase of some
parameters, the behavior of the curve will undergo qualita-
tive changes several times. Although the phenomena are so
complex, the physical images we present can fully explain
them.

As an extension, our physical image of discretization of
the low rate region can easily explain the phenomenon of
monotonically increasing epidemic prevalence with increas-
ing relative timescales in the UAU-SIS model. In addition, we
also predict that the information prevalence shows different
phenomena with the change of parameters, such as monoton-
ically increasing and monotonically decreasing.

Finally, some remarks should be noted. (i) Although the
UAU-SIS model mentioned in this paper does not include the
physical image of asymmetric external inputs, the cyclic dy-
namics still needs to use this physical image when the external
parameters do not agree with the amplification coefficients of
the interlayer parameters. (ii) Although the physical image of
discretization of the low rate region is used in this paper to
study the timescale problem, it can also be used to analyze
the amplification of some parameters or even the increase in
the number of compartments. (iii) Secondary outbreaks can
occur as long as two necessary conditions are met, which is
not limited to the study in this paper.

In the future, on the one hand, we can consider applying
our physical images to a broader range of coevolutionary dy-
namics, such as the coevolutionary game [57,58]. On the other
hand, the heterogeneity of network structure, time-varying
property [59], and higher order interaction [48] are also wor-
thy of further study.
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APPENDIX A: PARTIAL EFFECTIVE DEGREE THEORY

We extend the partial effective degree theory [60] to the
UAU-SIR model. Here, individuals are classified as UkSsi,
UkIsi, AkSsi, AkIsi, UkR, and AkR. The subscript k represents
the degree of the information layer and the subscripts s and
i represent the number of susceptible neighbors and infected
neighbors in the epidemic layer, respectively. Recovered indi-
viduals play no further role in the epidemic layer, so we do
not need to track their numbers [61,62]. As a result, the value
of the subscript s + i decreases as infected neighbors recover,
which is the difference from the UAU-SIS model.

For an individual, we should consider not only the change
of its information layer state and epidemic layer state, but
also the change of its epidemic layer subscripts. The dynamic
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equations of the UAU-SIR model are as follows:

dUkSsi

dt
= −UkSsi[β(1 − π )i + απkφ + μ(1 − π )i + Gs]

+ AkSsiδπ + UkSs+1,i−1G(s + 1)

+UkSs,i+1μ(1 − π )(i + 1),

dUkIsi

dt
= −UkIsi[μ(1 − π )(1 + i) + απkφ + κπ + Hs]

+UkSsiβ(1 − π )i + UkIs+1,i−1H (s + 1)

+ AkIsiδπ + UkIs,i+1μ(1 − π )(i + 1),

dAkSsi

dt
= −AkSsi[βη(1 − π )i + δπ + μ(1 − π )i + Gs]

+UkSsiαπkφ + AkSs+1,i−1G(s + 1)

+ AkSs,i+1μ(1 − π )(i + 1),

dAkIsi

dt
= UkIsi(απkφ + κπ ) + AkSsiηβ(1 − π )i

− AkIsi[μ(1 − π ) + δπ + μ(1 − π )i + Hs]

+ AkIs+1,i−1H (s + 1) + AkIs,i+1μ(1 − π )(i + 1),

dUkR

dt
= −UkRαπkφ + AkRδπ +

∑
s,i

UkIsiμ(1 − π ),

dAkR

dt
= UkRαπkφ − AkRδπ +

∑
s,i

AkIsiμ(1 − π ), (A1)

where G and H are the rates that a susceptible neighbor of
susceptible individuals and infected individuals becomes an
infected neighbor and φ is the rate of an unaware individual
in contact with any aware individual. Their values can be
approximated using the mean field method,

G =
∑

k,s,i[(UkSsi + AkSsiη)β(1 − π )is]∑
k,s,i[(UkSsi + AkSsi )s]

,

H =
∑

k,s,i[(UkSsi + AkSsiη)β(1 − π )i2]∑
k,s,i[(UkSsi + AkSsi )i]

,

φ = 1

〈k〉
∑

k

⎧⎨
⎩k

⎡
⎣AkR +

∑
s,i

(AkSsi + AkIsi )

⎤
⎦

⎫⎬
⎭.

Finally, the final epidemic size ρR can be obtained by

ρR =
∑

k

[UkR(t = ∞) + AkR(t = ∞)]. (A2)

In Sec. IV, we show that the numerical solutions of the
partial effective degree theory are consistent with the Monte
Carlo simulation results, which further proves the reliability
of the simulation results.

APPENDIX B: SIMULATION PROCEDURE
FOR THE UAU-SIR MODEL

The UAU-SIR model on multiplex networks can be simu-
lated as follows.

Step 1. We build four lists b, c, d , and e for aware, un-
aware, infected, and susceptible nodes. We store the number
of infected neighbors and aware neighbors for all nodes. We
calculate B, C, D, and E as the transformation rates of A → U ,
U → A, I → R, and S → I .

Step 2. The total transition rate is W = B + C + D + E .
There are four possible events. (1) With probability B

W , an
aware node is chosen with equal probability from list b and be-
comes an unaware node. (2) With probability C

W , an unaware
node is chosen from list c at random and accepted with prob-
ability u

umax
, which is repeated until one choice is accepted.

Here, u is the rate of U → A of the selected node and umax

is the maximum that u can possibly take. The accepted node
becomes the aware node. (3)With probability D

W , an infected
node is chosen with equal probability from list d and recov-
ered. (4) With probability E

W , a susceptible node is chosen
from list e at random and accepted with probability n

nmax
, which

is repeated until one choice is accepted. Here, n is the rate of
S → I of the selected node and nmax is the maximum that n
can possibly take. The accepted node becomes the infected
node.

Step 3. Update the time and all the quantities mentioned in
Step 1, then go to Step 2 until there are no infected individuals
left in the system.

In Step 2, we used the rejection method [63], which is
usually more effective than the roulette method. The up-
date in Step 3 requires simply updating any changes in the
environment.

APPENDIX C: ANALYTIC CALCULATION OF ρA

To facilitate readers to compare the values of ρA and ρA(0)
when κ = 0, we give an analytic method for ρA by using
the HMF-DC theory proposed in Ref. [64]. The process is as
follows. (i) Calculate p from

∑
k

{
λkpNP(k)

1 + λkp
[(1 − p)λ(k − 1) − 1]

}
= 0, (C1)

where λ = α
δ

and P(k) is the degree distribution of the infor-
mation layer. (ii) Substitute the value of p into

Ak = λkp

1 + λkp
NP(k) (C2)

to solve Ak . (iii) Obtain the required ρA by ρA = 1
N

∑
k Ak .

Here, p is the probability of reaching an arbitrary aware indi-
vidual by following a randomly chosen edge from an unaware
individual, Ak is the number of aware individuals with degree
k, P(k) is the degree distribution of an information layer, and
λ = α/δ.

As an example, when α = 0.1 and δ = 0.6, ρA is about
0.377.
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