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Non-Hermitian physics of levitated nanoparticle array
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The ability to control levitated nanoparticles allows one to explore various fields of physics, including quantum
optics, quantum metrology, and nonequilibrium physics. It has been recently demonstrated that the arrangement
of two levitated nanoparticles naturally realizes the tunable nonreciprocal dipole-dipole interaction. Motivated
by this development, we here propose and analyze an array of levitated nanoparticles as an ideal platform to
study non-Hermitian physics in a highly controlled manner. We employ the non-Bloch band theory to determine
the continuum bands of the proposed setup and investigate the non-Hermitian skin effect therein. In particular,
we point out that the levitated nanoparticle array exhibits rich dynamical phases, including the dynamically
unstable phase and the unconventional critical phase where the spectral singularity persists over a broad region
of the controllable parameters. We also show that the long-range nature of the dipole-dipole interaction gives
rise to the unique self-crossing point of the continuum band.
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I. INTRODUCTION

A levitated nanoparticle is a laser trapped nanoscale
dielectric particle smaller than wavelength of light [1]. Re-
cent experimental developments have allowed one to cool a
levitated nanoparticle to ultracold temperatures [2–10] and
offered unique opportunities to study quantum mechanics of
mesoscopic objects [11–22]. Additionally, previous studies
demonstrated the potential of a levitated nanoparticle to ex-
plore various fields of physics, such as nonequilibrium physics
[23–29] and quantum sensing [30–40]. Remarkably, recent
experimental studies have shown the possibility of realizing
multi-particle setups [41–51]. In particular, Ref. [51] has re-
ported a realization of an on-demand assembly of levitated
nanoparticles, in which optical tweezers are used to trap and
arrange the nanoparticles one by one.

On another front, recent years have witnessed remarkable
advances in our understandings of non-Hermitian systems,
i.e., a class of nonequilibrium systems that can be effec-
tively described by non-Hermitian operators [52]. While
non-Hermitian physics has been widely investigated in several
fields of quantum science, such as ultracold atoms [53–57]
and photonics [58–61], its idea has also found numerous
applications in classical systems realized in optics [62–65],
mechanics [66–69], and electrical circuits [70–73]. These
previous studies uncovered rich non-Hermitian phenomena
that have no counterparts to Hermitian systems. For instance,
one-dimensional (1D) tight-binding systems with asym-
metric hopping amplitudes exhibit the non-Hermitian skin
effect [74–76], where the bulk eigenstates are localized at

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

open boundaries, leading to the extreme boundary sensitivity
of the eigenvalue.

In this paper, we propose and analyze a 1D levitated
nanoparticle array as an ideal platform to study previously
unexplored regimes of non-Hermitian physics in a highly
controlled manner. A prominent feature is that there exists
the tunable nonreciprocal dipole-dipole interaction between
particles, which is induced by the nonreciprocal interfer-
ence originating from phase difference between the trapping
lasers [49]. The proposed system then realizes a 1D tight-
binding model with arbitrarily tunable asymmetric hopping
amplitudes that have possibly negative signs and long-range
dependence. This high controllability allows one to explore
the whole parameter region of non-Hermitian systems, thus
opening the possibility to fully uncover the potential of non-
Hermitian systems. The proposed setup should be contrasted
to the previous non-Hermitian platforms where it remains
challenging to realize long-range asymmetric and/or negative
hopping amplitudes.

To determine the continuum bands and the dynamical
phase diagram of the levitated nanoparticle array, we in-
voke the non-Bloch band theory [74,77–81], a recently
developed powerful tool to investigate models featuring the
non-Hermitian skin effect. The non-Bloch band theory al-
lows for calculating the asymptotic eigenvalues under open
boundary conditions in the limit of a large system size. This
makes contrast to the conventional Bloch band theory, where
the band structure reproduces the eigenvalues under periodic
boundary conditions.

On the basis of this theoretical framework, we find that the
levitated nanoparticle array exhibits rich dynamical phases,
including the unconventional critical phase and the dynami-
cally unstable phase. In the former, a remarkable feature is
that the non-Hermitian degeneracy of the continuum bands
known as the spectral singularity appears over a broad region
of the parameters. The key ingredients of the latter are nega-
tive interparticle couplings, which were difficult to realize in
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nth(n-1)th (n+1)th

FIG. 1. Schematic figure of the levitated nanoparticle array. The
distance between the nearest-neighbor particles is d0, and the mass
of all the particles is m. All the trapping lasers have the power P and
the wavelength λ. We set the phase of the nth trapping laser in the
focal plane to be φ + n�φ.

the existing non-Hermitian platforms. Moreover, the proposed
system can naturally realize the long-range hopping ampli-
tudes originating from the dipole-dipole interaction. We show
that this long-range nature leads to the unique self-crossing
point of the continuum band, which corresponds to the singu-
larity of the generalized Brillouin zone.

II. LEVITATED NANOPARTICLE ARRAY

To be concrete, we consider a 1D array of the trapped lev-
itated nanoparticles (Fig. 1). The particles are equally spaced
at the interval d0, and all the particles have the mass m. Let λ

and P denote the wavelength and the power of all the trapping
lasers, respectively. Furthermore, we assume that the motion
of the particles along the plane perpendicular to the optical
axis is frozen. We note that the distances between the particles
are assumed to be much larger than a characteristic length
scale in the collective behavior of particles [82–84].

The interaction between the two particles arises due to
the interference between the scattered electromagnetic field
and the trapping laser. Since the scattered field acquires the
phase kd0 during the propagation, the phase difference be-
tween the trapping lasers at the positions of the particles leads
to the constructive and destructive interference depending on
the propagation direction of the scattered field. It is this spatial
asymmetry that renders the interparticle coupling nonrecipro-
cal. We note that the effective open boundaries can be realized
by arranging the tightly localized particles at the ends of the
system (cf. Fig. 6 in Appendix C); the non-Hermitian skin
effect then manifests itself as the large oscillation amplitudes
close to the boundary regions. Due to the long-range nature of
the dipole-dipole interaction, it is in general necessary to in-
corporate the couplings that reach up to N th nearest-neighbor
particles. Altogether, the linearized equation of motion of the
nth particle along the z axis is given by

mz̈n + mγ żn = −
(

m�2 + 2
N∑

l=1

Kl

)
zn

+
N∑

l=1

[(Kl + K̄l )zn−l + (Kl − K̄l )zn+l ]. (1)

Here, � is an intrinsic mechanical frequency of the particle
proportional to

√
P, γ is a friction coefficient, and Kl and K̄l

are the coupling strengths given by

Kl = G

lk0d0
cos (lk0d0) cos (l�φ),

K̄l = G

lk0d0
sin (lk0d0) sin (l�φ), (2)

where G has the dimension of a spring constant and is pro-
portional to P, �φ is the optical phase difference between the
nearest-neighbor trapping lasers in the focal plane (Fig. 1),
and k0(= 2π/λ) is the wave number of the trapping laser.
We explain the detailed derivation of Eq. (1) in Appendix A.
Importantly, the optical phase difference gives rise to the non-
reciprocal couplings due to the nonzero K̄l . Thus, our setup
is distinct from the array of levitated nanoparticles proposed
in Ref. [85], which has investigated a non-Hermitian transport
phenomenon with reciprocal couplings. Furthermore, one can
infer from Eq. (2) that the couplings are long-range because
the dipole-dipole interaction is proportional to the inverse of
the distance between the particles. We note that the model can
be mathematically mapped to a tight-binding model with gain
and loss via a similarity transformation [75].

The continuum bands of non-Hermitian tight-binding mod-
els can be obtained by invoking the non-Bloch band theory
(cf. Appendix B), which reproduces the eigenvalues under
open boundary conditions. Specifically, the continuum bands
are calculated from the generalized Brillouin zone spanned by
β ≡ eik for the complex Bloch wave number k. We here apply
the non-Bloch band theory to the levitated nanoparticle array;
throughout this paper, we assume |KN | �= |K̄N |. By substitut-
ing zn = ψneiωt to Eq. (1), the real-space eigen equation reads

1

m

N∑
l=1

[(Kl − K̄l )ψn+l (Kl + K̄l )ψn−l ]

+
(

ω2 − iγω − �2 − 2

m

N∑
l=1

Kl

)
ψn = 0. (3)

Importantly, the ansatz of Eq. (3) can be taken as

ψn =
2N∑
j=1

(β j )
nφ( j), (4)

where β j (= β ) is the solution of the characteristic equa-
tion given by

1

m

N∑
l=1

[(Kl − K̄l )β
l + (Kl + K̄l )β

−l ]

+
(

ω2 − iγω − �2 − 2

m

N∑
l=1

Kl

)
= 0. (5)

We note that Eq. (5) is an algebraic equation for β of 2N th
degrees. The main result of the non-Bloch band theory is that
the condition for the generalized Brillouin zone is obtained
from the 2N solutions as follows:

|βN | = |βN+1|, (6)
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FIG. 2. Dynamical phase diagram and continuum bands of
the levitated nanoparticle array. (a) Dynamical phase diagram ex-
hibiting the underdamped, critical, overdamped, and dynamically
unstable phases shown in the blue, green, red, and gray-shaded
regions, respectively. The spectral singularity (SS) appears in the
green-shaded region and on the green lines. |K1| = |K̄1| is sat-
isfied on the black dashed lines. We set the parameters to be
� = 1 and γ = 5. (b–g) Evolutions of the continuum bands
along the arrows in panel (a). The magenta and cyan express

with |β1| � · · · � |β2N |. The trajectories of βN and βN+1 form
the generalized Brillouin zone on the complex plane, which
reveals the essential features of non-Hermitian systems (see,
e.g., Refs. [86–89]). Then, we can calculate the continuum
bands by combining Eq. (5) with the generalized Brillouin
zone.

III. DYNAMICAL PHASE DIAGRAM

We start our analysis from the levitated nanoparticle ar-
ray with the nearest-neighbor interaction, which corresponds
to N = 1 in Eq. (1); in the following, we assume γ > 2�

for the sake of concreteness. From Eq. (6), the generalized
Brillouin zone can be given by the circle with the radius
r =

√
|(K1 + K̄1)/(K1 − K̄1)|. The analytical form of the con-

tinuum bands reads

ω± = i

2
γ ±

√
�2 + 2

m

(
K1 −

√
K2

1 − K̄2
1 cos θ

) − γ 2

4
, (7)

where θ is a real number. Since each eigenmode contributes to
the dynamics through the factor e−Im(ω± )eiRe(ω± ), we can show
the dynamical phase diagram depending on K1/m and K̄1/m
[Fig. 2(a)]. We here emphasize that the continuum bands dis-
cussed here can have direct experimental relevance. Indeed,
the theoretical calculation of the eigenvalues in the coupled
two levitated nanoparticles has explained well experimentally
observed crossing/avoided crossing of the eigenspactra and
the appearance of an exceptional point [49]. Figures 2(b)–2(d)
and 2(e)–2(g) plot the evolutions of the continuum bands
along the black and white arrows indicated in Fig. 2(a),
respectively.

In the blue-shaded regions of Fig. 2(a), all the par-
ticles oscillate with the attenuation because Re(ω±) �=
0 and Im(ω±) > 0 [Fig. 2(b)]. In contrast, in the red-
shaded regions, their motion monotonically vanishes with-
out oscillations because Re(ω±) = 0 and Im(ω±) > 0
[Fig. 2(d)]. For these reasons, we term the former (lat-
ter) the dynamical phase as the underdamped (overdamped)
phase.

Remarkably, we find the broad green-shaded region where
the two branches coalesce at Re(ω±) = 0 [Fig. 2(c)]; this de-
generacy is called the spectral singularity. There, we find the
crossover behavior where the overdamped behavior eventu-
ally sets in after the initial underdamped oscillations; we shall
term this intermediate regime as the critical phase. One of its
key characteristics is the presence of the particles near the
boundaries which are strongly driven by the adjacent trapping
lasers inducing the nonreciprocal couplings. It is worthwhile
to mention that, with γ < 2�, the critical phase appears on
the parameter region where the sign of K/m becomes negative
[cf. Fig. 7(a) in Appendix C]. The transient phenomenon
discussed here is supported by the non-Hermitian skin effect,
since the critical phase disappears under periodic boundary
conditions, as discussed in Appendix D. As shown in Fig. 2(f),
the spectral singularity also appears along the green vertical

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ω+ and ω−, respectively. The numerical values in each panel
specify (K1, K̄1).
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lines in Fig. 2(a). However, one would need the fine-tuning
of the parameters in this case as indicated by Figs. 2(e)–2(g),
where the two continuum bands are recombined across the
green line.

Additionally, we also find the dynamically unstable phase
as indicated by the gray-shaded region in Fig. 2(a). There, the
driving forces from the adjacent trapping lasers give rise to
the dynamical instability of the particles where the oscillation
amplitudes diverge in the long-time limit, because negative
hopping amplitudes cause the force that increasingly keeps
away the particles from their equilibrium positions. We expect
that nonlinear effects will eventually play a crucial role in
this phase, since the amplification is eventually balanced by
nonlinear suppression. The dynamically unstable phase dis-
cussed here is difficult to realize in previous non-Hermitian
systems due to the lack of the ability to implement negative
hopping amplitudes. It is worthwhile to mention that, in finite-
size systems, the phase boundary between the overdamped
and dynamically unstable phases can be slightly modified, as
discussed in Appendix C.

IV. NONRECIPROCAL LONG-RANGE INTERACTION

We next investigate how the long-range nature of the cou-
plings can affect the continuum band and the corresponding
generalized Brillouin zone; in the following, we neglect the
friction for the sake of simplicity. We assume that the in-
teraction reaches up to the next-nearest-neighbor particles,
which corresponds to N = 2 in Eq. (1). In Fig. 3, we plot
the continuum bands with the positive branch of the square
root and the corresponding generalized Brillouin zone at
different �φ. The black dashed curves in Figs. 3(d)–3(f) indi-
cate the conventional Brillouin zone formed by β ≡ eik (k ∈
R). We note that the parameters considered in these cal-
culations satisfy K1/m, K̄1/m, K2/m, K̄2/m � �2 and have
been experimentally realized in Ref. [49] in the case of two
particles.

One can see from Figs. 3(d) and 3(f) that the generalized
Brillouin zone with N = 2 forms a skewed closed curve with
the cusps, at which it becomes indifferentiable, while the
generalized Brillouin zone with N = 1 is merely a circle.
Importantly, the cusps correspond to the self-crossing points
of the continuum band [Figs. 3(a) and 3(c)] [90]. Thus,
the long-range nature of the nonreciprocal couplings can
lead to these unconventional band structures. Meanwhile,
at �φ = π/2, the generalized Brillouin zone becomes the
unit circle independently of N [Fig. 3(e)], and there are no
self-crossing points [Fig. 3(b)], where the non-Hermitian skin
effect disappears.

It is noteworthy that, in the case of Fig. 2(c), nonorthog-
onality of the eigenstates with the eigenvalues around the
self-crossing points is stronger than that of the other eigen-
states away from the self-crossing point. This is because
the overlap of the left and right eigenvectors becomes
minimum at the self-crossing point. Thereby, such eigen-
states exhibit a striking response against perturbations [91],
which indicates that the excitation modes around the self-
crossing point could be utilized for a highly sensitive
sensor.

(a)

(b)

(f)

(d)

(e)

(c)

FIG. 3. Continuum bands and generalized Brillouin zones of
the levitated nanoparticle array at different �φ. (a–c) The contin-
uum bands with the positive branch of the square root, and (d–f)
the corresponding generalized Brillouin zones are shown. The red
(blue) curves indicate the results for N = 2 (N = 1). In panels (d–f),
the black dashed curve expresses the conventional Brillouin zone
spanned by β ≡ eik (k ∈ R). The system parameters are set to be
λ = 1.064 × 10−6 m, d0 = 10−5 m, � = 105 s−1, and G/(mk0d0 ) =
108 s−2.

V. SUMMARY AND DISCUSSION

In summary, we propose and analyze the levitated nanopar-
ticle array as an ideal platform to study new realms of
non-Hermitian physics in a highly controlled manner. We
show that the system exhibits the unconventional critical
phase, where the spectral singularity originating from the non-
Hermitian skin effect persists over a broad parameter region.
We also point out that the tunable dipole-dipole interaction
allows for extremely nonreciprocal hopping amplitudes with
possibly negative signs, which result in the dynamical in-
stability. We finally reveal that the long-range nature of the
couplings further enriches the non-Hermitian band structures,
leading to the cusps of the generalized Brillouin zone and the
self-crossing point of the continuum band.
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(a)

(c)

(b)

Particle 1 Particle 2

nth(n-1)th (n+1)th

FIG. 4. Schematic figure of a single levitated nanoparticle,
coupled two levitated nanoparticles, and an array of leviated nanopar-
ticles. In panels (a), (b), and (c), the mass of the particle is m, and the
trapping lasers have the power P and the wavelength λ. In panels
(b) and (c), the distance between the particles is d0. In panel (c),
we set the phase of the nth trapping laser in the focal plane to be
φ + n�φ.

We expect that the levitated nanoparticle array will be
an ideal platform to explore rich phenomena induced by
nonreciprocal long-range hopping amplitudes thanks to its
high tunability. For example, a nontrivial topological phase
transition mediated by a topological semimetal phase with
exceptional points has been proposed [90,92]. Additionally,
the number of branches from the self-crossing point of the
continuum band increases as a coupling distance between
two particles [93]. Furthermore, it has been proposed that
nonreciprocal long-range couplings give rise to bulk eigen-
states which exhibit the crossover from a constant localization
length to a system-size-dependent localization length [94].
This previous work has also indicated that, since long-range
couplings suppress the non-Hermitian skin effect, the scaling
of entanglement entropy can change from an area law to a
subextensive law.

The continuum bands of the levitated nanoparticle array
can be experimentally studied by measuring the power spec-
tral density. It is thus feasible to directly observe the spectral
singularity and the self-crossing points. Meanwhile, to access
the strong coupling regime with K/m�2 = O(1–10) consid-
ered in Fig. 2, it is necessary to realize a stronger dipole-dipole
interaction than the one already realized in Ref. [49]. We ex-
pect that this should be made possible by increasing size of the
particles and using lasers with a shorter wavelength. Also, we
note that the friction coefficient can be controlled by changing
the pressure of the surrounding gas, while thermal noise can

be suppressed by keeping its temperature sufficiently low. We
discuss in detail the experimental feasibility in Appendix E.

It is interesting to further explore various aspects and po-
tentials of a levitated nanoparticle array, since this unique
platform opens a new avenue of investigating sensing, nonlin-
earity, and nonequilibrium quantum physics. First, the critical
phase can be potentially applicable for enhanced sensing be-
cause the strong nonorthogonality associated with the spectral
singularity which one can observe in the array of a few par-
ticles (cf. see Appendix C) is known to trigger the singular
sensitivity to perturbation [95–97]. Second, it is crucial to
reveal the competition between nonreciprocity and nonlinear-
ity [98], where a levitated nanoparticle array is expected to
exhibit rich collective phenomena such as synchronization.
Third, an extension of the present analysis to quantum regimes
is an intriguing open problem. For instance, it merits further
study to understand how the nonreciprocal couplings affect
the entanglement between particles [40], how the dynamical
instability of the levitated nanoparticle array can be utilized
to squeeze the mechanical mode of a levitated nanoparticle
[99], and whether or not the nonorthogonality is helpful for
quantum metrology [39].
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APPENDIX A: EQUATION OF MOTION

We derive the equation of motion of a single levitated
nanoparticle, coupled two levitated nanoparticles, and an ar-
ray of levitated nanoparticles as shown in Figs. 4(a), 4(b) and
4(c), respectively. We assume that the motion of the particles
along the plane perpendicular to the optical axis is frozen.

1. Single levitated nanoparticle

We first focus on the motion of a single levitated nanopar-
ticle along the z axis [Fig. 4(a)]. Let P and λ denote the power
and the wavelength of the trapping laser, respectively. In this
system, the subwavelength-sized particle with the refractive
index n is surrounded by a medium with the refractive index
n′, and it can be regarded as a point dipole with the electric
dipole moment given by

p(r, t ) = αE(r, t ). (A1)

Here, E(r, t ) expresses the electric field of the trapping laser,
and α is the polarizability of the particle. The latter can ex-
plicitly be written as

α = 3ε0n′2V
n2

r − 1

n2
r + 2

, (A2)

where c is the speed of light in vacuum, V is the volume of
the particle, and nr ≡ n/n′ is the relative refractive index of
the particle. The electric field then acts on the point dipole,
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and the particle feels the gradient force [100] given by

Fgrad(r) =
〈

1

2
Re[(αE∗(r, t ) · ∇)E(r, t )]

〉
T

= α

2cε0n′ ∇I (r), (A3)

where 〈· · · 〉T means time average, and I (r) is the spatial
profile of the intensity of the trapping laser. We note that the
trapping laser is described by the Gaussian beam, of which the
electric field is given by

E(r, t ) = E0
w0

w(z)
exp

[
− x2 + y2

{w(z)}2 + ik
x2 + y2

2R(z)
− iζ (z)

]

× ei(k0z−ωt ), (A4)

where

w(z) = w0

√
1 +

(
z

z0

)2

,

R(z) = z

[
1 +

(
z0

z

)2
]
, (A5)

ζ (z) = tan−1

(
z

z0

)
.

Here, k0(= 2π/λ) is the wave number of the trapping laser, w0

is the beam waist, and z0 = πw2
0/λ is the Rayleigh length. The

combination of Eqs. (A3) and (A4) leads to the z component
of the gradient force given by

Fgrad,z(z) = − Pα

2πcε0n′w2
0z2

0

z

[1 + (z/z0)2]2
. (A6)

In the vicinity of the focal plane of the trapping laser, the
linearized equation of the motion of the levitated nanoparticle
is obtained as

mz̈ + mγ ż = −m�2z, (A7)

where

�2 = Pα

2πcε0n′mw2
0z2

0

, (A8)

and γ is a friction coefficient. We remark that the linearized
motion of the particle exhibits the harmonic oscillation be-
cause the gradient force plays a role as the restoring force.

2. Coupled two levitated nanoparticles

We next consider the equation of motion of the coupled
two levitated nanoparticles [Fig. 4(b)]. We assume that the
polarization direction of the particles points to the y axis.
Then, in addition to the gradient force, both particles feel the
interaction caused by the dipole radiation, which is called the
optical binding force [101,102].

First of all, we shall explain the mechanism of the optical
binding force based on Ref. [49]. Importantly, there exist
two contributions to the optical binding force. The first con-
tribution results from the combination of the electric field
scattered from one particle to another particle and the electric
dipole induced by the trapping laser. The second contribu-
tion originates from the acting of the trapping laser on the

electric dipole induced by the scattered field. Specifically, for
particle 1, the sum of these contributions leads to the form of
the optical binding force as follows:

F2→1
bind (r1, r2)

=
〈

1

2
Re

[
(αE∗(r1, t ) · ∇r1 )E2→1

sca (r1, r2, t )
]

+ 1

2
Re

[(
αE2→1∗

sca (r1, r2, t ) · ∇r1

)
E(r1, t )

]〉
T

. (A9)

Here, E2→1
sca (r1, r2, t ) is the electric field scattered from parti-

cle 2 to particle 1, and its form is written as

E2→1
sca (r1, r2, t ) = G(r1 − r2)αE(r2, t ), (A10)

where G(r) called the Green’s tensor is the electric field
propagator between the two dipoles [103], and it is
given by

G(r) = eik0r

4πε0

[
3r ⊗ r − r2

r5
(1 − ik0r) + k2

0
r2 − r ⊗ r

r3

]
.

(A11)

By using

Re
[
(∇r1 × E(r1, t )) × E2→1∗

sca (r1, r2, t )
]

− Re
[
E2→1

sca (r1, r2, t ) × (∇r1 × E∗(r1, r2, t ))
]

= Re
[
(E∗(r1, t ) · ∇r1 )E2→1

sca (r1, r2, t )
]

+ Re
[(

E2→1∗
sca (r1, r2, t ) · ∇r1

)
E(r1, t )

]
− Re

[∇r1

(
E∗(r1, t ) · E2→1

sca (r1, r2, t )
)]

(A12)

and ∇r1 × E(r1, t ) = 0, we can rewrite Eq. (A9) to a brief
form given by

F2→1
bind (r1, r2)

= 〈
1
2∇r1 Re[αE∗(r1, t )G(r1 − r2)αE(r2, t )]

〉
T
. (A13)

In the following, we calculate the z component of the opti-
cal binding force. In the far-field regime with k0d0 � 1, the
dominant contribution from the Green’s tensor to the optical
binding force is the term proportional to 1/r. Furthermore, in
the vicinity of the focal plane, the z dependence of the electric
field is approximated as

E(r j, t ) ≈ E0 exp

[
iφ j + i

(
k0 − 1

z0

)
z j − iωt

]
(A14)

for j = 1, 2, where φ j expresses the optical phase at the focal
plane. Substituting Eqs. (A11) and (A14) into Eq. (A13),
we can get the optical binding force along the z axis as
follows:

F 2→1
bind,z(z1, z2) ≈ Pα2k3

0 (k0 − 1/z0)

2π2cε2
0n′w2

0

× sin

[
k0d0 − �φ −

(
k0 − 1

z0

)
(z1 − z2)

]
,

(A15)

where �φ ≡ φ1 − φ2.
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We can similarly obtain the optical binding force for parti-
cle 2 as follows:

F1→2
bind (r1, r2)

= 〈
1
2∇r2 Re[αE∗(r2, t )G(r2 − r1)αE(r1, t )]

〉
T
. (A16)

Therefore, the explicit form of the optical binding force along
the z axis is derived as

F 1→2
bind,z(z1, z2) ≈ Pα2k3

0 (k0 − 1/z0)

2π2cε2
0n′w2

0

× sin

[
k0d0 + �φ +

(
k0 − 1

z0

)
(z1 − z2)

]
.

(A17)

Remarkably, the interaction between these two
particles becomes nonreciprocal because F 2→1

bind,z(z1, z2) �=
−F 1→2

bind,z(z2, z1). The key ingredient of this nonreciprocity is
the interference between the trapping laser and the scattered
field. Let � j ( j = 1, 2) denote the optical phase of the
trapping laser at the position of the particle. The interference
depends on the local phase difference �� ≡ �1 − �2

and the phase accumulation kd0 which the scattered field
acquires during the propagation. Specifically, while the
contribution of the interference is kd0 − �� within the
propagation of the scattered field from particle 1 to particle
2, it becomes kd0 + �� in the opposite case. As a result,
the interaction originating from the interference becomes
spatially asymmetric.

We can now obtain the linearized equation of motion of the
coupled levitated nanoparticles as follows:

mz̈1 + mγ ż1 = −(m�2 + K + K̄ )z1 + (K + K̄ )z2,

mz̈2 + mγ ż2 = −(m�2 + K − K̄ )z2 + (K − K̄ )z1, (A18)

where � is the intrinsic mechanical frequency given by
Eq. (A1). The coupling constants are given by

K = G

k0d0
cos(k0d0) cos(�φ),

K̄ = G

k0d0
sin (k0d0) sin (�φ), (A19)

and

G = Pα2k3
0 (k0 − 1/z0)2

2π2cε2
0n′w2

0

. (A20)

3. Levitated nanoparticle array

We finally study the arrangement of the multiple levitated
nanoparticles at equal interval d0 [Fig. 4(c)]. In this system,
the dipole-dipole interaction among the several particles arises
from the multiple scattering of the trapping lasers. Neverthe-
less, the dominant contribution to the dynamics of the system
comes from the interaction between two particles. Thus, we
neglect higher-order scattering processes. This corresponds to
approximating the optical binding force up to O(|p|2).

We shall explain how one can derive the equation of motion
of the levitated nanoparticle array. We set the optical phase of
the nth trapping laser in the focal plane to be φ + n�φ. For
the nth and n + lth particles, the phase difference between the

trapping lasers is l�φ, and the distance between the particles
is ld0. Hence, the interaction between these particles can be
obtained by the same procedure as explained above. Due to
the long-range nature of the dipole-dipole interaction, it is
necessary to incorporate the couplings that reach up to N th
neighbor particles. Then, the equation of motion of the system
is written as

mz̈n + mγ żn = −
(

m�2 + 2
N∑

l=1

Kl

)
zn +

N∑
l=1

[(Kl + K̄l )zn−l

+ (Kl − K̄l )zn+l ], (A21)

and

Kl = G

lk0d0
cos (lk0d0) cos(l�φ),

K̄l = G

lk0d0
sin (lk0d0) sin (l�φ), (A22)

where the constant G is given in Eq. (A20).

APPENDIX B: NON-BLOCH BAND THEORY

We describe the physical meaning of the non-Bloch band
theory for 1D non-Hermitian tight-binding models. First of
all, we show that the condition for the generalized Brillouin
zone can be interpreted as the condition that the “plane waves”
form the standing wave, by using the specific model. We next
prove that the recombination of the “plane waves” forming the
standing wave occurs at the cusps of the generalized Brillouin
zone.

1. Condition for the generalized Brillouin zone

We consider the 1D non-Hermitian tight-binding model
with asymmetric hopping amplitudes, the Hamiltonian of
which reads

H =
∑

n

(t+,2c†
n+2cn + t+,1c†

n+1cn

+ t−,1c†
ncn+1 + t−,2c†

ncn+2), (B1)

where all the parameter are real numbers. The Schrödinger
equation can be then written in the form of the real-space
eigen equation given by

t+,2ψn−2 + t+,1ψn−1 + t−,1ψn+1 + t−,2ψn+2 = Eψn, (B2)

where ψn means the amplitude of the state at the site n. A
general difference theory allows us to take the form of the
linear combination

ψn =
∑

j

(β j )
nφ( j), (B3)

which corresponds to the plane-wave expansion, as the ansatz
of Eq. (A2), due to the spatial periodicity. Here, β j (= β ) is
the solution of the characteristic equation written as

t+,2β
−2 + t+,1β

−1 + t−,1β + t−,2β
2 = E , (B4)

which is a quadratic equation for β. We note that it is neces-
sary to combine the open boundary conditions obtained from
Eqs. (B3) and (B4) to get the asymptotic set of the energy
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)b()a(

(c)

FIG. 5. Continuum band and trajectories of the solutions of the
characteristic equation of the model (B1). (a) Continuum band.
(b) Generalized Brillouin zone (c) Sets of the solutions of the char-
acteristic equation satisfying Eq. (B7). We set the parameters to be
t+,2 = 0.9, t+,1 = 0.3, t−,1 = 0.7, and t−,2 = 0.1.

eigenvalues in the thermodynamic limit. Although the calcu-
lation is cumbersome for a large system size, the non-Bloch
band theory allows us to avoid the procedure of calculating
the continuum band [77,79]. It has been shown that the values
of β are restricted to lie on the closed curve so that the wave
function satisfies the open boundary conditions. The closed
curve, called the generalized Brillouin zone, is then formed
by β = eik for the Bloch wave number k. It is important
that, for the four solutions of Eq. (B4), the condition for the
generalized Brillouin zone reads

|β2| = |β3| (B5)

with

|β1| � |β2| � |β3| � |β4|. (B6)

We note that the trajectories of β2 and β3 satisfying Eq. (B5)
form the generalized Brillouin zone. Finally, the combination
of Eqs. (B4) and (B5) gives the continuum band of the system.
We exemplify the continuum band and the generalized Bril-
louin zone with the specific parameters as shown in Figs. 5(a)
and 5(b).

The Bloch wave number obtained by Eq. (B5) becomes
complex numbers, which indicates that the bulk eigenstates
are localized at boundaries of the system due to the non-
Hermitian skin effect. Meanwhile, the generalized Brillouin
zone forms a unit circle, when the system becomes a Her-
mitian system: t+,1 = t−,1 and t+,2 = t−,2. This means that
the Bloch wave number takes real values in Hermitian
tight-binding systems, which is consistent with the result of
the conventional Bloch band theory.

It is remarkable that the condition for the generalized
Brillouin zone can be interpreted in the viewpoint of the
non-Hermitian skin effect. The physical meaning of Eq. (B5)
is that the localization lengths of the “plane waves” cor-
responding to β2 and β3 match each other, which leads
to the formation of the standing wave by the interference
of the “plane waves”. Furthermore, it is intriguing that the
asymptotic energy eigenvalues of the open chain in the ther-
modynamic limit do not depend on any boundary conditions,
since Eqs. (B4) and (B5) are independent of boundary condi-
tions of the open chain.

2. Cusps of the generalized Brillouin zone

We nest explain the appearance mechanism of the cusp of
the generalized Brillouin zone, at which it becomes indifferen-
tiable. To this end, we investigate what happens if we impose

|βi| = |β j | (B7)

to the system, for some i and j among the four solutions
of Eq. (B4). We then show several sets of βi and β j satisfying
Eq. (B7) in Fig. 5(c). We note that the trajectory satisfying
Eq. (B5) among the sets is equivalent to the generalized
Brillouin zone. Compared with Figs. 5(b) and 5(c), one
can see that the cusps appear, when the three of the four
solutions share the same absolute values. Namely, for
|β1| < |β2| = |β3| < |β4|, |β1| approaches |β2|(= |β3|) as we
go around the generalized Brillouin zone, and the behavior
of the solutions satisfying Eq. (B5) eventually changes
when |β1| = |β2| = |β3|. Thus, the recombination of the
“plane waves” forming the standing wave occurs at the cusps
of the generalized Brillouin zone and the corresponding
self-crossing points of the continuum band.

APPENDIX C: ARRAY OF FINITE
LEVITATED NANOPARTICLES

We investigate the array of a finite number of levitated
nanoparticles as shown in Fig. 6. We assume that this system
includes only the interaction between the nearest-neighbor
particles. Furthermore, at both boundaries of the system, we
arrange the deeply trapped levitated nanoparticles, of which
the motion in all the directions is frozen, and we set the
optical phase of the trapping laser in the focal plane at the
left and right boundaries to be φ − �φ and φ + (L + 1)�φ,
respectively. In this case, these particles are coupled with the
system so that they impose the fixed end boundary conditions
on the system.

1. Eigenvalue

We first show a way to calculate the eigenvalues of the
system described by

mz̈n + mγ żn = − (m�2 + 2K )zn

+ (K + K̄ )zn−l + (K − K̄ )zn+l , (C1)

with the fixed boundary condition given by z0 = zL+1 = 0.
In this equation, the coupling constants K and K̄ are given
by Eq. (A22). In the following, we suppose |K| �= |K̄|. By
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nth Lth1st

FIG. 6. Schematic figure of the array of the L levitated nanoparticles. The distance between the nearest-neighbor particles is d0, and the
mass of all the particles is m. The trapping lasers have the power P and the wavelength λ. We set the phase of the nth trapping laser in the focal
plane to be φ + n�φ. At both boundaries of the system, we arrange the two levitated nanoparticles frozen in the motion in all the directions.
The trapping lasers at the left and right boundaries have the optical phase φ − �φ and φ + L�φ in the focal plane, respectively.

assuming zn = ψneiωt , Eq. (C1) is rewritten into

1

m
[(K − K̄ )ψn+l (K + K̄ )ψn−l ]

+
(

ω2 − iγω − �2 − 2

m
K

)
ψn = 0. (C2)

From a general theory of a difference equation, we can take

ψn =
2∑

j=1

(β j )
nφ( j) (C3)

as an ansatz of Eq. (C2). Here, β j (= β ) is the solution of the
characteristic equation given by

1

m
[(K − K̄ )β + (K + K̄ )β−1]

+
(

ω2 − iγω − �2 − 2

m
K

)
= 0. (C4)

We note that Eq. (C4) is a quadratic equation for β. The
boundary conditions, ψ0 = ψL+1 = 0, tell us the condition
that the combination coefficients φ(1) and φ(2) take nonzero
values, and it is written as(

β1

β2

)L+1

= 1. (C5)

Then, we can obtain the explicit form of β1 and β2 from
Eqs. (C4) and (C5). When (K + K̄ )(K − K̄ ) > 0, the Vieta’s
formula of Eq. (C4) gives

β1 = reiθl , β2 = re−iθl , (C6)

where

r+ =
√

K + K̄

K − K̄
, (C7)

and

θl = π l

N + 1
(l = 1, . . . , N ). (C8)

Hence, the eigenvalues of the system can be calculated as

ω>
l,± = i

2
γ ±

√
�2 + 2

m
(K −

√
K2 − K̄2 cos θl ) − γ 2

4
.

(C9)

Similarly, when (K + K̄ )(K − K̄ ) < 0, we obtain the form of
β1 and β2 as follows:

β1 = −ir′eiθl , β2 = −ir′e−iθl . (C10)

Here,

r− =
√∣∣∣∣K + K̄

K − K̄

∣∣∣∣, (C11)

and θl is given by Eq. (C8). The eigenvalue of the system in
this case is written as

ω<
l,± = i

2
γ ±

√
�2 + 2

m
(K − i

√
|K2 − K̄2| cos θl ) − γ 2

4
.

(C12)

2. Finite-size effect

In our work, we investigate the levitated nanoparticle array
in the thermodynamic limit, L → ∞, and obtain the dynami-
cal phase diagram and the continuum bands of the levitated
nanoparticle array. We show the dynamical phase diagram
with γ < 2� and γ > 2� in Figs. 7(a) and 7(b), respectively.
We note that the critical phase extends over only a narrow
region in Fig. 7(a), while it clearly possesses a broad region in
Fig. 7(b). We here discuss how the finite-size effects can affect
the band structures in the critical phase and the boundaries
between the underdamped and dynamically unstable phases.

To do so, we recall that the continuum bands of the infinite-
size system is given by

ω̃± = i

2
γ +

√
�2 + 2

m
(K −

√
K2 − K̄2 cos θ ) − γ 2

4
.

(C13)
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FIG. 7. Dynamical phase diagram, continuum bands, and eigen-
values of the levitated nanoparticle array. (a, b) Dynamical phase
diagrams with � = 3 and γ = 2 and � = 1 and γ = 2. respectively.
Panel (b) is the same as Fig. 2(a). The blue, green, red, and gray-
shaded regions indicate the underdamped, critical, overdamped, and
dynamically unstable phase, respectively. The spectral singularity
(SS) appears in the green-shaded region and on the green lines. (c,
d) Continuum bands ω̃+ (magenta) and ω̃− (cyan), and eigenvalues
ω>

l,+ (red) and ω>
l,− (blue). (e) Continuum band ω̃+ (black), and

eigenvalues ω<
l,+ (red). We set L = 8 in panels (c–e) and choose the

values of (K, K̄ ) at the orange star for panel (c) and at the white and
black stars for panels (d) and (e), respectively.

First, we consider the parameters indicated by the orange star
in Fig. 7(a) and show the corresponding continuum bands
ω̃± and the eigenvalues ω>

l,± in Fig. 7(c). One can see that
there is no degeneracy between ω>

l,+ and ω>
l,− in a strict sense,

simply because θl takes only the discrete values determined
by Eq. (C9). Nevertheless, we emphasize that the eigenvec-
tors around the spectral singularity, where ω̃+ touches ω̃−,
still exhibit the strong nonorthogonality which is a hallmark
of the non-Hermitian degeneracy. This result is the same as
in the case of the parameter indicated by the white star in
Fig. 7(b). Indeed, the eigenvalues in Fig. 7(d) are similar to
those in Fig. 7(c). Next, we consider the parameters indicated
by the white star in Fig. 7(a) and show the corresponding
continuum band ω̃+ and the eigenvalues ω<

l,+ in Fig. 7(c).
It is found that the finite-size system does not exhibit the
dynamical instability because the imaginary parts of all the
discrete eigenvalues become positive. In this sense, the finite-
size effect can slightly modify the boundary between the
dynamically unstable phase and the other phases. One can
also infer from Fig. 7(c) that a larger system size would be
favorable to observe the dynamical instability. Nevertheless,
we emphasize that the phase diagram of a finite-size system
still remains qualitatively the same as in the result obtained in
the thermodynamic limit.

FIG. 8. Dynamical phase diagram of the levitated nanoparticle
array obtained from the conventional Bloch band theory. The blue
and gray-shaded regions are the underdamped and dynamically un-
stable phases, respectively. The spectral singularity appears on the
green line. We set the parameters to be � = 1 and γ = 5.

APPENDIX D: PERIODIC BOUNDARY CONDITION

We consider the levitated nanoparticle array described by
Eq. (A14) with N = 1 and study the dynamical phase diagram
under periodic boundary conditions to compare the result ob-
tained in Fig. 2(a). We note that the characteristic equation of
the system reads

1

m
[(K1 − K̄1)β + (K1 + K̄1)β−1]

+
(

ω2 − iγω − �2 − 2

m
K1

)
= 0. (D1)

After replacing β by eik for the real Bloch wave number k, we
can obtain

ω′
± = i

2
γ ±

√
�2 − γ 2

4
+ 2

m
K1(1 + cos k) − 2i

m
K̄1 sin k,

(D2)

which reproduces the eigenvalues of the system with periodic
boundary conditions. Let us suppose that γ > 2� for the
sake of concreteness. The condition for the appearance of the
spectral singularity can be then written as

�2 − γ 2

4
+ 4

m
K1 = 0, (D3)

since it appears when k = 0. Remarkably, this indicates that
the critical phase obtained in Fig. 2(a) disappears in the system
with periodic boundary conditions. Said differently, the ap-
pearance of the spectral singularity requires the fine-tuning of
the system parameters. Indeed, one can see from the dynami-
cal phase diagram shown in Fig. 8 that only the underdamped
and dynamically unstable phases appear in this case. Thus,
modifying open boundaries to periodic boundaries drastically
changes the behavior of the levitated nanoparticle array.
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APPENDIX E: EXPERIMENTAL FEASIBILITY

We investigate the dynamical phase diagram of the lev-
itated nanoparticle array with K/m, K̄/m ∈ [−10�2, 10�2]
and γ = 5� in our work. We here discuss the experimen-
tal values to access the assumed parameter region in our
setup. We note that the previous experiment realizing the cou-
pled two levitated nanoparticles has achieved K/m, K̄/m ∈
[−0.1�2, 0.1�2] and γ � 0.03� [49], where the power and
wavelength of the trapping laser, and the gas pressure are set
to be P = 400 mW, λ = 1064 nm, and Pgas = 1.5 mbar, re-
spectively. Furthermore, the previous work has utilized silica
nanoparticles, the radius, the polarizability, and the mass of
which are set to be r = 105 nm, α = 3.48 × 10−32 F m2, and
m = 1.07 × 10−17 kg, respectively.

First, we explain a possible way to amplify the
dipole-dipole couplings K/m, K̄/m compared to �2. To
this end, we consider the ration between G/m and �2, which
can be obtained from Eqs. (A8) and (A20) as follows:

G

m�2
= 1

πε0

(
k2

0w
2
0

2
− 1

)2

αk3
0 . (E1)

It is important that one can achieve K/m, K̄/m ∈
[−10�2, 10�2] by using the trapping laser with the half
wavelength and making the radius of the particle 2.5 times
larger than the one used in the previous experiment; we

recall that the larger particle results in higher polarizability.
Thus, we assume that the wavelength of the trapping laser
is set to be λ = 532 nm, and the radius, the polarizability
and the mass of the particles are set to be r = 260 nm, α =
5.28 × 10−31 F m2, and m = 1.62 × 10−16 kg, respectively,
and the laser power is the same as in the previous experiment.

We expect that our model captures qualitative features of
the motion of the levitated nanoparticle even if its size is
comparable to the wavelength of the trapping laser, because
the dominant contribution to the forces which the particle
feels still originates from the dipole moments in the parti-
cle. Meanwhile, to develop a quantitatively accurate theory,
it should be necessary to modify the description to go be-
yond the dipolar approximation. Specifically, one should take
into account the contributions from the higher-order moments
(e.g., quadrupole moments).

Second, we explain how to realize the friction coefficient
γ = 5�. We note that, in the low-vacuum regime, the damp-
ing rate of a levitated nanoparticle is proportional to the square
of the radius of the particle and the gas pressure [104]. With
the above parameter set, � approximately becomes twice
larger than the value in the previous experiment, and it is
possible to realize γ = 5� by setting the gas pressure to be
Pgas = 80 mbar. Thus, we expect that the levitated nanoparti-
cle array with the above experimental value set should allow
one to realize the parameters assumed in our manuscript and
to observe the predicted dynamical phases accordingly.
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