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Theory of polarization textures in crystal supercells
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Recently, topologically nontrivial polarization textures have been predicted and observed in nanoscale sys-
tems. While these polarization textures are interesting and promising in terms of applications, their topology in
general is yet to be fully understood. For example, the relation between topological polarization structures and
band topology has not been explored, and polar domain structures are typically considered in topologically trivial
systems. In particular, the local polarization in a crystal supercell is not well-defined, and typically calculated
using approximations that do not satisfy gauge invariance. Furthermore, local polarization in supercells is
typically approximated using calculations involving smaller unit cells, meaning the connection to the electronic
structure of the supercell is lost. In this work, we propose a definition of local polarization which is gauge
invariant and can be calculated directly from a supercell without approximations. We show using first-principles
calculations for commensurate bilayer hexagonal boron nitride that our expressions for local polarization give the
correct result at the unit cell level, which is a first approximation to the local polarization in a moiré superlattice.
We also illustrate using an effective model that the local polarization can be directly calculated in real space.
Finally, we discuss the relation between polarization and band topology, for which it is essential to have a
correct definition of polarization textures.
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I. INTRODUCTION

The formation of complex polar structures such as ferro-
electric domains [1,2], analogous to ferromagnetic domains
[3], is a phenomenon intrinsic to ferroelectric materials with
finite boundary conditions, and has been studied for many
years. When going from bulk to a lower dimensional system,
interfaces between a ferroelectric material and a nonpolar
material or vacuum lead to polar discontinuities which if not
screened will lead to depolarizing fields that suppress ferro-
electricity [4]. Ferroelectric materials can form polydomain
structures to mitigate depolarization effects, such as 180◦
stripe domains, which for not too thin films can be described
using a Landau-like theory [5]. These sharp domain structures
eventually become unstable in very thin films, at which point
it becomes more favorable to form softer domain walls, better
described by a Ginzburg-Landau theory [6]; such domains
have been observed in ferroelectric materials down to the
monolayer limit [7]. In some cases, even more complex struc-
tures involving polar vortices may form [8], for example, in
ferroelectric/paraelectric (FE/PE) superlattices [9–13] such
as PbTiO3/SrTiO3 (PTO/STO), where the properties can be
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tuned through the use of different materials and by tuning the
relative thicknesses of the layers. In FE/PE superlattices, both
stripe domains and vortices can form [11], depending on the
strength of the coupling between the ferroelectric layers [6],
which can be determined by the ratio of the layers and the
dielectric permittivities [5].

Ferroelectric materials have been fabricated in many differ-
ent geometries, from 2D thin films and FE/PE superlattices
to 1D nanowires [14,15] and nanotubes [16–18], and even
0D quantum dots [19,20]. Lower-dimensional ferroelectric
systems typically exhibit size-dependent transitions where the
polarization fields become more complex, before eventually
becoming unstable and vanishing completely when the para-
electric phase is favored [21–24]. Soon after these complex
polarization textures were discovered, they were proposed
to be topologically nontrivial [25,26]; skyrmionlike polariza-
tion structures were identified, for example in BaTiO3 (BTO)
nanowires embedded in a matrix of STO [27]. It has also been
proposed that 3D skyrmions, i.e., hopfions, may be created
by controlling domains and domain walls in ferroelectrics,
where at low temperatures the polarization rotates in-plane
in the domain walls [28], resulting in a nontrivial winding.
Ferroelectric skyrmions have been experimentally observed
in PTO/STO superlattices [29,30], and a skyrmion → meron
transition with strain has recently been observed [31]. Polar
merons have also been observed in PTO under epitaxial strain
from a SmScO3 substrate [32].

In recent years, a new type of ferroelectricity in layered
van der Waals materials has been proposed [33–35] and
experimentally observed [36,37]. In layered systems such
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FIG. 1. Sketch of a twisted hBN bilayer. The MPDs in a single
moiré cell are highlighted in blue and red, which have equal and
opposite polarization. The normalized polarization field in the MPDs
are sketched above, which form antimerons (Q = − 1

2 ) and merons
(Q = + 1

2 ), respectively.

as 3R-stacked hexagonal boron nitride (hBN) or MoS2, an
out-of-plane polarization occurs via an interlayer transfer of
electronic charge when the relative stacking between, which
can be switched by a relative sliding between the layers (van
der Waals sliding [38]), resulting in ferroelectricity. When
there is a relative twist or lattice mismatch between the layers,
forming a moiré superlattice (see Fig. 1), the interlayer charge
transfer results in an out-of-plane polarization texture, and the
stacking domains can be identified as moiré polar domains
(MPDs), which have been experimentally shown to result
in ferroelectricity [37] via the growing and shrinking of the
MPDs in response to an applied field [34,35]. Recently, we
discovered that the MPDs also have an in-plane component
of polarization [39,40], resulting in possible real space non-
trivial topological textures. For hBN and similar materials the
topological charge Q in each stacking domain,

Q = 1

4π

∫
P · (∂xP × ∂yP) dr, (1)

where the local polarization P(r) is normalized, integrates to
± 1

2 , meaning the MPDs are polar merons and antimerons (see
Fig. 1). Moiré superlattices have also recently been fabricated
with perovskites [41], which for FE/PE interfaces such as
BTO/STO also result in polar vortices [42].

While the complex structures and nontrivial topology
of polar nanostructures are very interesting and promis-
ing for future applications in nanotechnology, some of
their fundamental properties require a better understanding,
namely:

(i) The origin of topological polarization structures. Po-
larization can be topological in the real space sense, i.e.,
there may be nontrivial winding of the polarization vector
field of a system. This winding must arise from both the
geometry of the system and underlying crystal symmetries of
the constituent materials. For example, in perovskites super-
lattices, the electrostatic boundary conditions at the interfaces
between alternating layers make a uniform polarization in the
ferroelectric layers energetically unfavorable. This promotes
a polydomain structure, but does not guarantee nontrivial
topology; a 180◦ stripe domain structure is preferable to a
monodomain polarization, but is topologically trivial. The
polar modes in each unit cell, related to the off-centering of
the Ti atoms within the oxygen octahedra, lower the crystal
symmetry, and allow coupling between polarization and strain
such as piezoelectricity, which is forbidden by symmetry in
the cubic phase. As a result, the strain across the domain
walls and interfaces results in an additional component of
polarization [28], which causes the polarization to wind and
become topologically nontrivial. Rolling a thin film into a
nanotube induces a radial polarization and hence a polar vor-
tex via flexoelectricity [43–45], which is a property of all
insulators. In twisted or strained hBN, the MPDs are a result
of the geometry of the moiré superlattice. However, the reason
that the polarization winds and is topologically nontrivial is
related to the underlying symmetry of the hBN bilayer [39].
It was shown with a space group analysis that different mirror
planes are broken by different local stackings, meaning that
the polarization must point out-of-plane in the domain centers,
and in-plane along the domain walls, leading to a network of
merons and antimerons.

When considering the topology of polarization, one major
problem is that the local polarization in a crystal in real space
is not a well-defined quantity. From the modern theory of po-
larization [46–51], the change in total polarization of a system
can be measured from Berry phases, but the decomposition
into individual contributions in real space is somewhat arbi-
trary. There are two types of methods for estimating the local
polarization in a supercell: “configuration space” methods,
where the local configurations in a each unit cell are emulated
in a commensurate system, and real space methods, where
the local polarization is calculated directly from calculations
involving the entire supercell. It is clear that calculating local
polarization directly in real space would be preferable, al-
though this would require expensive calculations, and defining
local polarization in real space is difficult. One proposal is
to measure the individual Wannier centers in each unit cell
[52], which has been applied to slablike systems to mea-
sure the out-of-plane polarization, averaged in the in-plane
directions. However, this approximation does not necessarily
satisfy gauge invariance. The more commonly used approxi-
mation relies on obtaining the local displacements in each cell
and multiplying them by the Born effective charges obtained
from the bulk system [53,54]. This was originally proposed
for slablike systems, and is the standard method for calculat-
ing the local polarization in perovskite systems. However, this
relies on the assumption that the Born effective charges are
uniform everywhere in space, which is not the case in twisted
bilayers [39], for example.
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(ii) The relation to electronic band topology. Local polar-
ization is not typically described at the electronic structure
level, since it is defined in terms of local displacements in real
space. Thus the relation between the topology of polarization
textures and band topology [55,56], which has seen the devel-
opment of various analytical diagnoses [57–66], is not clear.
In the original description of polarization in terms of localized
Wannier functions, the polarization is well-defined only for
topologically trivial bands; for topologically nontrivial bands,
the Wannier functions are not exponentially localized. The
modern theory of polarization has since been generalized
to Chern insulators by tracking the hybrid Wannier centers
throughout closed loops in the Brillouin zone (BZ) [67,68]
(equivalent to calculating Wilson loops [69,70]). However, the
similarities and interplay between polar and band topology are
not known. Recently there has been evidence that polarization
can affect the topological properties of a system: in layered
MnBi2Te4, which is antiferromagnetic, ferroelectric, and ex-
hibits quantum anomalous Hall (QAH) conductance, inverting
the polarization via van der Waals sliding changes the sign
of the Chern number and hence the QAH conductance [71].
Thus a better understanding of the role that polarization can
play in the properties of systems arising from band topology
is needed.

(iii) Physical consequences. Perhaps most importantly, the
physical consequences of topological polarization are not
well-understood. While it is has recently been shown that
ferroelectric switching can change the Chern numbers in topo-
logically nontrivial systems [71], this is a result of uniform
polarization; there may be additional phenomena which are
unique to topologically nontrivial polar textures. Furthermore,
finding physical consequences may also provide new ways
to indirectly detect polar topology experimentally, which cur-
rently requires very careful microscopy measurements.

In this work, we address the problem of defining the local
polarization in a crystal supercell, in the context of study-
ing topological polarization. The most common approach for
estimating local polarization, in twisted bilayers, for exam-
ple, [34,35,39], is using the configuration space mapping:
the local polarization in real space is approximated by the
total polarization in configuration space, i.e., a commensurate
system with a global distortion such as a relative shift between
the layers. Estimating local polarization in this way requires
the polarization to vary slowly, with a wavelength similar
to the supercell period. Additionally, information about the
electronic structure is lost, as the local polarization is not
calculated from the bands of the supercell. While approximate
expressions for the local polarization which can be calculated
directly in real space using Wannier centers and Born effective
charges have been proposed in the literature [52–54], they
are not necessarily well-defined. In the former case, the local
polarization is given by a partial sum over Wannier centers,
which in general is not gauge invariant. In the latter case,
partial sums over the Born effective charges may not satisfy
the acoustic sum rule, or charge neutrality. We discuss the
different ways in which local polarization can be estimated
and propose definitions of local polarization in terms of Born
effective charges or Wannier centers, which are well-defined
(gauge invariant) and can be evaluated directly in real space.
As a stepping stone to real space calculations, we show that
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FIG. 2. (a) Sketch of a 5 × 1 × 1 supercell of a titanium oxide
perovskite ATiO3. The arrows indicate the displacement of the Ti
atom from the center of the oxygen octahedra in each unit cell.
(b) Mapping of the displacements in each unit cell from real space to
configuration space, which has the dimensions of a single five-atom
unit cell. (c) 3 × 3 section of a bilayer with relative twist angle θ .
(d) Mapping of the relative displacements between the atoms in
each layer from real space to configuration space, which has the
dimensions of a single bilayer unit cell.

these definitions yield the correct polarization in commen-
surate 3R-stacked hBN in configuration space. We illustrate
using effective models in 1D (Aubry-André model in the con-
tinuum limit [72–75]) and 2D (Bistritzer-MacDonald [76,77])
that our proposed definitions can be used to calculate the local
polarization in real space, without relying on the mapping to
configuration space. Finally, we discuss the relation between
polarization and band topology.

II. LOCAL POLARIZATION

Our aim is to develop a definition of the local polarization
field in a supercell comprised of a number of repeated unit
cells, each with real space position r j . Each unit cell may have
local distortions with respect to a more symmetric reference
configuration, and we define the local polarization as a result
of these local distortions as a discrete vector field P(r j ),
valued in each unit cell. When studying systems described
by large supercells, in particular moiré superlattices, it is
generally much more convenient to work in terms of the local
distortions in each unit cell, which form a configuration space,
rather than the full supercell in real space.

A. Configuration space

The mapping between real space and configuration space
is used to estimate local properties in periodic supercells and
incommensurate systems [78–81]. In the context of polar do-
mains and textures, the two most common examples are oxide
perovskite films (BTO, PTO, etc.), in which the five-atom unit
cell is repeated in the direction(s) normal to the interface in
order to allow for the formation of polydomain structures, see
Fig. 2(a), and a twisted/strained bilayer, in which two layers
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are twisted or strained relative to one another to form a moiré
superlattice, see Fig. 2(c).

In an ABO3 perovskite, the polarization arises from the
off-centering between the B cations and the O6 octahedra.
In titanate oxide perovskites such as PTO and BTO, this has
been attributed to the hybridization of the Ti 3d and O 2p
orbitals [82]. For a perovskite supercell with a polydomain
structure, the local polarization is a result of the polar mode
displacements in each unit cell. Assuming for simplicity that
the polar modes are dominated by the off-centering of the Ti
atoms within each oxygen octahedron, the displacement in
each unit cell is approximately x(r j ) = �rTi

j , where r j is the
position of unit cell j, and rTi

j is the position of the Ti atom
in the cell. The displacements in each unit cell can be mapped
to a single space known as configuration space, which is the
size of a single five-atom unit cell, see Fig. 2(b). Thus local
properties such polarization can be estimated in configuration
space using a bulk five-atom unit cell, which is much more
efficient than performing calculations using the full supercell.
For example, the polarization can be parameterized for every
point in configuration space by calculating the Berry phases
for a five-atom bulk cell with various displacements of the Ti
atom. Assuming the displacements in real space are known,
the local polarization can then be parameterized in real space
by using an inverse mapping from configuration space. While
the mapping of displacements between real space and config-
uration space is exact, the parametrization of local properties
relies on the approximation that the variation in displacements
in real space is small and can therefore be neglected; we say
that the local changes around a given cell are small, and we
neglect them, which gives a commensurate cell which is much
more easy to simulate. Of course, this approximation is not
good for properties which modulate at the unit cell level, such
as Peierls distortions, defects, dislocations, etc. However, for
quantities which vary smoothly on the supercell scale, the
approximation works well; in moiré materials for example, the
separation of supercell and single-layer unit cell length scales
justifies such approximate approach relying on the continuity
of the mapping.

While the local polarization can be parameterized in con-
figuration space by calculating Berry phases as a function
of displacements, it is typically estimated as follows for per-
ovskite systems: the displacements x(r j ) are measured in real
space, either experimentally or from molecular dynamics sim-
ulations. The displacements in each cell are contracted with
the Born effective charge tensor of the bulk cubic phase:

Pβ (r j ) ≈ 1

�0

∑
κ∈r j

∑
α

Z∗
κ,αβxκ,α, (2)

where �0 is the unit cell volume, contrary to the total supercell
volume �sc. The first sum is over the atoms κ in unit cell
r j , and the second is over Cartesian directions α. This is the
generally accepted method to measure local polarization in
oxide perovskites, and has been used to predict topologically
nontrivial polarization. One problem with Eq. (2) is that the
individual unit cells are not guaranteed to satisfy the acoustic
sum rule. In slablike systems, the polarization in each layer
is typically averaged over neighboring layers [54], and is
therefore not truly localized to each unit cell. Eq. (2) also

requires the Born effective charges to be uniform in con-
figuration space, which is reasonable when the polarization
varies slowly in real space, such as in the centers of the polar
domains, but not when the polarization varies sharply, such as
across domain walls; in PTO/STO superlattices for example,
the domain walls have been shown to be a single unit cell
wide [8]. Additionally, it is possible for ferroelectric domain
walls to be conducting, in which case it is not clear if the Born
effective charges are well defined [83,84].

One situation in which Eq. (2) fails to correctly estimate
the local polarization is in van der Waals materials, where
the Born effective charges vary nonlinearly as one layer slides
over the other [39]. Although the charge transfer and modu-
lation of the Born effective charges is small, they give rise to
the unique polarization textures in twisted bilayers and thus
cannot be neglected.

For a bilayer with relative twist angle θ between the layers,
see Fig. 2(c), the configuration space mapping is given by [81]

x(r) = (
I − R−1

θ

)
r, (3)

modulo any lattice vectors, where r is the real space position
and Rθ is a rotation matrix. While Eq. (3) is exact, for small
twist angles the local changes in environment around the
black unit cells are small, and the local properties in each cell
can be described by a commensurate bilayer with a relative

translation x ≈ θ
[

0 −1
1 0

]
r between the layers, see Fig. 2(d).

Similarly, for a small homogeneous strain η, the equivalent
mapping is x = ηr. This allows the local properties in strained
or small-angle twisted bilayers to be parameterized efficiently
with first-principles calculations using a single commensurate
cell of a bilayer, and sliding one layer over the other. Impor-
tantly, what we define as the unit cell r j for moiré systems,
is a unit cell of one layer and the atoms of the other layer
which are contained in that unit cell. Such a general projective
description is consistent with the configuration space picture,
and provides an arena to define a local quantity, given its
shortsightedness with respect to the neighboring unit cells.
However, within this picture, the configuration space calcula-
tions for simultaneously twisted and strained moiré bilayers
performed on an elastically deformed unit cell might yield
local polarization significantly deviating from the real values,
on applying periodic boundary conditions in configuration
space. The main reason for this is that when both unit cell
deformation and the stacking modulation due to the twist
are present, the repetition of such approximate unit cells in
configuration space for computational purposes, implicit in
the imposed boundary conditions, does not account for the
appreciable structural variations in the neighborhood of the
studied unit cell. Therefore such possibilities also motivate
pursuing the definitions of local polarization in crystal super-
lattices, beyond the notion of configuration space.

The local polarization can be calculated in the configura-
tion space by sliding one layer over the other and directly
calculating the Berry phases [34,35,39]. However, the Berry
phase obtained for each point in configuration is not physi-
cally meaningful. In real space, the Berry phase is a global
property of the system, which yields the total polarization. A
more natural way to define the local polarization is using the
Born effective charges, since they are locally well-defined in
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real space. When the Born effective charges are not constant,
Eq. (2) is not valid. Instead, the Born effective charges must
be integrated:

Pβ (r j ) ≈ 1

�0

∫ x(r j )

0
Z∗

κ,αβ (x′)dx′
κ,α, (4)

where summation over repeated indices is assumed, and again
only the atoms κ ∈ r j are displaced. When the Born effec-
tive charges are constant, Eq. (4) simplifies to Eq. (2). The
integration is performed from a reference state 0 to a general
configuration x, where in configuration space we can change
smoothly from one to the other via a relative translation be-
tween the layers. In order to obtain the polarization, rather
than an arbitrary change of polarization between two con-
figurations, the reference state is chosen to be nonpolar (for
a system with no nonpolar configuration, the reference state
should be the configuration with the highest symmetry). For
hBN and similar materials, the only nonpolar configuration
is when the layers are perfectly aligned (AA stacking) and
unstrained, and therefore, while Eq. (4) is naturally defined on
a torus, the normalized polarization, used in Eq. (1), is defined
on a punctured torus, similarly to the strain fields [85]. Eq. (4)
yields a polarization identical to the one obtained from Berry
phases [39].

While Eqs. (2) and (4) have been successfully used to esti-
mate polarization textures, they are both only valid for certain
approximations such as large supercells, smoothly varying
quantities and constant Born effective charges in the former
case. Furthermore, we also lose any information about the
electronic structure when using this approximation, because
the electronic bands for each point in configuration space
are not meaningful in real space. This is especially apparent
when calculating the Berry phases; the Berry phase is a global
property of a system, which we calculate from the bands for
each point in configuration space. Although we get a good
approximation to the local polarization, we do not have any
information about the contribution from different bands of the
supercell.

B. Defining local polarization

From the modern theory of polarization, the total polariza-
tion Ptot in a crystal is given by [46,47,50]

Ptot = −ie f

(2π )3

occ∑
n

∮
BZ

〈un,k|∇kun,k〉 dk, (5)

where |un,k〉 are the cell-periodic parts of the Bloch wave
functions and f is the occupation number of states in the
valence bands (2 for spin-degenerate systems). Equation (6)
can be rewritten as

Ptot = −e f

(2π )3

occ∑
n

∮
BZ

An(k) dk = −e f

�

occ∑
n

1

2π
φn,αaα, (6)

where aα are the lattice vectors, � is the system cell volume.

An(k) = i 〈un,k|∇kun,k〉 (7)

is the Berry connection of band n, and

φn,α = i�

(2π )3

∮
BZ

〈un,k|bα · ∇kun,k〉 dk (8)

is the Berry phase of band n in direction α, defined up to a
factor of 2π , where bα are the reciprocal lattice vectors. For
disordered systems, where k is not a good quantum number,
a generalization for the computation of macroscopic total
polarization with single-point Berry phases has been proposed
by Resta [86].

It is well-known that the absolute polarization in a crystal
is not well-defined. Only changes in polarization are well-
defined, modulo any quanta of polarization (integer values
of the Berry phases in different directions). Derivatives of
the polarization with respect to perturbations (phonon, strain,
electric field), which can be identified as the dielectric and
electromechanical properties of a system, are well-defined
and are routinely calculated from first-principles calculations,
either using finite difference methods or density functional
perturbation theory (DFPT) [87]: the dielectric response of a
system is related to the derivative of the total polarization with
respect to electric field [88], and electromechanical properties
can be measured by calculating the derivatives of the polar-
ization with respect to strain (piezoelectricity [89]), or strain
and electric field (electrostriction [90]). For our purposes, the
most relevant property is the derivative of the polarization
with respect to phonon displacements, i.e., the Born effective
charge tensor [88,91]:

Z∗
κ,αβ = �

∂Pβ

∂xκ,α

= ∂Fκ,α

∂Eβ

, (9)

where xκ,α is the real space (phonon) displacement of atom
κ in direction α, Fκ,α is the force on atom κ in direction α,
and Eβ is an electric field in direction β. Because the Born
effective charge tensor is related to the mixed derivative of the
free energy of the system with respect to phonon displacement
and electric field, it can be interpreted as both the dipole
generated by a phonon displacement, and the force generated
on an atom by an electric field.

As mentioned previously, the change in polarization from
one configuration to another can be obtained by integrating
the Born effective charges using Eq. (4). For twisted/strained
bilayers, this was done in configuration space in order to avoid
expensive calculations involving large supercells [39]. How-
ever, we propose that the local polarization may be calculated
in a more well-defined way by calculating the Born effective
charges in real space. While the polarization in configuration
space is simply approximate, the Born effective charges are
well-defined in real space because they are the derivatives
of the well-defined total polarization of the supercell with
respect to the local atomic displacements in each unit cell.
Expressed in this way, the Born effective charges are obtained
directly from the electronic bands of the supercell, rather than
the fictitious electronic bands in configuration space.

We define a unit cell r j as the smallest structural unit that
can be mapped to configuration space, which captures the
complete set of all possible configurations, i.e., spanning the
entire system. Writing the dynamical charges in each unit cell
as [92,93]

Z∗
κ,αβ (x(r j )) = −2ie f �sc

(2π )3

occ∑
n

∮
scBZ

〈∂xκ,α
un,k|∂kβ

un,k〉 dk,

(10)
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for all atoms κ in cell r j , the local polarization in each unit
cell is given by

Pβ (r j ) = −2ie f

(2π )3

∫ x(r j )

0

occ∑
n

∮
scBZ

〈∂xκ,α
un,k|∂kβ

un,k〉 dk dx′
κ,α.

(11)
It is important to stress that the momentum space integral
is evaluated over the supercell Brillouin zone (scBZ) and
the summation is performed over the bands of the supercell,
while the integral with respect to x is performed over the
relative displacements not in real space, but in configuration
space, where the different configurations are connected by the
phonon displacements x. The limits of the integral are the
nonpolar reference state 0 and the local configuration in each
unit cell r j .

The key difference between Eqs. (11) and (4) is that the
Born effective charges are calculated correctly: in real space,
and using the electronic bands of the supercell. There are
a few subtle details associated with the definition of local
polarization in this way. First, the system must be a supercell
comprised of a number of smaller unit cells, within each a
local polarization is defined. The local polarization in each
cell is really defined as a change in polarization with respect
to a reference cell, but taking the reference cell to be nonpolar,
we write the polarization as P rather than �P. The integral
over configurations in Eq. (11) could be mapped to positions
in real space. However, in real space the polarization is a
discrete vector field, defined in each unit cell of the super-
cell, whereas configuration space is generally continuous and
simply connected. A commensurate supercell is mapped to a
finite subset of configuration space containing a discrete set of
points, but for an incommensurate supercell, where the period
goes to infinity, there is a one to one mapping between the two
spaces. The integral over x in Eq. (11) should be discretized
over the unit cells in real space, but we can take advantage of
the fact that configuration space is continuous and interpolate
the Born charges (or any local quantity), and obtain the local
polarization field in configuration space which is continuous
and varies smoothly.

C. Local polarization from a 2D continuum model

In the configuration space method, the polarization is com-
puted as a global quantity in each configuration and then
related to the local polarization via a mapping between con-
figuration and the real space. This approach has its benefit
as the global polarization is well defined for each point in
configuration space. However, physically its relation to the
local polarization becomes less transparent. The direct real-
space picture described in the previous section is obtained
at the unit cell level. However in moiré superlattices it is
often more convenient to work with continuum models. While
superlattices constructed from microscopic unit-cells are only
well-defined at some commensurate twist angles or strains,
the continuum model description accurately captures the low
energy physics at all small angles and strains with smooth
moiré periods, irrespective of microscopic periodicity [76].

Here, we show that an expression for local polarization
can be obtained in real space using a continuum field ap-
proach, derived in the context of deformation fields [77]. For

illustrative purposes, we consider a moiré bilayer formed by a
small strain or twist angle, although the generalization to the
more complicated moiré patterns is straightforward.

The continuum model describes the low energy physics
near a band extremum that is located at the momentum K of
the undeformed monolayer. The electron field at K is given by

c(x) = ψ (x)eiK·x. (12)

For concreteness, we assume that near this extremum the
low energy physics of the monolayer is described by a 2D
massive-Dirac model. This is appropriate for bilayer hBN,
the main example considered in this work and in Ref. [39],
although generalization to other models and dimensions is
straightforward. The monolayer Hamiltonian is given by

HML =
∫

ψ†(mτ3 − ivτμ∂xμ
)ψ d2x, (13)

where m is the mass gap, v is the Dirac-velocity and the τ

Pauli-matrices act on some internal degrees, which for hBN
are the two sublattices. Summation is assumed, with μ = 1, 2.

The effect of small strain and twist can be captured by a
local deformation D(r) field as

r = x + D(r), (14)

where r is real space position in a “laboratory frame,” x is the
position in the monolayer and D(r) is a deformation field as
a result of strain and twist. The deformation field is assumed
to be locally small, i.e., ∂μD � 1. It is crucial to define the
“small” deformation D as a function of the variable r instead
of the variable x, since when considering the multilayers, x
are associated with the individual layers correspond to very
different locations r in the real space. Thus one cannot de-
fine a “small local” deformation field in the variable x. This
is equivalent to the configuration-space consideration where
configuration space vector is simply the local change in con-
figurations of the unit cells from the top and the bottom layers,
instead of overall global shift of the particular unit cell as one
of the layer is twisted or strained.

As a result of a small deformation in the layer, the electron
field is locally modified as

c(r) =
∣∣∣∣det

(
∂xμ

∂rν

)∣∣∣∣
1/2

c(x(r)). (15)

The ψ field is correspondingly modified as

ψ (r) = (1 − ∇ · D(r))1/2ψ (x(r))e−iK·D(r), (16)

and the integral measure is modified as

d2x = det

(
∂xμ

∂rν

)
d2r ∼ (

1 − ∇ · D(r)
)

d2r. (17)

The continuum Hamiltonian of the decoupled bilayers can be
obtained when each layer experiences an independent defor-
mation field Dl , where l = t,b is the layer index:

HBL =
∑
l=t,b

∫
ψ

†
l

[
mτ3 − iv

(
τμ + ∂Dl,μ

∂rν

τ ν

)
∂rμ

+ v(K · ∂rμ
Dl )τ

μ

]
ψl d2r, (18)
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where we have kept only the terms linear in the deformation
field. For example, if the two layers are twisted rigidly by
angles ±θ/2, the deformation field is given by

Dt(r) = −Db(r) = θ

2
ẑ × r. (19)

The twist deformation is simply the continuum field analog
of the real space to configuration space mapping for a twisted
moiré bilayer in Eq. (3). The interlayer tunneling Hamiltonian
is also modified under the twist deformation and takes a gen-
eral form

Htun =
∫

ψ†
t T (Dt − Db)ψb d2r + H.c., (20)

Here, we have assumed that the interlayer tunneling T is
purely local and does not depend on the gradients of the
deformation fields. Furthermore, if the two layers are de-
formed identically, the local interlayer tunneling must remain
unchanged. Thus we take the tunneling Hamiltonian to only
depend on the relative deformation of the two layers. The
tunneling Hamiltonian can further be constrained by the rele-
vant symmetries near K. A number of those symmetry-related
constraints are system dependent, however, the discrete lattice
translation symmetry T (D(r + a)) = T (D) is a common fea-
ture. Thus

T (D) =
∑

G

TGeiG·D, (21)

where G are the reciprocal lattice vectors of the undeformed
monolayer. Finally the Hamiltonian of the moiré bilayer can
be represented as

Hmoiré = HBL + Htun ≡ H0 + H[D,∇D], (22)

where H0 is the Hamiltonian of the undeformed bilayer, which
we take to be nonpolar, i.e., a commensurate bilayer with AA
stacking. Thus the local polarization can be characterized by
the evolution of the total polarization as the deformation is
turned on adiabatically:

P(D(r)) =
∫ D(r)

0

∂P
∂DdD, (23)

where

∂P
∂D = −2ie f

(2π )2

occ∑
n

∮
mBZ

〈
∂Dun

D,G(k)
∣∣∂kun

D,G(k)
〉
dk, (24)

denoting mBZ as the moiré BZ, a specific case of the more
general scBZ. Here, un

D,G(k) are the Bloch wavefunctions,
obtained by solving the continuum model Hamiltonian in
Eq. (22).

D. Wannier functions and gauge invariance

When considering polarization in a crystal, it is natural to
work in terms of localized states such as Wannier functions
[94]:

|wn,R〉 = �

(2π )3

∮
BZ

e−ik·R |ψn,k〉 dk

|ψn,k〉 =
∑

R

eik·R |wn,R〉
, (25)

which are the Fourier transforms of the Bloch states. We have
one for each band n and each lattice vector R. In the case
of a supercell, R represents a supercell vector. The Wannier
functions are orthonormal, have translational invariance, and
are exponentially localized for a system with topologically
trivial electronic bands. In seminal works by King-Smith and
Vanderbilt [46,47], it was shown that the Wannier centers
w̄n ≡ 〈wn,0|r|wn,0〉, the expectation values of the position op-
erator in the Wannier basis, can be identified as the integral of
the Berry phases, with units of length (see Appendix A):

w̄n ≡ 〈wn,0| r |wn,0〉 = i�

(2π )3

∮
BZ

〈un,k|∇kun,k〉 dk. (26)

A well-known property of the Wannier functions is that their
centers are invariant, modulo a lattice vector, with respect to
single-band gauge transformations of the Bloch states:

|un,k〉 → |u′
n,k〉 = e−iβn (k) |un,k〉 , (27)

where β(k) = β(k + G) + G · R, and G is a reciprocal lattice
vector. For a so-called small gauge transformation defined by
R = 0, each Wannier center is invariant: w̄′

n = w̄n, whereas
for a large transformation with R �= 0: w̄′

n = w̄n + R, which
contributes a quantum of polarization to the total polarization,
but does not affect the physical observables.

All such transformations provide automorphisms of iso-
lated bands. However, when there are crossings between
bands, the identity of single bands within the band subspaces
is lost, which can lead to potential problems with the smooth-
ness of integrands when computing Wannier centers [50]. In
this case, on isolating an occupied band subspace from a
Bloch bundle, more general multiband gauge transformations
apply

|un,k〉 → |u′
n,k〉 =

occ∑
m

Unm(k) |um,k〉 , (28)

with the single-band gauge transformations
Unm(k) = δn,me−iβn (k) constituting only a subset of
the non-Abelian matrix transformations. Under such
transformations, the trace of the matrix-valued non-Abelian
Berry connection,

Anm(k) = i 〈un,k|∇kum,k〉 , (29)

is preserved, rather than the individual components. Therefore
in general, the gauge invariant quantity is not the individual
Wannier centers, but the sum of Wannier centers of occupied
bands [95]:

occ∑
n

w̄′
n =

occ∑
n

w̄n. (30)

This gauge freedom is typically used to change the repre-
sentation of the states to obtain maximally localized Wannier
functions [94], using the WANNIER90 code [96], for example.
The Wannier centers can be calculated in configuration space
using first-principles calculations and WANNIER90:

w̄n(x) = 〈wn,0(x)|r|wn,0(x)〉 . (31)
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As mentioned previously, the Wannier centers have been used
to estimate the local polarization in real space using [52]:

P(r j ) = − e f

�0

occ∑
w̄n∈r j

w̄n, (32)

where the local polarization in cell r j is related to the sum
over Wannier centers in cell r j . However, Eq. (32) is not
gauge invariant in general, since individual sums of Wannier
centers are not gauge invariant in the multiband case. Going
from a unit cell to a supercell shrinks the BZ and introduces
significant band folding, in which case it might not always
be possible to disentangle the Wannier functions into isolated
unit cells.

We propose that the correct way to define the local polar-
ization in terms of Wannier centers is to calculate the changes
of all the Wannier centers of occupied bands in a supercell
with respect to local perturbations:

P(r j ) = − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
w̄n dx′

κ,α, (33)

where κ ∈ r j . Manifestly, this shows that the local polariza-
tion is defined mod eR/�0 under large gauge transformations
of the Bloch bands over the supercell BZ. As with Eq. (11),
Eq. (33) calculates the change in a global property of the sys-
tem, which is well-defined, with respect to local perturbations.
If the perturbation in a given cell only affects the Wannier
centers attributed to that cell, then Eq. (33) reduces to Eq. (32).

The expression for local polarization given by Eq. (33) is
exact, but evaluation of the Wannier centers and their variation
in a supercell is computationally and technically demand-
ing. In practice, Wannier functions are typically obtained
in configuration space, which works well in many circum-
stances; for example, tight-binding models of twisted bilayers
parametrized using Wannier functions have been shown to
give accurate descriptions of the electronic bands for a range
of supercell sizes [97,98].

Nonetheless, it is interesting to assess how large a dis-
crepancy there can be between the local polarization obtained
from configuration space and real space Wannier centers.
Consider a unit cell, repeated to form a supercell, but with
an identical configuration in each cell. Now, we switch on an
additional supercell potential correction, λ�Vsl(x(r)), to the
potential imposed by configuration space, where λ=0 → 1
parameterizes the switching on/off of the correction. For
λ = 0, the Wannier functions should be the same in each
unit cell by translational invariance, and are thus equivalent
to the Wannier functions at a given point in configuration
space: |wcs

n,R〉 ≡ |wλ=0
n,R 〉. For λ = 1, the potential in each unit

cell is different, and the Wannier functions are no longer
equivalent by translational invariance. We denote these as
the supercell Wannier functions: |wsl

n,R〉 ≡ |wλ=1
n,R 〉, i.e., those

obtained directly in real space. In both |wcs
n,R〉 and |wsl

n,R〉,
R is a supercell vector. The Wannier functions are given by
wλ

n,R(r − R) = 〈r|wλ
n,R〉 in the position representation, and

for any λ, and R = 0 we have

w̄λ
n = 〈

wλ
n,0

∣∣ r
∣∣wλ

n,0

〉
, (34)

which can be used to track the evolution of the Wannier
centres after switching on the supercell potential �Vsl(x(r)).
The cumulative change on applying the supercell potential
correction can be written as∣∣wsl

n,0

〉 = ∣∣wcs
n,0

〉 + |�wn,0〉 , (35)

where

|�wn,0〉 =
∫ 1

0
|∂λwn,0〉 dλ. (36)

The change in the Wannier functions can be determined from
the corresponding changes in the Bloch states:

|∂λwn,0〉 = �sc

(2π )3

∫
scBZ

eik·r |∂λunk〉 dk, (37)

where the changes in the Bloch states are determined by the
Sternheimer equation [99–101],

|∂λunk〉 = −An(k) |unk〉 +
∑
m �=n

|umk〉 〈umk|
En − Em

(∂λH ) |unk〉 ,

(38)
which can be evaluated using DFPT. The difference between
the local polarization obtained in real space and configuration
space is determined by the error in the Wannier centers:

�w̄n = w̄sl
n − w̄cs

n = 〈�wn,0| r
∣∣wcs

n,0

〉 + c.c. + O
(
�w̄2

n

)
,

(39)

to first order in �w̄n. The correction to local polarization is
then given by

Perr(r j ) = Psl(r j ) − Pcs(r j )

= − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
�w̄n dx′

κ,α

, (40)

where Psl/cs(r j ) represent the local polarization calculated us-
ing Wannier centers in real space/configuration space:

Psl/cs(r j ) = − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
w̄sl/cs

n dx′
κ,α. (41)

III. RESULTS

A. First-principles calculations

While we propose that the most correct way to calculate
local polarization is from the Wannier centers/Born effective
charges in real space, this is a very computationally heavy
and technically demanding task for large supercells, which
deserves its own dedicated study and is beyond the scope of
this work. As a stepping stone, we first show that our proposed
expressions for local polarization, Eqs. (11) and (33), give
the correct expression in configuration space, i.e., they are in
agreement with the result obtained from Berry phases. As an
example, we consider 3R-stacked bilayer hBN, following the
methodology in Refs. [34,35,39].

First-principles density functional theory (DFT) calcula-
tions were performed using the ABINIT [102] code, using PSML

[103] norm-conserving pseudopotentials [104], obtained from
Pseudo-Dojo [105]. ABINIT employs a plane wave basis
set, which was determined using a kinetic energy cutoff
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FIG. 3. (a) Orbital character of the eight valence bands and the bottom of the conduction band in bilayer hBN (AA stacking). (b) electronic
band structure obtained from first-principles calculations using ABINIT (black) and Wannier interpolation using WANNIER90 (red). (c) Out-of-
plane and (d) in-plane polarization in fractional coordinates along the configuration space diagonal, calculated from the Berry phases (red),
integrating the Born effective charges (blue) and the Wannier centers (black). The positions high symmetry stackings AA (x = 0), AB (x = 1

3 ),
DW (x = 1

2 ), and BA (x = 2
3 ) are indicated by the ticks and sketched above. [(e) and (f)] Maximally localized Wannier functions obtained in

bilayer hBN: (e) an sp orbital aligned with the B-N bond (three per layer) and (f) an sp orbital normal to the layers (one per layer).

of 1000 eV, and a Monkhorst-Pack k-point grid [106] of
12×12×1 was used. Calculations were converged until the
relative changes in the total energy were less than 10−10 Ha.
The revPBE exchange-correlation functional was used [107],
and the vdw-DFT-D3(BJ) [108] correction was used to treat
the long-range interactions between the layers.

The top hBN layer was translated along the unit cell di-
agonal over the bottom layer, which was held fixed. At each
point, a geometry relaxation was performed to obtain the equi-
librium layer separation, while keeping the in-plane lattice
vectors fixed to those of the nonpolar (AA) stacking. The
out-of-plane and in-plane polarization were then obtained by
calculating the Berry phases of the Bloch states. The out-
of-plane polarization P⊥ was found to be odd with respect
to the relative stacking, and the in-plane polarization, �P‖,
was found to be even, as reported in Ref. [39]. At each point
along the unit cell diagonal, the Born effective charges were
calculated by calculating the change in the Hamiltonian and
Bloch states in response to electric field perturbations, using
the DFPT routines in ABINIT. At each point in configuration
space, the Wannier functions were also calculated using WAN-
NIER90, which interfaces with ABINIT. Maximally localized
Wannier functions [94] were obtained by using the gauge
freedom to minimize the spread. The orbital characters of the
eight valence bands and the lowest lying conduction band,
see Fig. 3, were used to determine the initial projections onto
atomic orbitals. The lowest valence bands are comprised of
in-plane sp-like states, with three in each layer. The highest
valence bands and lowest conduction bands have pz charac-
ter, originating from the N and B atoms, respectively. The
spread was minimized until the relative change was less than

10−10 Å2 and the bands obtained from Wannier interpolation
were in agreement with the bands obtained from ABINIT, see
Fig. 3(b). The bands are well-reproduced with three in-plane
sp-like states [Fig. 3(e)] and one spz-like state [Fig. 3(f)] for
each layer.

The out-of-plane and in-plane polarization of bilayer hBN
in configuration space are shown in Figs. 3(c) and 3(d),
respectively. The red data show the polarization obtained
from Berry phases, i.e., calculating the polarization from the
electronic bands of a commensurate bilayer plus a relative
translation between the layers. The blue data show the po-
larization obtained by integrating the Born effective charges
along the unit cell diagonal, i.e., Eq. (11). The polarization
obtained from Eqs. (11) and (2) are shown in Appendix B,
Fig. 7. We can see that the polarization obtained using Eq. (2)
is not in agreement with the results obtained from Berry
phases, differing by an order of magnitude and having the
wrong form. The black data show the polarization obtained by
measuring the sum of Wannier centers in configuration space,
which is in exact agreement with the other two methods. In
configuration space, the eight Wannier functions describe all
of the occupied bands, so the sum of Wannier centers for each
configuration is always gauge invariant, and Eq. (33) reduces
to Eq. (32).

B. Effective model

The calculation of polarization from first-principles calcu-
lations in configuration space are a valid approximation to the
local polarization in real space for large supercells. As a proof
of concept, we show using a one-dimensional effective model
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Vc

Vsc + Vdep,jj
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FIG. 4. (a) Sketch of the two-cosine model for a one-dimensional
supercell: a periodic chain of atoms with spacing a. The potential
from the ions Vc(x) is shown in gray. The supercell potential Vsc(x),
with period Na, is shown in black. (b) Sketch of the system with a
modified potential due to a depolarizing perturbation from a probe.
The action of the perturbation brings the cell j to a nonpolar config-
uration and the response of the Wannier centers of occupied bands
can be determined to measure the local polarization.

that our proposed definition of local polarization, Eq. (33),
can be calculated directly in real space without relying on this
approximation. We consider a model inspired by the Aubry-
André (AA) model [75] which consists of a one-dimensional
chain of atoms with an atomic spacing a and a supercell
potential with period Na, where N ∈ N is not necessarily
large, see Fig. 4(a). The model is described by the one-body
Hamiltonian

H = −1

2

d2

dx2
+ Vc(x) + Vsc(x), (42)

in terms of one-dimensional position x, where the
first term represents the kinetic energy of an electron,
Vc(x) = 2V0 cos(Gx) is the ionic potential with G = 2π

a , and
Vsc(x) = 2λV0 cos(GN x) is the supercell potential, which can
be interpreted as a contribution due to the local displacement
of the cores, where GN = G

N . As in the previous section,
we introduce a parameter λ which determines the relative
strength between the core and supercell potentials and can
be used to switch on the supercell potential. Contrary to the
previous case, λ can be larger than λ = 1 if the supercell
potential is stronger than the core potential.

For weak core and superlattice potentials, we can perturba-
tively obtain the eigenstates of (42) using the nearly-free elec-
tron gas approach via nearly-degenerate perturbation theory,
using a basis of plane-wave states |k〉 with energies εk = 1

2 k2

from the free-particle problem. The potential mixes different
plane wave states {|k + mGN 〉}, for {m ∈ Z : |m| � N}, yield-
ing a set of secular equations. Evaluating the corresponding
matrix elements of the effective Hamiltonian,

〈k + mGN | H |k + nGN 〉
= εk+mGN δm,n + V0(δm,n+N + δm,n−N )

+ λV0(δm,n+1 + δm,n−1), (43)

we obtain the following matrix equation:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εk λV0 λV0 · · · V0 V0

λV ∗
0 εk+GN 0 · · · 0 0

λV ∗
0 0 εk−GN

. . . 0 0
...

...
. . .

. . .
...

...

V ∗
0 0 0 · · · εk+G 0

V ∗
0 0 0 · · · 0 εk−G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ck

ck+GN

ck−GN

...

ck+G

ck−G

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Ek

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ck

ck+GN

ck−GN

...

ck+G

ck−G

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(44)

The approximate (unnormalized) eigenstates are given by

|ψ〉 =
N∑

m=−N

ck+mGN |k + mGN 〉 , (45)

with position representation

ψ (x) = eikx
N∑

m=−N

ck+mGN eimGN x. (46)

The approximate eigenstates are Bloch states,
ψ (x) = eikxunk(x), with cell-periodic parts which are periodic
over a supercell period: unk(x) = unk(x + Na). Solving the
secular equations yields 2N + 1 coefficients ck+mGN for each
k, and a set of energy bands Ek which are sensitive to the
parameters V0 and λ. The basis states corresponding to larger
reciprocal lattice vectors can also be included to increase the
accuracy of the approximate solution to the model. Eq. (44)
was solved numerically for N = 5, and the resulting bands
are shown in Fig. 5(a). For λ = 0, the folding of the bands
into the scBZ introduces many band crossings. Switching
on the supercell potential with λ �= 0 opens up several gaps
where the bands cross.

Having found the approximate bands and eigenstates, we
can proceed to obtain the Wannier functions wλ

n,X for a given
λ, where n is the band index and X is a lattice vector. For
λ = 0, the Wannier functions are given by

w0
n,X (x − ja) ∝

∫
BZ

eik(x− ja)
(
ck + ck+GeiGx

)
dk, (47)

where X is a unit cell vector and the integral is over the BZ,
[−π

a , π
a ], because the periodicity reduces to a in the absence

of a supercell potential. For λ �= 0, the Wannier functions are
given by

wλ
n,X (x − jNa) ∝

∫
scBZ

eik(x− jNa)
N∑

m=−N

ck+mGN eimGN x dk,

(48)

where X is a supercell vector and the integral is over the
scBZ, [− π

Na , π
Na ]. The Wannier functions were obtained and

their centers are plotted in Fig. 5(b) for two different gauges.
The first gauge projected the Wannier centers onto the atomic
sites, as indicated by the black lines. For the second gauge,
there is a displacement between the Wannier centers and
the atomic sites in each cell, as indicated by the red lines.
However, the sum of Wannier centers is the same in each
case, and both sets of Wannier functions can be used as a
localized basis. This illustrates the arbitrariness of describ-
ing local polarization in a supercell using partial sums over

033216-10



THEORY OF POLARIZATION TEXTURES IN CRYSTAL … PHYSICAL REVIEW RESEARCH 5, 033216 (2023)

(a
rb

. 
u
n
it

s)

FIG. 5. (a) N = 5 two-cosine model bands for λ = 0 (dashed)
and for λ = 1 (solid), with V0 = −1. As the supercell potential
strength is switched on, additional gaps open. (b) Wannier centers
for the five occupied supercell bands, using two different multiband
gauges. The first gauge results in atom-centered Wannier functions
(black), and the second gauge results in Wannier functions with
cell-dependent off-centering (red). The Wannier centers are indicated
by the arrows in both cases. The total sum of Wannier centers is the
same for both gauges. As the Wannier functions in arbitrary gauges
are not well-localized, their representations around different Wannier
centers are purely illustrative.

Wannier centers with Eq. (32), as the partial sums are not
gauge invariant.

In the spirit of Eq. (33), we introduce an additional
local potential to Eq. (42) in order to calculate the dis-
placements of all the Wannier centers in response to local
perturbations. This can be achieved by switching a cell j
to a nonpolar configuration using a depolarizing potential
Vdep, j (x):

Vdep, j (x) =
[
θ
(

x − ja + a

2

)
− θ

(
x − ja − a

2

)]

× [Vsc(x − ja) − Vsc(x)], (49)

where θ (x) is the Heaviside step function. Such a potential
could be achieved using a tip to locally probe the system,
see Fig. 4(a). The supercell potential in cell j is removed and
replaced with the potential of the nonpolar configuration. The
matrix elements of Vdep, j are given by

(Vdep, j )nm = � j

∫ ja+ a
2

ja− a
2

eiGN (m−n)x sin(GN (x − ja/2)) dx

� j = 4λV0

Na
sin

(
π j

N

)
. (50)

FIG. 6. (a) Shift of Wannier centers in response to local per-
turbations Vdep, j in each cell, for λ = 2 and V0 = −2. (b) Local
polarization calculated from the displacement of all Wannier centers
in response to the perturbation potential Vdep, j applied to cell j.

Adding these matrix elements to the secular equations,
Eq. (44), the change in the Wannier centers of the occupied
bands in response to local perturbations in each cell can be
obtained, see Fig. 6(a), which allows the local polarization
to be calculated, see Fig. 6(b). We note that the polarization
is odd, and reminiscent of the out-of-plane polarization in
bilayer hBN along the unit cell diagonal, see Fig. 3(c). By the
symmetry of the potential, the local polarization is odd about
x = 0, and sums to zero.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we propose a definition of the local polar-
ization in a crystal supercell, obtained either by integrating
the Born effective charges, Eq. (11), or the changes in the
Wannier centers of all occupied bands with respect to lo-
cal perturbations, Eq. (33). In this way, the polarization can
be calculated directly in real space, and is gauge invariant.
We show that Eqs. (11) and (33) are in agreement with the
polarization obtained from Berry phases when evaluated in
configuration space. Although we propose that it is more
correct to calculate the polarization directly in real space,
this would inolve DFPT or Wannierization calculations with
large supercells, which may be expensive and impractical. In
simple cases, the conventional approximations Eqs. (2) and
(32), may be sufficient for estimating the local polarization.
However, this is an important subject of future research: in
many systems where topologically nontrivial polarization tex-
tures are observed, it should be checked that the shape and
topology are the same when calculating the polarization in
configuration space and in real space. For example, in twisted
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bilayers, the configuration space approximation is only valid
for small angles, and while it is clear there should be a polar–
nonpolar transition somewhere between 0◦ < θ < 60◦, it is
not immediately clear where this transition occurs, or what the
polarization field looks like beyond the small angle regimes
[35]. Such large-scale calculations may not be unrealistically
expensive: fortunately, larger twist angles result in smaller
supercells, meaning the length scales where the configuration
space approximation breaks down naturally contain fewer
atoms. Furthermore, because the Born effective charge tensor
is a mixed derivative of the free energy, it can be obtained
using either type of perturbation (phonon or electric field).
Thus, instead of 3N phonon perturbations, where N is very
large, the effective charges can be obtained with only three
electric field perturbations. This is known as the “interchange
theorem” [88].

We also demonstrate as a proof of concept that the local
polarization can be calculated directly in real space in a one-
dimensional effective model. The polarization is calculated in
a small supercell, for which the configuration space approxi-
mation is not valid, by calculating the change in the Wannier
centers of all occupied bands in response to a depolarizing
potential from a local probe. The calculated local polarization
is consistent with the form of the potential experienced by
electrons.

A better definition and understanding of local polarization
is essential for considering topological polarization. As men-
tioned previously, because polarization is topological in the
real space sense, the topological properties are solely deter-
mined by the geometry of the supercell and the underlying
crystal symmetry of the lattice. Having a correct definition of
the local polarization such as Eq. (11) shows that topological
polarization can indeed be calculated from the bands of a
supercell, and that this real space topology can be described
at the electronic level. This is important when considering the
relation between polarization and band topology. Recently, it
was predicted that ferroelectric switching via van der Waals
sliding can lead to a change in the QAH conductance in a
topological insulator [71]. Another recent theory proposes
that that for a material in a moiré potential, which results
in electronic bands with nonzero Chern numbers, the Chern
numbers can be altered by applying an electric field [109].
In this example, the moiré superlattice potential was achieved
using a nonpolar material. Substituting a ferroelectric material
may lead to Chern bands which can be switched at zero field.
Although in both Refs. [71] and [109] the polarization was
uniform, they both suggest that polarization can influence
the topological properties of a system. There may be addi-
tional phenomena which are unique to topologically nontrivial
polarization textures, although currently no such phenomena
have been considered or proposed.

Similar to the effect of polarization on the band topology,
one may consider the effect of the band topology on the local
polarization textures. When considering local polarization, we
can define a higher-dimensional space spanned by the BZ and
configuration space, which for the case of a bilayer would be a
four-dimensional torus. In this higher dimensional space, the
local polarization resembles the phase-space Berry curvature
[see Eq. (11)]. Thus the local polarization can be linked to

the evolution of the phase-space Berry curvature and Chern
numbers as a function of relative configurations. However, the
local polarization is defined as an integral from the nonpolar
reference state which does not form a closed loop in con-
figuration space, and thus the Chern theorem does not apply
unless considering a translation by a unit cell. For example,
the most important shift in a bilayer is the one associated to the
ferroelectric switching of the polarization, achieved by a rela-
tive sliding of a third of a unit cell diagonal: x = 1

3 (a1 + a2).
The change in polarization associated to this switching pro-
cess does not form a closed loop in configuration space, and
thus cannot result in a nonzero Chern number. Furthermore,
in bilayer hBN the electronic bands are topologically trivial
for every point in configuration space, and sliding one layer
over the other does not change this. Because polarization
alone does not break time-reversal symmetry, a polarization
texture cannot by itself lead to any nontrivial Chern band
topology. For this to occur, time-reversal symmetry must be
broken by some other means. In order to see the interplay
between topological polarization and band topology, we must
consider a system which is already topologically nontrivial,
but is also polar, such as those considered in Refs. [71,109]. In
this case, the description of local polarization developed here
would need to be generalized to the case of Chern insulators,
by tracking the evolution of hybrid Wannier centers [67,68].
Here, bulk-boundary relations [55,56,110–112] also pose an
intriguing question for future pursuits.
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APPENDIX A: RELATION BETWEEN BERRY PHASES
AND WANNIER CENTERS

For illustrative purposes, we briefly review the derivation
for the important relation between the Berry phases and the
Wannier centers [50]. First, we apply the position operator to
a Wannier state |wn,R〉:

r |wn,R〉 = �

(2π )3

∮
BZ

re−ik·R |ψn,k〉 dk

= �

(2π )3

∮
BZ

reik·(r−R) |un,k〉 dk

, (A1)

where we write the Bloch state as |ψn,k〉 = eik·r |un,k〉. Next
we rewrite the product of the position operator and the
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exponential:

reik·(r−R) = (R − i∇k )eik·(r−R), (A2)

giving

r |wn,R〉 = �

(2π )3

∮
BZ

(R − i∇k )eik·(r−R) |un,k〉 dk. (A3)

For the term proportional to ∇k, we perform integration by
parts. The boundary term vanishes because the integral is
around a closed loop in the BZ and |un,k〉 has translational
invariance. This gives

r |wn,R〉 = �

(2π )3

∮
BZ

eik·(r−R)(R + i∇k ) |un,k〉 dk. (A4)

Now we multiply by

〈wn,0| = �

(2π )3

∮
BZ

e−ik′ ·r 〈un,k′ | dk′, (A5)

which gives

〈wn0| r |wnR〉 = �

(2π )3

∮
BZ

e−ik·R 〈unk| R + i∇k |unk〉 dk.

(A6)
The term proportional to R gives Rδ0R, which vanishes on
setting R → 0, as we get the expected expression for the
Wannier centers:

w̄n ≡ 〈wn,0| r |wn,0〉 = i�

(2π )3

∮
BZ

〈un,k|∇kun,k〉 dk. (A7)

APPENDIX B: POLARIZATION FROM BORN EFFECTIVE
CHARGES

The local polarization obtained from Eqs. (2) and (11) are
shown in Fig. 7.

FIG. 7. (a) Out-of-plane and (b) in-plane polarization obtained
by integrating the Born effective charges (blue) and multiplying the
Born effective charges by the relative displacement (green). The
positions high symmetry stackings AA (x = 0), AB (x = 1

3 ), DW
(x = 1

2 ), and BA (x = 2
3 ) are indicated by the ticks and sketched

above.
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