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Interface disorder as the cause for the kinetic Rashba-Edelstein effect and interface spin-Hall
effect at a metal-insulator boundary
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The spin phenomena observed at a clean metal-insulator interface are typically reduced to the Rashba-
Edelstein effect, which leads to spin accumulation over a few monolayers. We demonstrate that the presence
of interface disorder significantly expands the range of potential phenomena. Specifically, the skew scattering
at the metal-insulator boundary gives rise to the “kinetic Rashba-Edelstein effect,” where spin accumulation
occurs on a much larger length scale comparable to the mean free path. Moreover, at higher orders of spin-orbit
interaction, skew scattering is accompanied with spin relaxation resulting in the interface spin-Hall effect—a
conversion of electrical current to spin current at the metal surface. Unlike the conventional spin-Hall effect, this
phenomenon persists even within the Born approximation. These two predicted phenomena can dominate the
spin density and spin current in devices of intermediate thickness.
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I. INTRODUCTION

Spin-orbit interaction is a fundamental phenomenon that
enables the exchange of angular momentum between orbital
and spin degrees of freedom. One of the promising applica-
tions of this interaction is in the development of spin-orbit
torque devices, which offer a scalable and field-free solution
for magnetic memory that can be controlled by electrical cur-
rents [1–3]. Experimental studies have already demonstrated
the magnetization switching [4–6] and domain wall motion
[7] in such devices, with other potential applications including
the control of magnetic skyrmions [8] and spin waves [9].

The basic setup for a spin-orbit torque device involves
a magnetic bilayer composed of a heavy metal layer with
strong spin-orbit coupling and a ferromagnetic layer that acts
as the detector for spin polarization and spin current from
the heavy metal. Although this simple bilayer composition
is already functional [10], additional layers are often added
to enhance or modify the device properties. These additional
layers can be added from the side of the ferromagnet [11],
from the side of the heavy metal [12], or between them [13].
They are usually composed of materials possessing specific
spin properties, such as antiferromagnets [14] and topological
insulators [15,16].

Surprisingly, recent research has shown that even insulat-
ing nonmagnetic molecules can significantly enhance the spin
torque when added from the side of the heavy metal, for heavy
metal thicknesses up to 5 nm [17]. These results have drawn
our attention to the spin phenomena occurring at the interface
between heavy metals and insulators.
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Spin generation in magnetic bilayers is typically attributed
to either the Rashba-Edelstein surface effect or the spin-Hall
effect (see Fig. 1). Although it can be difficult to distinguish
between these effects in a given experiment [4], they differ
significantly in terms of the device engineering. The Rashba-
Edelstein effect results in spin polarization at the surface of
the heavy metal where inversion symmetry is broken. How-
ever, this polarization is confined to only a few monolayers
near the interface [18–21], meaning that the spin generated
at the heavy metal interface with a third material can affect
the ferromagnetic layer only in very thin devices. When the
heavy metal layer is thick, the spin torque in the ferromagnetic
layer is usually attributed to the spin-Hall effect, which is the
conversion of electrical current to spin current in the heavy
metal layer [22,23]. However, the spin-Hall effect is related
to the bulk properties of the heavy metal [24–26] and is not
expected to be significantly influenced by the heavy-metal–
insulator interface. In relatively clean samples the spin-Hall
effect is dominated by skew scattering at impurities in the
bulk, which is absent in the Born approximation, resulting in
a suppression factor of V0/εF , where V0 is the potential of a
single impurity and εF is the Fermi energy.

The recently predicted interface spin-Hall effect combines
the properties of the Rashba-Edelstein and conventional spin-
Hall effects. It refers to the electrical-current-to-spin-current
conversion at the interface. Its phenomenological possibility
is demonstrated in Refs. [27–29]. However, it has only been
studied for the interface of two metals and was attributed to
spin filtering, which involves different probabilities for spin-
up and spin-down electrons to traverse the interface between
metals [2,30,31]. Similar spin filtering was also predicted for
tunneling through semiconductor barriers [32–34].

Here we investigate the spin kinetics near a disordered
heavy-metal–insulator interface. We demonstrate that the dis-
order significantly increases the variety of interface spin
phenomena. Skew scattering at the interface impurities causes
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FIG. 1. The three phenomenological effects leading to the spin
polarization in the heavy metal layer. Letter (A) denotes the Rashba-
Edelstein effect; letter (B) means the spin-Hall effect; and (C)
denotes the interface spin-Hall effect. The blue arrow stands for the
direction of the electrical current. Gray arrows show the direction
of spin flow. The red arrows correspond to the direction of spin
polarization. Green spheres depict the impurities.

spin accumulation over a distance comparable to the mean
free path from the interface. This phenomenologically corre-
sponds to the Rashba-Edelstein effect; however, the thickness
of the spin accumulation layer is significantly larger than that
predicted in Refs. [19,20]. Combined with spin relaxation, this
leads to the interface spin-Hall effect, which is absent at a
clean metal-insulator interface. Both of these phenomena are
sensitive to the materials that make up the interface and their
properties, as well as their disorder.

II. MODEL OF THE HEAVY METAL SURFACE

We consider a clean heavy metal interface with an insulator
described by the model Hamiltonian

Ĥ = p̂2

2m
+ U (z) − γ

∂U

∂z
(σx p̂y − σy p̂x ). (1)

Here, p̂ = −ih̄∇ is the momentum operator, m is the effective
mass, and U (z) = U0θ (z) is the potential energy describing
the abrupt barrier at z = 0 with the height U0. γ is the effective
spin-orbit interaction inside the heavy metal. Its solution in
Appendix A leads to the following electron wave function on
the metal side of the interface:

�α (k) = eik⊥r⊥
√

2V

(
ei|kz |z + r̂(k)e−i|k|zz

)
uα. (2)

Here, k is the electron wave vector, kz is its component along
z, k⊥ is its xy component, and uα is an arbitrary spinor.
Equation (2) includes the spin-dependent reflection amplitude
r̂(k):

r̂(k) = −e2iφ0 [cos(
φ)1̂ + i sin(
φ)σ̂k], (3)

where φ0 = (φ+ + φ−)/2 is the average phase change during
the reflection and 
φ = φ+ − φ− shows its spin dependence.

φ± = arctan[kz/(κ ∓ 2mγU0k⊥/h̄)], and κ =
√

2mU0/h̄2−k2
z .

σ̂k is the combination of Pauli matrices:

σ̂k = ky

|k⊥| σ̂x − kx

|k⊥| σ̂y. (4)

It is demonstrated in Appendix A that in agreement with
previous studies [19,20] the clean interface does not exhibit an
interface spin-Hall effect and the spin polarization is confined
to several monolayers.

The primary objective of this study is to incorporate in-
terface disorder into the theory. The most common approach
to the electron kinetics near a disordered interface involves
finite probabilities of specular and nonspecular reflection [35].
However, to address the new spin phenomena it is crucial
to consider a microscopic mechanism responsible for non-
specular reflection. Two conventional approaches exist for
modeling reflection from disordered interfaces: roughness of
the interface [36,37] and interface impurities [38–40]. Both
approaches allow for the possibility of nonspecular reflection,
and we consider them to be interchangeable. In this paper we
adopt the latter one.

A single impurity can be described with potential energy
V0(r). With respect to the spin-orbit interaction it leads to the
additional term in the electron Hamiltonian

V (r) = V0(r) + γσ

[
∂V0

∂r
× p

]
. (5)

In this paper we consider small impurities with V0(r) =
VIδ(r), where VI stands for the magnitude of the impurity
potential.

The scattering from the impurities is characterized
by the matrix elements V̂ (k1, k2) = Vαβ (k1, k2) =
〈�α (k1)|V (r)|�β (k2)〉, where �α (k1) and �β (k2) correspond
to the electron states at the clean interface, as described by
Eq. (2). In order to analyze the scattering process, it is useful
to decompose the scattering elements into two terms:

V̂ (k1, k2) = V̂ (N )(k1, k2) + V̂ (SO)(k1, k2), (6a)

V (N )
αβ (k1, k2) = 1

2

VI

V
(1 + r̂+(k1))(1 + r̂(k2)), (6b)

V̂ (SO)(k1, k2) = iVIγ

2h̄V

(
σ
[
p(inc)

1 × p(inc)
2

]
+ r̂+(k1)σ

[
p(ref )

1 × p(inc)
2

]
+ σ

[
p(inc)

1 × p(ref )
2

]̂
r(k2)

+ r̂+(k1)σ
[
p(ref )

1 × p(ref )
2

]̂
r(k2)

)
. (6c)

Here, V (N )
αβ (k1, k2) corresponds to the first term on the right-

hand side of Eq. (5), and V (SO)
αβ (k1, k2) is related to the

spin-orbit correction and to the second term on the right-hand
side of Eq. (5). p(inc) = h̄(kx, ky, |kz|) is the momentum of the
incident electron, and p(ref ) = h̄(kx, ky,−|kz|) is the momen-
tum of the reflected electron. r̂+(k) is the Hermitian conjugate
of the reflection amplitude described with Eq. (3).

Equations (6b) and (6c) can be represented as the four dif-
ferent reflection possibilities shown in Fig. 2(a). The electron
can undergo scattering from the impurity without interaction
with the surface, or can be specularly reflected before or after
the scattering or both.
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FIG. 2. (a) The four possibilities for the impurity scattering from
state k to the state k′ in the presence of the interface. (b) The spin
dependence of the scattering amplitude. (c) Asymmetric spin rotation
angle. The results presented in (b) and (c) correspond to U0/εF = 4,
γ p2

F /h̄ = 0.2 and to the geometry shown in (d).

The probability of scattering depends on the quantum in-
terference between the different reflection possibilities, which
can be constructive or destructive depending on the phase
ϕ0 ± 
ϕ and the relation between V̂ (N ) and V̂ (SO). This prob-
ability varies for different spin projections, leading to skew
scattering and spin separation at the surface. Figure 2(b)
shows the probability for electrons with an incident angle of
π/4 in the xz plane to scatter to the yz plane. The scatter-
ing rate depends on the spin projection to the y axis. The
calculation details are presented in Appendix B. When spin-
orbit interaction is present, electron scattering also results in
spin rotation, leading to spin relaxation after multiple random
scattering events [37]. Figure 2(c) demonstrates that in our
case, this rotation becomes asymmetric, causing a spin-up
electron to rotate differently from a spin-down electron. This
asymmetric spin rotation produces spin polarization of re-
flected electrons, even when the incident electrons are not
spin polarized, resulting in the interface spin-Hall effect. The
geometry corresponding to Figs. 2(b) and 2(c) is shown in
Fig. 2(d).

III. SPIN CURRENT AND SPIN POLARIZATION

To understand the impact of the skew scattering and asym-
metric spin rotation on the electrons in the bulk of the heavy
metal, we introduce the Boltzmann equation

∂ f̂ (r, p)

∂t
+ v

∂ f̂ (r, p)

∂r
+ F

∂ f̂ (r, p)

∂p
= I ( f̂ (r, p)). (7)

Here, the distribution function f̂ (r, p) is a 2 × 2 matrix in spin
space that depends on the coordinate and momentum as usual.
I ( f̂ (r, p)) is the scattering operator.

We consider the following ansatz for the distribution func-
tion: f̂ = f̂0 + f̂1 + f̂2. Here, f̂0 is the equilibrium electron
distribution. It is proportional to the unit matrix 1̂ in the spin

space.

f̂1 = − j

e

px

n

∂ f̂0

∂ε
(8)

represents the electric current density j, which is assumed to
flow along the x axis. f̂2 describes the spin polarization. We
assume f̂2 	 f̂1 	 f̂0, which corresponds to a relatively small
spin polarization due to the skew scattering. In this case it
is possible to neglect f2 for the incident electrons, because
it would lead only to a small correction for f2 of scattered
electrons (that is responsible for the kinetic Rashba-Edelstein
and interface spin-Hall effects).

The skew scattering should be introduced into Boltzmann
equation as a boundary condition. It is derived in Appendix C
and reads

f̂2(p, z = 0) = mV

S|pz| r̂(p)

(∫
V dp′

(2π h̄)3

× Ŵ
(

p
h̄
,

p′

h̄

)
( f1(p′) − f1(p))

)
r̂(p)+. (9)

Here,

Ŵ (k, k′) = 2π

h̄
NIV̂ (k, k′)V̂ (k′, k)δ(εk − εk′ ), (10)

where NI is the total number of impurities.
Equations (C3) and (C4) show that f2 is proportional to

the two-dimensional impurity concentration NI/S which con-
trols the probability Pnsp that an incident electron with Fermi
energy is reflected nonspecularly. This probability, averaged
over incident electron momenta, can be expressed as follows:

Pnsp = 4π2h̄3

Sp2
F

IN , (11a)

IN =
∫∫

V 2dpdp′

(2π h̄)6
TrŴ

(
p
h̄
,

p′

h̄

)
δ(ε − εF ). (11b)

In our model the macroscopic symmetry in the xy plane is
not broken, and the only possible spin current density js in
the z direction describes the flow of y-polarized spins. It is
conventionally expressed with the interface spin-Hall angle

tan θsH = js
j/e

= 3

4
Pnsp

IsH

IN
, (12a)

IsH =
∫

V 2dpdp′

(2π h̄)6

(
p′

x

pF
− px

pF

)
δ(ε − εF )

× Trσ̂y

[
r̂(p)Ŵ

(
p
h̄
,

p′

h̄

)
r̂+(p)

]
. (12b)

The interface spin-Hall angle calculated with Eq. (12) is
shown in Fig. 3(a) as a function of spin-orbit interaction for
different barrier heights U0. Interestingly, θsH is not an odd
function of γ . It is related to the electron momentum p being
an operator that does not commute with impurity potential
V0(r). Figure 3(b) shows the θsH(γ ) dependence in the double
logarithm scale for U0 = 10εF and small positive γ . The spin-
Hall angle is a high-order function of γ : θsH ∝ γ 3 at very
small γ and becomes steeper with an increase in γ , up to
θsH ∝ γ 6. As shown in Fig. 3(a) there is a maximum in this
dependence corresponding to γ p2

F /h̄ ∼ √
εF /U0.
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FIG. 3. (a) Interface spin-Hall angle as a function of spin-orbit
interaction for various relationships between interface potential and
Fermi energy U0/εF as shown in the legend. (b) The θsH(γ ) de-
pendence for U0/εF = 10 in the double logarithm scale. The blue
dashed line and the black dash-dotted line correspond to θsH ∝ γ 6

and θsH ∝ γ 3, respectively.

The physical mechanism of the interface spin-Hall effect
consists of two parts. The first one is the skew scattering
shown in Fig. 2(b). However, the skew scattering alone is
insufficient to generate the spin current if spin is conserved
during the scattering. Therefore the interface spin-Hall effect
requires also the asymmetric spin rotation shown in Fig. 2(c)
that leads to the “spin relaxation” which depends on spin
projection. The spin relaxation is a second order in γ phe-
nomenon [37], meaning that the interface spin-Hall effect is
absent in the first-order approximation over γ .

To show that the spin separation itself is a first-order ef-
fect, we examine the spin accumulation near the interface.
We solve the Boltzmann equation using the minimal model,
which assumes that the scattering operator in the bulk can be
described by a single relaxation time τ : I ( f̂ ) = ( f̂0 − f̂ )/τ .
By applying this assumption to Eq. (7), we obtain the solution

f̂2(p, z) = f̂2(p, 0) exp

(
− zpF

pzlfree

)
. (13)

Here, lfree = vF τ is the mean free path.
The spin polarization calculated from Eq. (13) reads

my(z) = 3

4

j

evF
Pnsp

Is(z)

IN
, (14a)

Is(z) =
∫

V 2dpdp′

(2π h̄)6
Trσyr̂(p)Ŵ

(
p
h̄
,

p′

h̄

)
r̂+(p)

×
(

p′
x

|pz| − px

|pz|
)

exp

(
− zpF

lfree|pz|
)

δ(ε − εF ).

(14b)

FIG. 4. Spin accumulation my due to the kinetic Rashba-
Edelstein effect calculated for U0 = 10εF . (a) and (b) show the
dependence my(z) for different values of γ . (c) shows the dependence
of accumulated spin on the spin-orbit interaction parameter γ for
three different values z/lfree.

Figure 4 shows the spin polarization my calculated for U0 =
10εF . Similarly to the interface spin-Hall effect, the polariza-
tion obtained from the Boltzmann equation appears only due
to the possibility of nonspecular reflection and is normalized
by Pnsp. Figures 4(a) and 4(b) show the my distribution over
z for γ p2

F /h̄ = ±0.05 and γ p2
F /h̄ = ±0.2, respectively. For

small values of γ , my changes its sign as a function of z
indicating the difference in the average reflection angle for
different spin projections. This change of the sign disappears
at larger values of γ when the interface spin-Hall effect be-
comes sufficiently strong to dominate the spin accumulation.

Phenomenologically, the calculated spin accumulation is
the Rashba-Edelstein effect because it is confined near the
interface. However, unlike the conventional Rashba-Edelstein
effect at clean interfaces studied in Refs. [19,20], the polariza-
tion spans up to the mean free path lfree. In the case where the
sample only contains impurities at the surface and the bulk
is clean, lfree can be arbitrary large. Thus the resulting spin
polarization can be referred to as the kinetic Rashba-Edelstein
effect.

IV. DISCUSSION

The interface spin-Hall and kinetic Rashba-Edelstein ef-
fects are closely related to the interference of different
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reflected waves shown in Fig. 2(a). Both effects should disap-
pear if this interference is somehow suppressed. For example,
one can consider bulk impurities near the interface as a pos-
sible reason for the interface spin-Hall effect. However, in
this case the phase of the reflection amplitude r̂ would be
modified by the random distance between the impurity and
the surface. If this distance exceeds h̄/pF , the interference and
the spin generation would be suppressed. Nevertheless, if the
impurities are located precisely at the interface and are small
compared with pF , their potential VI is not significant: It is
absorbed into nonspecular reflection probability Pnsp in our
final expressions. This is a consequence of the calculations
being performed within the Born approximation. We presume
that introduction of complex impurities with large size and
high potential energy can significantly modify the spin accu-
mulation and spin current.

The existence of the interface spin-Hall effect in the Born
approximation makes it fundamentally different from the or-
dinary spin-Hall effect that appears only as a higher-order
correction over the impurity potential VI and is suppressed if
the disorder is Gaussian. Although there are some predicted
mechanisms for its existence in Gaussian disorder, namely the
combined scattering from impurities and phonons [41] and
the scattering at close impurity complexes [41,42], all these
mechanisms require high orders of perturbation theory. The
interface spin-Hall effect is possible in the Born approxima-
tion because of the large interface potential energy that exists
already in zeroth order.

The unusual properties of the kinetic Rashba-Edelstein ef-
fect and interface spin-Hall effect suggest that in some cases
the predicted interface phenomena should dominate the spin
accumulation and spin current. It happens when the thickness
d of the sample is intermediate, i.e., h̄/pF 	 d � lfree, and
bulk impurities that control conductivity have small potential
energy V0 	 εF . If these conditions are met, the control of
interface properties is important to optimize the spin torque.
The effect of interface roughness is sometimes reported in
experiments [17,43]; however, to the best of our knowledge,
there have been no systematic studies. We predict that the
perfect interface is not necessarily a clean one. Controlled

disorder can serve as a source of both spin polarization and
spin current. It allows one to control the functionality of spin
torque devices by surface engineering, i.e., by manipulating
surface impurity concentration and their type. Furthermore,
the sensitivity of the interface spin-Hall effect to the interface
potential U0 provides a means of controlling spin torque with
gating.

In conclusion, our study demonstrates that impurities at the
metal-insulator interface significantly increase the variety of
surface spin effects. The skew scattering from these impurities
induces spin accumulation that extends up to the mean free
path. When combined with spin relaxation, it gives rise to the
interface spin-Hall effect, which converts charge currents to
spin currents at the metal-insulator boundary.
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APPENDIX A: SPIN POLARIZATION NEAR
THE CLEAN INTERFACE

Our starting point is the Hamiltonian described by Eq. (1).
We are interested in its solutions when the electron energy ε is
below the barrier U0. We start with rotation in the spin space
with the matrix

Uσ =
(

k̃⊥ −k̃⊥
1 1

)
, (A1)

where k̃⊥ = (ikx + ky)/k⊥, k⊥ =
√

k2
x + k2

y . After the canon-
ical transformation U −1

σ HUσ the Hamiltonian becomes
diagonal:

H = − h̄2

2m

d2

dz2
+ h̄2k2

⊥
2m

+ U0θ (z) ∓ γU0δ(z)k⊥. (A2)

Using Eq. (A2), we find the eigenfunctions

ψ±(r⊥, z) =

⎧⎪⎪⎨⎪⎪⎩
A±

(±k̃⊥
1

)
sin (k±z − φ±) exp (ik⊥r⊥), z < 0

−A±
(±k̃⊥

1
)

sin (φ±) exp (ik⊥r⊥) exp (−κz), z > 0.

(A3)

Here, A± =
√

κ±
κ±L+1 , κ =

√
2m(U0−ε± )

h̄2 , κ± = κ ∓ 2mγU0k⊥
h̄2 ,

ε± = h̄2k2
±

2m , and L is the size of the sample in the z direction
that corresponds to the thickness of the heavy metal layer. k±
is the electron wave vector in the z direction, which becomes
spin dependent after the effects of finite L are taken into
account. The phase shift φ± is determined by the equation
tan φ± = k±/κ±. The energy is

ε± = h̄2k2
±

2m
+ h̄2k2

⊥
2m

. (A4)

To describe the boundary conditions for the Boltzmann
equation, it is enough to consider the infinite sample L → ∞.
In this case, k+ = k− = kz, ε+ = ε− = εk , and the solution of
the Schrödinger equation exists for an arbitrary incident wave.(

a
b

)
exp (ikzz) exp (ik⊥r⊥). (A5)

Here, (a, b) is an arbitrary spinor. According to Eq. (A3), its
reflected wave is described as follows:

r̂(k)

(
a
b

)
exp (−ikzz) exp (ik⊥r⊥). (A6)
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FIG. 5. The distribution of the current density near the surface (a) and spin density as a function of z (b).

Here,

r̂(k) = exp (iπ + 2iφ0)( cos (
φ)σ̂0 + i sin (
φ)σ̂k ), (A7)

σ̂k = ky

|k⊥| σ̂x − kx

|k⊥| σ̂y. (A8)

Interestingly, to account for the Rashba-Edelstein effect at
the clean interface, it is important to consider L to be fi-
nite. Here, we assume the boundary conditions at z = −L:
dψ (r⊥, z)/dz|z=−L = 0. This leads to the following equa-
tions for k± and φ±:

k± = π

2L
(2n + 1) − φ±

L
,

φ± = arctan

[
(n + 1/2)π − φ±

Lκ±

]
, (A9)

where n is an arbitrary integer. Equations (A4) and (A9) show
that when L is finite, the discrete levels for spin up and spin
down are different, which will later lead to the current-induced
spin polarization.

To account for the in-plane electric current, we intro-
duce the distribution function of the electrons f (k) = f0(ε −
vh̄kx ). Here, f0 is the Fermi function, and v is the drift velocity
that is assumed to be along the x direction. The current density
jx(z) is defined as follows:

jx(z) = e

L

∑
n

∫
dk⊥

(2π )2

2h̄kx

m
[sin (k+z − φ+)2 f0(ε+ − h̄vkx )

+ sin (k−z − φ−)2 f0(ε− − h̄vkx )]. (A10)

Note that although the distribution f (k) does not depend on
spin, the energies ε± do.

Equation (A10) can be simplified by expanding the Fermi
functions over small vkx and integrating over the angle of k⊥.

jx(z) = evh̄2

8πmT L

∑
n

∫
dk⊥k3

⊥

×
[

sin2(k+z − φ+)

cosh2 ( ε+−μ

2T )
+ sin2(k−z − φ−)

cosh2 ( ε−−μ

2T )

]
. (A11)

Here, T is the temperature and μ is the chemical potential.
Equation (A11) describes the distribution of the current den-
sity near the interface.

To describe the spin polarization, we take into account that

(±k̃∗
⊥, 1)σy

(±k̃⊥
1

)
= ∓2kx/k⊥. (A12)

This allows us to derive the expression for the distribution of
spin polarization my(z):

my(z) = 1

L

∑
n

∫
dk⊥

(2π )2

2kx

k⊥
[sin (k+z − φ+)2 f0(ε+ − h̄vkx )

− sin (k−z − φ−)2 f0(ε− − h̄vkx )]. (A13)

After expanding this equation over small vkx and performing
the angle integration, we obtain

my(z) = vh̄

8πT L

∑
n

∫
dk⊥k2

⊥

×
[

sin2 (k+z − φ+)

cosh2 ( ε+−μ

2T )
− sin2 (k−z − φ−)

cosh2 ( ε−−μ

2T )

]
. (A14)

This formula describes the spin accumulation near the inter-
face when current is flowing parallel to the surface. Figure 5
represents the calculated current density and the accumulated
spin density as a function of z (Rashba-Edelstein effect). The
current density is normalized to jx,0 = evk3

F /3π2, which is the
current density far from the interface. Figure 5 shows that in a
clean sample the spin polarization exists only at the distances
∼h̄/pF from the surface where the current is modified by
quantum effects.

Note also that the wave functions (A3) do not include
density flux Imψ∗

±∇ψ± = 0 and the spin density (A14) is not
accompanied by spin current.

APPENDIX B: SPIN-DEPENDENT SCATTERING
AT THE INTERFACE IMPURITIES

In the general case, impurity scattering requires the density
matrix formalism for its description. The usual procedure for
such a description starts with the density matrix ρ̂(k) diagonal
in the space of wave functions �k and considers nondiagonal
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terms ρ̂(k, k′) as a small perturbation. However, the terms
ρ̂(k) diagonal in the space of �k are still 2 × 2 matrices in
spin space. The master equation for the density matrix reads

∂ρ̂

∂t
= i

h̄
(ρ̂V̂ − V̂ ρ̂ ). (B1)

Here, V̂ is the impurity energy that includes both potential
energy and spin-orbital correction (6).

We assume the slow variance of diagonal matrix elements
compared with the oscillation frequencies (εk − εk′ )/h̄. This
allows us to derive an expression for the perturbation ρ̂(k, k′)
from Eq. (B1):

ρ̂(k, k′) = exp
(
i εk−εk′

h̄ t
)

εk − εk′ − iδ
× (ρ̂(k)V̂ (kk′) − V̂ (kk′)ρ̂(k′)).

(B2)
This equation should be substituted back into Eq. (B1), where
we now keep only the nonoscillating terms:

∂ρ̂(k)

∂t
=

∑
k′

i/h̄

εk′ − εk − iδ
× (V̂ (kk′)V̂ (k′k)ρ̂(k)

− V̂ (kk′)ρ̂(k′)V̂ (k′k)) − i/h̄

εk − εk′ − iδ

× (V̂ (kk′)ρ̂(k′)V̂ (k′k) − ρ̂(k)V̂ (kk′)V̂ (k′k)).

(B3)

Here, the real part of 1/(εk′ − εk − iδ) corresponds to the
small modification of electron states due to the impurity po-
tential, which can be neglected. The imaginary part leads to
actual transitions between states. They can be described with
the equations

∂ρi j (k)

∂t

=
∫

V dk′

(2π )3

(
W (in)

i j,lm(k, k′)ρlm(k′) −W (out)
i j,lm (k, k′)ρlm(k)

)
,

(B4)

W (in)
i j,lm(k, k′)ρlm(k′)

= 2π

h̄
NI × Vil (k, k′)ρlm(k′)Vm j (k′, k)δ(εk − εk′ ), (B5)

W (out)
i j,lm (k, k′)ρlm(k)

= π

h̄
NI × [Vin(k, k′)Vnl (k′, k)ρlm(k)δ jm

+ ρlm(k)Vmn(k, k′)Vn j (k′, k)δil ]δ(εk − εk′ ). (B6)

Here, NI is the total number of impurities. W (in)
i j,lm(k, k′) de-

scribes the electrons scattering from the state k′ to the state
k. Because both the initial and the final states of electrons are
described with a 2 × 2 density matrix, W (in)

i j,lm(k, k′) is, there-

fore, a four-dimensional 2 × 2 × 2 × 2 matrix. W (out)
i j,lm (k, k′) is

the out-scattering term that stands for the backward transition
from k to k′. It is different from W (in)

i j,lm(k, k′) because the spin
is not conserved during the scattering. For a given density
matrix ρ̂(k′) of incident electrons,

W (in)
i j,lm(k, k′)ρlm(k′) (B7)

represents the properties of the scattered ones. In
particular, the results shown in Figs. 2(b) and 2(c)
are calculated with Eq. (B7) where ρ̂(k′) = (1̂ ±
σy)/2 and k′ = (pF /

√
2h̄)(1, 0, 1). The scattering

probabilities correspond to TrŴ (in)(k, k′)ρ̂(k′) =
W (in)

ii,lm(k, k′)ρlm(k′), and the spin polarization vector
s corresponds to Trσr(k)Ŵ (in)(k, k′)ρ̂(k′)r+(k) =
r+

ii1
(k)σ i1i2 ri2 j (k)W (in)

ji,lm(k, k′)ρlm(k′).

APPENDIX C: BOUNDARY CONDITIONS
FOR THE BOLTZMANN EQUATION

The approach (B4) is based on the wave functions �α (k)
defined in the main text. They correspond to the coherence
of incident and specularly reflected electrons. However, in the
bulk of the film this coherence is lost due to the scattering at
the bulk impurities, and the Boltzmann equation approach is
based on the distribution function f̂ (p) that neglects such a
coherence.

To relate the two approaches, we consider the spin polar-
ization generated per unit time. Because the kinetic equation is
linear, we can decouple it into Gα (p)dp—the spin polariza-
tion in the α direction related to the reflected electrons with
the momentum p. In terms of the Boltzmann equation, it is
expressed as follows:

Gα (p)dp = dp
(2π h̄)3

Trσ̂α f̂2(p)
|pz|
m

S. (C1)

Here, f̂2(p) is taken at the interface and is assumed not to
depend on the exact point of the interface. S is the interface
area. Note that pz is negative for the reflected electrons. In
terms of Eq. (B4), Gα (p)dp is equal to

Gα (k)dk = V dk
(2π )3

Trr̂+
k σ̂α r̂k

×
∫

V dk′

(2π )3

(
W (in)

i j,lm(k, k′)ρlm(k′)

− W (out)
i j,lm (k, k′)ρlm(k)

)
. (C2)

When f̂2 	 f̂1 	 f̂0, one can substitute ρ̂(k) with
f̂0(h̄kx, h̄ky, h̄|kz|) + f̂1(h̄kx, h̄ky, h̄|kz|) on the right-hand side
of Eq. (C2). However, f̂0 does not lead to spin polarization
and can be dropped.

This allows us to derive the following boundary condition
for f̂2 at z = 0:

f̂2(p) = mV

S|pz| r̂(p)

[ ∫
V dp′

(2π h̄)3

× Ŵ
(

p
h̄
,

p′

h̄

)
( f1(p′) − f1(p))

]
r̂(p)+. (C3)

Here,

Wi j = W (in)
i j,ll = W (out)

i j,ll , (C4)

and we took into account that f̂1 = f11̂.
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