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Strong correlation and topology are two main pillars of modern physics, which can be bridged by fractional
quantum Hall states and their lattice analogs known as fractional Chern insulators. A particularly pressing
question for fractional Chern insulators is if there exists a lattice analog of the Laughlin state in the 1/3-filled
Chern flat band dubbed the Chern-Laughlin state, and if so, how to detect it experimentally. The exact ground
state in the 1/3-filled Chern flat band depends on the form of the electron-electron interaction, which can
generate various competing ground states derived from, for example, the Laughlin, parafermion, parton, and
stripe/nematic states in the 1/3-filled Landau level. In this context, it is of critical importance to precisely
identify the exact ground state for a given electron-electron interaction. Here, we propose that the existence of an
adiabatic path from the 1/3-filled fractional Chern insulator to the Tao-Thouless state, i.e., the root partition
state of the Laughlin state in the thin torus limit, can serve as an effective order parameter for the precise
identification of the Chern-Laughlin state. Specifically, by devising a hybrid adiabatic path of first deforming
the electron-electron interaction and then taking the thin torus limit, we show that two-dimensional bulk Chern
flat bands can host the Chern-Laughlin state at 1/3 filling. More importantly, our results suggest that, unless
the electron-electron interaction is strictly of the nearest-neighbor form, the Tao-Thouless state can actually be
detected in experiments, for example by using an incommensurate double-walled carbon nanotube made out of
the magic-angle twisted bilayer graphene, which allows charge-sensitive surface measurements such as scanning
tunneling microscopy. This method can be extended to various other fractional Chern insulators corresponding
to both Abelian and non-Abelian fractional quantum Hall states.

DOI: 10.1103/PhysRevResearch.5.033212

I. INTRODUCTION

Ordered phases of matter are often characterized by spon-
taneous symmetry breaking. The ferromagnet is a well-known
example in this class of ordered phases, characterized by
spontaneous breaking of spin rotational symmetry. Topolog-
ical insulators belong to a different class of ordered phases,
characterized by topology. Specifically, Chern insulators are
characterized by the topological invariant defined for non-
interacting energy bands, called the Chern number. Chern
insulators are the lattice analog of weakly correlated integer
quantum Hall states (IQHSs) occurring in fully filled Lan-
dau levels (LLs). Topological insulators are two independent
copies of Chern insulators with opposite Chern numbers,
which are typically protected by time-reversal symmetry.

Meanwhile, there is yet another class of ordered phases,
which cannot be characterized by either spontaneous sym-
metry breaking or noninteracting topological invariants.
Occurring in fractionally filled LLs, fractional quantum Hall
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states (FQHSs) [1] are a quintessential example in this class
of ordered phases, induced by the intricate interplay between
strong correlation and topology. Fractional Chern insulators
(FCIs) are envisioned as a lattice analog of FQHSs [2–15],
arising in sufficiently flat energy bands with nontrivial Chern
numbers, called Chern flat bands, where the electron-electron
interaction dominates the band dispersion. In the absence of
conventional order parameters, it is important to know exactly
how to characterize FCIs and, for that matter, strongly corre-
lated topological phases in general.

Immediately after the discovery of the Laughlin state [16],
there were several theoretical attempts [17,18] to devise an
order parameter for the characterization of FQHSs by drawing
an analogy with the Bose-Einstein condensate. Eventually,
FQHSs became better understood in terms of the composite
fermion (CF) theory [19], according to which FQHSs are
emergent IQHSs occurring in fully filled effective LLs formed
by CFs. Unfortunately, it is still not known how to compute
the Chern number for such effective LLs.

An alternative method, which can also be applied to FCIs
[4,5], is to compute the many-body Chern number [20] for
the ground-state manifold (GSM) with a certain distinctive
topological degeneracy under the periodic boundary condi-
tion. The GSM is accompanied by level crossing between
degenerate ground states as a function of flux insertion [21],
which we call topological spectral flow in this work. For
example, the Laughlin state generates the GSM with a triple
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topological degeneracy in torus geometry. When computed for
the entire GSM of the Laughlin state, the total many-body
Chern number is simply unity [4,20]. Considering that the
GSM is supposed to be exactly degenerate in the thermody-
namic limit, the Chern number for each individual copy of the
Laughlin state can be regarded as 1/3, which is simply equal
to the filling factor, or the Hall conductance in units of the
conductance quantum.

In fact, as a general rule, the ratio between the total many-
body Chern number and the topological degeneracy is always
equal to the filling factor. This means that, for a given fill-
ing factor, the topological degeneracy completely determines
the many-body Chern number. Consequently, the topological
degeneracy can serve as an effective order parameter for the
characterization of FQHSs.

Moreover, the topological degeneracy can be used to dis-
tinguish between various competing ground states occurring
at the same filling factor. Specifically, the 1/3-filled Chern flat
band can host various competing ground states derived from,
for example, the Laughlin [16], parafermion [22], parton [23],
and stripe/nematic [24–26] states via the one-to-one mapping
between FQHSs and FCIs [6,9]. Out of these four competing
ground states, the Laughlin, parafermion, and parton states are
incompressible, with each state expected to have its own dis-
tinctive topological degeneracy with a clear energy gap [22].
On the other hand, the stripe/nematic state is compressible, in
which case the GSM is not properly defined due to the absence
of the energy gap.

It is, however, very difficult for the topological degener-
acy to become an experimentally viable order parameter. The
problem is that the topological degeneracy can manifest itself
only in torus geometry with a hypothetical periodic bound-
ary condition. Meanwhile, incompressible ground states are
always uniquely determined in disk geometry with a realistic
open boundary condition. Will there be any experimentally
viable method to manifest the topological degeneracy? In this
work, we propose such a method.

Our method is based on the fact that FQHSs evolve adi-
abatically to so-called root partition states in the thin torus
limit [27–31], which, as far as the charge degree of free-
dom is concerned, are nothing but simple charge density
wave (CDW) states induced by the suppression of quantum
fluctuations. For example, the Laughlin state evolves adiabat-
ically to the Tao-Thouless state in the thin torus limit [27],
which is composed of three simple CDW states represented
by |100 · · · 〉, |010 · · · 〉, and |001 · · · 〉, with 1 and 0 denoting
filled and empty LL eigenstates, respectively, and ellipses de-
noting repeated patterns. The actual ground state is supposed
to be one of these three CDW states randomly selected by
spontaneous breaking of the translational symmetry due to the
open boundary condition and/or charge-pinning impurities. In
addition to the topological degeneracy, root partition states are
also useful to understand other key characteristics of FQHSs,
such as the entanglement spectrum [32–37]. Metaphorically,
root partition states are the “DNA” of FQHSs.

Despite their significance, however, root partition states
have not been studied thoroughly for various reasons. One
of the main reasons is that torus geometry is impossible to
realize in conventional experimental setup for FQHSs, where
the two-dimensional (2D) electron gas cannot be bent to form

a toroidal or tubular surface. One may raise an objection to
this assessment by arguing that FQHSs have been obtained in
graphene, which can be made into a carbon nanotube. Despite
the nominal tubular shape, however, there remains a serious
problem preventing the realization of the thin torus limit for
FQHSs in carbon nanotubes. That is, magnetic fields cannot
be applied radially so that they pierce the surface of carbon
nanotubes from inside out or vice versa.

Fortunately, no magnetic fields need to be applied for FCIs
since Chern flat bands are already topologically nontrivial
by themselves. In this regard, recently observed FCIs [15] in
magic-angle twisted bilayer graphene (MATBG) [38,39] can
provide a perfect opportunity for the experimental detection
of root partition states and thus a clear visualization of the
fractional topological order. Specifically, root partition states
can actually be detected in an incommensurate double-walled
carbon nanotube [40] made out of the MATBG, which allows
charge-sensitive surface measurements such as scanning tun-
neling microscopy [41,42]. A detection of the Tao-Thouless
state can be taken as conclusive evidence of the true existence
of the Chern-Laughlin state.

As mentioned previously, however, the existence of the
Chern-Laughlin state is not always guaranteed in the 1/3-
filled Chern flat band since the exact ground state depends
on the form of the electron-electron interaction, competing
against various states. In this work, we devise a hybrid adi-
abatic path of first deforming the electron-electron interaction
and then taking the thin torus limit to show that the exact
ground state in 1/3-filled Chern flat bands with not only
Coulomb but also nearest-neighbor interactions can indeed
evolve adiabatically to the Tao-Thouless state in the thin torus
limit. More importantly, our results suggest that, unless the
electron-electron interaction is strictly of the nearest-neighbor
form, the Tao-Thouless state can actually be realized in the
thin torus limit of Chern flat bands.

With the incorporation of appropriate quantum fluctua-
tions, the Tao-Thouless state can be transformed into the
Chern-Laughlin state, which is shown to have high overlaps
with the exact ground states of both Coulomb and nearest-
neighbor interactions in the 2D bulk of the 1/3-filled Chern
flat band. Note that our results are consistent with previous
results obtained for the nearest-neighbor interaction [9]. In
conclusion, the existence of an adiabatic path from the 1/3-
filled FCI to the Tao-Thouless state can serve as an effective
order parameter for the precise identification of the Chern-
Laughlin state both theoretically and experimentally.

The rest of this paper is organized as follows. In Sec. II,
we provide details of the microscopic model Hamiltonians for
strongly correlated Chern flat bands. Specifically, we focus on
two microscopic models: (i) the checkerboard lattice model
[2] and (ii) the kagome lattice model [3]. In Secs. III and IV,
we present our main results obtained via exact diagonalization
of these two models, respectively.

Concretely, in Secs. III A and IV A, we construct the hybrid
adiabatic path from the 1/3-filled FCI to the Tao-Thouless
state by first deforming the electron-electron interaction and
then taking the thin torus limit. In Secs. III B and IV B, we
study the topological spectral flow of the triply degenerate
GSM for the 1/3-filled FCI as a function of the flux inser-
tion. In Secs. III C and IV C, we check if the many-body
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Chern number is correctly obtained for the 1/3-filled FCI.
In Secs. III D and IV D, we construct the topological basis,
which can be used to represent not only the Tao-Thouless
state in the thin torus limit, but also the Chern-Laughlin state
after the incorporation of appropriate quantum fluctuations.
In Secs. III E and IV E, we compute the overlap between the
1/3-filled FCI and the Tao-Thouless state as a function of the
aspect ratio. In Secs. III F and IV F, we compute the overlap
between the 1/3-filled FCI and the Chern-Laughlin state at
each aspect ratio. Finally, we conclude in Sec. V by discussing
the possible application of our method to various other FCIs
corresponding to both Abelian and non-Abelian FQHSs.

II. HAMILTONIAN

We begin by considering a generic form of the microscopic
model Hamiltonian for strongly correlated Chern flat bands:

H = H0 + Hint =
∑
α,k

εαkc†
αkcαk +

∑
i< j

Ui jnin j, (1)

where H0 and Hint denote the kinetic and interaction parts of
the microscopic model Hamiltonian, respectively.

The band dispersion, εαk, is given as a function of the
band index α and the Bloch momentum k. Depending on the
choice of system parameters, some energy bands can be both
topologically nontrivial and nearly flat, i.e., Chern flat bands.
Here, we focus on two tight-binding model Hamiltonians for
H0 with one in the checkerboard lattice [2] and the other in
the kagome lattice [3]. For simplicity, we relegate the techni-
cal details of these two tight-binding model Hamiltonians to
Appendix A.

We have chosen the aforementioned tight-biding models
since there are only two and three sites per unit cell in the
checkerboard and kagome lattice models, respectively. Note
that exact diagonalization cannot be directly performed in the
fully microscopic Hamiltonian of the MATBG due to the large
number of carbon atoms (∼13 000 C) per moiré unit cell [39].
Meanwhile, some faithful tight-binding models have recently
been proposed for the MATBG at the expense of having
multiple bands up to 10 [43]. For future work, it would be
interesting to apply our method to such tight-biding models.

The electron-electron interaction, Ui j , is initially taken as
the nearest-neighbor interaction, U NN

i j , but later extended to
the Coulomb interaction, U Coul

i j , for reasons explained later.
Actually, in this work, we consider a generalized electron-
electron interaction, Ui j (λ), to construct the hybrid adiabatic
path from FCIs to the Tao-Thouless state:

Ui j (λ) = (1 − λ)U NN
i j + λU Coul

i j , (2)

where λ is the mixing parameter tuning the range of
interaction.

The final Hamiltonian of interest is the Chern-flat-band-
projected Hamiltonian,

HCFB = PCFBHPCFB, (3)

where PCFB is the projection operator to a certain desired
Chern flat band. After the Chern-flat-band projection, the band
dispersion is dominated by the electron-electron interaction,
whose matrix elements are provided in Appendix B.

It is, however, important to note that Chern flat bands
are not strictly flat. In contrast to the usual practice in the
community, here we keep the band dispersion as it is, which
turns out to be crucial in the thin torus limit, as shown below.

III. RESULTS FOR THE CHECKERBOARD
LATTICE MODEL

In this section, we analyze HCFB via exact diagonalization
for the checkerboard lattice model at 1/3 filling.

A. Hybrid adiabatic path

We begin by checking what happens to energy spectra if
one takes the thin torus limit directly in Chern flat bands with
the nearest-neighbor interaction, U NN

i j = Uδ〈i, j〉. Throughout
this work, we set U = t , with t being the nearest-neighbor
hopping amplitude in the checkerboard lattice model.

The thin torus limit is achieved by increasing the aspect
ratio of the system, ra, while fixing the total number of sites,
Ns, and that of electrons, N . Specifically, we consider the Nx ×
Ny rectangular supercell, whose lattice points are composed of
primitive unit cells of the checkerboard lattice with two sites.
In this case, ra = Nx/Ny and Ns = NxNy. Also, Ns = 3N at 1/3
filling.

Figures 1(a)–1(d) show energy spectra of the nearest-
neighbor interaction in the checkerboard lattice model as a
function of (Nx, Ny) for N = 8 and Ns = 24. As one can see,
the triply degenerate GSM persists up to (Nx, Ny) = (12, 2),
but collapses at (Nx, Ny) = (24, 1). The GSM collapses since
the energy gap induced by the nearest-neighbor interaction
becomes exceedingly small even when the band dispersion is
completely ignored [44]. Such a small energy gap can be eas-
ily wiped out by nearly, but not entirely, flat band dispersions.

To establish an adiabatic path from the 1/3-filled FCI to the
Tao-Thouless state, it is necessary to find the right form of the
electron-electron interaction that can sustain the energy gap in
the entire process of taking the thin torus limit. To this end, we
consider the Coulomb interaction, which can be written in the
checkerboard lattice as follows:

U Coul
i j = e2

ε

∑
l1,l2

1

|ri j + l1Nxx̂ + l2Nyŷ| , (4)

where ri j is the relative position vector between the ith and
jth sites within the boundary of a supercell. For convenience,
unless stated otherwise, we set all lattice constants to be unity,
i.e., ax = ay = 1, with ax and ay being the lattice constants
in the x and y directions, respectively. Also, throughout this
work, we set e2/ε = t , with t being the nearest-neighbor hop-
ping amplitude in the checkerboard lattice model. For other
lattices with nonrectangular supercells such as the kagome
lattice, x̂ and ŷ should be replaced by the primitive lattice
vectors, ê1 and ê2, corresponding to the lattice structure of
supercells.

It is important to note that the Coulomb interaction in
Eq. (4) includes all long-range contributions from infinitely
repeated image charges induced by the periodic boundary
condition [45]. As is well known, the summation of such long-
range contributions converges very slowly so that special care
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FIG. 1. Energy spectra of the nearest-neighbor and Coulomb interactions in the checkerboard lattice model. (a)–(d) Energy spectra of the
nearest-neighbor interaction, U NN, in the checkerboard lattice model as a function of the test flux along the x direction, �x/�0, for various
values of (Nx, Ny ). �0 is the magnetic flux quantum. (e)–(h) Similar energy spectra of the Coulomb interaction, U Coul. Here, the numbers of
electrons and sites are N = 8 and Ns = NxNy = 24, respectively. Energies, E , are given in units of the nearest-neighbor hopping amplitude, t ,
and offset by the lowest energy in each panel. The first four lowest energies are specified by numbers when three copies of the ground state
have almost the same energy. (i) Energy gap, �, between the third and fourth lowest energies as a function of the mixing parameter, λ, tuning
the range of interaction via U (λ) = (1 − λ)U NN + λU Coul. Here, �x is set to be zero.

must be taken. Here, we use the Ewald summation technique
[46]. See Appendix C for details.

Figures 1(e)–1(h) show energy spectra of the Coulomb
interaction in the checkerboard lattice model. As one can see,
the triply degenerate GSM remains robust all the way to the
thin torus limit. This shows that the long-range nature of the
Coulomb interaction is important to stabilize the adiabatic
path to the Tao-Thouless state. It is interesting to mention that
the triply degenerate GSM can survive also for the screened
Coulomb interaction, which is represented via the Yukawa
potential.

Motivated by this finding, we devise a hybrid adiabatic
path connecting between the 1/3-filled FCI in the 2D bulk
and the Tao-Thouless state in the thin torus limit. Our path is
composed of two pieces: (i) deforming the electron-electron
interaction from the nearest-neighbor to Coulomb interaction
in the 2D bulk, and (ii) taking the thin torus limit with the
Coulomb interaction. This path becomes entirely adiabatic
if the first piece of the path is adiabatic since the second is
already shown to be so.

To this end, we check if the triply degenerate GSM can sur-
vive during the deformation process of the electron-electron
interaction via U (λ) = (1 − λ)U NN + λU Coul with λ ∈ [0, 1].
Figure 1(i) shows that the energy gap between the third and
fourth lowest energies (which separates the triply degenerate
GSM and excited states) remains open as a function of λ

in the 2D bulk, i.e., (Nx, Ny) = (6, 4). Actually, the energy
gap only closes at very small λ in the thin torus limit, i.e.,
(Nx, Ny ) = (24, 1). This means that the Tao-Thouless state
can actually be obtained in the thin torus limit unless the
electron-electron interaction is strictly of the nearest-neighbor
form.

Having established that the triply degenerate GSM can
survive along the hybrid adiabatic path, we next check if the

triply degenerate GSM satisfies two topological properties,
which should be so if it were indeed the Laughlin state.
Specifically, in Sec. III B, we investigate the spectral flow of
the triply degenerate GSM as a function of the test flux to
check if three constituent ground states interchange between
themselves after the 2π insertion of the test flux. Also, in
Sec. III C, we compute the many-body Chern number of the
triply degenerate GSM to check if it is unity as a whole.

B. Topological spectral flow

One of the most important topological properties of the
Laughlin state is that there exists a peculiar spectral flow of
the triply degenerate GSM so that three constituent ground
states interchange between themselves after the 2π insertion
of the test flux. As mentioned previously, let us call such a
spectral flow the topological spectral flow.

First, as shown in Figs. 1(b) and 1(f), the topological spec-
tral flow can be clearly verified at (Nx, Ny) = (8, 3), where all
three constituent ground states of the triply degenerate GSM
occur in the same Kx, but different Ky, sectors, with Kx and
Ky being the total momenta along the x and y directions,
respectively. Note that, generally, three constituent ground
states occur in the same Kx, but different Ky sectors if Ny is
a multiple of 3. Considering that the flux insertion along the x
direction shifts Ky, it is natural to expect that the topological
spectral flow exists at this aspect ratio of (Nx, Ny) = (8, 3),
which indeed turns out to be the case. Unfortunately, however,
it is not easy to verify the topological spectral flow at other as-
pect ratios, where all three ground-state energies of the triply
degenerate GSM fall almost exactly on top of each other.

To overcome this problem, we realize that Nx is a multiple
of 3 at all the other aspect ratios, and therefore three con-
stituent ground states of the triply degenerate GSM occur in
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FIG. 2. Topological spectral flow of the triply degenerate
ground-state manifold (GSM) under the flux insertion along the y
direction in the checkerboard lattice model. Three ground-state en-
ergies of the triply degenerate GSM for the Coulomb interaction are
plotted as a function of the test flux along the y direction, �y/�0, for
(Nx, Ny ) = (6, 4), (12, 2), and (24, 1) in (a), (b), and (c), respectively.
Ground-state energies, E , are given in units of the nearest-neighbor
hopping amplitude, t , and offset by the lowest energy in each panel.
Different colors (red, green, and blue) denote that each ground state
of the triply degenerate GSM belongs to a different sector of the total
momentum along the x direction.

the same Ky, but different Kx, sectors, which is exactly oppo-
site to what happens at (Nx, Ny) = (8, 3). In this situation, it is
natural to shift Kx by inserting the test flux along the y direc-
tion. As expected, Fig. 2 shows that the topological spectral
flow exists as a function of the test flux along the y direction
for (Nx, Ny ) = (6, 4), (12, 2), and (24, 1). Note that, at these
aspect ratios, the energy differences between three constituent
ground states of the triply degenerate GSM are exceedingly
small in comparison with those at (Nx, Ny) = (8, 3).

C. Many-body Chern number

Now, we check if the many-body Chern number is cor-
rectly obtained for the triply degenerate GSM of the Coulomb
interaction at all aspect ratios. Note that the many-body Chern
number has been previously computed for the nearest- and
next-nearest-neighbor interactions at an aspect ratio corre-
sponding to the 2D bulk [4].

Simply put, the many-body Chern number is the total Berry
flux piercing through the parameter space of the twist angle
under the twisted boundary condition. Concretely, the many-
body Chern number can be defined as follows:

CMB = 1

2π

∫ 2π

0
dθx

∫ 2π

0
dθyF (θx, θy), (5)

where θx and θy are the twist angles in x and y directions,
respectively, and F (θx, θy) is the corresponding many-body

Berry curvature,

F (θx, θy) = ∂Ay

∂θx
− ∂Ax

∂θy
, (6)

where Aj=x,y is the many-body Berry connection,

Aj = 〈�(θx, θy)|i ∂

∂θ j
|�(θx, θy)〉, (7)

with �(θx, θy) being the exact ground-state wave function at
θx and θy.

For the actual numerical computation of CMB, the integral
in Eq. (5) is transformed into a finite sum by discretizing the
parameter space of θx and θy. This can be implemented via an
efficient method [47,48] allowing the accurate computation of
the Chern number with only about 100 discretized bins.

Consequently, we have confirmed that the total many-body
Chern number for the entire triply degenerate GSM is pre-
cisely quantized to be unity for all possible aspect ratios
with N = 8 and Ns = 24. While not completely legitimate,
the many-body Chern number can also be evaluated for each
constituent ground state of the triply degenerate GSM, which
turns out to be very close to 1/3, as expected.

Next, we check if each constituent ground state of the
triply degenerate GSM actually reduces to the Tao-Thouless
state in the thin torus limit. To this end, it is important to
choose the appropriate topological basis representing the Tao-
Thouless state and also FCIs in the presence of full quantum
fluctuations.

D. Wannier-Stark ladder eigenstates

The topological basis to represent FCIs is typically con-
structed in terms of maximallylocalized hybrid Wannier
functions [6], which can be mapped one-to-one to LL eigen-
states in the Landau gauge. In this work, we use essentially
the same topological basis but with a different method of con-
struction that facilitates a much more intuitive implementation
of the periodic boundary condition in finite-size Chern flat
bands than the previous approach [9].

We begin by noticing that maximally localized hybrid
Wannier functions can actually be understood as Wannier-
Stark ladder (WSL) eigenstates [49–55] formed in the Chern
flat band under an effective electric field [56]. Specifically,
WSL eigenstates are the energy eigenstates of the Stark
Hamiltonian:

HStarkφ
WSL = EWSLφWSL (8)

with

HStark = εk + eE · (i∇k + Ak ), (9)

where εk is the energy dispersion of the Chern flat band, E
is the effective electric field tuning the wave-packet localiza-
tion width of WSL eigenstates, and Ak = 〈uk|i∇k|uk〉 is the
Berry connection of Bloch states. It is important to note that
the effective electric field is only needed to generate WSL
eigenstates, which form an alternative basis set replacing the
usual one formed by Bloch states. Eventually, our objective is
to diagonalize HCFB by using WSL eigenstates as basis states.

The energy eigenvalue of WSL eigenstates is given by

EWSL = ε̄(k⊥) + (n + γ Zak(k⊥)/2π ), (10)
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where k⊥ is the momentum perpendicular to E, and  = eEa‖
is the Bloch frequency, with E and a‖ being the strength of E
and the lattice constant parallel to E, respectively. Likewise, k‖
is the momentum parallel to E, and a⊥ is the lattice constant
perpendicular to E. As one can see, EWSL is composed of three
terms: (i) the k‖-averaged band energy at a fixed k⊥,

ε̄(k⊥) = a‖
2π

∮
dk‖εk, (11)

(ii) an integer called the WSL index, n, and (iii) the Zak phase
[57],

γ Zak(k⊥) =
∮

dk‖ · Ak, (12)

which contains the topological information of the Chern flat
band as explained below. Note that the Zak phase is also
known as the polarization [58].

Note that φWSL is given as a function of k‖ as follows:

φWSL
n,k⊥ (k‖) = e− i



∫ k‖
0 dk′

‖[EWSL−εk′ −ê‖·Ak′ ], (13)

where k′ = k′
‖ê‖ + k⊥ê⊥, with ê‖ and ê⊥ being the unit vec-

tors parallel and perpendicular to E, respectively. Maximally
localized hybrid Wannier functions are obtained as the Fourier
transform of φWSL

n,k⊥ (k‖) with respect to k‖ in the limit of in-
finitely large , where the effects of the band dispersion can
be completely ignored. As mentioned above, in this work we
treat  as a variational parameter to tune the wave-packet
localization width of WSL eigenstates.

The topological information of the Chern band is contained
in the Zak phase via the winding number of WSL eigenstates
[56]. Specifically, the wave-packet center position of WSL
eigenstates can be computed as the expectation value of the
gauge-invariant position operator along the effective electric
field:

〈r〉 · ê‖/a‖ = 〈
φWSL

n,k⊥ (k‖)
∣∣i ∂

∂k‖
+ Ak · ê‖

∣∣φWSL
n,k⊥ (k‖)

〉

= n + γ Zak(k⊥)/2π, (14)

which can move up or down by one unit as γ Zak(k⊥) acquires
an integer multiple of 2π after k⊥ sweeps across the Brillouin
zone in the Chern band. Mathematically, the Chern number,
C, is related with the Zak phase as follows:

C = 1

2π
[γ Zak(2π ) − γ Zak(0)], (15)

which measures the winding number of WSL eigenstates. It
is worthwhile to mention that the gauge-invariant position op-
erator generates essentially identical results to those obtained
by using Resta’s formula [59].

Despite the aforementioned various nice properties of
WSL eigenstates, however, there is a technical problem in
imposing the periodic boundary condition to WSL eigenstates
in finite-size Chern flat bands, where exact diagonalization
should be actually performed. In fact, the same problem exists
for LL eigenstates in finite-size LLs. Fortunately, this prob-
lem can be solved in finite-size LLs by using elliptic theta
functions [60]. Motivated by this solution, a similar technique
has been developed for maximally localized hybrid Wannier
functions [9].

π−π π−π

C = 0C = 0C = −1

E(k) E(k)

kx

ky
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ky
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2

3

-3

-2

-1

0

1

2

3

x x

ky ky

(a) (b)

FIG. 3. Topological winding of Wannier-Stark ladder (WSL)
eigenstates in the checkerboard lattice model. The effective electric
field inducing WSL eigenstates is applied along the x direction.
(a) Wave-packet center position 〈x〉 of WSL eigenstates as a function
of the momentum along the y direction, ky, in the Chern flat band
of the checkerboard lattice model, which is the upper energy band
indicated by the Chern number C = −1 in the top panel. Topological
winding with a negative slope confirms C = −1. (b) Similar plot
in the topologically trivial situation, where all energy bands are
topologically trivial with C = 0. As one can see, there is no winding.
Blue dots represent wave-packet center positions obtained at zero
test flux, which are shifted along red lines with an insertion of the
test flux. Here, (Nx, Ny ) = (6, 6).

In this work, we use a different approach, where the
periodic boundary condition can be imposed to WSL eigen-
states in a more intuitive way. Our approach is based on the
fact that WSL eigenstates can be periodized by discretizing
momenta in the Stark Hamiltonian, HStark, in Eq. (9). Con-
cretely, HStark can be discretized by setting [εk]k1k2 = εk1δk1k2

and [Ak]k1k2 = Ak1δk1k2 , where δk1k2 is the usual Kronecker
delta with discrete momenta. Meanwhile, the momentum dif-
ferentiation, or the canonical position operator, is replaced
by [R̂]k1k2 ≡ 〈k1|i∇k|k2〉 = i∇k1δD(k1 − k2), where δD(k1 −
k2) is the discretized delta function defined as the Dirichlet
kernel [61]. Periodized WSL eigenstates can be obtained by
simply diagonalizing the so-discretized Stark Hamiltonian.

Figure 3(a) shows the topological winding of WSL eigen-
states in the Chern flat band of the checkerboard lattice model
with (Nx, Ny) = (6, 6). With the Chern number C = −1, here,
the wave-packet center position of WSL eigenstates winds
down monotonically as a function of k⊥ = ky in the presence
of the effective electric field applied along the x direction.
By contrast, Fig. 3(b) shows that there is no such winding
in the topologically trivial situation. This reveals that there
is a strong similarity between LL eigenstates in the lowest
LL and WSL eigenstates in the Chern flat band. Specifically,
the wave-packet center position of LL eigenstates increases
or decreases linearly as a function of kLL, with kLL being the
momentum of LL eigenstates in the Landau gauge. Consider-
ing that the wave-packet center position of WSL eigenstates
also increases or decreases monotonically as a function of un-
folded k⊥, i.e., k⊥ + 2πn, one can establish a one-to-one map-
ping between LL and WSL eigenstates via kLL ↔ k⊥ + 2πn.
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Interestingly, this one-to-one mapping can explain why
strongly nonuniform Berry curvatures could hinder the emer-
gence of FCIs. For the one-to-one mapping between LL and
WSL eigenstates to work properly, the wave-packet center
positions should be as equally spaced as possible. Technically,
this can be achieved if the Zak phase, γ Zak, follows a linear
function of k⊥, which can be obtained in the presence of a
uniform Berry curvature. While Chern bands can be made flat
in energy, the Berry curvature is generally rather nonuniform.
Fortunately, as shown in Fig. 3(a), the wave-packet center
positions of WSL eigenstates are more or less equally spaced,
making the one-to-one mapping between LL and WSL eigen-
states quite effective.

As mentioned previously, our objective is to diagonalize
HCFB by using periodized WSL eigenstates as basis states
rather than Bloch states. Of course, this change of basis does
not affect any physical observables so that all energy spectra in
Figs. 1 and 2 remain exactly the same as before. An advantage
of using WSL eigenstates as basis states is that each eigenstate
of HCFB can now be directly compared with the corresponding
FQHS via the one-to-one mapping between LL and WSL
eigenstates. Particularly, we can now compute the overlap
between three exact ground states of the triply degenerate
GSM for the Coulomb interaction and the Tao-Thouless state
as a function of the aspect ratio to check if the 1/3-filled
FCI indeed evolves into the Tao-Thouless state in the thin
torus limit. Note that the Tao-Thouless state can be written
as |100 · · · 〉, |010 · · · 〉, and |001 · · · 〉 in terms of both LL and
WSL eigenstates.

E. Tao-Thouless state

Let us begin by estimating when the Tao-Thouless state is
expected to occur as a function of the aspect ratio. To this
end, it is necessary to understand why root partition states
are formed for FQHSs in the first place. Let Lx and Ly be
the lengths of the torus along longer and shorter directions,
respectively. Note that the total surface area of the torus,
A = LxLy, is fixed for a given filling factor, ν, with a fixed
number of electrons, N , via A = 2π l2

BN/ν, with lB being the
magnetic length. For FQHSs, root partition states start to form
when two adjacent wave packets of LL eigenstates become
sufficiently well separated in comparison with their local-
ization width so that quantum fluctuations are suppressed.
Specifically, this happens at Ly � 2π lB, corresponding to the
aspect ratio ra = Lx/Ly � N/2πν.

Now, an important question is if the Tao-Thouless state
occurs at the similar aspect ratio for FCIs. To answer this
question, we compute the degeneracy-averaged square of
overlap [9] between three exact ground states of the triply
degenerate GSM for the Coulomb interaction, |�Coul

n=1,2,3〉, and
the Tao-Thouless state, |�TT

n=1,2,3〉, as a function of the aspect
ratio ra = Nx/Ny:

O2
TT = 1

3

3∑
n,m=1

∣∣〈�TT
n

∣∣�Coul
m

〉∣∣2
, (16)

which can be compared with the similar overlap for FQHSs.
Note that here, the wave-packet localization width of WSL
eigenstates is set to zero by taking the limit of large effective

O T
T
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N=8 FQHS
N=8 FCI
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FIG. 4. Overlap between the 1/3-filled fractional Chern insulator
(FCI) and the Tao-Thouless state in the checkerboard lattice model.
Open symbols denote the degeneracy-averaged square of overlap
between three exact ground states of the triply degenerate GSM for
the Coulomb interaction and the Tao-Thouless state, O2

TT, in the
1/3-filled Chern flat band of the checkerboard lattice model as a
function of ra = Nx/Ny. Specifically, circles and triangles indicate
O2

TT as a function of ra for two different electron numbers, N = 8
and 10, respectively. Continuous lines denote similar overlaps for the
1/3-filled fractional quantum Hall state (FQHS).

electric fields, in which case WSL eigenstates are simply
equal to maximally localized hybrid Wannier functions. We
investigate later what happens at finite electric fields.

Figure 4 shows that O2
TT follows almost exactly the same

curve of the similar overlap for the 1/3-filled FQHS, becom-
ing essentially unity at sufficiently large ra. It is amazing to see
that the behavior of O2

TT is almost identical for both FQHSs
and FCIs even though ra is defined slightly differently. That
is, ra = Lx/Ly and Nx/Ny for FQHSs and FCIs, respectively.
Most importantly, the Tao-Thouless state is firmly established
at ra � N/2πν, as expected from the previous argument based
on the suppression of quantum fluctuations. This means that,
for FCIs, the Tao-Thouless state can be obtained if Ny �√

2π  2.5066, which is consistent with our numerical find-
ing that O2

TT is essentially unity for Ny = 1 and 2.
On the other hand, Fig. 4 shows that O2

TT is vanishingly
small at ra  1, meaning that the 1/3-filled FCI is poorly
represented by the Tao-Thouless state in the 2D bulk. For a
better description of the 1/3-filled FCI in the 2D bulk, quan-
tum fluctuations should be appropriately incorporated into the
Tao-Thouless state, which actually amounts to the construc-
tion of the Chern-Laughlin state. Note that, with proper basis
states, the Tao-Thouless state can be used to explicitly con-
struct the Chern-Laughlin state in the disk geometry via the
Jack polynomial method [12]. In this work, we take a different
approach that can be applied to the torus geometry.

F. Quantum fluctuations

The Chern-Laughlin state can be constructed from the
Laughlin state by using the one-to-one mapping between
LL and WSL eigenstates. Concretely, the amplitude of the
Chern-Laughlin state at the desired WSL eigenstate can be
imported from that of the Laughlin state at the corresponding
LL eigenstate.

There exists, however, a prerequisite for this import to
work: the relative phase between different WSL eigenstates
should be properly fixed so that they form a coherent basis
set. While this can be done by using the previous gauge-fixing
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method developed for maximally localized hybrid Wannier
functions [9], here we use a method much more suited for
WSL eigenstates, which are obtained numerically in this
work by diagonalizing the Stark Hamiltonian. Specifically,
our method is based on the topological property of WSL
eigenstates by which they evolve continuously to each other
by changing k⊥ just as LL eigenstates do so by changing
kLL. Note that this is merely the topological winding of WSL
eigenstates shown in Fig. 3(a).

Mathematically, one can construct the coherent basis set of
WSL eigenstates with proper gauge-fixing as follows:

∣∣φWSL
n,k⊥

〉 = ei�n,k⊥
∣∣φWSL

n,k⊥

〉
, (17)

where |φWSL
n,k⊥ 〉 is the normalized WSL eigenstate under the

particular gauge-fixing condition that φWSL
n,k⊥ (k‖) = 〈k‖|φWSL

n,k⊥ 〉
is real at a certain value of k‖, which should be carefully
chosen to avoid any singularities of Ak along the line of
(k‖, k⊥) with k⊥ ∈ [0, 2π ]. The coherent phase, �n,k⊥ , can be
determined by

�n,k⊥ =
∫ 2πn+k⊥

0
dκAWSL(κ ), (18)

where AWSL(κ ) = 〈φWSL
n,k′

⊥
|i∂k′

⊥ |φWSL
n,k′

⊥
〉|κ=2πn+k′

⊥
is the Berry

connection of WSL eigenstates. As mentioned previously,
with this coherent basis set of WSL eigenstates, the Chern-
Laughlin state can be constructed by importing the amplitude
of the Laughlin state at each LL eigenstate and attaching it to
the corresponding WSL eigenstate.

Now, similar to the Tao-Thouless state, we compute the
degeneracy-averaged square of overlap between three ex-
act ground states of the triply degenerate GSM for the
Coulomb interaction, |�Coul

n=1,2,3〉, and the Chern-Laughlin
state, |�CL

n=1,2,3〉:

O2
CL = 1

3

3∑
n,m=1

∣∣〈�CL
n

∣∣�Coul
m

〉∣∣2
, (19)

which should be sizable if quantum fluctuations are appropri-
ately incorporated in the Chern-Laughlin state.

Figure 5 shows O2
CL as a function of the Bloch frequency

(which is proportional to the effective electric field strength)
for various aspect ratios. Three features are worth notic-
ing. First, O2

CL is always maximized in the limit of large
electric field strengths. This means that the exact Coulomb
ground state is best described by the Chern-Laughlin state
with maximally localized WSL eigenstates. Second, quantum
fluctuations take up a dominant portion of the exact Coulomb
ground state in the 2D bulk as shown by the huge increase
from O2

TT to O2
CL in “2D Bulk” systems. The existence of

such large quantum fluctuations indicates that the FCI is not
a simple charge density wave state in the 2D bulk. Third,
the maximum of O2

CL is quite high not only in the thin torus
limit, but also in the 2D bulk, proving that the exact Coulomb
ground state is well described by the Chern-Laughlin state
regardless of the aspect ratio.

Finally, we have confirmed that the Chern-Laughlin state
provides an excellent description of the 1/3-filled FCI also for
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FIG. 5. Overlap between the 1/3-filled FCI and the Chern-
Laughlin state in the checkerboard lattice model. The overlap is
plotted in terms of the degeneracy-averaged square of overlap be-
tween three exact ground states of the triply degenerate GSM for
the Coulomb interaction and the Chern-Laughlin state, O2

CL, in the
1/3-filled Chern flat band of the checkerboard lattice model as a
function of the Bloch frequency in units of the nearest-neighbor
hopping parameter, /t . Specifically, different lines denote O2

CL for
the same site number, Ns = NxNy = 24, but different aspect ratios,
ra = Nx/Ny. The inset shows the wave-packet localization width of
WSL eigenstates in units of the lattice constant along the x direction,
lWSL/ax , as a function of /t , which can be computed as the standard
deviation of the gauge-invariant position operator averaged over var-
ious WSL eigenstates. Color-coded arrows on the right frame of the
figure indicate O2

TT of the corresponding systems with various aspect
ratios, which can be categorized as two groups, “Thin Torus” and
“2D Bulk,” depending on whether O2

CL and O2
TT are similar or not in

the limit of large /t .

the nearest-neighbor interaction in the 2D bulk with basically
the same level of overlap reported in previous studies [9].

IV. RESULTS FOR THE KAGOME LATTICE MODEL

In this section, we perform an analysis of HCFB via exact
diagonalization for the kagome lattice model at 1/3 filling,
mirroring what was done for the checkerboard lattice model.

A. Hybrid adiabatic path

Figure 6 shows a comparison between energy spectra of
the nearest-neighbor and Coulomb interactions in the kagome
lattice as a function of (Nx, Ny ) for N = 8 and Ns = 24.

As one can see, the behavior of energy spectra is essentially
the same as that in the checkerboard lattice model. Specif-
ically, Figs. 6(a)–6(d) show that the triply degenerate GSM
collapses if one takes the thin torus limit directly for the
nearest-neighbor interaction. On the other hand, Figs. 6(e)–
6(h) show that the triply degenerate GSM remains intact for
the Coulomb interaction all the way to the thin torus limit.

Similar to what is done for the checkerboard lattice model,
we investigate the adiabatic continuity of the triply degenerate
GSM in the 2D bulk by deforming the electron-electron inter-
action from the nearest-neighbor to Coulomb interaction via
U (λ) = (1 − λ)U NN + λU Coul. Figure 6(i) shows that the en-
ergy gap between the third and fourth lowest energies remains
open as a function of λ in the 2D bulk, i.e., at (Nx, Ny) =
(6, 4), Again, the energy gap only closes at very small λ in
the thin torus limit, i.e., (Nx, Ny) = (24, 1), meaning that the
Tao-Thouless state can also be obtained in the thin torus limit
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(i)(a) (b) (c)

(e)

(d)

(f) (g) (h)

FIG. 6. Energy spectra of the nearest-neighbor and Coulomb interactions in the kagome lattice model. (a)–(d) Energy spectra of U NN in
the kagome lattice model as a function of �x/�0 for various values of (Nx, Ny ). (e)–(h) Similar energy spectra of U Coul. (i) Energy gap, �,
between the third and fourth lowest energies as a function of λ. All notations are similarly defined as in Fig. 1.

of the kagome lattice unless the electron-electron interaction
is strictly of nearest-neighbor form.

B. Topological spectral flow

Similar to the corresponding case in the checkerboard
lattice model, Figs. 6(b) and 6(f) show a clear verification
of the topological spectral flow at (Nx, Ny) = (8, 3) with the
insertion of the test flux along the x direction. Again, at this
aspect ratio, all three constituent ground states of the triply de-
generate GSM occur in the same Kx, but different Ky, sectors.

To verify the topological spectral flow at other aspect
ratios, we investigate how the three ground-state energies
of the triply degenerate GSM change as a function of the
test flux along the y direction. As expected, Fig. 7 shows
that the topological spectral flow exists as a function of
the test flux along the y direction for (Nx, Ny) = (6, 4),
(12, 2), and (24, 1). Again, here, the energy differences
between three constituent ground states of the triply degen-
erate GSM are exceedingly small in comparison with those
at (Nx, Ny ) = (8, 3).

C. Many-body Chern number

Similar to the checkerboard lattice model, the total many-
body Chern number is also precisely quantized to be unity
for the entire triply degenerate GSM of the Coulomb interac-
tion at all possible aspect ratios in the kagome lattice model.
Again, while not completely legitimate, the many-body Chern
number can be evaluated for each constituent ground state of
the triply degenerate GSM, which is confirmed to be CMB 
0.33, as expected.

D. Wannier-Stark ladder eigenstates

Figure 8(a) shows the topological winding of WSL eigen-
states in the Chern flat band of the kagome lattice model

with (Nx, Ny ) = (6, 6). With the Chern number C = 1, here,
the wave-packet center position of WSL eigenstates winds
up monotonically as a function of ky in the presence of the
effective electric field applied along the x direction. Mean-
while, Fig. 8(b) shows that there is no such winding in the
topologically trivial situation. This means that the one-to-one
mapping between LL and WSL eigenstates can also be es-
tablished for the Chern flat band of the kagome lattice model
as well.

(a)

(b)

(c)

(Nx = 6, Ny = 4)

(Nx = 12, Ny = 2)

(Nx = 24, Ny = 1)
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FIG. 7. Topological spectral flow of the triply degenerate GSM
under the flux insertion along the y direction in the kagome lattice
model. Similar to Fig. 2, three ground-state energies of the triply de-
generate GSM for the Coulomb interaction are plotted as a function
of �y/�0 for (Nx, Ny ) = (6, 4), (12, 2), and (24, 1) in (a), (b), and
(c), respectively. All notations are similarly defined as in Fig. 2.
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FIG. 8. Topological winding of WSL eigenstates in the kagome
lattice model. Similar to Fig. 3, the effective electric field inducing
WSL eigenstates is applied along the x direction. (a) Wave-packet
center position 〈x〉 of WSL eigenstates as a function of ky in the
Chern flat band of the kagome lattice model, which is the bottom
energy band indicated by the Chern number C = 1 in the top panel.
Topological winding with a positive slope confirms C = 1. (b) Simi-
lar plot in the topologically trivial band, which is the middle energy
band indicated by the Chern number C = 0 in the top panel. As one
can see, there is no winding. All notations are similarly defined as in
Fig. 3. Also, here, (Nx, Ny ) = (6, 6).

E. Tao-Thouless state

Figure 9 shows the degeneracy-averaged square of overlap
between three exact ground states of the triply degenerate
GSM for the Coulomb interaction and the Tao-Thouless state,
O2

TT, in the 1/3-filled Chern flat band of the kagome lattice
model as a function of ra.

As one can see, the behavior of O2
TT in the kagome lattice

model is almost exactly the same as that in the checkerboard
counterpart. Specifically, O2

TT follows almost exactly the same
curve of the similar overlap in the 1/3-filled FQHS, which
is constructed in the torus geometry with oblique unit cells.
Again, it is shown that O2

TT is essentially unity at ra � N/2πν,

O2 T
T N=10 FQHS

N=10 FCI
N=8 FQHS
N=8 FCI

ra
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FIG. 9. Overlap between the 1/3-filled FCI and the Tao-Thouless
state in the kagome lattice model. Similar to Fig. 4, open symbols
denote the degeneracy-averaged square of overlap between three
exact ground states of the triply degenerate GSM for the Coulomb
interaction and the Tao-Thouless state, O2

TT, in the 1/3-filled Chern
flat band of the kagome lattice model as a function of ra = Nx/Ny.
Continuous lines denote the similar overlaps for the 1/3-filled FQHS.
Note that FQHSs are constructed in the torus geometry with oblique
unit cells, which match the shape of those in the kagome lattice. All
notations are similarly defined as in Fig. 4.
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FIG. 10. Overlap between the 1/3-filled FCI and the Chern-
Laughlin state in the kagome lattice model. Similar to Fig. 5, the
overlap is plotted in terms of the degeneracy-averaged square of
overlap between three exact ground states of the triply degenerate
GSM for the Coulomb interaction and the Chern-Laughlin state, O2

CL,
in the 1/3-filled Chern flat band of the kagome lattice model as a
function of /t . All notations are similarly defined as in Fig. 5.

indicating that the Tao-Thouless state is firmly established at
Ny = 1 and 2.

F. Quantum fluctuations

Figure 10 shows the degeneracy-averaged square of over-
lap between three exact ground states of the triply degenerate
GSM for the Coulomb interaction and the Chern-Laughlin
state, O2

CL, in the 1/3-filled Chern flat band of the kagome
lattice model as a function of /t for various aspect ratios.

Here we observe essentially the same three features as
those in the checkerboard lattice model. First, O2

CL is al-
ways maximized in the limit of large , meaning that the
exact Coulomb ground state is best described by the Chern-
Laughlin state with maximally localized WSL eigenstates.
Second, quantum fluctuations take up a dominant portion of
the exact Coulomb ground state in the 2D bulk. Third, re-
gardless of the aspect ratio, the exact Coulomb ground state is
well described by the Chern-Laughlin state, which can be con-
structed by incorporating appropriate quantum fluctuations
into the Tao-Thouless state while maintaining the energy gap.

Finally, note that, similar to the checkerboard lattice
model, the Chern-Laughlin state provides an excellent de-
scription of the 1/3-filled FCI also for the nearest-neighbor
interaction in the 2D bulk of the kagome lattice model with
basically the same level of the overlap reported in Ref. [9],
while there are some small discrepancies. These discrepancies
are mainly due to the fact that we have used a slightly different
set of parameters for the Hamiltonian of the kagome lattice
model from that in the previous study. We have chosen our set
of parameters to make the energy dispersion of the Chern flat
band as flat as possible rather than simply ignoring it.

V. DISCUSSION

The main purpose of our work is to propose both a theoret-
ically precise and experimentally viable method to visualize
the fractional topological order of the Chern-Laughlin state
in the 1/3-filled Chern flat band and various FCIs at other
general filling factors.
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Theoretically, it is shown in our work that the 1/3-filled
FCI can be adiabatically connected to the Tao-Thouless state
via the hybrid adiabatic path of first deforming the electron-
electron interaction from the nearest-neighbor to Coulomb
interaction and then taking the thin torus limit. Similar
to the usual CDW states, the Tao-Thouless state can be,
in principle, directly detected in terms of its characteristic
charge density patterns represented by |100 · · · 〉, |010 · · · 〉,
and |001 · · · 〉 with 1 and 0 denoting filled and empty WSL
eigenstates, respectively, and ellipses denoting repeated pat-
terns. A detection of the Tao-Thouless state would provide
conclusive experimental evidence for the existence of the
Chern-Laughlin state, which can be constructed by incorpo-
rating appropriate quantum fluctuations into the Tao-Thouless
state.

Importantly, our work establishes the existence of an adia-
batic path from the 1/3-filled FCI to the Tao-Thouless state by
taking the thin torus limit in the same Hamiltonian with a fixed
form of the electron-electron interaction, which can maintain
the robust energy gap unless the electron-electron interaction
is strictly of the nearest-neighbor form. Such an adiabatic path
is different from those proposed in previous works [10,11],
where the Hamiltonian itself is deformed by linearly mix-
ing two different limiting forms of the Hamiltonian along
the path. As elaborated below, our work opens up the excit-
ing possibility of detecting the Tao-Thouless state in actual
experiments.

Experimentally, a recent observation of FCIs in the
MATBG [15] suggests that the Tao-Thouless state can actu-
ally be detected in an incommensurate double-walled carbon
nanotube [40] made out of the MATBG, allowing charge-
sensitive surface measurements such as scanning tunneling
microscopy [41,42]. Note that the MATBG nanotube can
act as the thin torus limit of Chern flat bands so long
as it has up to two moiré unit cells along the tubular
circumference.

Our method can be extended to other general FCIs corre-
sponding to both Abelian and non-Abelian FQHSs. Regarding
the Abelian states, root partition states are known for all the
FQHSs belonging to the Jain sequence [31]. The existence
of these root partition states can be investigated in the thin
torus limit of Chern flat bands at their corresponding filling
factors. In particular, it would be interesting to investigate if
the Chern CF sea, the FCI analog of the CF sea, can arise in
the half-filled Chern flat band.

Regarding the non-Abelian states, while there are many
variations, perhaps the most important non-Abelian state
would be the Moore-Read Pfaffian state [62–64]. Considering
the possible application to topological quantum computation
[65], it would be interesting to know if and how a lattice
analog of the Moor-Read Pfaffian state can be realized in the
half-filled Chern flat band, competing against the Chern CF
sea.

Being the zero-energy ground state of the three-body re-
pulsive interaction, the Moore-Read Pfaffian state is expected
to have sextuply degenerate root partition states in the thin
torus limit [31]: (i) two single-isolated-electron root partition
states, |1010 · · · 〉 and |0101 · · · 〉, and (ii) four paired-electron
root partition states, |1100 · · · 〉, |0110 · · · 〉, |0011 · · · 〉, and
|1001 · · · 〉, with 1 and 0 denoting filled and empty WSL

eigenstates, respectively, and ellipses denoting repeated pat-
terns. Just like the Tao-Thouless state, a detection of these
root partition states would provide conclusive experimental
evidence for the existence of the Moore-Read Pfaffian state.
A similar idea can be applied to other important non-Abelian
states such as the Zk parafermion states, which include the
Read-Rezayi state at k = 3 [66].

At this point, it is important to ask if root partition states
can always be obtained for general FCIs by simply taking
the thin torus limit. While there is no guarantee, our work
suggests that the answer to this question is likely to be pos-
itive. It is shown in our work that the overlap between the
Tao-Thouless and the exact Coulomb ground states in the
1/3-filled Chern flat band behaves almost identically to that
in the fractional quantum Hall counterpart as a function of the
aspect ratio. This suggests that general FCIs can be adiabat-
ically connected to their corresponding root partition states,
so long as the electron-electron interaction is sufficiently
long-ranged.

Finally, it is important to note that, while similar, the Tao-
Thouless state and various other root partition states can be
clearly distinguished from the usual CDW states via their
characteristic topological property. That is to say, let us imag-
ine a situation in which the magnetic flux is inserted along
the tubular axis of the MATBG nanotube. With this inser-
tion of the magnetic flux, root partition states are spatially
translated along the tubular axis, which is actually nothing
but the topological spectral flow in the thin torus limit, also
known as the charge pumping. Specifically, there would be
a spatial translation causing the cyclic interchange among
|100 · · · 〉, |010 · · · 〉, and |001 · · · 〉 for the Tao-Thouless state.
By contrast, there would be no charge pumping for the usual
CDW states.
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APPENDIX A: TIGHT-BINDING MODEL HAMILTONIANS

We focus on two tight-binding model Hamiltonians to gen-
erate Chern flat bands: (i) Hchecker for the checkerboard lattice
[2] and (ii) Hkagome for the kagome lattice [3].

First, the tight-binding model Hamiltonian for the checker-
board lattice can be written as follows:

Hchecker =
∑

k

(c†
ak c†

bk )Hk

(
cak
cbk

)
, (A1)
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where

Hk = − [(t ′
1 + t ′

2)(cos kx + cos ky) + 4t ′′ cos kx cos ky]I

− 4t cos φ cos
kx

2
cos

ky

2
σx − 4t sin φ sin

kx

2
sin

ky

2
σy

− [(t ′
1 − t ′

2)(cos kx − cos ky) + M]σz, (A2)

where cak and cbk are the electron annihilation operators at
momentum k for a- and b-sublattices, respectively, I is the
identity matrix, and σx,y,z are the Pauli matrices. As written
above, Hchecker is not of the proper Bloch form, in which
case the Chern number cannot be correctly computed. Hchecker

can be brought to a proper Bloch form via the gauge trans-
formation of cbk → e−i(kx−ky )/2cbk [7]. Finally, the value of
M controls the transition between topologically trivial and
nontrivial phases.

For the choice of parameters with t = 1, t ′
1 = −t ′

2 =
1/(2 + √

2), t ′′ = 1/(2 + 2
√

2), φ = π/4, and M = 0,
Hchecker generates a gapped energy spectrum containing two
energy bands with Chern numbers C = ±1. The upper energy
band with C = −1 has a bandwidth of nearly 1/30 of the band
gap and thus can serve as a Chern flat band suitable for the
realization of FCIs.

Second, the tight-binding model Hamiltonian for the
kagome lattice can be written as follows:

Hkagome =
∑

k

(c†
ak c†

bk c†
ck )Hk

⎛
⎝cak

cbk
cck

⎞
⎠, (A3)

where

Hk =
⎛
⎝ 0 h12(k) h13(k)

h∗
12(k) 0 h23(k)

h∗
13(k) h∗

23(k) 0

⎞
⎠ (A4)

with nonzero matrix elements of Hk given by

h12(k) = −2(t − iλ) cos
k1

2
− 2(t ′ + iλ′) cos

(
k2

2
+ k3

2

)
,

h13(k) = −2(t + iλ) cos
k2

2
− 2(t ′ − iλ′) cos

(
k3

2
− k1

2

)
,

h23(k) = −2(t − iλ) cos
k3

2
− 2(t ′ + iλ′) cos

(
k1

2
+ k2

2

)
,

(A5)

where k1 = kx, k2 = (kx + √
3ky)/2, and k3 = k2 − k1. Sim-

ilar to Hchecker, Hkagome can be brought to a proper Bloch
form via the gauge transformation of cbk → e−ik1/2cbk and
cck → e−ik2/2cck.

For the choice of parameters with t = 1, t ′ = −0.3,
λ = 0.28, and λ′ = 0.2, Hkagome generates a gapped energy
spectrum containing three bands with Chern numbers C =
1, 0,−1. The bottom energy band with C = 1 has a bandwidth
of nearly 1/52 of the band gap against the middle energy band,
serving as a Chern flat band suitable for the realization of
FCIs.

APPENDIX B: PROJECTED INTERACTION
MATRIX ELEMENTS

We begin by writing the projected electron-electron inter-
action operator in real space as follows:

Û = 1

2

∑
a,b

′∑
i, j

U
(
ra

i − rb
j

)
PCFB

∣∣ra
i , rb

j

〉〈
ra

i , rb
j

∣∣PCFB, (B1)

where a, b and i, j denote sublattice and unit cell indices,
respectively. The prime indicates that the summation is re-
stricted so that i �= j if a = b. The ket states |ra

i 〉 and |ra
i 〉

represent the position eigenstate at ra
i and ra

i , respectively.
The projection operator to the Chern flat band, PCFB, mod-

ifies the position eigenstate at the a-sublattice as follows:

PCFB

∣∣ra
i

〉 =
∑

k

u∗
a(k)eiθa

k eik·ra
i |k〉, (B2)

where ua(k) is the a-sublattice amplitude of the Bloch eigen-
state with momentum k projected to the Chern flat band.
The phase factor eiθa

k is due to the gauge transformation re-
quired to bring the Hamiltonian into a proper Bloch form.
Projected position eigenstates can be similarly obtained for
the b-sublattice.

Then, by using the momentum space representation of the
projected position eigenstates in Eq. (B2), we can rewrite the
projected electron-electron interaction operator in momentum
space as follows:

Û =
∑

k1,k2,k3,k4

〈k1, k2|Û |k3, k4〉c†
k1

c†
k2

ck3 ck4 , (B3)

with

〈k1, k2|Û |k3, k4〉 =
∑
a,b

′∑
δr

δk1+k2,k3+k4U (δr)ei(k2−k4 )·δrei(θa
k1

+θb
k2

−θa
k3

−θb
k4

)u∗
a(k1)u∗

b(k2)ua(k3)ub(k4), (B4)

where δr = ra
i − rb

j is the relative position vector and U (δr) is the unprojected electron-electron interaction in the real space.
Finally, by using the momentum space representation of the projected electron-electron interaction matrix element in Eq. (B4),

we can rewrite the projected electron-electron interaction operator in the WSL eigenstate space as follows:

Û =
∑

κi,κ j ,κk ,κl

〈κi, κ j |Û |κk, κl〉c†
κi

c†
κ j

cκk cκl , (B5)

with

〈κi, κ j |Û |κk, κl〉 =
∑

k1,k2,k3,k4

〈k1, k2|Û |k3, k4〉φ∗
κi

(k1)φ∗
κ j

(k2)φκk (k3)φκl (k4), (B6)
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where φκ (k) is related with WSL eigenstates via φκ (k) = φWSL
n,k⊥ (k‖) with κ = 2πn + k⊥ (i.e., k⊥ = κ mod 2π ) and k = k‖ê‖ +

k⊥ê⊥ (i.e., k‖ = k · ê‖). See the main text for the explicit definition of φWSL
n,k⊥ (k‖) in Eq. (13).

The physical form of the electron-electron interaction can be varied by changing U (δr) in Eq. (B4). In the case of the
nearest-neighbor interaction, U (δr) is chosen to be U NN(δr), which is nonzero only if δr is the relative position vector connecting
between nearest-neighboring sites. In the case of the Coulomb interaction, U (δr) is chosen to be U Coul(δr), which is the usual
1/r potential except for an important modification due to repeated image charges induced by the periodic boundary condition.

APPENDIX C: EWALD SUMMATION FOR THE COULOMB INTERACTION

Following Bonsall and Maradudin [46], we can write the Coulomb interaction, U Coul(δr), as follows:

U Coul(δr) =
∑
Rl

e2

|δr + Rl | = e2

√
ac

∑
G �=0

e−iG·δrϕ− 1
2

( |G|2ac

4π

)
+ e2

√
ac

∑
Rl

ϕ− 1
2

(
π

ac
|δr + Rl |2

)
, (C1)

where Rl = l1N1ê1 + l2N2ê2, with ê1 and ê2 being the primitive lattice vectors of the supercell lattice, G is the corresponding
reciprocal lattice vectors, and ac is the area of the supercell. Finally, ϕn(x) = ∫ ∞

1 dt tne−xt .
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