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Quantum synchronization of a single trapped-ion qubit
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Synchronizing a few-level quantum system is of fundamental importance to the understanding of synchroniza-
tion in the deep quantum regime. Whether a two-level system, the smallest quantum system, can be synchronized
has been theoretically debated for the past several years. Here, for the first time, we demonstrate that a qubit
can indeed be synchronized to an external driving signal by using a trapped-ion system. By engineering fully
controllable gain and damping processes, an ion qubit is locked to the driving signal and oscillates in phase.
Moreover, upon tuning the parameters of the driving signal, we observe characteristic features of the Arnold
tongue as well. Our measurements agree remarkably well with numerical simulations based on recent theory
on qubit synchronization. By synchronizing the basic unit of quantum information, our study opens up the
possibility of exploring the application of quantum synchronization to quantum information processing in the
near future.
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I. INTRODUCTION

Originally discovered by Huygens in two pendulum clocks
suspended from the same wooden beam [1], synchronization
is widespread in nature [2–7]. Systems capable of synchro-
nization usually suffer from certain dissipations, holding a
common characteristic known as the limit cycle. It represents
the steady motion of the system at the intrinsic oscillating fre-
quency, possessing one or more free phases and being robust
to perturbations. Owning a limit cycle enables a self-sustained
oscillator to adjust its rhythm to oscillate in phase via mutual
coupling to other oscillators or being driven by an external
signal [8,9].

As controllable quantum systems blossom in recent
decades [10–12], synchronization studies have also been ex-
tended to the quantum regime [13–21]. Several works focus
on the quantum van der Pol (qvdP) oscillator [18,19,22–29].
Compared to its classical counterpart [30], the deterministic
trajectory and the limit cycle becomes meaningless due to
the quantum noise [18,19,27]. Nevertheless, the synchroniza-
tion features can still be captured by evaluating the phase
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preference of the quasiprobability distribution in the position-
momentum space [18,19,26,27]. Meanwhile, inspired by the
qvdP oscillator in the deep quantum regime where only a few
discrete energy levels are involved [18,19,22,26], the synchro-
nization of systems with finite Hilbert space has also been of
interest. Raised by Roulet and Bruder, spin-1 systems were
theoretically shown to be synchronizable [31–33], and the
experimental demonstrations were carried out subsequently
[34,35]. Here, the limit cycle and synchronization can be
generalized to spin systems by introducing the spin coherent
states and Husimi-Q representation [31,36]. The emergence
of coherence between different energy levels induced by the
external signal can be also interpreted as a sign of phase syn-
chronization [33], providing a fresh understanding of quantum
synchronization.

However, Ref. [31] also stated that quantum synchroniza-
tion is not applicable for a single qubit (spin-1/2 system) due
to the lack of the limit cycle [37]. It contradicts the fact that
the qvdP oscillator can be synchronized at the quantum limit,
where only the ground and the first-excited states are occu-
pied [18,19,22]. Parra-López and Bergli solved this seeming
conflict theoretically, showing that the limit cycle of a single
qubit can be obtained by choosing appropriate pure states to
construct mixed states (see Fig. 1) [38]; thus, a single qubit
is certainly synchronizable. The debate on whether qubits can
be synchronized is not only of academic interest; being able to
synchronize qubits holds promise for potential applications of
quantum synchronization in quantum information [16,39,40].

In this work, we experimentally demonstrate that a qubit
can be synchronized with an external driving signal by
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FIG. 1. Visualizing limit cycle and synchronization on the Bloch
sphere. A qubit suffered from dissipations of gain, damping, and
dephasing would finally evolve into a steady state. A limit cycle
can be constructed from this steady state, by mixing pure states in
the latitude circle with equal weights (uniform blue circle in the left
sphere). All these states precess at the intrinsic frequency of ωq.
After synchronization, the qubit obtains a phase preference φs and
precesses at the sync frequency ω. The blue arrows indicate the Bloch
vectors of the corresponding qubit states.

utilizing a trapped-ion system. We provide a clear char-
acterization of the limit cycle, supply strong evidence of
synchronization and ascertain the parameter intervals within
which synchronization can be achieved. Our results are in re-
markable quantitative agreement with theoretical predictions,
showcasing trapped-ion systems as an excellent platform for
further studies and applications of quantum synchronization.
In the following content, we would first review the theory of
synchroning a single dissipated qubit in Sec. II and elucidate
how synchronization can be characterized. We then present
our experimental implementation in Sec. III. We would intro-
duce our setup and key observations such us phase locking,
frequency entrainment, and Arnold tongue. Next in Sec. IV,
we would discuss an alternative method to investigate the limit
cycle of single qubit through its classical motion in phase
space. Finally, we would present our conclusion and outlook
in Sec. V.

II. THEORY ON QUBIT SYNCHRONIZATION

Hereby we first briefly review the theory of qubit syn-
chronization. Specifically, we investigate a dissipated qubit
perturbed by an external classical signal (referred to the
sync signal in following) [38]. The qubit is described by the
Hamiltonian Ĥq = ωqσ̂z/2, where ωq represents its energy
gap. The sync signal driving the qubit is given by Ĥd =
ε cos (ωt + ϕ)σ̂x, with ε, ω and ϕ denoting the strength, fre-
quency and initial phase of the signal, respectively. Here, σ̂x,y,z

are Pauli operators. The dynamics of this system is governed
by the following Lindblad equation:

d ρ̂

dt
= − i

2
[�σ̂z + εσ̂ϕ, ρ̂]

+ 	g

2
D[σ̂+]ρ̂ + 	d

2
D[σ̂−]ρ̂ + 	z

2
D[σ̂z]ρ̂, (1)

where σ̂ϕ = σ̂x cos ϕ + σ̂y sin ϕ, � = ω − ωq, and ρ̂ repre-
sents the density operator of the qubit. Note that the rotating
frame together with the rotating wave approximation has been
taken with respect to the frame of Ûsync = e−iωσ̂zt/2. The Lind-
blad operators, D[Â]ρ̂ = Âρ̂Â† − {Â†Â, ρ̂}/2, describe the
qubit dissipation, while 	g, 	d , and 	z represent the gain,
damping, and dephasing rates, respectively. As one of the
standard approaches for studying quantum spin systems, we
can translate the above master equation into the Bloch repre-
sentation, resulting in the following set of equations:

ṁx = − 	t mx

4
− �my + ε cos ϕ mz,

ṁy = − 	t my

4
+ �mx + ε sin ϕ mz,

ṁz = 	g − 	d

2
− 	g + 	d

2
mz

− ε cos ϕ mx − ε sin ϕ my. (2)

Here, m = {mx, my, mz} represents the Bloch vector with
mi = Tr[σ̂iρ̂], and 	t is equal to 	g + 	d + 4	z. When the
sync signal is absent (indicating ε = 0), the above Bloch
equations yield a stationary solution as follows,

mLC =
{

0, 0,
	g − 	d

	g + 	d

}
. (3)

Alternatively, in the eigenbasis of σ̂z, denoted as |0〉 , |1〉, this
stationary state can also be represented as

ρLC = 	d

	g + 	d
|0〉 〈0| + 	g

	g + 	d
|1〉 〈1| , (4)

It is worth noting that there is seemingly no free phase if we
simply treat the above stationary state in the eigenbasis of σ̂z.
It previously led to a mistaken belief that a single dissipated
qubit does not exhibit a limit cycle and therefore cannot be
synchronized [31].

However, the conclusion turns out to be different if we
choose an overcomplete set of coherent-spin states (CSSs)
defined as follows:

|θ, φ〉 = e−iφσ̂z/2e−iθσ̂y/2 |1〉 . (5)

It corresponds to the eigenstate of the operator nθ,φ · σ̂ and
nθ,φ = {sin θ cos φ, sin θ sin φ, cos θ}. With this basis, the sta-
tionary state given in Eq. (4) can be rewritten as

ρLC = 1

2π

∫ 2π

0
dφ |θ0, φ〉 〈θ0, φ| , (6)

where

θ0 = arccos

(
	g − 	d

	g + 	d

)
. (7)

Obviously, this stationary state Eq. (4) can be treat as an
ensemble of CSSs with the same energy (see Fig. 1), and since
the CSS with different phase φ contribute equally to the state,
it is appropriate to consider φ as a free phase. Consequently,
this stationary state can be interpreted as the limit cycle of the
dissipated qubit.

Additionally, similar to the Wigner representation uti-
lized in oscillator systems, we introduce the Husimi-Q
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representation (Q function) [36],

Q(θ, φ) = 1

2π
〈θ, φ| ρ̂ |θ, φ〉 , (8)

to represent the quasiprobability distribution of any qubit state
in the phase portrait of the Bloch sphere. In this representa-
tion, the limit cycle state reads as follows:

Q(θ, φ) = 1

4π
(1 + mLC,z cos θ ), (9)

which displays a uniform quasiprobability distribution along
the longitude axis.

Now we consider the case where the external signal is
appled to the dissipated qubit. The Bloch equations Eq. (2)
yield a stationary solution as follows:

mx = 4ε(	g − 	d )(4� cos ϕ + 	t sin ϕ)(
16�2 + 	2

t

)
(	g + 	d ) + 8	tε2

,

my = 4ε(	g − 	d )(4� sin ϕ − 	t cos ϕ)(
16�2 + 	2

t

)
(	g + 	d ) + 8	tε2

,

mz =
(
16�2 + 	2

t

)
(	g − 	d )(

16�2 + 	2
t

)
(	g + 	d ) + 8	tε2

. (10)

To characterize the performance of synchronization, we uti-
lize the synchronization measurement (Sfunction) defined as
[31,38]

S(φ) =
∫ π

0
dθQ(θ, φ) sin θ − 1

2π

= 1

8
(mx cos φ + my sin φ). (11)

Obviously, the synchronization measurement gives rise to
S(φ) = 0 for the unsynchronized limit cycle state. While the
qubit state is synchronized, the S function would show a
nonuniform distribution over φ.

For the qubit subjected to an external signal, we can analyt-
ically obtain the S-function by inserting Eq. (10) into Eq. (11)
and the result yields as follows:

S(φ) = C
2

sin(ϕ + ϕd − φ), (12)

where the contrast C reads as

C = ε|	g − 	d |(
16�2 + 	2

t

)
(	g + 	d ) + 8	tε2

√
16�2 + 	2

t , (13)

and the additional phase shift ϕd is

ϕd = arctan
4�

	t
. (14)

The contrast C provides a suitable measure of synchronization
performance, and the synchronized phase φs can be deter-
mined as follows:

φs =

⎧⎪⎨
⎪⎩

ϕ + ϕd − π

2
, 	g > 	d

ϕ + ϕd + π

2
, 	g < 	d

. (15)

Note that the signatures of the synchronization are evaluated
in the rotating frame to avoid directly measuring the fast
oscillation of the qubit in the Schrodinger picture, which

FIG. 2. (a) Experimental setup. A single 171Yb+ ion is held in a
five-segmented blade-type Paul trap. Three beams, marked as gain,
damping, and repumping are aligned to the ion, and all the polar-
izations are perpendicular to the static magnetic field. The external
sync signal is broadcasted to the ion through a microwave horn.
(b) Energy levels of 171Yb+ ion. The transitions driven by the gain
(red), damping (blue), and repumping (green) beams are shown, with
the coupling strengths of �g, �d , and �r,0/1, respectively. For the
spontaneous emission, we only show the decay channels from the
2P1/2 |F = 1, mF = −1〉 level for clarity. (c) Dissipated qubit. Pro-
vided that γ ∼ �r,0 � �g, �d ,�r,1, as is the case in our experiment,
the whole system is well approximated by a two-level system with
controlled gain and damping rates, which can be coherently driven
by the sync signal.

are conventionally used in studying the synchronizatin of
quantum spin systems [31–35]. Further discussion on qubit
synchronization in the Schrödinger picture can be found in
Appendix F.

III. EXPERIMENTAL RESULTS

A. Setup

To experimentally demonstrate qubit synchronization, we
utilize a trapped-ion system and employ a qubit encoded
in a single 171Yb+ ion [see Fig. 2(a)]. Here, the qubit is
represented by the hyperfine levels belonging to the ground
manifold, denoted as |0〉 ≡ 2S1/2 |F = 0, mF = 0〉 and |1〉 ≡
2S1/2 |F = 1, mF = 0〉, with an energy gap of ωq/(2π ) around
12.6 GHz [41], as shown in Fig. 2(b). The qubit can be
initialized to the |0〉 state via optical pumping, while the state
measurement is performed by selectively exciting the |0〉 level
to the 2P1/2 |F = 0〉 levels and counting the emissing photons
[42]. In our system, the state-preparation-and-measurement
(SPAM) error is less than 7 × 10−3. More details of the setup
can be found in Appendix A.

To realize a dissipated qubit, we engineer the gain and
damping processes in a fully controlled way [43,44], as
illustrated in Figs. 2(b) and 2(c). More specifically, the

033209-3



LIYUN ZHANG et al. PHYSICAL REVIEW RESEARCH 5, 033209 (2023)

ion is driven from |0〉 (|1〉) to 2P1/2 |F = 1, mF = ±1〉
at a coupling strength of �g (�d ), followed by a fast
spontaneous emission to both |1〉 and |0〉. The state leak-
age to 2S1/2 |F = 1, mF = ±1〉 is quickly repumped back
to the qubit space by strongly coupling these states to
2P1/2 |F = 0, mF = 0〉 and 2P1/2 |F = 0, mF = 1〉. Taken to-
gether, these processes result in an incoherent gain (damping)
at a rate of 	g (	d ) within the qubit system, accompanied by
a pure dephasing dynamics at a rate of 	z.

The dissipation rates of 	g and 	d can be indepen-
dently tuned by adjusting the related lasers’ power to change
strengths of �g and �d , respectively, and the dephasing rate
of 	z is determined afterwards. In the experiments, these rates
are set by choosing appropriate coupling strengths and accu-
rately measured. Further details can be found in Appendix B.
A classical external signal (sync signal) with frequency ω,
strength ε and initial phase ϕ = π/2 is then broadcasted to the
ion through a microwave horn [42]. All experimental results
are compared to numerical simulations based on Eq. (1).

B. Characterization of dissipated qubit

In our experimental setup, We first demonstrate the behav-
ior of the dissipated ion qubit and concurrently evaluate all
the dissiation rates. We perform independently measuremetns
for the gain rate 	g and the damping rate 	d by initialize the
qubit state to the |0〉 and |1〉 states, respectively, and then en-
gineering only the gain or damping process. The summarized
results are presented in Fig. 3(a). The measured values for the
gain rate 	g and the damping rate 	d are (2π ) × 1.27(4) kHz
and (2π ) × 7.33(11) kHz, respectively, based on the direct
fitting results. The error bars here and below all represent
standard deviation. These values give an anisotropic ratio
	d/	g = 5.8. Note that, the synchronization can occur as long
as 	g and 	d both nonidentical and nonzero [38]. Hence, our
experimental settings are suitable for observing qubit synchro-
nization. In Fig. 3(b), we also simultaneously engineer the
gain and damping processes, and the measured decay rate of
(2π ) × 8.59(39) kHz matches the value of 	g + 	d well.

To estimate the value of 	z, we initialize the initial qubit
state to one eigenstate of σ̂x and then measure in the σ̂x basis
as well, as depicted in Fig. 3(c). In this scenario, the decay rate
is equal to 2	z + (	g + 	d )/2, since the gain and damping
processes can also induce dephasing in the qubit. Utilizing
the previously obtained values of 	g and 	d , we have already
obtained, we can estimate the value of pure dephasing 	z to
be (2π ) × 4.42(106) kHz.

C. Qubit synchronization to resonant signals

As the first examination, we demonstrate the situation that
a dissipated qubit driven by a resonant external signal, and
the experimental observations of the qubit synchronization are
summarized in Fig. 4.

We prepare the qubit to the |1〉 state and confirm that
the undriven self-sustained qubit would relax to the limit
cycle state under the dissipations. As shown in Fig. 4(a),
after the first-stage evolution lasting 200 µs, the qubit has
reached the limit cycle described by the Bloch vector
of m(exp)

LC = {0, 0,−0.700(16)}, which is consistent with

FIG. 3. Experimental results of measuring decay rates. The blue
and red lines (points) in (a) represent the results for pure gain and
pure damping processes, respectively. In (b), both gain and damping
processes are engineered simultaneously. The initial state is prepared
in the |1〉 state, and then it is measured in the σz basis. In (c), we
initialize the qubit state to |+〉 = (|1〉 + |0〉)/

√
2 and then measure

the decay of qubit coherence, refering to the value of 2	z + (	g +
	d )/2. In all these cases, a fit function of Ae−	t/2 + B is used to
extract the decay rate 	fit for each figure. The open markers and
the shaded lines represent the experimental results and the standard
deviations, respectively, while the solid red lines indicate the fitting
results.

the predicted value of m(th)
LC = {0, 0, (	g − 	d )/(	g + 	d )} =

{0, 0,−0.705}. The limit cycle can be further visualized by
utilizing the Husimi-Q representation described by Eq. (8).
The Q functions of the initial and limit cycle states are ex-
perimentally measured, as illustrated in Figs. 4(b) and 4(c).
The contribution to the limit cycle mainly comes from the
pure states near the south pole of the Bloch sphere, due to
the anisotropic ratio 	d/	g > 1. The preference in the phase
φ of any state can be evaluated by the synchronization mea-
surement defined by Eq. (11). The values of S function for the
initial and limit cycle states are also shown in Figs. 4(b) and
4(c). The initial state shows a weak phase preference around
1.48(2)π due to the imperfect state preparation, while for the
limit cycle this preference completely vanishes as it should.

After the qubit reaches at the limit cycle, we apply
a resonant sync signal (� ∼ 0) with strength ε = (2π ) ×
2.37(1) kHz (ε/	g = 1.87). In Fig. 4(a), the qubit has reached
the final synchronized state after another 200 µs evolution. As
a sign of synchronization, a nonzero value is observed in mx,
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FIG. 4. Experimental results of quantum synchronization. (a). Time evolution of the Bloch vector. From 0 to 200 µs, only gain and
damping processes are engineered to establish the limit cycle. Subsequently from 200 to 400 µs, the sync signal is triggered simultaneously
to synchronize the qubit to the signal. Here and in the following figures, the open markers represent the experimental results, while the error
bars of a standard deviation are smaller than the size of the markers. The solid lines represent numerical simulation results. To verify the
achievements of the limit cycle and the synchronized state, we measure the Q functions and also the S functions at the time of (i) t0 = 0 µs,
(ii) t1 = 200 µs, and (iii) t1 + t2 = 400 µs, which correspond to the initial, limit cycle and synchronized state, respectively. [(b)–(d)] shows the
results of the Q function under the Winkel tripel projection (first row) and the S function (second row) for the time of (i)–(iii), respectively.

indicating that the sync signal rebuilds the qubit coherence.
For further verification, we also measure the Q and S functions
for the synchronized state, as shown in Fig. 4(d). The phase
preference reappears at φ = 1.03(2)π , since we set 	d > 	g

and the sync signal phase to be π/2 (as claimed in Sec. II).
The fitting contrast of the S function reaches 0.055(1), sig-
nificantly deviating from the unsynchronized limit cycle. The
above results indicate the experimental achievement of syn-
chronization with anti-phase locking. Note that the methods
to obtain the Q and S functions in experiments are discussed
in Appendix C.

D. Synchronization region over different signal
frequencies and amplitudes

Now we tune the sync frequency away from the qubit fre-
quency (� �= 0) while leaving the sync strength ε unchanged
to investigate the frequency entrainment. Figure 5(a) clearly
shows that the qubit can be synchronized for a wide range of
the sync signal frequency but with a delay or advance in the
locked phase [see Fig. 5(b)]. Such phase shift might provide
an alternative approach to sense the drift in magnetic field
strength by employing a magnetic-field-sensitive qubit.

In addition to the locked phase shift, the maximal value of
the synchronization measurement, Max[S(φ)], also degrades
with increasing detuning �. As an example shown in Fig. 5(c),
the value of Max[S(φ)] drops by half when the detuning � in-
creases to 10.7	g, under the sync strength of ε = 1.87	g. This
frequency bandwidth strongly depends on the sync strength;
therefore, we measure the value of Max[S(φ)] across a wide

range of the sync detuning and strength, as shown in Fig. 5(d).
This result is known as the Arnold tongue [8]. It is remarkable
that synchronization occurs as long as the sync strength is
nonzero, regardless of how weak it is. However, weak signals
result in small maximal values in the S function, making
the synchronization hard to be distinguished from the noisy
fluctuation in practice.

The limit cycle can also be distorted by sync signals that
are too strong. The deformation of the limit cycle can be
characterized by [33]

pdeform(ε) = Tr[σ̂z(ρ̂syn(ε) − ρ̂syn(0))], (16)

where ρ̂syn(ε) is the density matrix of the synchronized state
under the sync strength of ε, and ρ̂syn(0) indicates the limit
cycle. We experimentally measure the deformation with the
resonant sync signal, shown in Fig. 6(a). The deformation
increases as the sync strength gets stronger, and eventually
saturates to p(sat)

deform = −mLC,z. The saturation indicates that
the Bloch vector of the qubit state lies on the x-y plane of
the Bloch sphere, and the limit cycle established by the gain
and damping is fully distorted. This matches the results of
the corresponding S function measurement in Fig. 6(b). We
find that the phase preference becomes first more pronounced
as the sync strength increases and then gradually weakens
when the signal becomes too strong. Thus there is generally
a trade-off between the distortion in the limit cycle and the
sensitivity of the phase preference, which should be carefully
balanced in practical implementations.

We have further checked the time evolution of the qubit
starting from the limit cycle state but under different sync
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FIG. 5. (a) Synchronization under detuned sync signals. Here the
sync strength is kept at ε = 1.87	g. The experimental results (left)
agree well with simulations (right). The synchronization performs
the best under the resonant situation and can be achieved across a
wide range of sync frequency. (b) Shift in locked phase. The numeri-
cal simulation results correspond to those along the red-dashed in the
right sub-figure of (a). (c) Frequency bandwidth of synchronization.
A 3 dB bandwidth of 21.4	g is obtained at the sync strength of ε =
1.87	g. (d) Arnold tongue. The left and right sub-figures correspond
to the experimental and the simulation results. The red dashed lines
in the right subfigure indicate the 3 dB frequency bandwidth of the
synchronization under different sync strengths.

strengths, as illustrated in Fig. 6(c). The significant oscillation
of the system energy is observed when the sync strength
approaches 28.7	g, and the fitting result gives the oscillat-
ing frequency of 27.7(6)	g. This result clearly indicates that
the qubit is forcibly driven by the too strong signal, instead
of synchronizing to it. Note that the time evolution of all
Bloch components at synchronization strengths of 3.75	g and
28.7	g is presented in Appendix D.

IV. DISCUSSION ON LIMIT CYCLE

In previous studies [31,38], the analysis regarding the ex-
istence of a limit cycle always relied on steady quantum
states of the dissipated spin system and the quasiprobability
distribution in the Husimi-Q representation. This approach
may lead to misconceptions, such as the belief that a single
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maximal value of the S function increases at first, and then after a
critical value of εc it tends to drop back to zero. Under our setting
parameters, the critical sync amplitude is around 4.18	g. (c) Time
evolution of Bloch vector component mz starting from the limit cycle
state. Under the sync strengthes of 1.87	g and 3.75	g, the system
evolves almost smoothly to the final steady state, while with the
strength of 28.7	g, the system significantly oscillates before fully
decay.

qubit cannot be synchronized. Here, we attempt to adopt an
alternative approach. By establishing evolution equations that
describe the “classical motion” of the qubit in the phase space,
we investigate whether a single dissipated qubit can own a
valid limit cycle. This method is quite similar to that utilized in
studying synchronization of quantum oscillators [18,26,29].

To start, we derive the evolution equations for the Pauli
operators in the Heisenberg picture as follows:

d〈σ̂x〉
dt

= − 	t

4
〈σ̂x〉 − ωq 〈σ̂y〉 ,

d〈σ̂y〉
dt

= − 	t

4
〈σ̂y〉 + ωq 〈σ̂x〉

− 2ε cos (ωt + ϕ) 〈σ̂z〉 ,

d〈σ̂z〉
dt

= 	g − 	d

4
− 	g + 	d

4
〈σ̂z〉

+ 2ε cos (ωt + ϕ) 〈σ̂y〉 . (17)
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For quantum oscillators, we could obtain the “classical trajec-
tory” by approximating the value of 〈â〉 to be

〈â〉 = Tr[âρ̂] → α = Tr[â |α〉 〈α|]. (18)

Here, â is the annihilation operator of the quantum harmonic
oscillator, and the coherent states |α〉 are treated as the “most
classical” quantum states. The evolution of α is regarded as
the “classical trajectory.” Similarly, in the qubit system, we
attempt to employ the coherent-spin states |θ, φ〉 to obtain
the corresponding classical motion. By utilizing the approx-
imation of 〈σ̂k〉 → Tr[σ̂k |θ, φ〉 〈θ, φ|], we have the following
relationships:

〈σ̂x〉 → cos φ sin θ,

〈σ̂y〉 → sin φ sin θ,

〈σ̂z〉 → cos θ. (19)

Intuitively, it works like tracking the pointing direction (lati-
tude θ and longitude φ) of a classical spin, therefore the Bloch
vector is kept being normalized and projected onto the surface
of the Bloch sphere during the evolution. By inserting the
above relations into the Heisenberg equations of the qubit, we
could derive the time evolutions of θ and φ as follows:

dθ

dt
= 	d

2
(cot θ + csc θ ) + 	g

2
(cot θ − csc θ )

− 2ε cos (ωt + ϕ) sin φ

dφ

dt
=ωqφ − 2ε cot θ cos (ωt + ϕ) cos φ. (20)

Remarkably, we find that the above equations are quite similar
to those of quantum oscillators, where θ can be appropriately
interpreted as the oscillation amplitude of the qubit.

By solving the equation for θ when the external signal is
absent, we could obtain the steady-state solution as follows:

θsteady = arccos

(
	g − 	d

	g + 	d

)

=

⎧⎪⎪⎨
⎪⎪⎩

π/2 if 	g = 	d

0 if 	d = 0
π if 	g = 0

finite value all other cases

. (21)

Starting from the steady state and triggering the external
signal, the strength of the phase response is proportional to
2ε cot θsteady, which can be further expressed as

2ε cot θsteady =

⎧⎪⎪⎨
⎪⎪⎩

0 if 	g = 	d

infinity if 	d = 0
infinity if 	g = 0

finite value all other cases

. (22)

For the case of 	g = 	d , as already clarified in Sec. II,
this type of dissipated qubit cannot be synchronized. Here, we
further provide more evidence that if 	g = 	d , the oscillation
phase has no response to the external signal, regardless of its
strength. In addition to this case, in Ref. [38], Parra-López
and Bergli also claim that the qubit cannot be synchronized
if either 	d or 	g is zero. We can note that according to
Eq. (22) the oscillation phase would respond instantaneously
to the external signal in these cases. Therefore, instead of

FIG. 7. Express a valid limit cycle on the Bloch sphere. The limit
cycle obtained by solving the classical trajectory is exactly the same
as that shown in Fig. 1.

synchronization, the qubit is forced by the external signal.
Thus, for these two cases, we could also conclude that the
dissipated qubit is unsynchronizable. Such behavior is similar
to that of the quantum damped oscillator (see in Appendix E),
which cannot be synchronized as well. The physical interpre-
tation is also straightforward. When the gain rate 	g (damping
rate 	d ) is zero, the qubit state would relax to the |0〉 (|1〉)
state, corresponding to a fixed point on the surface of the
Bloch sphere. Thus the qubit does not exhibit a valid limit
cycle.

Now we turn to the case that 	g and 	d have nonidentical
values and neither of them is zero. In these cases, the steady
state of the oscillation amplitude θsteady has a finite value
if the external signal is absent, and the oscillation phase is
fully free. When the external signal is triggered, the oscil-
lation phase φ responds to the external signal with a finite
strength 2ε cot θsteady as well. These behaviors are exactly the
same as those of the quantum vdP oscillator (see also in
Appendix E). Thus we can conclude that this type of dissi-
pated qubit performs like the quantum vdP oscillator and is
synchronizable.

The value of θsteady has a clear meaning in the Bloch sphere
representation, as illustrated in Fig. 7. The steady solution
θsteady obtained by solving the equations of classical motion
is well corresponds to the value of θ0 in Eq. (7).

As an example, we illustrate the time evolution of the “clas-
sical trajectories” of the dissipated qubit in the phase space,
and all the numerical results are shown in Fig. 8. To clearly
display the limit cycle, the phase space is transformed from
polar coordinates |θ, φ〉 to normalized rectangular coordinates
of {(1 + cos θ ) cos φ/2, (1 + cos θ ) sin φ/2}. The subfigures
in the first row illustrates the evolution of the system under
only dissipation with random initial states. It is evident that
all the states evolve onto a circle with a finite radius of (1 +
cos θsteady)/2. Later, when the external signal is triggered, we
find that all the states tend to oscillate in phase progressively,
indicating the process of synchronization.

In addition, we want to point that a value of π for θsteady

in the case of 	g = 0, seems to be the cycle with the largest
radius, it does not represent a valid limit cycle. Since for the
coherent-spin states |θ, φ〉, it turns out to have the relation of
|θ = π, φ〉 = |0〉. Therefore the seeming cycle in the phase
space for the case of 	g = 0 is in fact equivalent to a single
point. Thus for 	g = 0, the dissipated qubit does not hold a
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FIG. 8. Classical trajectories of the dissipated qubit in the phase space. Each spot represents the evolution from one random initial state.
Here we choose the ratio between the damping and the gain rates to be 	d/	g = 5/3 to clearly visualize the limit cycle.

valid limit cycle as well. Moreover, the “classical trajectory”
method could be applied to the spin-1 system, and the ob-
tained results are consistent with the analysis presented by
Roulet and Bruder [31].

V. CONCLUSION

We have realized the synchronization between an ion
qubit and an external driving signal, and clear evidence of
phase synchronization and frequency entrainment has been
observed. The methods developed here can be extended to
various platforms, such as neutral atoms and superconducting
qubits, making it possible to synchronize hybrid systems with
proper frequency conversion.

Future research should further consider synchronization
in multi-qubits systems, as well as finding practical applica-
tions. For instance, qubits synchronized to the same signal
can be treated as a homogeneous spin ensemble, and such
ensembles in quantum magnetc could be helpful to generate
phase-correlated magnetic fields and enhance quantum sens-
ing [40]. For quantum memories in solid-state systems, the
memory qubits inevitably couple to the environmental qubits
with random phases and strengths [45]. Synchronizing envi-
ronmental qubits might effectively suppress the randomness
imparted to memory qubits, thereby prolonging their coherent
storage time. Recent research also widely considers utilizing
dissipations as resources for quantum information [46,47],
and quantum synchronization offers one fresh and promising
route for applications of dissipative quantum engineering.
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APPENDIX A: EXPERIMENTAL SETUP

As a supplement, we show more detials of our setup
in Fig. 9. A single ytterbium ion is captured in a
trap with frequencies of approximately {νx, νy, νz} = 2π ×
{2.8, 2.2, 0.5} MHz. For 171Yb+, the resonant wavelength be-
tween its ground state 2S1/2 and the excited state 2P1/2 is about
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FIG. 9. Experimental setup. A single ion is trapped in the blade-type Paul trap. A 369.5 nm laser beam, which drives the main transition
between the 2S1/2 and 2P1/2 levels (as shown in the upper-right inset figure), goes through a modulation system and then aligned to the ion
position, to realize all the operations required in the experiments. A static magnetic field B around 9 Gauss is set to define the quantization
axis and lift the energy degeneracy of the Zeeman levels as well. The external driving signal, which is broadcasted to the ion through the
microwave horn, is generated by mixing a fixed microwave signal (around 12.4 GHz) from a ultra low-noise signal generator with a tunable
radiofrequency signal (around 200 MHz) from a direct digital synthesis board (DDS).

369.5 nm. To cover all the hyperfine structues of the 171Yb+,
the 369.5 nm laser is delivered through a modulation system
consisting of two electro-optical modulators (EOMs) and two
acoustic-optical modulators (AOMs). The two EOMs phase
modulate the passing laser at 2.11 and 14.7 GHz, respectively;
thus, the laser will acquire sidebands in the frequency domain
corresponding to the modulation frequencies after passing
through them. When the nonmodulated carrier frequency
is tuned to resonant with the 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 0〉
transition, the 1st order sideband from the 2.11 GHz EOM
is resonant with the 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 1〉 transition,
and that from the 14.7 GHz (2.11 GHz + 12.6 GHz) EOM is
resonant with the transition of 2S1/2 |F = 0〉 ↔ 2P1/2 |F = 1〉.
The two AOMs are used here as fast optical shutters and
frequency shifters, set up in a double-pass (DP) configuration.
The switching of all the signal sources used for the EOMs and
AOMs is controlled by TTL signals, allowing us to quickly
turn on/off each device at the nanosecond level, thus ap-
plying a series of different operations accurately in the time
sequence.

The laser beam diffracted from the AOM-1 is used to
implement the processes of Doppler cooling (14.7 GHz EOM
and AOM-1 on simultaneously), optical pumping (2.11 GHz
EOM and AOM-1 on simultaneously), and detection (AOM-1
on only). Note that the signal frequency injected into the
AOM for Doppler cooling is red-shifted by about 5 MHz
(indicating a frequency shift of 10 MHz for laser) from the
resonant frequency to achieve the best cooling efficiency. The
fluorescence of the ions during detection was collected by an
objective lens with a numerical aperture of 0.4, resulting in a
state preparation and measurement (SPAM) error of less than
7 × 10−3.

The other beam diffracted from the AOM-2 is used to engi-
neer the effective gain and damping processes in the targeted
qubit system. The polarization of this beam is optimized to
be perpendicular to the direction of the magnetic B field, thus
inducing only σ+ and σ− transitions between the 2S1/2 and
2P1/2 levels. The coupling strengths of the gain beam (�g)
and the damping beam (�d ) are determined by the sideband
amplitudes generated by the 14.7 GHz and 2.11 GHz EOMs,
respectively; therefore, they can be tuned independently by
adjusting the signal amplitudes injected into each EOM. The
carrier component after passing through the EOMs works as
the repumping beam. In Appendix B, we would derive the
relationships between the values of 	g, 	d and the values of
�g, �d . The external driving signal for synchronization is
generated by the frequency mixing and then amplified by a
10 Watt microwave amplifier. The frequency, amplitude, and
phase of the driving signal can be precisely controlled by
tuning the DDS settings.

APPENDIX B: EFFECTIVE DISSIPATED QUBIT

In this section, we introduce in theory that how we
could obtain an effective dissipated qubit by engineering a
multilevel system. Specifically, we utilize the eight-level sys-
tem of 171Yb+ to induce controllable damping rate 	d and
gain rate 	g within the target qubit system, as shown in
Figs. 2(b) and 10. The Hilbert space of the whole eight-
level system can be divided into two subspaces, Ht and
Ha. The target Hilbert space Ht includes two levels of
{|2S0,0

1/2〉 ≡ |0〉 , |2S1,0
1/2〉 ≡ |1〉}, while the remaining six lev-

els {|2S1,±1
1/2 〉 , |2P0,0

1/2〉 , |2P1,0
1/2〉 , |2P1,±1

1/2 〉} make up the auxiliary
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FIG. 10. Energy levels to engineer dissipated qubit system. (Left) All the transitions driven by different laser beams with the optical
frequency ωl and coupling strength �l . (Right) All possible decay channels from the excited P levels. Note that for each level there are three
channels with equal decay probability.

Hilbert space Ha. Here, the notation of |2S+1LF,mF
J 〉 repre-

sents the energy level 2S+1LJ |F, mF 〉. As shown in Fig. 10,
we experimentally set �d ,�g,�r,1 � �r,0 ∼ γ , where �d,g,r

are the coupling strengths of the applied lasers and γ is the
spontaneous emission rate. This setting results in that the ion
stays in target Hilbert space for almost all time, and then we
could adiabatically eliminate all the auxiliary states and obtain
an effective Lindblad master equation for the two-level open
system [48].

To derive the effective master equation, we follow the
adiabatic elimination method introduced in Ref. [48]. For a
general open system, we have the Lindblad master equation,

d ρ̂

dt
= −i[Ĥ, ρ̂] +

∑
k

D[L̂k]ρ̂, (B1)

where D[Â]ρ̂ = Âρ̂Â† − 1
2 {Â†Â, ρ̂} is the Lindblad super-

operator, and Ĥ = Ĥt + Ĥa + V̂t + V̂a. Ĥt (Ĥa) is the free
Hamiltonian of the target (auxiliary) Hilbert space. V̂t (V̂a)
are the couplings with target (auxiliary) Hilbert space being
the destination levels. Base on the perturbation theory and the
adiabatic elimination method, Eq. (B1) can be reduced to an
effective master equation of the target Hilbert space as below,

d ρ̂t

dt
= −i

[
Ĥeff, ρ̂t

] +
∑

k

D
[
L̂k

eff

]
ρ̂t , (B2)

where ρ̂t represents the density matrix of the targed system,
and the effective Hamiltonian Ĥeff reads

Ĥeff = −1

2

⎡
⎣V̂t (t )

∑
l,n

(
Ĥ (l,n)

NH

)−1
V̂ (l,n)

a (t ) + H.c.

⎤
⎦ + Ĥt . (B3)

Moreover, the effective Lindblad operators in Eq. (B2) can be
expressed as

L̂k
eff = L̂k

∑
l,n

(
Ĥ (l,n)

NH

)−1
V̂ (l,n)

a (t ). (B4)

Here, (Ĥ (l,n)
NH )−1 = (ĤNH − En − ωl )−1, and V̂ (l,n)

a is the cou-
pling element for the field l with the frequency of ωl

and the associated initial state is |n〉 with energy En. The

non-Hermitian Hamiltonian ĤNH in Eqs. (B3) and (B4) reads
as below,

ĤNH = Ĥa − i

2

∑
k

L̂†
k L̂k . (B5)

For our situation, the free Hamiltonians of target and aux-
iliary subspace can be written as

Ĥt = ωq

2
σ̂z, (B6)

Ĥa =
∑

m=±1

E1,mF
S

∣∣2S1,mF
1/2

〉 〈2S1,mF
1/2

∣∣
+

∑
F,mF

EF,mF
P

∣∣2PF,mF
1/2

〉 〈
2PF,mF

1/2

∣∣ . (B7)

Here, EF,mF
L is the eigenenergy of the energy level |2S+1LF,mF

J 〉,
and the qubit energy gap ωq is equal to E1,0

S − E0,0
S . Mean-

while, the coupling operators induced by the driving lasers
(shown in Fig. 10) can be summarized as follows:

V̂t = 1

2

(
�geiωgt |0〉 + �d eiωd t |1〉 )

× (〈2P1,−1
1/2

∣∣ + 〈2P1,1
1/2

∣∣), (B8)

V̂a − V̂ †
t = �r,0eiωr,0t

2

∣∣2P0,0
1/2

〉 ( 〈2S1,−1
1/2

∣∣ + 〈2S1,1
1/2

∣∣ )
+ �r,1eiωr,1t

2

∣∣2P1,0
1/2

〉 ( 〈
2S1,−1

1/2

∣∣ + 〈
2S1,1

1/2

∣∣ )
+ H.c. (B9)

The spontaneous emission from the excited P levels can be
described as the Lindblad operators as below,

L̂(F,mF )→(F ′,mF ′ ) =
√

γ

3

∣∣2SF ′,mF ′
1/2

〉 〈2PF,mF
1/2

∣∣ . (B10)

All the possible decay channels are listed in the right subfigure
of Fig. 10. The coefficient of

√
γ /3 is because that each P

level has three decay channels with equal probability. After
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inserting Eqs. (B7) and (B10) into Eq. (B5), we can obtain the
following non-Hermitian Hamiltonian ĤNH:

ĤNH = Ĥa − iγ

2

∑
F,mF

∣∣2PF,mF
1/2

〉 〈
2PF,mF

1/2

∣∣ . (B11)

Now we can calculte the effective Hamiltonian of the targed
system Ĥeff by utilizing the relation of Eq. (B12), and after
simplification we find that

Ĥeff = Ĥt . (B12)

Furthermore, the engineered dissipation within the qubit
system can be characterize by the effective Lindblad opera-
tors, which are written as

L̂(1,±1)→(F,0)
eff =

√
γ

3

�ge−iωgt

±2�P − iγ
|F 〉 〈0|

+
√

γ

3

�d e−iωd t

±2�P − iγ
|F 〉 〈1| . (B13)

Note that, the ion stays at the levels of |2P1,±1
1/2 〉 would also

have 1/3 probability to decay to the levels of |2S1,±1
1/2 〉, re-

spectively, and the strong repumping transitions from |2S1,±1
1/2 〉

to |2P1,0
1/2〉 and |2P1,1

1/2〉 have the coupling strengths of �r,1 �
�r,0 ∼ γ . Therefore we assume that the repumping process
occurs almost instantaneously, and the effective Lindblad op-
erators with the instantaneous repumping can be modified as

L̂(1,±1)→(1,0)
eff,repump =

√
2γ

3

�ge−iωgt

±2�P − iγ
|1〉 〈0|

+
√

2γ

3

�d e−iωd t

±2�P − iγ
|1〉 〈1| , (B14)

L̂(1,±1)→(0,0)
eff,repump =

√
γ

3

�ge−iωgt

±2�P − iγ
|0〉 〈0|

+
√

γ

3

�d e−iωd t

±2�P − iγ
|0〉 〈1| . (B15)

Here, the coefficients in Eq. (B14) are modified from
√

γ /3
to

√
2γ /3, because we assume that the leakage to the levels

of |2S1,±1
1/2 〉 is almost repumped back to the |1〉 state under the

situation of �r,0 � �r,1. Then the effective Lindblad super-
operators of the target Hilbert subspace turn out to be

D
[
L̂(1,±1)→(1,0)

eff,repump

]
ρ̂t ≈ 2γ

3

�2
g

4�2
P + γ 2

D[σ̂+]ρ̂t

+ 2γ

3

�2
d

4�2
P + γ 2

D[|1〉 〈1|]ρ̂t , (B16)

D
[
L̂(1,±1)→(0,0)

eff,repump

]
ρ̂t ≈ γ

3

�2
g

4�2
P + γ 2

D[|0〉 〈0|]ρ̂t

+ γ

3

�2
d

4�2
P + γ 2

D[σ̂−]ρ̂t . (B17)

All the high-frequency oscillating terms are ignored, because
in our experimental setup, the frequecy difference of ωg − ωd

is much great than the energy scale of the decay and coupling
strengths. Combining Eqs. (B16) and (B17), we can finally

obtain the effective dissipation on the qubit system as below,

L0ρ̂t =
∑

m=±1,F=0,1

D
[
L̂(1,m)→(F,0)

eff,repump

]
ρ̂t

= 	g

2
D[σ̂+]ρ̂ + 	d

2
D[σ̂−]ρ̂ + 	z

2
D[σ̂z]ρ̂, (B18)

where

	g = 8γ

3

�2
g

4�2
P + γ 2

,

	d = 4γ

3

�2
d

4�2
P + γ 2

,

	z = γ

3

2�2
d + �2

g

4�2
P + γ 2

. (B19)

Note that, the values of 	g and 	d can be controlled respec-
tively by adjusting the strengthes of �g and �d , while 	z is
determined afterwards, which can not be independently tuned.

APPENDIX C: CONSTRUCTING Q FUNCTION AND S
FUNCTION

Here, we show how to obtain Q and S functions in ex-
periments. It is straightforward to measure the above two
functions if the sync signal is resonant to the qubit frequency,
which means Ûq = Ûs. By applying single-qubit rotations on
the desired qubit state ρ̂ and then measuring the state proba-
bility on the |1〉 state, we can directly calculate the value of
Q(θ, φ) based on the relation of

Q(θ, φ) = 1

2π
〈θ, φ| ρ̂ |θ, φ〉

= 1

2π
Tr[e−iθσ̂φ−π/2/2ρ̂eiθσ̂φ−π/2/2(|1〉 〈1|)], (C1)

where σ̂φ = σ̂x cos φ + σ̂y sin φ. And then the corresponding
S function can be constructed through the discrete integration
of the {Q(θi, φ j )} obtained in the experiment. Above methods
are applied to obtain the Q and S functions in Figs. 4(b)–4(g)
and Q functions in the inset figures of Fig. 6(a).

However, above methods to obtain the S function is in-
efficient. Instead, we can just measure the Bloch vector m =
{mx, my, mz} of the qubit state ρ̂ and then use the relation of,

S(φ) = 1
8 (mx cos φ + my sin φ), (C2)

to construct the S function, where mi = Tr[σiρ]. In the res-
onant driving case (Ûq = Ûs), we can obtain the components
of the Bloch vecor by applying the analysis pulses in the set
that including ei�MWτπ σy/4, e−i�MWτπσx/4 and I , to the qubit and
then measure the probability of projecting to the |1〉 state.
Here �MW, τπ are the coupling strength and the duration
of the analysis pulse, respectively and satisfy the relation
of �MWτπ = π . The measurement results of each analysis
pulse correspond to the value of (mx + 1)/2, (my + 1)/2 and
(mz + 1)/2, respectively. In the experiments, we set �MW

and τπ to be (2π ) × 32.0(1) kHz and 15.6 µs, respectively.
However, when the sync signal is detuned away from the
qubit resonant frequency, the above method fails because
the synchronized state and the analysis pulses are not in the
same rotating frame (Ûq �= Ûs). In this case, we use a set
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(a)

(b)

FIG. 11. Time evolution of the Bloch vector under different sync strengths. The results in (a) and (b) correspond to the sync signals with
the strengths of 3.75	g and 28.7	g, respectively. The open markers and the solid lines represent the experiment and simulation results for each
Bloch vector component.

of nonorthogonal analysis pulses including e−i(�σz+�MWσx )τπ /4,
e−i(�σz+�MWσx )τπ /2, e−i(�σz+�MWσy )τπ /4, e−i(�σz+�MWσy )τπ /2, and
I . depending on the detuning �. The Bloch vector can be
estimated by using Maximum likelihood estimation on the
measurement results. This method is used to obtain the results
in Fig. 5.

APPENDIX D: QUANTUM SYNCHRONIZATION UNDER
DIFFERENT SYNC STRENGTHES

In Fig. 6(c), we show the experimental results about the
time evolution of the Bloch vector component mz under dif-
ferent sync strengths. Here, we supplement the time evolution
for all other components, as shown in Fig. 11.

APPENDIX E: CLASSICAL MOTION OF DISSIPATED
QUANTUM SYSTEMS

Here, we complement the classical motion analysis of vdP
oscillators and damped oscillators. Their behavior can be used
to compare with that of the dissipated qubit. Furthermore, by
using the evolution equations of the operators, we attempt to
analyze the nonlinear dynamics of dissipated spin systems.

1. Quantum oscillators

First let us recall the driven quantum vdP oscillator, whose
state evolution is governed by the following Lindblad equa-
tion:

d ρ̂

dt
= −i

[
νâ†â + ε(â + â†) cos (ωt + ϕ), ρ

]
+ κ1D[â†]ρ̂ + κ2D[â2]ρ̂. (E1)

To explore the motion dynamics in the phase space, we
consider the evolution of the annihilation operator â in the

Heisenberg picture as follows:

dâ

dt
= i[νâ†â + ε(â + â†) cos (ωt + ϕ), â]

+ κ1D̃[â†]â + κ2D̃[â2]â, (E2)

where D̃[Â]B̂ = Â†B̂Â − (Â†ÂB̂ + B̂Â†Â)/2. Then Eq. (E2)
can be further simplified to be the following form:

d 〈â〉
dt

= −iν 〈â〉 + κ1

2
〈â〉 − κ2 〈â†ââ〉

− iε cos (ωt + ϕ), (E3)

where 〈â〉 = Tr[âρ̂].
For convenience, we focus on the case where 〈â†â〉 � 1,

indicating that κ1 is much larger than κ2 (assuming that both
of them are nonzero). This allows us to further simplify the
above equation to the following form:

dα

dt
= −iνα + κ1

2
α − κ2|α|2α − iε cos (ωt + ϕ). (E4)

Here, α = 〈â〉 is regarded as the “classical trajectory” of the
quantum oscillator in the phase space. By representing α =
re−iφ , we can derive the evolution equations for the oscillation
amplitude r and phase φ as follows:

dr

dt
= κ1

2
r − κ2r3 − ε cos (ωt + ϕ) sin φ,

dφ

dt
= ωφ + ε

r
cos (ωt + ϕ) cos φ. (E5)

In the absence of the external signal (ε = 0), the above equa-
tions yields a steady-state solution of,

r(t → ∞) = rLC =
√

κ1

2κ2
,

φ(t ) = ωt + φ0. (E6)
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Here the oscillation amplitude has a finite value of rLC, while
the initial phase for the oscillation phase is fully free. This
steady-state solution clearly suggests that the trajectory of the
quantum vdP oscillator in the phase space would always fall
onto a cycle of nonzero radius rLC, well known as the “limit
cycle.”

When the system evolves from the limit cycle, and a weak
external signal is triggered simultaneously, the oscillation
phase φ would be tuned by this external signal with a strength
of ε/rLC (assuming that the amplitude of the external signal
is too weak to perturb the limit cycle). Consequently, the
frequency of the quantum vdP oscillator would progressively
follow that of the external signal, a phenomenon well-known
as synchronization.

Similar analysis can be also applied to another well-known
dissipated oscillator model, the quantum damped oscillator
described by the following Lindblad equations:

d ρ̂

dt
=−i[νâ†â+ε(â+â†) cos (ωt + ϕ), ρ] + κ1D[â]ρ̂. (E7)

By applying similar approach utilized in the quantum vdP
oscillator, we can obatain the dynamical equations of the
classical trajectory for the quantum damped oscillator,

dr

dt
= −κ1

2
r − ε cos (ωt + ϕ) sin φ,

dφ

dt
= ωφ + ε

r
cos (ωt + ϕ) cos φ. (E8)

It is worth noting that for the evolution equation of the oscil-
lation phase φ, both the quantum damped oscillator and the
quantum vdP oscillator share the same form. However, for the
damped oscillator, the steady state of the oscillation amplitude
r turns out to be

r(t → ∞) = rsteady = 0 (E9)

if the external driving is absent (ε = 0). Thus no closed tra-
jectory can be found in the phase space.

When the quantum damped oscillator evolves from the
above steady state, and disturbed by the external signal, the

s
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FIG. 12. Dynamics of drivin dissipated qubit in Schrodinger picture. (a). Time evolution of the Bloch vector under only dissipations.
The initial state is set to (|0〉 + |1〉)/

√
2. (b). We zoom in on the time evolution of the Bloch vector shown in (a), specifically focusing on

the oscillations in the intervals (0.0, 1.0) µs and (199.0, 200.0) µs. The amplitude of the oscillation decays while the oscillating frequency
remains unchanged. (c). We apply the fast Fourier transformation to the simulation data shown in (a), with a sampling interval of 0.002 µs. The
transformed spectral data show a distinct peak at the qubit’s intrinsic frequency ωq. [(d)–(f)]. After the relaxation of the qubit to the limit cycle,
we simulate the evolution of the qubit by adding external signals with different parameters. We set the values of the sync frequency to be ωq,
ωq − 5	g, ωq + 10	g, corresponding to the results in (d) to (f), respectively. For all cases, we can observe the recovery of the oscillations of
the qubit coherence (mx) while the energy of the qubit changes only slightly (mz). [(g)-(i)]. We zoom in on the time evolution from 399 µs to
400 µs shown in [(d)–(f)]. The oscillations of the qubit coherence become stable, and the oscillation amplitude decays as the driving frequency
of the external signal is tuned away from the qubit frequency.
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TABLE I. Capability of synchronization for dissipated qubit.

Dissipation rates Synchronizable or not
Analogous to

quantum oscillator

	g = 	d No -
	g = 0 or 	d = 0 No damped oscillator
All other cases Yes vdP oscillator

strength of the phase response to the external signal, ε/rsteady,
becomes infinity. This indicate that the oscillation frequency
of the damped oscillator would almost instantaneously reach
the external signal frequency. Therefore the dynamics for the
quantum damped oscillator should be treated as forced driving
instead of synchronization.

Together with the results in Sec. IV, here we summarize all
conclusions about synchronizability in Table I.

2. Nonlinearity for dynamics of dissipated spin systems

Let us further discuss the “nonlinearity” of the dissipated
qubit. For classical oscillator systems, the existence of limit
cycles requires systems own certain nonlinearity, such as the
presence of the x2x′ or 〈a†aa〉 term in the vdP oscillator. Thus
we consider exploring whether the dissipated qubit exhibit any
“nonlinearity.”

First let us consider the dissipated spin-1 model discussed
by Roulet and Bruder [31],

d ρ̂

dt
= −i[ωŜz, ρ]

+ γgD[Ŝ+Ŝz]ρ̂ + γdD[Ŝ−Ŝz]ρ̂. (E10)

The time evolution of the spin operators in the Heisenberg
picture can be expressed as

d〈Ŝx〉
dt

=,
γg − γd

2
〈ŜzŜx + ŜxŜz〉

− γg + γd

2
〈Ŝx〉 − ω 〈Ŝy〉 ,

d〈Ŝy〉
dt

= γg − γd

2
〈ŜzŜy + ŜyŜz〉

− γg + γd

2
〈Ŝy〉 + ω 〈Ŝx〉 ,

d〈Ŝz〉
dt

= γg − γd

2
〈ŜzŜz〉 − γg + γd

2
〈Ŝz〉 . (E11)

Clearly the terms of 〈ŜzŜx + ŜxŜz〉, 〈ŜzŜy + ŜyŜz〉 and 〈ŜzŜz〉
indicate the nonlinear dynamics of the system evolution. This
nonlinearity allows the dissipated spin-1 system to own a
valid limit cycle. It is also worth noting that when γg = γd ,
all coefficients of the nonlinear terms become zero. This is
consistent with the results given in Ref. [31], that this kind of
spin-1 system cannot be synchronized. This further supports
the notion that nonlinearity plays a crucial role in the existence
of limit cycles even for spin systems.

For the dissipated qubit, we have already shown the evo-
lution of the Pauli operators in Eq. (17). In fact, they are

simplified from the following equations:

d〈σ̂x〉
dt

= 	g − 	d

8
〈σ̂zσ̂x + σ̂xσ̂z〉

− 	t

4
〈σ̂x〉 − ω 〈σ̂y〉 ,

d〈σ̂y〉
dt

= 	g − 	d

8
〈σ̂zσ̂y + σ̂yσ̂z〉

− 	t

4
〈σ̂y〉 + ω 〈σ̂x〉 ,

d〈σ̂z〉
dt

=	g − 	d

4
〈σ̂zσ̂z〉 − 	g + 	d

4
〈σ̂z〉 , (E12)

which have similar forms as the spin-1 system. We can also
notice the nonlinear terms of 〈σ̂zσ̂x + σ̂xσ̂z〉, 〈σ̂zσ̂y + σ̂yσ̂z〉 and
〈σ̂zσ̂z〉. Unfortunately, the first two terms of 〈σ̂zσ̂x + σ̂xσ̂z〉 and
〈σ̂zσ̂y + σ̂yσ̂z〉 turn out to be 0 due to the anti-commutation
relations of the Pauli operators.

However, it is worth noting that the term of 〈σ̂zσ̂z〉 does not
vanish but leave a constant here due to the relation σ̂zσ̂z = Î
where Î is the identity matrix. This constant term makes the
above evolution equations cannot be expressed as a simple
linear transformation, playing as the role of “nonlinearity” in
the system evolution. Therefore we regard it as the reason that
why the dissipated qubit could own a valid limit cycle.

If we take 	g = 	d , the constant term vanishes. This aligns
with our previous analysis, in which this particular dissipated
qubit is unsynchronizable. Furthermore, when either 	d or 	g

becomes zero, the equation for 〈σ̂z〉 can be revised as follows:

d

dt
(1 − 〈σ̂z〉) = −	g

8
(1 − 〈σ̂z〉) for 	d = 0, (E13)

or

d

dt
(1 + 〈σ̂z〉) = −	d

8
(1 + 〈σ̂z〉) for 	g = 0, (E14)

In both of these cases, the operator evolutions can be rewritten
into a linear form, indicating the absence of nonlinearity for
the system’s dynamics. Consequently, in these scenarios, the
qubit cannot be synchronized as well, according to our previ-
ous discussions. These findings emphasize the crucial role of
nonlinearity in determining the synchronizability of dissipated
spin systems.

APPENDIX F: NUMERICAL SIMULATION OF DRIVEN
DISSIPATED QUBIT IN THE SCHRöDINGER PICTURE

In Sec. II, we have shown how to characterize the syn-
chronization in a rotating frame, where the actual rotation of
qubit is canceled by rotating the measurement axis simulta-
neously. Here, as a supplementary, we numerically simulate
the dynamics of the driven dissipated qubit in the Schrödinger
picture by directly solving the following master equation:

d ρ̂

dt
= −i

[ωq

2
σ̂z + εσ̂x cos(ωt + ϕ), ρ̂

]
+ 	g

2
D[σ̂+]ρ̂ + 	d

2
D[σ̂−]ρ̂ + 	z

2
D[σ̂z]ρ̂. (F1)
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FIG. 13. Spectral analysis on the synchronized qubit. Based on
the simulation data shown in Fig. 12(d)–12(f), we apply the fast
Fourier transformation to the data in the interval (300, 2000) µs (400
to 2000 µs not shown in Fig. 12), with a sampling interval of 0.002
µs. It is clear that the qubit oscillates at the frequency of the external
signal rather than its intrinsic frequency.

In our numerical simulation, we set most of the parameters in
Eq. (F1) to be consistent with the experimental settings,

ε = 2π × 2.37 kHz,

ϕ = π/2,

	g = 2π × 1.27 kHz,

	d = 2π × 7.33 kHz,

	z = 2π × 4.42 kHz, (F2)

and sync frequency ω is a tunable parameter in the simulation.
Meanwhile, to reduce the time overhead of the numerical
simulation, without the loss of the generality, we assume
the value of ωq to be 2π × 10 MHz instead of the actual
value of 2π × 12.6 GHz in the experiment. But the rotat-
ing wave approximation remains valid if we choose ω to
make |ωq − ω| on the order of 	g; therefore, we can still use
Eq. (1) to describe the dynamics of the qubit in the rotating
frame.

Following the sequence, we utilized in the experimental
demonstration, we also divide the evolution into two stages in
the numerical simulation, and the results are summarized in

FIG. 14. Phase shift in qubit oscillations. Under the external fre-
quency of ωq − 5	g, we shift the initial phase of the external signal
from ϕ = 0 to ϕ = π/2, and a π/2 phase shift is observed in the
qubit oscillations as well.

Fig. 12. During the first stage (lasting 200 µs), the qubit only
suffers from the dissipations while the external sync signal
is absent, allowing the qubit to relax to the limit cycle, as
shown in Figs. 12(a) and 12(b). Here, in order to illustrate
the oscillation of the qubit coherence mx, the initial state of
the qubit is set to (|0〉 + |1〉)/

√
2 instead of the |1〉 used in

the experiments. The results from fast Fourier transformation
of data in Fig. 12(a) reveals a single peak at the frequency
of ωq.

From 200 µs an external driving signal is added. Here, we
choose three values of the driving frequency, ω = ωq, ωq −
5	g, ωq + 10	g, to observe the respone of the qubit dy-
namics. The results are summarized in Figs. 12(d)–12(i).
From all the cases, we can clearly observe the recovery of
the oscillation of the qubit coherence. To quantify the fre-
quency of the recovered oscillations, we perform the fast
Fourier transform on the steady oscillation data from 300 to
2000 µs [the data points from 400 to 2000 µs are not shown
in Figs. 12(d)–12(f)]. The corresponding spectral results are
shown in Fig. 13. It is obvious to see three peaks at the
frequencies of ωq, ωq − 5	g and ωq + 10	g, which are well
consistent with the corresponding frequencies of the external
signals. Moreover, if we alter the starting phase of the external
signal, this phase shift can also be seen in the oscillation of the
qubit coherence, as in Fig. 14.
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