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Majorana-magnon interactions in topological Shiba chains
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A chain of magnetic impurities deposited on the surface of a superconductor can form a topological Shiba
band that supports Majorana zero modes and holds a promise for topological quantum computing. Yet, most
experiments scrutinizing these zero modes rely on transport measurements, which only capture local properties.
Here we propose to leverage the intrinsic dynamics of the magnetic impurities to access their nonlocal character.
We use linear response theory to determine the dynamics of the uniform magnonic mode in the presence of
external ac magnetic fields and coupling to Shiba electrons. We demonstrate that this mode, which spreads over
the entire chain of atoms, becomes imprinted with the parity of the ground state and, moreover, can discriminate
between Majorana and trivial zero modes located at the ends of the chain. Our approach offers a noninvasive
alternative to the scanning tunneling microscopy techniques used to probe Majorana zero modes. Conversely,
the magnons could facilitate the manipulation of Majorana zero modes in topological Shiba chains.
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I. INTRODUCTION

There has been a growing interest in detecting and con-
trolling Majorana zero modes (MZMs) in various condensed
matter systems, partially driven by their potential for topo-
logical quantum computation [1–3]. Many theoretical and
experimental efforts have been made in this direction during
the last decades, such as fractional quantum Hall systems [4],
cold atoms [5], semiconducting nanowires [6,7], and topolog-
ical insulators with spin-orbit coupling (SOC) proximitized
with s-wave superconductors (SCs) [8–10]. Magnetic atoms
(either individually positioned or self-assembled) on top of
a conventional superconducting substrate provide one of the
most promising platforms for MZMs [11–17]. Indeed, the re-
sulting in-gap Yu-Shiba-Rusinov (YSR) bound states [18–20]
can be used as building blocks to design spinless p-wave SCs
with long-range couplings [21–25].

Although many experiments have reported distinctive
transport signatures in the form of a zero-bias conductance
peak [26–29], which indicates the presence of MZMs, the
origin of these zero-bias peaks is still under heavy debate:
As trivial zero modes (TZMs) can display the same transport
phenomenology for both nanowires [30–32] and YSR chains
[33–35], local probes have difficulty offering unambiguous
signatures of MZMs. Therefore, the search for other direct and
measurable manifestations of Majorana physics is ongoing.

In this paper we propose to harness the collective spin
dynamics of a chain of magnetic impurities deposited on
top of a two-dimensional (2D) Rashba s-wave SC to both
detect MZMs and infer their nonlocal character. A sketch
of the system is shown in Fig. 1(a), depicting the spin-wave
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excitations (whose quanta are the magnons) interacting with
the MZMs. Our approach takes advantage of the inherently
strong coupling between the impurities and the superconduct-
ing condensate necessary for creating a one-dimensional (1D)
topological SC. We demonstrate that the uniform magnonic
mode, which can be triggered by external ac magnetic fields,
becomes imprinted with the parity of the ground state and,
moreover, can discriminate between MZMs and TZMs lo-
cated at the end of the chain. That is because this mode is
extended over the entire length of the chain and therefore
susceptible to the nonlocality of the MZMs. Its detection can
be achieved by ferromagnetic resonance spectroscopic tech-
niques or by coupling it to confined electromagnetic fields in
a microwave cavity (see Refs. [36–41] for recent progress and
reviews).

Our findings can be naturally extended to 2D magnetic
clusters harboring chiral MZMs [42,43], superconducting-
semiconducting nanowires covered by magnetic insulators
[44], or MZM implementations based on carbon nanotubes
proximitized by ferromagnets [45], since this proposal har-
nesses nonlocal Majorana-magnon coupling and the resulting
parity-dependent spin susceptibility.

II. MODEL OF FERROMAGNETIC SHIBA CHAINS

The Hamiltonian describing a chain of N classical spins
coupled to an s-wave SC can be written as [21–24] Htot =
1
2

∫
dr�̂†(r)(Hel + Hel-m)�̂(r) + Hm, with

Hel =
(

p2

2m
− μ + λR(pxσy − pyσx )

)
τz + �τx,

Hel-m = −J
N∑

j=1

(S j · σ )δ(r − r j ), (1)

Hm =
∑
〈i, j〉

JexSi · S j −
N∑

j=1

(
Kz

2

(
Sz

j

)2 − γ HSz
j

)
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FIG. 1. (a) A chain of ferromagnetically coupled adatoms on a
two-dimensional s-wave superconductor harboring MZMs. The uni-
form magnonic mode (red dotted line) interacts with the MZMs (blue
dashed line), altering its dynamics. (b) Topological phase diagram of
the effective one-dimensional model as a function of kF a and ε0. The
dotted lines indicate the boundary between topological (gray shaded)
and nontopological (white) phases. The magnitude of the gap can
be inferred from the shaded degree. (c) A line cut at kF a/π = 5.9,
where the blue (green) dashed line corresponds to the blue (green)
dot in (b) and lies in a topological (normal) phase. The curved
arrow indicates the interaction between the MZM and the uniform
magnonic excitation εm. The parameters are N = 30, ξ0 = 10a, and
λR = 0.05vF , where vF is the Fermi velocity.

being the pristine spin-orbit coupled SC, its coupling to
the impurities with spin size S = |S j |, and the bare mag-
netic Hamiltonian, respectively. Here, τ = (τx, τy, τz ) [σ =
(σx, σy, σz )] are Pauli matrices acting in the Nambu (spin)
space, and �̂(r) = [ψ̂↑(r), ψ̂↓(r), ψ̂†

↓(r),−ψ̂
†
↑(r)]T is the

electronic field operator at position r. Moreover, m is the
electron effective mass, p = −ih̄∂r is the momentum operator,
μ is the chemical potential, � is the superconducting gap,
and λR is the Rashba SOC strength. Finally, J , Jex, Kz, γ ,
and H are the coupling between the spins and the conden-
sate, the (direct) Heisenberg exchange between the spins, the
local easy-axis anisotropy, the gyromagnetic ratio, and the
applied magnetic field, respectively. Note that the Hamilto-
nian Hel-m will effectively modify the exchange coupling Jex

via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
mediated by the SC. This splits into two contributions: (i) one
carried by the bulk SC quasiparticles, analogous to metallic
substrates, and (ii) one carried by the localized in-gap YSR
states that are discussed in the following section. For kF r >

ξ0/r, with ξ0 being the SC coherence length, the former dom-
inates the RKKY exchange coupling [46] (and can determine
the magnetic ground state), while the YSR state effects can
be accounted for perturbatively, which represents the regime
studied in this paper. Motivated by Refs. [26,35,47], we
focus on a ferromagnetic alignment of the magnetic impurities
either in the plane or perpendicular to the SC surface.

We assume the magnetic impurities are located at positions
r j = jaex, with j = 1, . . . , N and a the separation between

them. They induce 2N subgap states {φ j (r), φ j (r)}N
j=1, where

φ j (r) = −JE (r − r j )φ j (r j ) is the YSR wave function of
the jth impurity spinor with φ j (r j ) = [1, 0, 1, 0]/

√
N . Here,

N stands for the normalization factor of the YSR wave
function shown in Eq. (4) which plays an important role.
Finally, JE (r) = JS/(2π )2

∫
dkeik·r(E − Hel )−1, while the

corresponding hole wave function is given by φ j (r) = Cφ j (r),
where C = τyσyK is the particle-hole operator and K is the
complex conjugation. Their corresponding energies are ε0 =
±�(1 − α2)/(1 + α2), respectively, where α = πν0JS is the
dimensionless impurity strength and ν0 is the density of states
at the Fermi level in the normal state without SOC [48].
For a general state ψ (r), the Schrödinger equation (Hel +
Hel-m)ψ (r) = Eψ (r) can be reduced to a closed set of equa-
tions for the spinor at the magnetic impurity positions (ri j =
ri − r j ) [21–24]:

[Si · σ + JE (0)]ψ (ri ) = −
∑
j �=i

JE (ri j )ψ (r j ). (2)

When the chain is in the deep-dilute limit corresponding to
1/

√
kF a � 1 and α ≈ 1, we can project Eq. (2) onto the YSR

states and obtain a 2N × 2N effective tight-binding Hamil-
tonian Heff (see Appendix A for details). The Hamiltonian
Heff belongs to the Altland-Zirnbauer symmetry class D and
is characterized by a Z2 topological invariant [49–51]. By
tuning kF a and ε0, the system can enter a superconducting
topological phase supporting MZMs, whose phase diagram
is shown in Fig. 1(b). Specifically, in Fig. 1(c) we show the
spectrum of Heff for N = 30.

III. FERROMAGNETIC LATTICE DYNAMICS

The magnetic dynamics is dictated by Hm with Jex renor-
malized by the bulk RKKY interaction [52]. We can establish
the dispersion of the magnetic fluctuations by employing a
Holstein-Primakoff transformation [53]. In the limit of large
S, the transformation reads S+(−)

j = √
2Sa j (a

†
j ) and Sz

j = S −
a†

j a j , with a j (a†
j ) being the magnonic annihilation (creation)

operator satisfying [a j, a†
j′ ] = δ j j′ . In this paper we are in-

terested in triggering the dynamics of the uniform magnonic
mode a0 = (1/

√
N )

∑
j a j and energy εm = KzS − γ H be-

cause (i) it represents the lowest-energy magnon and (ii) it
exhibits a constant amplitude along the wire, rendering it
highly nonlocal. This mode isolation applies as long as the
energy splitting between the uniform mode and the first ex-
cited magnon mode, ε1 − εm ≈ π2|Jex|S/(N + 1)2, is larger
than the magnon decay rate κm (see Appendix C) [54]. In
addition, the magnetic field H is generally close to zero and
has few effects on the electrons of the SC. Hence, projecting
Eq. (1) onto the uniform mode a0, we find

H0
el-m ≈ J

N
[n0�z −

√
2NS(a†

0�+ + a0�−)], (3)

where �ν ≡ ∑
jσσ ′ ψ̂

†
Sσ (r j )σ ν

σσ ′ψ̂Sσ ′ (r j ) is the total spin oper-
ator along the ν = x, y, z axis stemming from the YSR states,
n0 = a†

0a0, �± = (�x ± i�y)/2, and ψ̂Sσ (r) ≡ PSψ̂σ (r)PS ,
where PS projects the electronic field operators onto the in-
gap YSR states.
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Using the expression for normalization factor N of the
YSR wave function [21] (see Appendix A),

1

N = �

JS

2α2

(1 + α2)2
, (4)

effectively entails substituting J → �/S and �ν →
2Nα2(1 + α2)−2�ν ≡ �̃ν in Eq. (3). This in turn implies
that the electronic response is governed by the low-energy
scale � (α ≈ 1) instead of the coupling strength J as could
have been anticipated from the prefactor of Eq. (3). To
determine the effect of the YSR states on the uniform
magnon mode, we evaluate the response to a uniform ac
magnetic field h(t ) = h0e−iωt applied perpendicular to the
magnetization, with h0 and ω ∼ εm being its amplitude and
frequency, respectively. Following Refs. [55–58], we can
exploit the input-output theory to quantify the magnonic
response in leading order in the electron-magnon interaction.
The amplitude of this uniform mode in the frequency space
becomes

a0(ω) = ih0

ω − [
εm + �

NS 〈�̃z〉 + 2�2

NS �+−(εm)
] + iκm

, (5)

where

�+−(ω) = −i
∫ ∞

−∞
dteiωtθ (t )〈[�̃+(t ), �̃−(0)]〉 (6)

is the transverse susceptibility associated with the operator
�̃±. Here, 〈. . . 〉 represents the expectation value over the
electronic density matrix ρel in the absence of magnons.
Therefore, the magnon resonance frequency and its decay are
respectively shifted by

δεm = �

NS
[〈�̃z〉 + 2� Re �+−(εm)],

δκm = −2�2

NS
Im �+−(εm),

(7)

which represents one of our main results. The magnitude
of these changes is determined by the SC gap � reduced
by the total number of spins in the chain NS. In order to
evaluate them explicitly, we need to specify the density ma-
trix ρel. At zero temperature (or temperatures much smaller
than the topological gap) and in the topological regime, the
two lowest many-body states are spanned by |0〉 = |vac〉 and
|1〉 = d†

0 |vac〉, where the full fermion operator d0 satisfies
d0|vac〉 = 0 and can be decomposed into two Majorana op-
erators γL, γR (localized on the left and right edge of the
chain) as d0 ≡ γL + iγR [59]. These two many-body states,
which become degenerate in the limit of large N , correspond
to the even (P = 0) and odd (P = 1) parity, respectively,
and could serve to encode a topologically protected qubit. In
the following, we assume a density matrix of definite parity,
ρP

el = |P〉〈P|, and that the measurement is performed on time
scales much shorter than the time it takes to reach a mixed
state via, for example, quasiparticle poisoning.

In Fig. 2(a) we show the expectation value of the average
spin 〈�̃z〉/N for the two parities, as a function of the number
of impurities in the chain. While each parity exhibits different
values of 〈�̃z〉/N when N is small, they become exponentially
indiscernible for Na � ξ0. Hence, the two parities cannot be

FIG. 2. MZM vs TZM spin expectation values. (a), (b) Average
spin expectation values along the z axis for the topological phase and
the trivial phase, respectively, as a function of the total impurity spins
N . As the number of sites increases, 〈�̃z〉/N is different for different
parities in the trivial regime (ε0 = +0.13) while it converges to the
same value in the topological regime (ε0 = 0). The blue (red) lines
refer to the P = 0(1) parity.

discriminated by 〈�̃z〉/N alone, as expected for well-separated
MZMs [60]. This exponential sensitivity of the magnon fre-
quency shift on the MZMs separation could be exploited to
determine the Majorana fusion rules in future experiments, in
analogy with the proposals in semiconducting nanowires that
utilize charge sensing instead [61].

It is instructive to contrast this case with that of a TZM lo-
cated at one end of the chain. We have fine tuned the exchange
coupling strength J of the last impurity in the trivial phase,
and we depict in Fig. 2(b) one representative situation which
would exhibit a zero-bias-conductance peak in tunneling ex-
periments. We see that 〈�̃z〉 is different for the two parities
even for a large number of impurities, Na � ξ0.

IV. SPIN SUSCEPTIBILITY AND ROBUSTNESS

Next we focus on the evaluation of the spin susceptibility.
In the presence of MZMs, this is determined by transitions
between the bulk (or extended) levels, as well as between
bulk and the MZMs. Since the former is independent of the
parity P , we focus only on the latter, which dominates the
susceptibility in the regime �eff < εm < 2�eff [55]. However,
for the sake of completeness, in Appendix D we put forward
the susceptibility for arbitrary εm. The susceptibility involving
the MZMs reads

�+−(ω,P ) = −
∑
En>0

(−1)POP+
0n OP−

n0

ω − En − (−1)PE0 + iη
, (8)

where [62]

OP±
nm =

∑
j

[�†
n(r j )δP1 + �

†
n(r j )δP0]σ±�m(r j ) (9)

is the corresponding parity-dependent matrix elements [63]
and �n(r) is the wave function pertaining to the Bogoliubon
with energy En (see Appendix B). Figures 3(a) and 3(b) show
the parity dependent magnon absorption as a function of the
driving frequency ω for MZMs and TZMs, respectively (same
as in Fig. 2). While both exhibit a peak structure because of
the resonances at ω = En − E0, their distinction is encoded in
their amplitudes. To quantify it, we define the visibility of the
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FIG. 3. Frequency dependence of the susceptibility for N = 30.
The curves in panels (a) and (b) are the imaginary part of the
parity-dependent spin susceptibility for topological and trivial zero
energy end modes, respectively. The solid lines in panels (c) and
(d) represent the visibility of spin susceptibility defined in Eq. (10).
The full circles connected by dashed lines pertain to the resonances
ω = En − E0 in the limit η → 0. The visibility oscillates between −1
and 1 in the topological regime, while it takes arbitrary values for
accidental zero modes located at the wire ends in the trivial regime.
All energies are expressed in terms of the topological gap �eff .

spin susceptibility associated with the two parities as follows:

V (ω) ≡ Im �+−(ω, 0) − Im �+−(ω, 1)

Im �+−(ω, 0) + Im �+−(ω, 1)
, (10)

which is shown in Figs. 3(c) and 3(d) for the MZMs and
the TZMs, respectively. We see that V (ω) oscillates between
−1 and 1 in the topological regime, while it does not in
the trivial regime. This significant difference can be traced
back to the symmetry of the pristine 1D system: the effective
Hamiltonian Heff is invariant under the symmetry operation
S = τz ⊗ I, where I is the inversion operator that maps site
j into N + 1 − j. Hence, the nth single-particle eigenstate is
either symmetric or antisymmetric under S , corresponding
to the eigenvalues Sn = 1 and −1, respectively. This further
reflects onto the transition matrix elements which satisfy (see
Appendix E)

OP±
0n = (−1)PS0SnOP±

0n . (11)

Therefore, OP±
0n �= 0 only when (−1)PS0Sn = 1, which

means one of the parities always gives a vanishing contri-
bution for any transition. The amplitude of the visibility at
the resonances ωn ≡ En − E0 in the limit η → 0 becomes
V (ωn) = S0Sn ≡ ±1, which is depicted by black dots in
Fig. 3(c). On the other hand, an accidental zero-energy mode
located at one edge in the trivial regime severely breaks
the inversion symmetry, rendering the visibility arbitrary
[Fig. 3(d)]. This behavior is also intimately related to the
nonlocality of the MZMs (as opposed to the locality of the
TZMs): they are sensitive to the entire wire because the bulk
states excited by the uniform magnonic mode need to travel
between the two ends in order to discriminate between the
two parities (they are mostly sensitive to the region around
their position).

FIG. 4. Frequency dependence of the visibility V (ω) in the pres-
ence of random onsite disorder δε0. The subplots in the left and
right columns are in the topological and trivial regimes, respectively.
We consider uncorrelated uniformly distributed random energies δε0

between (a), (b) [−0.1, 0.1]�eff and (c), (d) [−0.5, 0.5]�eff . The red
curves pertain to disorder realizations that push the TZM slightly
below the zero energy, and thus the sign of the visibility is inverted
(because of the parity flip). The solid lines and full circles are the
mean of ten realizations, whose standard errors are indicated in the
shaded area and error bars, respectively. All other parameters are
the same as in Fig. 3.

To test how deviations from the pristine inversion symme-
try alter the visibility V (ω), we have added random disorder
in the individual Shiba energy ε0 along the chain. In Fig. 4 we
show the visibility for the MZMs (left column) and the TZMs
(right column), respectively, for several disorder realizations
and strengths. We see that the oscillation of the visibility
remains intact for the MZMs, albeit with a reduced ampli-
tude. The TZMs’ visibility, on the other hand, is practically
unaffected by disorder because they are local and therefore
insensitive to the interference pattern of the bulk modes.

The linewidth of the bulk Shiba levels, η, can also affect the
visibility. Indeed, δ�+−(ω) = |�+−(ω, 0) − �+−(ω, 1)| ∝
1/N in the ballistic regime, which persists as long as the
average energy level spacing of the bulk levels (δε) satisfies
δε ≈ vF /Na > η. This in turn can be associated with a chain
length N∗ = vF /aη, beyond which δ�+−(ω) ∼ e−N/N∗

. This
can be interpreted as follows: a bulk state injected at the left
side of the chain has its amplitude reduced once reaching
the other chain end because of its finite lifetime, therefore
diminishing its common overlap with the two MZMs.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied the interaction between
the MZMs and magnons in ferromagnetically aligned mag-
netic impurities coupled to a SOC s-wave superconductor.
We unraveled the nonlocal MZMs’ imprints onto the uniform
magnonic mode, and demonstrated their intimate connection
with the spatial symmetry of the chain. Finally, we discrim-
inated the effect of MZMs and TZMs from the magnonic
response and showed the robustness of the response against
moderate onsite disorder.
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There are several possible future directions. By extend-
ing to 2D impurity implementations, it should be possible
to interface magnons with chiral Majorana modes [23,64].
Additionally, it could be beneficial to use the magnonic mode
actively for processing quantum information with MZMs
[65–67]. Further down the road, it would be interesting to ex-
tend current machine learning techniques to detect topological
structures based on the data of spin susceptibility [68,69].
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APPENDIX A: THE EFFECTIVE HAMILTONIAN OF THE YU-SHIBA-RUSINOV CHAIN

The technical details of the effective tight-binding model have been extensively studied in Refs. [21–24]; here we only
sketch the main procedures. Without magnetic couplings, the Hamiltonian of the system contains two parts Hel + Hel-m =
1
2

∫
dr�̂†(r)(Hel + Hel-m)�̂(r), with the Bogoliubov–de Gennes Hamiltonian:

Hel = τz ⊗ (εpσ0 + l p · σ ) + �τx ⊗ σ0,

Hel-m = −J
N∑

j=1

τ0 ⊗ (S j · σ)δ(r − r j ),
(A1)

where εp = p2/2m − μ is the noninteracting dispersion, l p = λR(pyex − pxey) = pλR(sin θex − cos θey) quantifies the Rashba
spin-orbit coupling, and the impurity spin S j = S(sin ζ j cos ϑ j, sin ζ j sin ϑ j, cos ζ j ) is parametrized with angle ζ j, ϑ j around the
y, z axis at site j. The electronic Green’s function is G(E ) = 1/(E − Hel ) = [G+(E ) + G−(E )]/2 with

G±(E ) = (Eτ0 + ε±τz + �τx ) ⊗ (σ0 ± sin θσx ∓ cos θσy)

E2 − ε2± − �2
, (A2)

where ε± = εp ± |l p| = εp ± pλR are the dispersions of two helicity bands. In the absence of superconductivity, the Rashba
spin-orbit coupling lifts the spin degeneracy of the 2D bulk, giving rise to two distinct Fermi momenta k±

F = kF (
√

1 + λ2 ∓ λ)
and the densities of states at the Fermi level ν± = ν0[1 ∓ λ/

√
1 + λ2], where λ = λR/vF is a dimensionless spin-orbit strength,

vF = (h̄kF /m)
√

1 + λ2 is the Fermi velocity, and ν0 = m/(2π h̄2) is the density of states without spin-orbit coupling [22]. We
begin with the equation |ψ〉 = G(E )Hel-m|ψ〉 and project the wave function on the position r:

ψ (r) ≡ 〈r|ψ〉 = −
N∑

j=1

[
JS

∫
dk

(2π )2
G(E )eik·(r−r j )

]
τ0 ⊗ (

es
j · σ

)〈r j |ψ〉 ≡ −
N∑

j=1

JE (r − r j )τ0 ⊗ (
es

j · σ
)
ψ (r j ). (A3)

For a 2D lattice, the integral JE (r) has terms proportional to σx [23]. Yet for the 1D chain with impurities deposited along the x
axis (r = xex), those terms are canceled out, and thus JE (r) is left with the following six terms [22]:

JE (r) = JS

2
{[I−

3 (x) + I+
3 (x)](Eτ0 ⊗ σ0 + �τx ⊗ σ0) + [I−

1 (x) + I+
1 (x)]τz ⊗ σ0

+ [I−
4 (x) − I+

4 (x)](Eτ0 ⊗ σy + �τx ⊗ σy) + [I−
2 (x) − I+

2 (x)]τz ⊗ σy}. (A4)

Note that I±
3 (0) = −πν±/

√
�2 − E2, while I±

1,2,4(0) = 0, whose explicit expressions as a function of a general position are
shown in Eq. (G5). We set r = ri and move the j = i term in Eq. (A3) to the left-hand side (ri j = ri − r j ):[

1 + JE (0)τ0 ⊗ (
es

i · σ
)]

ψ (ri ) = −
∑
j �=i

JE (ri j )τ0 ⊗ (
es

j · σ
)
ψ (r j ). (A5)

The right-hand side is zero when there is only one impurity. In this special case HN=1
el-m = −JS0 · σδ(r − r0), we evaluate JE (0) =

−α/
√

�2 − E2(Eτ0 + �τx ) in the left-hand side and obtain two subgap solutions for E = ±ε0 ≡ ±�(1 − α2)/(1 + α2), whose
spinors living in the space spanned by the Nambu and spin space are shown as

φ0 ≡ ψ (r0) = |+〉|↑〉√
N

= 1√
N

[
1
1

]
⊗

[
cos(ζ/2)

e+iϑ sin(ζ/2)

]
, φ0 ≡ ψ (r0) = |−〉|↓〉√

N
= 1√

N

[
1

−1

]
⊗

[−e−iϑ sin(ζ/2)
cos(ζ/2)

]
(A6)
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where φ0 = Cφ0 is the hole wave function, and C = τyσyK is the particle-hole operator under the Nambu space. The normaliza-
tion factor N of these YSR states is [see Eq. (G2) for details]

N = (1 + α2)2

2πν0α�
= JS

�

(1 + α2)2

2α2
. (A7)

Such a normalization factor N is an important quantity as it weighs the contribution of YSR states to the final observables.
For a ferromagnetic chain with N adatoms, there are 2N YSR states forming a band structure within the gap. We expand the

right-hand side in Eq. (A5) around E = 0, α ≈ 1, where τ0σ0 and τ0σy terms in JE (r) are zero, and project the wave function
into a set of local Shiba bases ψ (r j ) = p( j)φ j (r j ) + q( j)φ j (r j ). Comparing the coefficients of the basis, we obtain [22]

Heffϕ =
([

heff �eff

�
†
eff −h∗

eff

]
+ τ0 ⊗ beff

)[
p
q

]
= E

[
p
q

]
, where

{
p = [p(1), . . . , p( j), . . . , p(N )]T

q = [q(1), . . . , q( j), . . . , q(N )]T ,

heff = + ε0δi j + JS�2

2
lim
E→0

[I−
3 (xi j ) + I+

3 (xi j )], beff = +JS�2

2
sin(ζ ) sin(ϑ ) lim

E→0
[I−

4 (xi j ) − I+
4 (xi j )], (A8)

�eff = − i
JS�

2
[cos2(ζ/2) + sin2(ζ/2)e−2iϑ ] lim

E→0
[I−

2 (xi j ) − I+
2 (xi j )].

Specifically for the impurities polarized in the x-z plane, we have ϑ = 0 and beff = 0, and Heff is reduced to

heff = ε0δi j + JS�2

2
lim
E→0

[I+
3 (xi j ) + I−

3 (xi j )], �eff = i
JS�

2
lim
E→0

[I+
2 (xi j ) − I−

2 (xi j )], (A9)

which is independent of the angle ζ that winds around the y axis. The YSR states in Eq. (A6) are simplified to φ j =
[1, 0, 1, 0]T /

√
N , and φ j = [0, 1, 0,−1]T /

√
N when all adatoms are polarized along the z axis, namely es

j = ez for all j.

APPENDIX B: TRANSFORMATION OF FIELD OPERATORS

In the previous section, in order to derive the low-energy 2N × 2N effective Hamiltonian Heff , we project the Nambu field
operator �̂(r) on the Shiba basis �C = [c1, . . . , c j, . . . , cN , c†

1, . . . , c†
j , . . . , c†

N ]T :

�̂(r) = Uc �C ≡ [φ1(r), . . . , φ j (r), . . . , φN (r), φ1(r), . . . , φ j (r), . . . , φN (r)] �C =
N∑

j=1

φ j (r)c j + φ j (r)c†
j , (B1)

where φ j (r) is the YSR wave function over the entire space r induced by the impurity at site j. We omit the S subscript of the
Nambu field operator for simplicity. Based on Eqs. (A3)–(A6), the YSR wave function reads

φ j (r) = −JE (r − r j )τ0 ⊗ (es
j · σ )φ j, φ j ≡ φ j (r j ) = [cos(ζ/2), e+iϑ sin(ζ/2), cos(ζ/2), e+iϑ sin(ζ/2)]T /

√
N . (B2)

A numerical diagonalization of Heff provides us with the positive eigenvalues En and their eigenvectors ϕn ≡ [pn, qn]T in
Eq. (A8). The eigenvectors of the corresponding negative eigenvalues −En are given by ϕn = Cϕn = [q∗

n, p∗
n]T , where C = τxK is

the particle-hole operator under the Shiba basis. Using these eigenvectors, the Shiba operators �C can be expressed as low-energy
Bogoliubons �D = [d0, . . . , dn, . . . , dN−1, d†

0 , . . . , d†
n , . . . , d†

N−1]T :

�C = Ud �D ≡
[

p0 . . . pn . . . pN−1 q∗
0 . . . q∗

n . . . q∗
N−1

q0 . . . qn . . . qN−1 p∗
0 . . . p∗

n . . . p∗
N−1

]
�D ⇐⇒ c j =

N−1∑
n=0

pn( j)dn + q∗
n ( j)d†

n , (B3)

where we take the convention that the index of energy n runs from zero to N − 1, and dn annihilates a Bogoliubon of energy En.
Combining these two transformations together, we express the original Nambu field operators in Bogoliubons:

�̂(r) = UcUd �D =
⎡⎣. . . ,

N∑
j=1

φ j (r)pn( j) + φ j (r)qn( j), . . . ,
N∑

j=1

φ j (r)q∗
n ( j) + φ j (r)p∗

n( j), . . .

⎤⎦ �D

≡ [. . . , �n(r), . . . , �n(r), . . . ][d0, . . . , dn, . . . , dN−1, d†
0 , . . . , d†

n , . . . , d†
N−1]T =

N−1∑
n=0

�n(r)dn + �n(r)d†
n . (B4)
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FIG. 5. The magnonic spectra vary as the number of spins N
in the chain with open boundary conditions. In panel (a), the blue
(green) lines are the full spectrum εn with (next-)nearest neighbor
couplings accounted for. Also shown is the uniform mode energy
(red) εm = 0.76 meV at H = 0, which can be lowered by switching
on a finite H . Panel (b) shows the separation δε10 between εm and
the first excited mode, whose lower bound [Eq. (C8)] is indicated
by the dashed line. The parameters are adopted from Ref. [35],
where Cr magnetic adatoms were deposited on the top of the Nb
superconducting substrate.

For convenience we recast the last equation in a more com-
monly used form by defining

�n(r) = Ucϕn =
N∑

j=1

φ j (r)pn( j) + φ j (r)qn( j)

≡ [un↑(r), un↓(r), vn↓(r),−vn↑(r)]T . (B5)

Taking out the component of �̂(r) in Eq. (B4), we can express
the time evolution of the electronic field by the quasiparticle:

ψ̂σ (r, t ) =
N−1∑
n=0

unσ (r)dne−iEnt + v∗
nσ (r)d†

n e+iEnt , σ =↑↓ .

(B6)

APPENDIX C: HOLSTEIN-PRIMAKOFF
TRANSFORMATION AND THE FERROMAGNETIC

LATTICE DYNAMICS

The magnetic Hamiltonian describing the chain of impuri-
ties reads [35]

Hm =
∑

i j

Jex
i j Si · S j −

∑
j

(
Kz

2

(
Sz

j

)2 − γ HSz
j

)
+

∑
i j

Di j (Si × S j )z, (C1)

where the last term represents the Dzyaloshinskii-Moriya
interaction along the z axis with the coupling strength Di j

between site i and site j [which generalizes Eq. (1) in the main
text by accounting for next-nearest-neighbor interactions]. We
assume the magnetic ground state corresponds to all spins
being aligned along the z direction (Jex

i j < 0), and examine the
magnonic fluctuations around it. To that end, we introduce the
Holstein-Primakoff transformation (h̄ = 1) [53]:

Sz
j = S − a†

j a j, S+
j =

√
2S

√
1 − a†

j a j

2S
a j ≈

√
2Sa j, S−

j =
√

2Sa†
j

√
1 − a†

j a j

2S
≈

√
2Sa†

j , (C2)

where aj (a†
j ) are the annihilation (raising) bosonic operators at position j in the lattice, and we assumed that 〈nj〉 ≡ 〈a†

j a j〉 �
S, where 〈. . . 〉 is the expectation value over the (thermal) equilibrium magnetic state. We can therefore express the above
Hamiltonian in terms of the magnonic operators, keeping only terms up to quadratic order:

Hm ≈
∑

i j

Jex
i j S(a†

i a j + a†
j ai − ni − n j ) +

∑
j

(KzS − γ H )n j − i
∑

i j

Di jS(a†
i a j − a†

j ai ). (C3)

To gain a qualitative estimate of the magnonic spectrum, we first consider periodic boundary conditions and transform the
Hamiltonian to the Fourier space:

Hm =
∑

k

εka†
kak, a j = 1√

N

∑
k

e+i jkak, k = 2πn/N, n = 0, . . . N − 1,

εk = 2Jex
1 S[cos(k) − 1] + 2D1S sin(k) + 2Jex

2 S[cos(2k) − 1] + 2D2S sin(2k) + (KzS − γ H ), (C4)

where Jex
1(2) and D1(2) are the (next-)nearest-neighbor couplings, and we set the lattice spacing a = 1. Assuming KzS > γ H ,

which ensures that the ground state corresponds to the perpendicular alignment, the lowest magnonic mode pertains to uniform
precessions, k = 0, with energy εm ≡ KzS − γ H . The separation between this mode and the first excited one (k = 1) is

δε10 ≡ ε1 − εm = 2Jex
1 S[cos(2π/N ) − 1] + 2D1S sin(2π/N ) + 2Jex

2 S[cos(4π/N ) − 1] + 2D2S sin(4π/N ). (C5)

Now we consider a more realistic case for an open chain. Through numerically diagonalizing Eq. (C3) with open boundary
conditions, we show the magnonic spectrum εn and the separation δε10 as a function of the number of impurities N in Fig. 5.
The specific parameters are adopted from a recent experiment in Ref. [35] and can be found in Appendix H. We find the uniform
magnonic mode is well separated from the excited states when both the nearest-neighbor and next-nearest-neighbor couplings
are accounted for. Hence, in the main text, we can only focus on the nearest-neighbor case and define Jex ≡ Jex

1 , D ≡ D1. The
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magnetic Hamiltonian in Eq. (C3) is reduced to

HNN
m = JexS

N−1∑
j=1

(a†
j a j+1 + a†

j+1a j − n j − n j+1) +
N∑

j=1

(KzS − γ H )n j − iDS
N−1∑
j=1

(a†
j a j+1 − a†

j+1a j ). (C6)

Using the properties of Toeplitz matrices, the eigenvalues of HNN
m = HNN

m − JexS(n1 + nN ) are exactly solvable as [54]

εk = −2S
[√

J2
ex + D2 cos(k) + Jex

] + (KzS − γ H ), k = πn/(N + 1), n = 1, . . . N. (C7)

Since Jex < 0, for |Jex| � |D|, the energy of the uniform mode (k = 0) will be the same as periodic boundary conditions,
εm = εm = KzS − γ H . The gap between this mode and the first excited one (k = 1) is

δε10 ≡ ε1 − εm = 2S
√

J2
ex + D2[cos(π/(N + 1)) − 1] ≈ π2S

√
J2

ex + D2/(N + 1)2, (C8)

which gives a lower bound for the magnonic gap δε10 of the Hamiltonian (C6) with open boundary conditions. The level spacing
between other low-energy modes can be estimated as εn+1 − εn = (2n + 1)π2S

√
J2

ex + D2/(N + 1)2. We have numerically
verified the asymptotic behavior of the above analytical results for low-energy modes up to n = 3. Therefore, in the following
discussions, we focus on the uniform mode as a single bosonic mode that can couple to the Majorana zero mode, rather than a
bosonic bath, since its linewidth is smaller than the level spacing.

The interaction Hamiltonian between the spins and the superconducting electrons reads

He-m = −J
∑
j,σ,σ ′

ψ†
σ (r j )(S j · σ)σσ ′ψσ ′ (r j ) = −J

∑
j,σ,σ ′

ψ†
σ (r j )

(
S−

j σ+ + S+
j σ− + Sz

jσz
)
σσ ′ψσ ′ (r j )

≈ −J
∑
j,σ,σ ′

ψ†
σ (r j )[

√
2S(a†

jσ+ + a jσ−) + (S − a†
j a j )σz]σσ ′ψσ ′ (r j ). (C9)

Next, projecting this Hamiltonian onto the uniform mode gives

He-m ≈ J

N

∑
j,σ,σ ′

{n0ψ
†
σ (r j )(σz )σσ ′ψσ ′ (r j ) −

√
2NS[a†

0ψ
†
σ (r j )(σ+)σσ ′ψσ ′ (r j ) + a0ψ

†
σ (r j )(σ−)σσ ′ψσ ′ (r j )]}

≡ J

N
[n0�z −

√
2NS(a†

0�+ + a0�−)] ≡ �

NS
[n0�̃z −

√
2NS(a†

0�̃+ + a0�̃−)]. (C10)

To elucidate the influence of the superconductor on the uniform mode, we employ the equation of motion method. This is
appropriate if one plans to explore quantum effects. The equation of motion for the k = 0 mode thus becomes

ȧ0(t ) = i[Hel + Hm + He-m, a0(t )] = −iεma0(t ) − i
�

NS
[a0(t )�̃z(t ) +

√
2NSa0(t )�̃+(t )], (C11)

where all the operators are evolving in the Heisenberg picture. By introducing U (t, t0) = T exp[−i
∫ t

t0
dt ′H I

e-m(t ′)], we express
the spin operators in terms of their isolated evolution (the superscript I denotes operators in the interaction picture):

�̃z(t ) = U (t0, t )�̃I
z (t )U (t, t0) ≈ �̃I

z (t ),

�̃+(t ) = U (t0, t )�̃I
+(t )U (t, t0) ≈ �̃I

+(t ) + i
∫ t

t0

dt ′[H I
e-m(t ′), �̃I

+(t )
]

= �̃I
+(t ) + i

�

NS

∫ t

t0

dt ′[n0�̃
I
z (t ′) − a†

0(t ′)
√

2NS�̃I
+(t ′) − a0(t ′)

√
2NS�̃I

−(t ′), �̃I
+(t )

]
≈ �̃I

+(t ) − �

NS

√
2NSa0(t )

{
−i

∫ ∞

−∞
dτeiεmτ θ (τ )[�̃I

+(τ ), �̃I
−(0)]

}
, (C12)

where for �̃z(t ) we retained only the zeroth order, because of the factor 1/N in Eq. (C11). Yet, we keep the first-order correction
in �̃+(t ) since in the zeroth order 〈�̃I

+(t )〉 ≈ 0, and the first-order term contributes the same order 1/N to the following
equation of motion. Specifically, the equation of motion in Eq. (C11) for the uniform magnon becomes

ȧ0(t ) = −iεma0(t ) − i
�

NS
a0(t )〈�̃z〉 − i

2�2

NS
a0(t )�+−(εm) − κma0(t ) + h(t ),

(C13)

�+−(εm) = −i
∫ ∞

−∞
dτeiεmτ θ (τ )〈[�̃+(τ ), �̃−(0)]〉,

where 〈. . . 〉 represents the average over the electronic state and thus the superscript for the interaction picture can be omitted. We
disregarded terms that do not contain the magnon degrees of freedom. Furthermore, we included a decay of the magnon mode
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which is quantified by the rate κm, as well as a driving field h(t ) which triggers the dynamics of the magnon. The decay can be
due to either Gilbert damping or other mechanisms active for the impurity spins. This equation represents the analog of the input-
output expression utilized in quantum optics and can be employed to quantify the magnonic field. Assuming h(t ) = h0e−iωt , and
switching with the magnons to the Fourier space a0(ω) = ∫

dta0(t )e+iωt , we find

a0(ω) = ih0

ω − [
εm + �

NS 〈�̃z〉 + 2�2

NS �+−(εm)
] + iκm

. (C14)

Therefore, the magnon resonance frequency and its decay, respectively, are shifted by

δεm = �

NS
〈�̃z〉 + 2�2

NS
Re�+−(εm), δκm = −2�2

NS
Im�+−(εm). (C15)

These changes are analogous to electron-phonon interactions on Majorana zero modes in topological superconducting nanowires
[57], whose thermally excited phonons could conversely result in a broadening of Majorana zero modes with a linewidth γph ∝
exp(−�/T ). For temperatures lower than the topological gap, T � �, the phonon-induced decay is negligible and, by analogy,
so is the magnon-induced decay, γm ∝ exp(−�/T ).

In addition, the coherent magnonic driving a0 ≡ α0 + ã0 could also excite the Majorana zero modes into the bulk states,
where α0 = h0/(ω0 − ω + iκ0) is the classical component with κ0 being its decay, and ã0 captures the quantum fluctuation. The
Majorana decay is dominated by the classical coherent driving field α0 with the Hamiltonian

Hdrive(t ) = −
√

2�2

NS
(α∗

0e−iωt �̃+ + α0e+iωt �̃−). (C16)

By the time-dependent perturbation theory, the probability to excite the ground state of parity P to a bulk state n reads

PP→n = 2|α0|2�2

NSh̄2

∣∣∣∣〈n|�̃+|P〉 sin[(En − EP − ω)t/2]

(En − EP − ω)/2

∣∣∣∣2
ω=En−EP−−−−−→ 2|α0|2�2

NSh̄2 |〈n|�̃+|P〉|2t2, (C17)

where |α0|2 is the average number of magnons determined by the input power onto the microwave drive, and 〈n|�̃+|0〉 =
Bn0(σ+)/2 and 〈n|�̃+|1〉 = An0(σ+) can be calculated using Eqs. (D1) and (D2) in the next section. To prevent the lowest states
from being depopulated, the driving needs to be performed within the time scale t0 to ensure PP→n � 1:

t � t0 ≡
√

NS

|α0| |〈n|�̃+|P〉|
h̄

�
. (C18)

APPENDIX D: SPIN SUSCEPTIBILITY AND VISIBILITY

To calculate the spin susceptibility in Eq. (C13), we need to write down the time evolution of the spin operator �̃±(t ), which
can be simply obtained by renormalizing the wave function of �±(t ) (see Appendix H for details). Hence in this section we only
focus on the calculation of �±(t ). By use of Eq. (B6), we can express �±(t ) with a set of Bogoliubons:

�±(t ) = 1

2

∑
j

�̂†(r j, t )(τ0 ⊗ σ±)�̂(r j, t ) =
∑
j,σ,σ ′

ψ̂†
σ (r j, t )(σ±)σσ ′ψ̂σ ′ (r j, t )

=
∑

j,σ,σ ′,n,m

[
u∗

nσ (r j )d
†
n e+iEnt + vnσ (r j )dne−iEnt

]
(σ±)σσ ′

[
umσ ′ (r j )dme−iEmt + v∗

mσ ′ (r j )d
†
meiEmt

]
=

∑
j,σ,σ ′,n,m

{
[u∗

nσ (r j )(σ±)σσ ′umσ ′ (r j ) − vmσ (r j )(σ±)σσ ′v∗
nσ ′ (r j )]d

†
n dme+i(En−Em )t

+ vnσ (r j )(σ±)σσ ′umσ ′ (r j ) − vmσ (r j )(σ±)σσ ′unσ ′ (r j )

2
dndme−i(En+Em )t

+ u∗
nσ (r j )(σ±)σσ ′v∗

mσ ′ (r j ) − u∗
mσ (r j )(σ±)σσ ′v∗

nσ ′ (r j )

2
d†

n d†
me+i(En+Em )t + δnmvmσ (σ±)σσ ′v∗

nσ ′

}
≡

∑
n,m

[
Anm(σ±)d†

n dme+i(En−Em )t + Bnm(σ±)

2
dndme−i(En+Em )t + Bnm(σ±)

2
d†

n d†
me+i(En+Em )t + Cnm(σ±)

]
. (D1)
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One can find the above matrices obey A(σ±) = A(σ †
±)†, B(σ±) = −B(σ±)T , B(σ±) = B(σ †

±)†, or more explicitly,

Anm(σ±) =
∑
j,σ,σ ′

[u∗
nσ (r j )(σ±)σσ ′umσ ′ (r j ) − vmσ (r j )(σ±)σσ ′v∗

nσ ′ (r j )] =
∑

j

�†
n(r j )σ±�m(r j ) = A∗

mn(σ †
±),

Bnm(σ±) =
∑
j,σ,σ ′

[vnσ (r j )(σ±)σσ ′umσ ′ (r j ) − vmσ (r j )(σ±)σσ ′unσ ′ (r j )] =
∑

j

�
†
n(r j )σ±�m(r j ) = −Bmn(σ±),

Bnm(σ±) =
∑
j,σ,σ ′

[u∗
nσ (r j )(σ±)σσ ′v∗

mσ ′ (r j ) − u∗
mσ (r j )(σ±)σσ ′v∗

nσ ′ (r j )] =
∑

j

�†
n(r j )σ±�m(r j ) = B∗

mn(σ †
±). (D2)

With these matrices, now we can write the spin susceptibility �+−(t ) = −iθ (t )〈[�+(t ), �−(0)]〉 in a compact form:

�+−(t ) = −iθ (t )
∑

n,m,p,q

〈[
Anm(σ+)d†

n dme+i(En−Em )t + Bnm(σ+)

2
dndme−i(En+Em )t + Bnm(σ+)

2
d†

n d†
me+i(En+Em )t ,

Apq(σ−)d†
pdq + Bpq(σ−)

2
dpdq + Bpq(σ−)

2
d†

pd†
q

]〉
. (D3)

Note that Cnm(σ±) in the last line of Eq. (D1) is a C number and thus does not contribute to the above commutator. As the number
of Bogoliubons is conserved, the previous equation can be further simplified:

�+−(t ) = −iθ (t )
∑

n,m,p,q

〈
Anm(σ+)Apq(σ−)[d†

n dm, d†
pdq]e+i(En−Em )t + Bnm(σ+)Bpq(σ−)

4
[dndm, d†

pd†
q ]e−i(En+Em )t

+ Bnm(σ+)Bpq(σ−)

4
[d†

n d†
m, dpdq]e+i(En+Em )t

〉
. (D4)

Next, we use the identity [AB,CD] = A[B,CD] + [A,CD]B = A({B,C}D − C{B, D}) + ({A,C}D − C{A, D})B and 〈a†
nam〉 =

δnm fn with fn the occupation number at energy En. We obtain

�+−(t ) = −iθ (t )
∑
n,m

[
Anm(σ+)Amn(σ−)( fn − fm)e+i(En−Em )t + Bnm(σ+)Bnm(σ−)

2
( fm + fn − 1)e−i(En+Em )t

+ Bnm(σ+)Bnm(σ−)

2
(1 − fm − fn)e+i(En+Em )t

]
. (D5)

Finally, we use the relation Bnm(σ±) = B∗
mn(σ †

±) = B∗
mn(σ∓) and then transform the spin susceptibility into frequency space:∫ ∞

−∞
dteiωt�+−(t ) =

∑
n,m

[
Anm(σ+)Amn(σ−)

fn − fm

ω + En − Em + iη
+ Bnm(σ+)B∗

mn(σ+)

2

fm + fn − 1

ω − En − Em + iη

+ B∗
mn(σ−)Bnm(σ−)

2

1 − fm − fn

ω + En + Em + iη

]
≡ �+−(ω), (D6)

where η is an infinitesimal positive constant. Our goal is to study the role of the parity in the spin susceptibility. To this end, we
focus on the zero-temperature limit and assume that the lowest-energy Bogoliubon d0 has an exponentially small energy E0 → 0
and the gap �eff = E1 − E0 is nonzero. Hence, there are two degenerate many-body states with different fermionic parities: |vac〉
and d†

0 |vac〉. Under this circumstance, the occupation number fn = 0 for n � 1 and P ≡ f0 = 0, 1 which depends on the parity
of the many-body state. Under the aforementioned assumptions, the spin susceptibility reads

�+−(ω,P ) =
∑
n>0

[PA0n(σ+)An0(σ−)

ω − En + E0 + iη
− (1 − P )B0n(σ+)B∗

n0(σ+)

ω − En − E0 + iη
− PAn0(σ+)A0n(σ−)

ω + En − E0 + iη
+ (1 − P )B∗

n0(σ−)B0n(σ−)

ω + En + E0 + iη

]

+
∑

n,m>0

[
B∗

mn(σ−)Bnm(σ−)/2

ω + En + Em + iη
− Bnm(σ+)B∗

mn(σ+)/2

ω − En − Em + iη

]
. (D7)

The last line represents the bulk-bulk contribution, which is independent of the parity. We use Eq. (D7) to calculate the spin
susceptibility and its visibility for all figures. When �eff < ω < 2�eff , only the first two terms dominate the susceptibility,
which can be written in a compact form:

�+−(ω,P ) ≈
∑
n>0

[PA0n(σ+)An0(σ−)

ω − En + E0 + iη
− (1 − P )B0n(σ+)B∗

n0(σ+)

ω − En − E0 + iη

]
=

∑
n>0

−(−1)POP+
0n OP−

n0

ω − En − (−1)PE0 + iη
, (D8)
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where we define O1±
nm ≡ Anm(σ±), O0+

nm ≡ Bnm(σ+), and O0−
nm ≡ B∗

nm(σ+) = Bmn(σ−). To sum up, we have

OP±
nm =

∑
j

[�†
n(r j )δP1 + �

†
n(r j )δP0]σ±�m(r j ), except for O0−

nm ≡ (
O0+

nm

)∗
. (D9)

By use of the identity limη→0+ 1
x±iη = p.v.( 1

x ) ∓ iπδ(x), we find

Im �+−(ω,P ) = π
∑
n>0

(−1)POP+
0n OP−

n0 δ(ω − En − (−1)PE0), (D10)

and the visibility of the spin susceptibility is reduced to

V (ω) ≡ Im �+−(ω, 0) − Im �+−(ω, 1)

Im �+−(ω, 0) + Im �+−(ω, 1)
= O0+

0n O0−
n0 + O1+

0n O1−
n0

O0+
0n O0−

n0 − O1+
0n O1−

n0

. (D11)

APPENDIX E: INVERSION SYMMETRY AND QUANTIZED VISIBILITY

When all the parameters are set uniform in Eq. (A8), Heff has an inversion symmetry [Heff ,S] = 0, where S = τz ⊗ I is the
inversion operator and Ii j = δi,N+1− j that maps site j into N + 1 − j. Hence the eigenvector ϕn of Heff with energy En is also
an eigenvector of S with eigenvalue Sn = ±1. To scrutinize the effect of the inversion symmetry, we first rewrite the matrices in
Eq. (D2) by use of �n(rk ) = Uc(rk )ϕn in Eq. (B5):

Anm(σ±) =
∑

k

�†
n(rk )σ±�m(rk ) = ϕ†

n

[∑
k

U †
c (rk )σ±Uc(rk )

]
ϕm ≡ ϕ†

nX (σ±)ϕm, X (σ±) =
[

X11(σ±) X12(σ±)
X21(σ±) X22(σ±)

]
,

Bnm(σ±) =
∑

k

�
†
n(rk )σ±�m(rk ) = ϕ†

n

[∑
k

U †
c (rk )σ±Uc(rk )

]
ϕm ≡ ϕ†

nX (σ±)ϕm. (E1)

By examining the components of Uc(rk ) in Eq. (B1), one can find the block of the X (σ±) matrix has the following properties:

X 22
i j (σ±) =

∑
k

φ
†
i (rk )σ±φ j (rk ) =

∑
k

φT
i (rk )σyσ±σyφ

∗
j (rk ) = −

∑
k

φT
i (rk )σ T

±φ∗
j (rk ) = −X 11

ji (σ±),

X 21
i j (σ±) =

∑
k

φ
†
i (rk )σ±φ j (rk ) = −

∑
k

φT
i (rk )σ T

± τyσyφ j (rk ) = −
∑

k

φT
i (rk )σ T

±φ
∗
j (rk ) = −X 21

ji (σ±), (E2)

which mean X22(σ±) = X †
22(σ †

±) = −X T
11(σ±) = −X ∗

11(σ †
±) and X21(σ±) = −X T

21(σ±) = X †
12(σ †

±). The above properties are ap-
plicable for a general system which is not required to hold the inversion symmetry. If the system has an inversion symmetry, the
Shiba spinor follows φN+1− j = φ j and thus one can find

φN+1− j (rk ) = JE (rk − rN+1− j )φN+1− j = JE [−(rN+1−k − r j )]φ j = σzJE (rN+1−k − r j )φ j = σzφ j (rN+1−k ), (E3)

where we use the properties of integrals [Eq. (G4)] inside JE (r) [Eq. (A4)] that I±
1,3 are even functions, whereas I±

2,4 are odd
functions. By using the above relation, the blocks of the X (σ±) matrix have additional properties:

X 11
N+1−i,N+1− j (σ±) =

∑
k

φ
†
N+1−i(rk )σ±φN+1− j (rk ) =

∑
k

φ
†
i (rk )σzσ±σzφ j (rk ) = +X 11

i j (σzσ±σz ),

X 12
N+1−i,N+1− j (σ±) =

∑
k

φ
†
i (rk )σzσ±τyσyσzφ

∗
j (rk ) = −

∑
k

φ
†
i (rk )σzσ±σzφ j (rk ) = −X 12

i j (σzσ±σz ). (E4)

Consequently, the X (σ±) matrix is transformed by the inversion symmetry operator S as follows:

SX (σ±)S =
[
IX11(σ±)I −IX12(σ±)I

−IX21(σ±)I IX22(σ±)I

]
=

[
X11(σzσ±σz ) X12(σzσ±σz )
X21(σzσ±σz ) X22(σzσ±σz )

]
= X (σzσ±σz ) = −X (σ±). (E5)

This has important consequences for the matrices used for the susceptibility �+−(ω,P ) in Eq. (D7):

Anm(σ±) = ϕ†
nX (σ±)ϕm = ϕ†

nSSX (σ±)SSϕm = −ϕ†
nSX (σ±)Sϕm = −SnSmϕ†

nX (σ±)ϕm = −SnSmAnm(σ±),

Bnm(σ±) = ϕ†
nX (σ±)ϕm = ϕ†

nSSX (σ±)SSϕm = −ϕ†
nSX (σ±)Sϕm = −SnSmϕ†

nX (σ±)ϕm = +SnSmBnm(σ±).

It directly implies that Anm(σ±)Bnm(σ±) = 0. Using the notation defined in Eq. (D8), we find O0±
nm = 0 if Sn �= Sm, while O1±

nm = 0
if Sn = Sm. In other words, O0±

0n is only nonzero for states that satisfy S0Sn = 1, while only states with S0Sn = −1 lead to nonzero
O1±

0n . Hence, the visibility in Eq. (D11) is reduced to V (ωn) = S0Sn, which leads to the ±1 oscillations in Fig. 3.
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FIG. 6. Majorana zero modes vs trivial zero modes in local spin
expectation values. (a), (b) Site-dependent spin expectation values
〈σ̃z〉 along the z axis for N = 30 in the topological phase and the
trivial phase, respectively. All other parameters are set the same as
Fig. 2 in the main text. The blue (red) lines refer to the P = 0(1)
parity. As the trivial zero mode is obtained by fine tuning the last
site, 〈σ̃z〉 in (b) shows a strong deviation between two parities at the
end of the chain.

APPENDIX F: MORE NUMERICAL RESULTS FOR SPIN
EXPECTATION VALUE AND VISIBILITY

To investigate how the total spin expectation value 〈�̃z〉
differs between the Majorana zero mode and the trivial zero
mode in Fig. 2, we plot the site-dependent spin expectation
values 〈σ̃z〉 along the z axis for N = 30 in Fig. 6. We find that
〈σ̃z〉 almost remains the same value for two parities at each site
in the topological phase. On the other hand, since we fine tune
the last site to create the trivial zero mode, 〈σ̃z〉 shows a dis-
tinct discrepancy between two parities at the end of the chain.

As a supplement to Fig. 4, we demonstrate some specific
numerical realizations (without average) of the visibility V (ω)
in the presence of random onsite disorders δε0 in Fig. 7. For a
moderate disorder δε0 ∈ [−0.1, 0.1]�eff shown in Figs. 7(a)
and 7(b), we obtain similar patterns as the ones depicted
in Figs. 4(a) and 4(b). When the disorder becomes as large
as δε0 ∈ [−0.5, 0.5]�eff , the frequency dependence of the
visibility V (ω) can be strongly affected in some peculiar
realizations.

We also append the susceptibility and visibility of an-
other trivial phase by setting kFa = 5.9π and ε0 = −0.2 in

FIG. 7. Specific realizations (without average) of the frequency
dependence of the visibility V (ω) in the presence of random onsite
disorder δε0. All parameters are set the same as Fig. 4 in the main
text.

FIG. 8. The susceptibility and visibility for another trivial phase
ε0 = −0.2. The left panels (a) and (c) are the analogs of Fig. 3, while
(b) and (d) show the visibility under disorders similar to Fig. 4.

Figs. 8(a) and 8(c), as well as its frequency dependence of the
visibility V (ω) under random onsite disorders δε0 in Figs. 8(b)
and 8(d). Compared to the ε0 = 0.13 trivial phase shown in
Figs. 3(b) and 3(d), we found that P = 0 completely domi-
nates the susceptibility over P = 1 in the low-energy regime
in Fig. 8(a). Hence, if the system is in the topologically trivial
phase, the visibility in Fig. 8(c) is close to 1 and cannot dis-
play a strong oscillation pattern as the one in the topological
phase shown in Fig. 3(c). When the strength of disorders is
moderate, the visibility in Fig. 8(b) still remains a flat pattern
as in Fig. 8(c). For the realizations with a stronger disorder
in Fig. 8(d), the visibility also shows a similar pattern as in
Fig. 7(c). More numerical realizations can be implemented
with the source code in Ref. [70].

APPENDIX G: TECHNICAL DETAILS ON THE OVERLAP
INTEGRALS

The integral of a function f (k) in a 2D superconductor
can be evaluated by changing the momentum k to the angle
θ and the energy dispersion ε± with respect to the positive
and negative helicity:∫

dk
(2π )2

f (k) = ν±
2π

∫
dε±

∫ 2π

0
dθ f (ε±, θ ). (G1)

The normalization factor N of YSR states in Eq. (A6) can
be obtained by integrating the un-normalized wave function
|ψ〉 = G(ε0)HN=1

el-m |+〉|↑〉 ≡ G(ε0)HN=1
el-m |φ〉 in the momentum

space:

N = 〈ψ |ψ〉 =
∫

dk
(2π )2

〈φ|HN=1
el-m G2(ε0)HN=1

el-m |φ〉

= 1

4

∫ 2π

0
dθ

[
ν+
2π

∫
dε+〈φ|HN=1

el-m G2
+(ε0)HN=1

el-m |φ〉

+ ν−
2π

∫
dε−〈φ|HN=1

el-m G2
−(ε0)HN=1

el-m |φ〉
]

= (1 + α2)2

2πν0α�
. (G2)
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For simplicity, the subscript ± in the integration variable is omitted in the following context. Similarly, the four integrals used in
Eqs. (A4) and (A8) are computed as follows [22]:

I±
1 (x) = ν±

2π

∫
dε

∫ 2π

0
dθ

εeik±(ε)x cos θ

E2 − ε2 − �2

ω2
D

ε2 + ω2
D

, I±
2 (x) = ν±

2π

∫
dε

∫ 2π

0
dθ

εeiθ eik±(ε)x cos θ

E2 − ε2 − �2

ω2
D

ε2 + ω2
D

,

I±
3 (x) = ν±

2π

∫
dε

∫ 2π

0
dθ

eik±(ε)x cos θ

E2 − ε2 − �2
, I±

4 (x) = ν±
2π

∫
dε

∫ 2π

0
dθ

eiθ eik±(ε)x cos θ

E2 − ε2 − �2
, (G3)

where k±(ε) is linearized around the Fermi level, namely k±(ε) ≈ k±
F + ε/(h̄vF) [21]. Different from Ref. [22], a convergence

factor ω2
D/(ε2 + ω2

D) is added into I±
1,2(x), and ωD is the Debye frequency. Using the residue theorem, we obtain [70]

I±
1 (x) = πν±ω2

D

E2 − �2 + ω2
D

Im{J0[(k±
F + i/ξE )|x|] + iH0[(k±

F + i/ξE )|x|] − J0[(k±
F + i/ξD)|x|] − iH0[(k±

F + i/ξD)|x|]},

I±
2 (x) = −sgn(x)iπν±ω2

D

E2 − �2 + ω2
D

Re{iJ1[(k±
F + i/ξE )|x|] + H−1[(k±

F + i/ξE )|x|] − iJ1[(k±
F + i/ξD)|x|] − H−1[(k±

F − i/ξD)|x|]},

I±
3 (x) = − πν±√

�2 − E2
Re{J0[(k±

F + i/ξE )|x|] + iH0[(k±
F + i/ξE )|x|]},

I±
4 (x) = −sgn(x)

iπν±√
�2 − E2

Im{iJ1[(k±
F + i/ξE )|x|] + H−1[(k±

F + i/ξE )|x|]}, (G4)

where Jn and Hn are Bessel and Struve functions of order n, ξE = h̄vF/
√

�2 − E2 is the superconducting coherence length, and
ξD = h̄vF/ωD. For large k±

F , these integrals have the following asymptotic forms:

I±
1 (x) ≈ πν±

√
2/π

k±
F |x| sin

(
k±

F |x| − π

4

)
e−|x|/ξE , I±

2 (x) ≈ sgn(x)iπν±

√
2/π

k±
F |x| sin

(
k±

F |x| − 3π

4

)
e−|x|/ξE , (G5)

I±
3 (x) ≈ −πν±√

�2 − E2

√
2/π

k±
F |x| cos

(
k±

F |x| − π

4

)
e−|x|/ξE , I±

4 (x) ≈ −sgn(x)iπν±√
�2 − E2

√
2/π

k±
F |x| cos

(
k±

F |x| − 3π

4

)
e−|x|/ξE .

We remark that I±
1,2 do not have the polynomial terms presented in Ref. [22], as they are canceled out under the limit ωD → ∞.

The Fourier transform of these asymptotic integrals can be obtained by I (k) = ∑
j I ( ja)eik ja, which enables us to write down

Heff [Eq. (A8)] in the momentum space and thus define the topological invariant Q:

Heff (k) =
[

heff (k) �eff (k)
�∗

eff (k) −h∗
eff (−k)

]
+ τ0 ⊗ beff (k), Q = sgn[heff (0)heff (π/a)]. (G6)

Note that beff (k) = 0 if the magnetic impurities are polarized
in the x-z plane. We refer to the full expressions of the mo-
mentum terms in Ref. [22], as they share the same forms after
deleting the polynomial terms.

APPENDIX H: TECHNICAL DETAILS OF NUMERICAL
CALCULATIONS

We use the asymptotic form of integrals in Eq. (G5) to
calculate the JE (r) [Eq. (A4)] and the spectrum of the effective
Hamiltonian Heff [Eq. (A9)]. The phase diagram in Fig. 1(b)
is determined by the topological invariant in Eq. (G6). As
we substitute �ν → 2Nα2(1 + α2)−2�ν = �̃ν in Eq. (3), the
total spin shown in Fig. 2 is indeed calculated by the wave
functions normalized by (1 + α2)2/2α2 instead of N . Hence
we do not need to specify the numerical value of J and S.
Since we focus on the low-energy modes, we set E ≈ 0 in
the JE (r) of Eq. (B2), as well as the coherence length ξE = ξ0

in Eq. (G5). We use Eq. (D7) to calculate the susceptibility
(including the bulk-bulk contributions) and its correspond-
ing visibility, where we set η = 2 × 10−4 and dω = 0.2η in
Fig. 3.

The trivial zero mode is obtained by fine tuning ε′
0 at

the last site, while ε0 at other sites remains unperturbed in
Figs. 2 and 3. For the trivial phase with ε0 = +0.13, we set
ε′

0 = −0.066 851 1 since it is the point where the Pfaffian of
Heff changes sign. Similarly, we set ε′

0 = 0.033 401 1 for the
trivial phase with ε0 = −0.2 in Fig. 8. The reason why we
choose these two ε0 values for the two trivial phases is that
their �eff are comparable to the one in the topological phase,
which ensures a fair comparison. As the normalization factor
in Eq. (4) depends on α = √

(� − ε0)/(� + ε0), we should
normalize the YSR wave function with the specific value of ε0

at each site. In Fig. 4, we add the disorders randomly site by
site in the topological regime. As the zero mode in the trivial
phase relies on the fine tuning of the last site, the disorders
are randomly added to all sites except the last one. In con-
trast to the robust Majorana zero mode, the added disorders
will slightly enlarge the value of the fine-tuned zero mode.
For the trivial zero modes that are lifted to be larger than
the resolution, η = 1 × 10−3 and dω = 0.5η, we can directly
distinguish them from Majorana zero modes by different res-
onance peaks of the parity-dependent spin susceptibility. To
maintain a fair comparison, we focus on the trivial zero modes
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which are still smaller than the resolution, and differentiate
them from Majorana zero modes by the visibility. To cal-
culate the magnonic spectra shown in Fig. 5, we adopt the
parameters along the [11̄1] direction in Fig. S8 of Ref. [35],

namely Jex
1 = −7.47/2 meV, Jex

2 = −1.95/2 meV, D1 =
−0.07/2 meV, D2 = −0.01/2 meV, Kz = 0.19 × 2 meV, S =
2, and H = 0. More numerical details can be found in
Ref. [70].
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