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Superconductivity of anomalous pseudospin in nonsymmorphic materials
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Spin-orbit coupling driven by broken inversion symmetry (I) is known to lead to unusual magnetic response of
superconductors, including extremely large critical fields for spin-singlet superconductors. This unusual response
is also known to appear in materials that have I , provided there is local I-breaking: fermions participating
in superconductivity reside on crystal sites that lack I . Here we show that this unusual response exists even
when the crystal sites preserve I . Indeed, we argue that the symmetry of Kramers degenerate fermionic
pseudospin is more relevant than the local crystal site symmetry. We examine and classify nonsymmorphic
materials with momentum space spin-textures that exhibit an anomalous pseudospin with different symmetry
properties from usual spin-1/2. Since this anomalous pseudospin does not depend on the existence of local
I-breaking crystal sites, and since it optimizes the unusual magnetic response traditionally associated with locally
noncentrosymmetric superconductors, it dramatically extends the range of relevant materials. We further show
that this anomalous pseudospin leads to fully gapped “nodal” superconductors and provides additional insight
into the breakdown of Blount’s theorem for pseudospin triplet superconductors. We apply our results to UPt3,
BiS2-based superconductors, Fe-based superconductors, and paramagnetic UCoGe.
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I. INTRODUCTION

Momentum space spin textures of electronic bands are
known to underlie spintronic and superconducting proper-
ties of quantum materials [1–3]. In the spintronics context,
Rashba-like spin textures allow control of electronic spin
through applied electric fields [1,3]. In superconductors,
these same spin textures lead to unusual and counterintuitive
magnetic response, such as the robustness of spin-singlet su-
perconductivity to applied magnetic fields, pair density wave
states, and singlet-triplet mixing [2]. While such spin textures
are common when inversion symmetry (I) is broken, it has
been realized that these can also occur when I is present. This
has led to the notion of hidden spin textures [4] and locally
noncentrosymmetric superconductivity [5], where I-related
sectors each allow a Rashba-like spin texture due to the local
I breaking. These spin textures are of opposite sign on the
two sectors, so that global inversion symmetry is restored.
These hidden spin textures allow the novel physics associated
with spin-orbit coupling (SOC) to emerge even when I is
not broken. It further allows for new physics to emerge. One
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notable example is a field-induced transition from an even
parity (pseudospin singlet) to odd parity (pseudospin triplet)
observed in CeRh2As2 [6–9].

In materials with inversion symmetry, we call the above-
mentioned strongly anisotropic Pauli limiting fields (and
related anisotropic spin susceptibilities), fields far exceeding
the usual Pauli limiting field, and field-induced transitions
between different superconducting states, unusual magnetic
response. Key to observing this unusual magnetic response
associated with the spin textures in inversion symmetric ma-
terials is that the I-related sectors are weakly coupled [5,9–
11]. Theoretical proposals for how to achieve this fall under
two approaches: the first is to tailor weak coupling between
the inversion-related sectors, for example by separating two
inversion symmetry related layers so that the interlayer cou-
pling is weak [6]; the second is to exploit symmetries that
ensure that this intersector coupling vanishes. The symmetry-
based approach has been applied to points and lines in
momentum space. Examples include two-dimensional (2D)
transition-metal dichalcogenides near the K-point [12], and
nonsymmorphic symmetries near the X -M line in BaNiS2

with space group 129 (P4/nmm) [10]. Recently, we have
generalized this to planes in momentum space through an
analysis of the locally noncentrosymmetric superconductor
CeRh2As2 [9]. In all these cases, the only energy splitting
between the inversion-related sectors is due to SOC—a situ-
ation conceptually similar to materials with broken I , where
the usual twofold pseudospin degeneracy is broken solely
by SOC. Indeed, this suggests another route toward tailoring
unusual magnetic response of superconductors with inversion
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symmetry: Instead of emphasizing the local I breaking, as
has been done in the examples described above, it may be
fruitful to identify electronic degeneracies that are broken
solely by SOC. This is the approach we take here, and we
find that it leads naturally to the desired unusual magnetic
response. Furthermore, we find that it does not require crystal
site symmetries with local I breaking, but rather is dictated by
the symmetry of the Bloch fermion pseudospin. As pointed
out by Anderson in 1984 [13], fermion pseudospin, derived
from the twofold Kramers degeneracy originating from T I
symmetry (where T is time-reversal symmetry), plays a fun-
damental role in superconductivity. Here we find that when
the band degeneracy is lifted solely by SOC, this pseudospin
has different symmetry properties from the usual spin-1/2
pseudospin.

Specifically, we identify electronic band degeneracies that
are split solely by SOC in materials with both inversion (I)
and time-reversal (T ) symmetries. This requires bands that are
at least fourfold-degenerate when SOC is ignored. Such band
degeneracies are not generic and require symmetries beyond
the usual twofold pseudospin (or Kramers) degeneracy that
arises from T I symmetry. As discussed in a variety of con-
texts [14–17], such degeneracies can arise in nonsymmorphic
crystal structures. Here we focus on the largest momentum
region in the 3D Brillouin zone that allows such degenera-
cies. This occurs on 2D momentum planes, which are often
called nodal planes. More specifically, this is the largest re-
gion in momentum space for which the required fourfold
electronic degeneracies can appear when SOC is ignored.
Here we provide a complete list of space groups for which
this occurs, and we provide symmetry-based kp theories for
all time-reversal-invariant momenta (TRIM) on these nodal
planes. As discussed later, many relevant superconductors
exhibit Fermi surfaces near these TRIM. We find that the
SOC-split electronic states on these nodal planes generically
exhibit a pseudospin that has a different symmetry from that
of usual spin-1/2 fermions (this generalizes a result we found
for space group P4/nmm in the context of the locally noncen-
trosymmetric superconductor CeRh2As2 [9]). Here we name
this anomalous pseudospin and examine its consequences
on superconductivity. We find that it plays a central role
in the superconducting magnetic response and in the prop-
erties of spin-triplet superconductivity. Our results provide
further insight on earlier nodal and topological classifications
of superconductivity in nonsymmorphic materials [18–27].
Furthermore, all the nonsymmorphic crystal structures we
examine have Wyckoff positions with site symmetries that
contain inversion symmetry. So, although unusual magnetic
response is typically associated with locally noncentrosym-
metric superconductors, our theory establishes that the local I
breaking is not an essential ingredient, and our classification
may guide the experimental search for new materials where
local I breaking is not a feature.

In this paper, we begin by defining anomalous pseudospin
on nodal momenta planes. We then characterize all possi-
ble symmetry-based kp theories near TRIM points on these
nodal planes. Using these kp theories, we analyze the mag-
netic response and nodal excitations of superconducting states
formed from anomalous pseudospin. We apply this analysis
to a series of materials that exhibit Fermi surfaces that lie

on or near these nodal planes. More specifically we reveal
how anomalous pseudospin (i) explains critical fields that
far exceed the Pauli field in BiS2-based materials [28] and
the observed magnetic response 3D Fe-based superconductors
[29], (ii) identifies which space groups and TRIM are ideal to
find a field-induced even-parity to odd-parity transition akin
to that observed in CeRh2As2 [7], (iii) provides insight into
the gap symmetry of UPt3 [30], and (iv) shines new light on
reentrant superconductivity in UCoGe [31].

II. ANOMALOUS PSEUDOSPIN: SYMMETRY ORIGIN

Our aim is to exploit symmetry to find nodal plane band
degeneracies that are lifted solely by SOC. As discussed
below, once these band degeneracies are lifted, a twofold
pseudospin degeneracy will remain. We find that generically,
the pseudospin that results from this procedure does not share
the same symmetry properties as usual spin 1/2, and hence
we call this “anomalous pseudospin.”

Pseudospin describes the twofold Kramers degeneracy that
arises at each momentum point k when the product of time-
reversal T and inversion I symmetries, T I , is present. The
product T I is antiunitary, and for fermions it satisfies (T I )2 =
−1, ensuring at least a twofold degeneracy. It is often the
case that this pseudospin behaves as spin-1/2 under rotations
[32]. However, when symmetries beyond T I are present, it
is possible that this is not the case. One example of this
is the angular momentum jz = ±3/2 electronic states that
arise when cubic symmetry or a threefold rotation axis is
present [2,33,34]. In the latter case, this gives rise to so-called
type-II Ising superconductivity in 2D materials [34,35] where
large in-plane critical fields appear when the Fermi surface
is sufficiently close to momentum points with this threefold
rotation symmetry. A systematic analysis of the appearance of
anomalous pseudospin for fermions near the � point has been
carried out [36–38]. In our case, the anomalous pseudospin
appears on momentum planes in the Brillouin zone, allowing
a larger phase space for the physical properties of anomalous
pseudospin to manifest.

To ensure the requisite band degeneracy on a nodal plane,
consider the symmetry elements that keep a momentum point
on the plane invariant (here taken to be normal to the n̂
axis). These are {E , M̃n̂, T I, TC̃2,n̂}, where M̃n̂ is a trans-
lation mirror symmetry and C̃2,n̂ is a translation twofold
rotation symmetry. Their point-group rotation and translation
component can be denoted using Seitz notation, e.g., M̃n̂ =
{Mn̂|t1, t2, t3}, where Mn̂ is a point-group mirror symmetry
along n̂, and (t1, t2, t3) is a fractional translation vector (here
the t3 is the translation component parallel to n̂). Since we
are searching for a degeneracy that appears without SOC, we
consider orbital or sublattice degrees of freedom for which
(T I )2 = 1. The only remaining symmetry that can enforce
a twofold degeneracy is TC̃2,n̂; since this is antiunitary, it
must satisfy (TC̃2,n̂)2 = −1 to do so. Since T commutes
with rotations, this implies C̃2

2,n̂ = −1. When operating on
orbital or sublattice degrees of freedom, C̃2

2,n̂ is typically 1,
suggesting it is not possible to have the required degeneracy.
However, in nonsymmorphic groups, C̃2,n̂ can be a screw axis,
for which it is possible to satisfy C̃2

2,n̂ = −1. In particular,
using Seitz notation C̃2,n̂ = {C2n̂|t1, t2, 1/2} (here t1 and t2
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correspond to either a half in-plane translation vector or to no
translation), we have (C̃2,n̂)2 = {E |0, 0, 1}. When operating
on a state carrying momentum k, (C̃2,n̂)2 is represented by
eik·n̂. Hence if the nodal plane sits at momentum k · n̂ = π ,
then C̃2

2,n̂ = −1 and a twofold orbital or sublattice degeneracy
is ensured. When spin degeneracy is also included, these states
are then fourfold-degenerate when SOC is ignored.

When SOC is included, it is possible to show that the T I
pseudospin partners have the same Mn̂ mirror eigenvalue (this
result is a generalization of that given in Ref. [9], where t1 =
0 and t2 = 0 were used). That is, labeling the two Kramers
degenerate states as |+〉 and T I|+〉, both belong to the same
eigenstate of M̃n̂. As a consequence, all Pauli matrices σ̃i made
from the two states |+〉 T I|+〉 must be invariant under M̃n̂. It
is this feature that differs from usual spin-1/2. Of the three
Pauli matrices σi, constructed from usual spin-1/2 states, two
will be odd under M̃n̂ and one will be even under M̃n̂. It is
this symmetry distinction between the anomalous pseudospin
operators (σ̃i) and usual spin-1/2 operators (σi) that underlies
the unusual superconducting properties discussed below.

The above argument can also be applied to nodal lines
generated by the symmetry elements {E , C̃2,n̂, T I, T M̃n̂} with
(T M̃n̂)2 = −1 when applied to orbital or sublattice degrees
of freedom. In this case, repeating the same arguments above
shows that SOC will also split the band degeneracy and lead
to anomalous pseudospin. Here, due to the larger available
momentum phase space, we restrict our analysis and classi-
fication to nodal planes and leave an analysis of nodal lines to
a later work. For all space groups that host nodal planes, we
develop symmetry-based kp theories valid near all TRIM on
these nodal planes. We emphasize these TRIM since Cooper
pairs are formed by pairing states at momenta k and −k with
the momentum origin given by a TRIM. We then consider
Fermi surfaces near these TRIM and discuss the resultant
superconducting properties. Figure 1 illustrates our approach.
Here, in green, we show the nodal planes and lines that exhibit
anomalous pseudospin. We examine the properties of super-
conductivity for a Fermi surface near the Z point, which is a
TRIM on the nodal plane. The properties of superconductivity
for a Fermi surface near the � point, for which pseudospin is
typically not anomalous, are described in earlier review arti-
cles [39,40]. We note that many superconducting materials,
including the examples discussed in this paper, exhibit Fermi
surfaces near nodal planes. While our results focus on the
situation in which Fermi surfaces only appear near the nodal
planes, many of the results still apply when Fermi surfaces
exist both near the nodal planes and away from these (for
example, the predicted high Pauli fields and the gap structure
near the nodal planes). Nevertheless, this possibility warrants
further investigation. We note that this has been explored
in the context of the field-induced even-parity to odd-parity
superconducting transition in CeRh2As2 [9].

III. NODAL PLANE SPACE GROUPS AND
SINGLE-PARTICLE kp HAMILTONIANS

Here we identify all space groups that allow anomalous
pseudospin on nodal planes and construct the corresponding
symmetry-based kp-like Hamiltonians for all TRIM on these
planes. A key new result is that these kp theories are of two
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FIG. 1. Example from space group 14 where the green shading
reveals the planes and lines in momentum space on which anomalous
pseudospin exists. A Fermi surface located near the momentum
plane kz = π (as depicted by the dark Fermi surface near the Z
point) will have its superconducting properties governed by pairing
of anomalous pseudospin. However, Fermi surfaces far from these
planes (such as that depicted near the � point) will exhibit more usual
superconducting properties.

types. Type-1 kp theories have Hamiltonians of the same form
generically examined in locally noncentrosymmetric super-
conductors and explicitly contain SOC terms that are odd in
momentum k. Type-2 kp theories contain SOC terms that are
even in momentum k, and have not appeared in the context of
locally noncentrosymmetric superconductors.

A. Space groups with nodal planes

To identify these nodal planes, all space groups contain-
ing inversion symmetry I = {I|0, 0, 0} and the screw axis
C̃2,n̂ = {C2n̂|t1, t2, 1/2} (where t1 = 0, 1/2 and t2 = 0, 1/2)
were identified. For these space groups, the nodal planes lie on
the Brillouin zone boundary. Table I lists the resultant space
groups, point groups, nodal planes, and types of kp theories
allowed for these space groups. As discussed in the previous
section, the degeneracies of these nodal planes are generically
lifted by SOC, yielding anomalous pseudospin.

B. Symmetry-based kp theories near TRIM

Understanding the consequences of anomalous pseudospin
on superconductivity requires a theory for the normal state.
Cooper pairs rely on the degeneracy between states of mo-
menta k and −k, and this degeneracy is ensured by both T
and I symmetries. For this reason, we develop symmetry-
based kp theories expanded around TRIM. To derive these
kp-like Hamiltonians, we have used the real representations
for the TRIM given in the Bilbao Crystallographic server
[41–43]. For these TRIM, we initially consider space group
irreducible representations that do not include spin, which, for
simplicity, we term orbital representations. These representa-
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TABLE I. Space groups with nodal planes.

Crystal type Number Name Nodal planes kp theory classes

Monoclinic (C2h ) 11 P21/m (u, 1/2, w) Ctype1
2h,1

14 P21/c (u, 1/2, w) Ctype1
2h,1 , Ctype2

2h,2

Orthorhombic (D2h ) 51 Pmma (1/2, v, w) Dtype1
2h,3

52 Pnna (u, 1/2, w) Dtype1
2h,3 , Dtype2

2h,4 , 8-fold

53 Pmna (u, v, 1/2) Dtype1
2h,3 , Dtype2

2h,4

54 Pcca (1/2, v, w) Dtype1
2h,3 , 8-fold

55 Pbam (1/2, v, w), (u, 1/2, w) Dtype2
2h,2 , Dtype1

2h,3

56 Pccn (1/2, v, w), (u, 1/2, w) Dtype1
2h,1 , Dtype2

2h,2 , Dtype1
2h,3 , 8-fold

57 Pbcm (u, v, 1/2), (u, 1/2, w) Dtype1
2h,3 , 8-fold

58 Pnnm (1/2, v, w), (u, 1/2, w) Dtype1
2h,1 , Dtype2

2h,2 , Dtype1
2h,3 , Dtype2

2h,4

59 Pmmn (1/2, v, w), (u, 1/2, w) Dtype1
2h,1 , Dtype1

2h,3

60 Pbcn (1/2, v,w), (u, v, 1/2) Dtype1
2h,3 , Dtype2

2h,4 , 8-fold

61 Pbca (1/2, v, w), (u, v, 1/2), (u, 1/2, w) Dtype1
2h,3 , 8-fold

62 Pnma (1/2, v, w), (u, v, 1/2), (u, 1/2, w) Dtype1
2h,1 , Dtype1

2h,3 , 8-fold

63 Cmcm (u, v, 1/2) Ctype1
2h,1 , Dtype1

2h,3

64 Cmce (u, v, 1/2) Ctype2
2h,2 , Dtype1

2h,3

Tetragonal (D4h ) 127 P4/mbm (u, 1/2, w) Dtype1
2h,3 , Dtype2

4h,2 , Dtype2
4h,4

128 P4/mnc (u, 1/2, w) Dtype1
2h,3 , Dtype2

2h,4 , Dtype2
4h,2 , Dtype2

4h,4 , Dtype1
4h,5 , 8-fold

129 P4/nmm (u, 1/2, w) Dtype1
2h,3 , Dtype1

4h,1 , Dtype1
4h,3

130 P4/ncc (u, 1/2, w) Dtype1
2h,3 , Dtype1

4h,1 , Dtype1
4h,3 , 8-fold

135 P42/mbc (u, 1/2, w) Dtype1
2h,3 , Dtype2

4h,2 , Dtype2
4h,4 , 8-fold

136 P42/mnm (u, 1/2, w) Dtype1
2h,3 , Dtype2

2h,4 , Dtype1
4h,1 , Dtype2

4h,2 , Dtype1
4h,3 , Dtype2

4h,4

137 P42/nmc (u, 1/2, w) Dtype1
2h,3 , Dtype1

4h,1 , Dtype1
4h,3 , Dtype1

4h,5 , 8-fold

138 P42/ncm (u, 1/2, w) Dtype1
2h,3 , Dtype1

4h,1 , Dtype2
4h,2 , Dtype1

4h,3 , Dtype2
4h,4 , 8-fold

Hexagonal (C6h ) 176 P63/m (u, v, 1/2) Ctype1
2h,1 , Ctype1

6h , 8-fold

Hexagonal (D6h ) 193 P63/mcm (u, v, 1/2) Dtype1
2h,3 , Dtype1

6h , 8-fold

194 P63/mmc (u, v, 1/2) Dtype1
2h,3 , Dtype1

6h , 8-fold

Cubic (Th ) 205 Pa3 (u, 1/2, w) Dtype1
2h,3 , 8-fold

tions are either twofold- or fourfold-degenerate (when spin
is added, these become fourfold- and eightfold-degenerate,
respectively). The full kp-like Hamiltonians are only listed for
the twofold-degenerate representations. We present a partial
classification of the fourfold-degenerate orbital representa-
tions near the end of this paper.

In constructing the kp theories for the twofold orbital
degenerate TRIM points, we choose τi to be Pauli matrices
that encode the orbital degrees of freedom, and σi to be spin
Pauli matrices. We take T = τ0(iσy)K , where K is the com-
plex conjugation operator, hence the τ2 operator is odd under
time-reversal. For a given doubly degenerate space group
representation on a TRIM, constructing its direct product
leads to four irreducible point-group representations. These
four representations each correspond to an orbital operator
τi, and this partially dictates the momentum dependencies of
symmetry-allowed terms in the kp Hamiltonian. We present
our results for the kp Hamiltonians in Table II. The first row
of each box gives the type of the kp theory class and the
point-group representations of the orbital operators that are

given by Pauli matrices τi. In this decomposition, the square
brackets correspond to the antisymmetric τ2 operator, and the
remaining terms correspond to τ0, τ1, and τ3. The second row
of a box gives the kp Hamiltonian, and the last part of a box
lists the space groups and TRIM point representations that
belong to the kp Hamiltonian class. We have tabulated the kp
Hamiltonians for 122 TRIM points, and we find that only 13
different kp theories appear. These are of two types, which
we call type 1 and type 2. Type-1 kp theories have degenerate
even- and odd-parity orbital basis functions. These Hamilto-
nians have a structure similar to those examined in the context
of locally noncentrosymmetric superconductors [5]. However,
we note that local I breaking on crystal sites is not required
to generate type-1 kp theories since these kp theories are
generic to the TRIM points we consider. In particular, these
Hamiltonians apply to all Wyckoff position site symmetries,
and the nonsymmorphic groups we consider all include site
symmetries that include I . For site symmetries that include I ,
the degenerate even- and odd-parity basis functions for type-1
Hamiltonians originate from the combination of nonsymmor-
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phic symmetries and Bloch momenta at the zone boundary.
Type-2 kp theories have two degenerate orbital basis functions
with the same parity symmetry. These Hamiltonian have a
structure unlike that seen in locally noncentrosymmetric su-
perconductors, yet as we show below, they exhibit a similar
magnetic response.

The generic form of these kp theories is

H (k) = ε0,k + t1,kτ1 + tα,kτα + τβ (λk · σ ) = ε0,k + Hδ (k),

(1)

(I, τα, τβ ) =
{

(τ1, τ2, τ3) for type 1,

(τ0, τ3, τ2) for type 2,
(2)

where Hδ (k) = H (k) − ε0,k, and α and β are type indices
that will be used in the remaining context. For parity mixed,
type-1, kp theories, the degeneracy at TRIM points is not bro-
ken by SOC. This is because the nonsymmorphic symmetries
combined with topological arguments imply these TRIM must
have an odd number of Dirac lines passing through them [44].
These Dirac lines lie in the nodal plane. Elsewhere in the nodal
plane, SOC lifts the fourfold degeneracy. We will discuss
some consequences of these Dirac lines later. The nontrivial
inversion symmetry for type 1, I = τ1, implies the parity
of the momentum functions that ε0,k = ε0,−k, t1,k = t1,−k,
t2,k = −t2,−k, and λk = −λ−k. This form of Hamiltonian has
often been used to understand locally noncentrosymmetric
superconductors [2] and hidden spin polarization in inversion
symmetric materials [11]. In these contexts, the orbital de-
grees of freedom reside on different sectors that are related
by inversion symmetry, and there is typically no symmetry
requirement that ensures the SOC dominates. The τ3 matrix
is odd under inversion symmetry, allowing the odd-parity
SOC λk to appear. Many superconductors of interest have
Fermi surfaces near type-1 TRIM points. Examples include (i)
Fe-based superconductors, which often have electron pockets
near the M point in space group 129 (classes Dtype1

4h,1 or Dtype1
4h,3 )

[29] (in this context, the high-Tc superconductor monolayer
FeSe is of interest, since it only has Fermi surfaces near the
M point [45]); (ii) CeRh2As2, which exhibits a field-induced
transition from an even-parity to an odd-parity superconduct-
ing state [7,8] and has Fermi surfaces near the M point in
space group 129 (classes Dtype1

4h,1 or Dtype1
4h,3 ); (iii) BiS2-based

superconductors [28], which have superconductivity that sur-
vives to very high fields and which have electron pockets
near the X point in space group 129 (class Dtype1

2h,3 ); (iv) the
odd-parity heavy fermion superconductor UPt3 [30], which
has a pancakelike Fermi surface at kz = π/c in space group
193 (class Dtype1

6h ); and (v) the ferromagnetic superconductor
UCoGe [31], with space group 62 and a Fermi surface near
the T point (class Dtype1

2h,1 ).
For type-2 kp theories, the fourfold degeneracy is some-

times already split into two at the TRIM point when SOC
is added, unlike what occurs for type-1 kp theories. This
happens in classes Ctype2

2h,2 and Dtype2
2h,1 . For the other type-2

classes, this degeneracy at the TRIM point is not split. In these
cases, an even number of Dirac lines pass through the TRIM
point. These Dirac lines lie in the nodal plane. Since I = τ0

for type 2, all terms in the Hamiltonian are even parity, that
is, unchanged under k → −k. One example where type-2 kp

theories apply is in strain-induced superconductivity in RuO2

[46,47]. Without strain, RuO2 is thought to be a nonsupercon-
ducting altermagnet [48]. When strain is applied, bands near
the X -M-R-A Brillouin zone face are most strongly affected
[46]. RuO2 has space group 136 with the R and M points
belonging to classes Dtype2

2h,4 , Dtype2
4h,2 , or Dtype2

4h,4 . Later we discuss
the ferromagnetic superconductor UCoGe with space group
62 [31]. In this example, we highlight the role of eightfold-
degenerate points, which exhibit some properties similar to
that found for type-2 TRIM points.

Type-1 and -2 kp Hamiltonians share some common
features that play an important role in understanding the
properties of the superconducting states. The first is that the
nonsymmorphic symmetry dictates that these Hamiltonians
are best described as two-band systems with eigenenergies
given by

E±(k) = ε0,k ±
√

t2
1,k + t2

α,k + |λk|2 = ε0,k ± εδ,k, (3)

where α is the type index in Eq. (2). The second feature
is that both simplify dramatically on the nodal plane, where
only the coefficient functions ε0,k and λk · n̂ are nonvanishing
(that is, t1,k = tα,k = |λk × n̂| = 0). This property is a direct
consequence of the anomalous pseudospin. The symmetry
arguments discussed in the previous section enforce this con-
dition. In particular, for momenta on the nodal plane, the
mirror operator through the nodal plane, UM , takes the form
UM = −iτβ (σ · n̂). The requirement that these Hamiltonians
obey time-reversal and inversion symmetries and commute
with UM leads to this simple form of the kp theories in the
nodal plane. The final important property of these kp Hamil-
tonians is that the SOC terms are often the leading-order terms
in the kp expansions, that is, they appear with the lowest
powers of ki. This is the case for classes Ctype2

2h,2 , Dtype1
2h,1 , Dtype2

2h,4 ,

Dtype1
4h,2 , Dtype1

4h,3 , and Dtype1
4h,5 . This feature ensures that there exists

a limit in which the SOC is the dominant single-particle inter-
action on the Fermi surface, and hence the unusual magnetic
superconducting response we later discuss must exist.

IV. SUPERCONDUCTING STATES

In the previous section, complete symmetry-dictated kp
theories were found for anomalous pseudospin. These theo-
ries are complete in the sense that they include all operators
of the form τiσ j allowed by symmetry. For superconductiv-
ity, the orbital degree of freedom enlarges the corresponding
space of possible gap functions compared to the usual even-
parity (pseudospin-singlet) 
̃(k) = ψk(iσy) and odd-parity
(pseudospin-triplet) 
̃(k) = dk · σ(iσy) states that appear in
single-band theories [39,40]. Nevertheless, it is possible to
understand some general properties of the allowed pairing
states.

To deduce the symmetry properties of possible pairing
channels in this larger space of electronic states, it is useful
to define the gap function differently from the usual definition
[49,50]. In particular, we take

H =
∑
i, j,k

Hi j (k)c†
k,ick, j + 1

2

∑
i, j,k

[
i j (k)c†
k,ic̃

†
k, j + H.c.], (4)
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where i, j are combined spin and orbital indices, H.c. denotes
Hermitian conjugate, ck(c†

k ) is the fermionic spin-half par-
ticle creation (annihilation) operator, and c̃k(c̃†

k ) is the time
reversed partner of ck(c†

k ). In the usual formulation, c̃†
k, j is

replaced by c†
−k, j , which leads to a different gap function 
̃i j

and to difficulties in interpreting the symmetry transformation
properties of this gap function [49,50]. For a single band,
these new gap functions become 
(k) = ψkσ0 for even parity
and 
(k) = dk · σ for odd parity. The key use of Eq. (4) is
that the 
i j (k) transform under rotations in the same way as
Hi j (k), allowing the symmetry properties of the gap functions
to be deduced. The disadvantage of this approach is that the
antisymmetry of the gap functions that follow from the Pauli
exclusion principle is not as readily apparent compared to the
usual formulation [49,50].

Enforcing the Pauli exclusion principle leads to eight types
of gap functions that generalize the pseudospin singlet and
pseudospin triplet of single-band gap functions. Six of these
are simple generalizations of the single-band gap functions:
τiψk and τi(dk · σ ) for i = 0, 1, and 3, where ψ−k = ψk and
d−k = −dk. Two are new gap functions: τ2(ψk · σ) and τ2dk

with ψ−k = ψk and d−k = −dk. It is possible to determine
whether these gap functions are either even- or odd-parity,
and this depends upon whether the kp Hamiltonian is type 1
or type 2. These gap functions and their parity symmetry are
listed in Table III. Without further consideration of additional
symmetries, the gap function will in general be a linear com-
bination of all the even-parity (or odd-parity) gap functions.

To gain an understanding of the relative importance of
these pairing states, it is useful to project these gaps onto
the band basis. Such a projection is meaningful if the energy
separation between the two bands is much larger than the
gap magnitude. For many of the kp Hamiltonians, due to the
presence of Dirac lines, there will exist regions in momentum
space for which this condition is not satisfied. However, these
regions represent a small portion of the Fermi surface when
the SOC energies are much larger than the gap energies, so
that an examination of the projected gap is still qualitatively
useful in this limit. Provided the superconducting state does
not break time-reversal symmetry, the projected gap magni-
tude on band a can be found through [51]


̃2
± = Tr[|{Hδ,
}|2P±]

Tr[|Hδ|2]
, (5)

where P±(k) = 1
2 [1 ± Hδ (k)/εδ,k], which is a projection op-

erator onto ± band by the energy dispersion Eq. (3). This
projected gap magnitude is related to superconducting fitness
[52,53]: if it vanishes, the corresponding gap function is called
unfit and it will have Tc = 0 in the weak-coupling limit.
Table III gives the projected gap functions for the pairing
states discussed above. The projection generally reduces the
size of the gap, with the exception of the usual even-parity
τ0ψk state (interestingly, the odd-parity τ0(dk · σ ) state has
a gap that is generically reduced). This reduction strongly
suppresses the Tc of the pairings state, where it enters ex-
ponentially in the weak-coupling limit. We later examine the
different kp classes to identify fit gap functions since the Tc

of these states will be the largest, given a fixed attractive
interaction strength.

TABLE II. Classification of kp theories. Subscript numbering
of momenta represents different real representations on the same
momentum point, and a permutation of the axes is denoted by the
cyclic notation. For example, 128(X1,2(xyz)) represents that there are
two representations X1 and X2 on X = (0, 1/2, 0) space group 128,
and their local theory is obtained by Dtype1

2h,3 Hamiltonian under x →
y → z → x relabeling. The representation convention is following
the Bilbao Crystallographic server [41–43]a except for the L point in
193 and 194.

Symmetry, Hamiltonian,
Class and Space Group Momenta

Ctype1
2h,1 Ag + Bg + [Au] + Bu

H = ε0 + (t1xkx + t1zkz )kyτ1 + t2kyτ2

+τ3[λxkyσx + (λyxkx + λyzkz )σy + λzkyσz]

11(C1, D1, E1, Z1), 14(C1, Z1)

63(R1(yz)), 176(L1(yz))

Ctype2
2h,2 Ag + 2Bg + [Ag]

H = ε0 + (t1xkx + t1zkz )kyτ1 + (t3xkx + t3zkz )kyτ3

+τ2[(λxxkx + λxzkz )kyσx + λyσy + (λzxkx + λzzkz )kyσz]

14(D±
1 D±

2 , E±
1 E±

2 ), 64(R±
1 R±

2 (yz))

Dtype1
2h,1 Ag + B1g + [Au] + B1u

H = ε0 + t1kxkyτ1 + t2kxkykzτ2

+τ3[λxkyσx + λykxσy + λzkxkykzσz]

56(S1,2), 58(R1,2)

59(S1,2, R1,2), 62(T1,2(xz))

Dtype2
2h,2 Ag + 2B1g + [Ag]

H = ε0 + t1kxkyτ1 + t3kxkyτ3

+τ2[λxkykzσx + λykxkzσy + λzkxkyσz]

55(S±
1 S±

2 , S±
3 S±

4 , R±
1 R±

2 , R±
3 R±

4 ), 56(R±
1 R±

2 , R±
3 R±

4 )

58(S±
1 S±

2 , S±
3 S±

4 ), 62(U ±
1 U ±

4 ,U ±
2 U ±

3 )

Dtype1
2h,3 Ag + B2g + [B3u] + B1u

H = ε0 + t1kxkzτ1 + t2kxτ2

+τ3[λxkyσx + λykxσy + λzkxkykzσz]

51(X1,2, S1,2,U1,2, R1,2), 52(R1,2(xy),Y1,2(xyz))

53(Z1,2(zyx), T1,2(zyx)), 54(X1,2, S1,2)

55(U1,2(yz), X1,2(yz),Y1,2(xyz), T1,2(xyz))

56(X1,2,Y1,2(xy))

57(S1,2(xyz),Y1,2(xyz), Z1,2(zyx),U1,2(zyx))

58(X1,2(yz),Y1,2(xyz))

59(X1,2,U1,2, T1,2(xy),Y1,2(xy)), 60(X1,2, Z1,2(zyx))

61(X1,2,Y1,2(xyz), Z1,2(zyx))

62(X1,2, Z1,2(xz),Y1,2(xyz))

63(T1,2(zyx), Z1,2(zyx)), 64(T1,2(zyx), Z1,2(zyx))

127(X1,2(xyz), R1,2(xyz)), 128(X1,2(xyz))

129(X1,2(xy), R1,2(xy)), 130(X1,2(xy))

135(X1,2(xyz), R1,2(xyz)), 136(X1,2(xyz))

137(R1,2(xy), X1,2(xy)), 138(X1,2(xy))

193(L1,2), 194(L1,2(xy))

205(X1,2(xyz))
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TABLE II. (Continued.)

Class Symmetry

Dtype2
2h,4 Ag + B1g + B3g + [B2g]

H = ε0 + t1kxkyτ1 + t3kykzτ3

+τ2[λxkxkyσx + λyσy + λzkykzσz]

52(T ±
1 ), 53(U ±

1 (yz), R±
1 (yz))

58(T ±
1 ,U ±

1 (xy)), 60(S±
1 (xy))

128(R±
1 ), 136(R±

1 )

Dtype1
4h,1 A1g + B2g + [A1u] + B2u

H = ε0 + t1kxkyτ1 + t2kxkykz(k2
x − k2

y )τ2

+τ3[λx (kxσy + kyσx ) + λ3kxkykzσz]

129(M1,2, A1,2), 130(M1,2)

136(A3,4), 137(M1,2), 138(M1,2)

Dtype2
4h,2 A1g + 2B2g + [A1g]

H = ε0 + t1kxkyτ1 + t3kxkyτ3

+τ2[λx (kykzσx + kxkzσy ) + λzkxky(k2
x − k2

y )σz]

127(M±
1 M±

4 , M±
2 M±

3 , A±
1 A±

4 , A±
2 A±

3 )

128(M±
1 M±

4 , M±
2 M±

3 ), 135(M±
1 M±

4 , M±
2 M±

3 )

136(M±
1 M±

4 , M±
2 M±

3 ), 138(A±
1 A±

4 , A±
2 A±

3 )

Dtype1
4h,3 A1g + B2g + [B1u] + A2u

H = ε0 + t1kxkyτ1 + t2kxkykzτ2

+τ3[λx (kxσy − kyσx ) + λzkxkykz(k2
x − k2

y )σz]

129(M3,4, A3,4), 130(M3,4)

136(A1,2), 137(M3,4), 138(M3,4)

Dtype2
4h,4 A1g + A2g + B2g + [B1g]

H = ε0 + t1kxky(k2
x − k2

y )τ1 + t3kxkyτ3

+τ2[λx (kykzσx + kxkzσy ) + λzkxkyσz]

127(M±
5 , A±

5 ), 128(M±
5 )

135(M±
5 ), 136(M±

5 ), 138(A±
5 )

Dtype1
4h,5 A1g + A2g + [B1u] + B2u

H = ε0 + t1kxky(k2
x − k2

y )τ1 + t2kxkykzτ2

+τ3[λx (kxσy + kyσx ) + λzkxkykzσz]

128(A1,2), 137(A1,2)

Ctype1
6h Ag + Bg + [Au] + Bu

H = ε0 + (t1xkx (k2
x − 3k2

y ) + t1yky(3k2
x − k2

y ))kzτ1

+t2kzτ2 + τ3[λxkz(2kxkyσx + (k2
x − k2

y )σy )

+(λzxkx (k2
x − 3k2

y ) + λzyky(3k2
x − k2

y ))σz]

176(A1)

Dtype1
6h A1g + B2g + [A2u] + B1u

H = ε0 + t1kxkz(k2
x − 3k2

y )τ1 + t2kzτ2

+τ3[λxkz(2kxkyσx + (k2
x − k2

y )σy ) + λzky(3k2
x − k2

y )σz]

193(A1,2),194(A1,2(xy))

ahttps://www.cryst.ehu.es/. Representations and Applications →
Point and Space Groups → - Representations → SG Physically
irreducible representations given in a real basis.

On the nodal plane, the projected gap functions, shown in
Table III, simplify considerably since only ε0,k and λk · n̂ are
nonzero. For both type-1 and type-2 Hamiltonians, this leads

to two gap functions that are fully fit, that is, not reduced by
the projection. For type-1 Hamiltonians, these fully fit states
are τ0ψk and τ3ψk. The state τ0ψk is even-parity and the state
τ3ψk is odd-parity, and, as discussed later, these two states
play an important role in the appearance of a field-induced
transition from even- to odd-parity superconductivity as ob-
served in CeRh2As2. For gap functions described by vectors,
for example dk, the projected gaps on the nodal plane are of
the form |dk · n̂|2 or |dk × n̂|2. This is qualitatively different
from the usual odd-parity single-band gap, where the gap
magnitude is |dk|2. The latter requires that all three compo-
nents of dk must vanish to have nodes. For the projected gaps
on the nodal planes, this requirement is less stringent: only
one or two components of dk need to vanish to have nodes.
This is closely related to the violation of Blount’s theorem on
the nodal planes.

A. Gap projection and the violation of Blount’s theorem

Blount’s theorem states that time-reversal symmetric odd-
parity superconductors cannot have line nodes when SOC
is present [49]. Key to Blount’s theorem is the assump-
tion that pseudospin shares the same symmetry properties as
usual spin [49]. The violation of Blount’s theorem in non-
symmorphic space groups has been demonstrated through
an examination of Cooper pair representations formed from
antisymmetric direct products of the relevant fermions states
[18–20,22,25,26,54]. Here we use an alternate approach that
exploits the completeness of the kp Hamiltonian space and the
inclusion of all gap functions in this space that are allowed
by symmetry to directly compute the general form of the
superconducting excitation spectrum. This approach closely
links the anomalous pseudospin to the violation of Blount’s
theorem.

The existence of anomalous pseudospin requires the pres-
ence of the translation mirror symmetry M̃n̂. Consequently,
the gap function can be classified as even or odd under this
symmetry. Momenta on the nodal plane are invariant under
M̃n̂. Hence, for these momenta, U †

M
(k)UM = ±
(k), where
the + (−) holds for a mirror-even (mirror-odd) gap function.
For our basis choice, UM = −iτβ (σ · n̂). Importantly, for both
types the kp theories on the nodal plane are given by H (k) =
ε0,k + iUM (λk · n̂). This defines the two bands E±(k) = ε0,k ±
|λk · n̂|. Written in the band basis, we can divide the pairing
potential into intraband and interband components. On the
nodal plane, the intraband gap functions are explicitly given
by

P±
P± = 1
4 [−UM ± i sgn(λk · n̂)]{UM,
}, (6)

while the interband components are

P±
P∓ = 1
4 [−UM ± i sgn(λk · n̂)][UM,
]. (7)

We observe that since a mirror-even gap function satisfies
[UM,
] = 0, the interband gap components must vanish on
the nodal plane, i.e., the pairing only involves particles from
the same band. The general form of the BdG energy dispersion
relation is then

±′
√

(ε0,k ± |λk · n̂|)2 + |
±±|2, (8)

where the intraband gap magnitude |
±±|2 =
1
4 Tr[|P±
P±|2], and ±′ is the particle-hole symmetry index,
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TABLE III. Classification of allowed pairing states for the kp theories. For both type-1 and -2 TRIMs, we give the symmetry under
inversion, the gap projection onto the Fermi surface, and the gap on the nodal plane. The momentum subscript indices k of the coefficient
functions are omitted here.

Type 1 Type 2

Gap function Inversion Gap projection Gap on nodal plane Inversion Gap projection Gap on nodal plane

τ0ψ + |ψ |2 |ψ |2 + |ψ |2 |ψ |2

τ0(d · σ ) −
(

t2
1 +t2

2

)
|d|2+|d·λ|2

t2
1 +t2

2 +|λ|2 |d · n̂|2 −
(

t2
1 +t2

2

)
|d|2+|d·λ|2

t2
1 +t2

2 +|λ|2 |d · n̂|2

τ3ψ − |λ|2|ψ |2
t2
1 + t2

2 + |λ|2 |ψ |2 + t2
3 |ψ |2

t2
1 + t2

3 + |λ|2 0

τ3(d · σ ) + |d · λ|2
t2
1 + t2

2 + |λ|2 |d · n̂|2 − t2
3 |d|2 + |d × λ|2
t2
1 + t2

3 + |λ|2 |d × n̂|2

τ1ψ + t2
1 |ψ |2

t2
1 + t2

2 + |λ|2 0 + t2
1 |ψ |2

t2
1 + t2

3 + |λ|2 0

τ1(d · σ ) − t2
1 |d|2 + |d × λ|2
t2
1 + t2

2 + |λ|2 |d × n̂|2 − t2
1 |d|2 + |d × λ|2
t2
1 + t2

2 + |λ|2 |d × n̂|2

τ2d + t2
2 |d|2

t2
1 + t2

2 + |λ|2 0 − |λ|2|d|2
t2
1 + t2

3 + |λ|2 |d|2

τ2(ψ · σ ) − t2
2 |ψ|2 + |ψ × λ|2

t2
1 + t2

2 + |λ|2 |ψ × n̂|2 + |ψ · λ|2
t2
1 + t2

3 + |λ|2 |ψ · n̂|2

which is independent of the band index ±. Since there is no
requirement that |
±±|2 = 0, line nodes are therefore not
expected on the nodal plane, but rather we should generically
find two-gap behavior with different size gaps on the two
bands. In contrast, for the mirror-odd gap functions we
have {UM,
} = 0, so there is no intraband pairing on the
nodal plane. The general form of the eigenenergies for this
interband pairing state is then

±′(±|λk · n̂| +
√

ε2
0,k + |
±∓|2), (9)

where intraband gap magnitude |
±∓|2 = 1
4 Tr[|P±
P∓|2].

The gap has line nodes provided |λk · n̂|2 > |
±∓|2. This
result depends only on the mirror-odd symmetry of the gap,
and not on the parity symmetry. Since gaps that are odd under
both mirror and parity symmetry are allowed, this result shows
that odd-parity gaps can have line nodes, thus demonstrating
a violation of Blount’s theorem.

The origin of these nodes due to purely interband pairing
implies that the nodes are shifted off the Fermi surface [55].
If the spin-orbit coupling is too weak, i.e., |λk · n̂|2 < |
±∓|2,
the nodes can annihilate with each other and are absent. This
possibility has been discussed in the context of even-parity
superconductivity in monolayer FeSe [56] and odd-parity su-
perconductivity in UPt3 [54]. The analysis above is valid even
when Dirac lines pass through the TRIM points, as is the case
in most of the derived kp theories. On the Dirac lines, the
condition |λk · n̂|2 < |
±∓|2 must occur and the spectrum is
therefore gapped. In Appendix A, we present exact expres-
sions for the energy eigenstates on the nodal plane for all
possible combinations of mirror and parity gap symmetries.

B. Unconventional pairing states from electron-phonon
interactions

To highlight how the pairing of anomalous pseudospin can
differ from the single-band superconductivity, it is instructive

to consider an attractive U Hubbard model. Such a model is
often used to capture the physics of electron-phonon driven s-
wave superconductivity in single-band models. Here we show
that this coupling also allows unconventional pairing states, in
particular, odd-parity states in type-1 kp Hamiltonians. Such
a state has recently likely been observed in CeRh2As2.

Here we consider a local Hubbard-U attraction on each
site of the lattice, and we do not consider any longer-range
Coulomb interactions. These sites are defined by their Wyck-
off positions. Importantly, for the nonsymmorphic groups we
have considered here, each Wyckoff position has a multiplic-
ity greater than 1. Here we limit our discussion to Wyckoff
positions with multiplicity 2, which implies that there are two
inequivalent atoms per unit cell. An attractive U on these
sites stabilizes a local spin-singlet Cooper pair. Since there
are two sites per unit cell, this implies that there are two stable
superconducting degrees of freedom per unit cell. These two
superconducting states can be constructed by setting the phase
of the Cooper pair wave function on each site to be the same
or opposite. Since only local interactions are included, both
of these states will have the same pairing interaction. The in-
phase state is a usual s-wave τ0ψk state. Identifying the other,
out-of-phase, superconducting state requires an understanding
of the relationship between the basis states for the kp Hamilto-
nians and orbitals located at the Wyckoff positions. In general,
this will depend on the specific orbitals included in the the-
ory. However, the condition that the resultant pairing states
must be spin-singlet and local in space (hence momentum-
independent) allows only two possibilities for this additional
pairing state: it is either a τ1ψk or a τ3ψk pairing state. Of these
states, for two reasons, the τ3ψk state for type-1 Hamiltonians
is of particular interest. The first reason is that this state is
odd-parity and therefore offers a route towards topological
superconductivity [57,58]. The second reason is that of the
four possible states (τ1ψk or τ3ψk for type-1 or type-2 Hamil-
tonians), this is the only state that is fully fit on the nodal plane
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(as can be seen in Table III, the other three states have zero gap
projection on the nodal plane). This implies that for type-1
Hamiltonians, the odd-parity τ3ψk and the s-wave τ0ψk states
can have comparable Tc since they both have the same pairing
interaction. In practice, the τ3ψk state will have a lower Tc than
the τ0ψk state since it will not be fully fit away from the nodal
plane. Table III reveals that this projection is given by the ra-
tio |λk|2/(t2

1,k + t2
2,k + |λk|2). For classes Dtype1

2h,1 , Dtype1
4h,1 , Dtype1

4h,3 ,

and Dtype1
4h,5 , this ratio is nearly 1 since the SOC terms are the

largest in the kp Hamiltonian. This suggests that these classes
offer a promising route toward stabilizing odd-parity super-
conductivity. We stress that because |λk|2/(t2

1,k + t2
2,k + |λk|2)

is slightly less than 1, the Tc of the odd-parity τ3ψk will
be comparable but less than that of the usual s-wave state.
However, as we discuss later, the τ3ψk state can be stabilized
over the usual s-wave τ0ψk state in an applied field. The
identification of classes Dtype1

2h,1 , Dtype1
4h,1 , Dtype1

4h,3 , and Dtype1
4h,5 that

maximize the Tc of odd-parity pairing from electron-phonon
interactions allows the earlier theory for a field-induced even-
to odd-parity transition CeRh2As2 [9] (with space group 129)
to be generalized to many other space groups.

While the above odd-parity state is only relevant for type-1
Hamiltonians, for type-2 Hamiltonians the usual s-wave in-
teraction can develop a novel structure. In particular, for the
classes Ctype2

2h,2 and Dtype2
2h,4 , Table II shows that the state τ2σy is

maximally fit and has s-wave symmetry. Consequently, this
state will admix with the usual s-wave τ0ψ state. The theory
describing this admixture formally resembles that of a Hund
pairing mechanism proposed to explain the appearance of
nodes in the likely s-wave superconductor KFe2As2 [59]. The
results of this analysis and a follow-up analysis [60] allow
some of the properties of this state to be understood. An
important conclusion of these works is that an s-wave super-
conducting state can emerge even when pairing for the usual
s-wave state is repulsive (that is, for the Hubbard U > 0).
This holds if two conditions are met: the effective interaction
for the τ2σy state is attractive (to a first approximation, this
effective interaction does not depend upon U [59,60]), and the
two bands that emerge in the kp theory both cross the chemical
potential. This s-wave pairing state naturally leads to nodes.

V. ROLE OF MAGNETIC FIELDS

The role of anomalous pseudospin is perhaps most unusual
in response to magnetic fields. In many superconductors, there
has been a push to drive up the magnetic field at which these
are operational. Ising superconductors are one class of mate-
rials for which this has been successful. The in-plane critical
field far surpasses the Pauli field, opening the door to appli-
cations [61]. Another relevant example is the field-induced
transition from an even-parity to an odd-parity state observed
in CeRh2As2 [7,8].

Recently, a powerful method to examine the response of
superconductors to time-reversal symmetry-breaking fields
has been developed by the projection onto the band basis [51].
The form of the kp theories we have developed allows for
the direct application of this projection method. The response
of superconductivity to time-reversal symmetry breaking is
described by a time-reversal symmetry-breaking interaction

Hh(k). A common form of TRSB Hamiltonian, and the one we
emphasize here, is the Zeeman field interaction term, which is
represented by

Hh(k) = τ0(h · σ ), (10)

where h is a magnetic field parameter in the system. We
note that our qualitative results apply to a broader range of
TRSB Hamiltonians. In particular, this is true if the TRSB
field shares the same symmetry properties as a Zeeman field
[for example, if Hh(k) describes the coupling between orbital
angular momentum and an applied field].

The theory introduces two parameters that quantify the
response of superconductivity to time-reversal symmetry-
breaking. The first parameter is an effective g-factor given by

g̃2
±,k,h = 2Tr[|{Hδ, Hh}|2P±]

Tr[|Hδ|2]Tr[|Hh|2]
. (11)

The second parameter is the field fitness, given by

F̃±,k,h = Tr[|{{Hδ, 
̃}, {Hδ, Hh}}|2P±]

2Tr[|{Hδ, Hh}|2P±]Tr[|{Hδ, 
̃}|2P±]
. (12)

This field-fitness function ranges in value from 0 to 1. When
the field fitness is 0, the superconducting state is not sup-
pressed by the time-reversal symmetry-breaking perturbation.
With these two parameters, the response of superconductivity
to applied fields and the temperature dependence of magnetic
susceptibility in the superconducting state can be determined.
With the choice of the time-reversal symmetry-breaking field
as the Zeeman field, Eq. (10), one finds

g̃2
±,k,h = t2

1,k + t2
α,k + (λk · ĥ)2

t2
1,k + t2

α,k + λ2
k

, (13)

where α is a type index that is 2 for type 1 and 3 for type 2.
This agrees with results in [62] derived for Hamiltonians that
resemble type-1 Hamiltonians. We note that the band index ±
and the magnitude of field h in the field fitness and the g-factor
do not change the outcome, thus they will be omitted in the
subsequent sections and they will be denoted by F̃ 2

k,ĥ
and g̃2

k,ĥ
.

A. Even-parity superconductors

It can be shown that the field-fitness parameter in Eq. (12)
is 1 for all even-parity states. Consequently, the magnetic
response is governed solely by the generalized g-factor given
in Eq. (13). For momenta on the nodal plane, where t1,k =
tα,k = λk × n̂ = 0, the g-factor vanishes for magnetic fields
orthogonal to n̂. This is a direct consequence of the anomalous
pseudospin, since the symmetries of the Pauli matrices formed
from anomalous pseudospin do not allow any coupling to a
Zeeman field perpendicular to n̂. An immediate consequence
is that superconductivity survives to much stronger fields than
expected for these field orientations. However, momenta that
do not sit on the nodal plane also contribute to the super-
conducting state, and their contribution needs to be included
as well. To quantify this, we solve for the Pauli limiting
field within weak-coupling theory at zero temperature. For an
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isotropic s-wave superconductor, we find

ln
hP,ĥ

h0
= −〈ln |g̃k,ĥ|〉k (14)

for field along direction ĥ, where h0 is the usual Pauli limiting
field (found when the SOC is ignored), and 〈·〉k means an av-
erage over the Fermi surface weighted by the density of states.
Below, we apply this formula to BiS2-based superconductors.
We note that the spin susceptibility in the superconducting
state can also be expressed using g̃k,ĥ as well [51], and this
shows that a nonzero spin susceptibility is predicted at zero
temperature whenever the critical field surpasses h0.

1. Enhanced in-plane field Pauli for BiS2-based superconductors

Here we turn to recent experimental results on BiS2-based
superconductors [28,63]. This material has the tetragonal
space group 129 (P4/nmm) and it exhibits two electron pock-
ets about the two equivalent X points [64,65]. When S is
replaced with Se, it has been observed that the in-plane upper
critical field surpasses the usual Pauli limiting field by a factor
of 7 [63]. While it has been suggested that the local noncen-
trosymmetric structure is the source of this large critical field
[63], there has been no quantitative calculation for this. Here
we apply Eq. (14) to the kp theory at the X point to see if
it is possible to account for this large critical field. The X
point in space group 129 belongs to class Dtype1

2h,3 . For BiS2,
the dispersion is known to be strongly two-dimensional (2D)
[28,64], so we consider the kp theory in the 2D limit. This kp
theory is

HBiS2 = h̄2

2m

(
k2

x + γ 2k2
y

) − μ+ t2kyτ2 + λxkyτ3σx + λykxτ3σy.

(15)
Assuming s-wave superconductivity and accounting for the
two equivalent pockets yields

hP,x̂ = h0

√
t2
2 + λ2

x + |γ λy|√|t2| + |γ λy|
(
t2
2 + λ2

x

)1/4 , (16)

where h0 is the usual Pauli limiting field. For simplicity, we
consider γ = 1 in the following. Equation (16) reveals that a
large enhancement of the limiting field is possible and requires
two conditions. The first is that t2 � λx, λy, and the second is
that there is substantial anisotropy in λx and λy. To understand
if these conditions are reasonable, we have carried out density-
functional theory (DFT) calculations on LaO1/2F1/2BiS2 with
and without SOC. DFT calculations for LaO1/2F1/2BiS2 were
carried out by the full-potential linearized augmented-plane-
wave method [66]. For the self-consistent-field calculation,
we employed (i) the Perdew-Burke-Ernzerhof form of the
exchange correlation functional [67], wave function, and po-
tential energy cutoffs of 14 and 200 Ry, respectively; (ii)
muffin-tin sphere radii of 1.15, 1.2, 1.3, and 1.0 Å for Bi, S,
La, and O atoms, respectively; (iii) the experimental lattice
parameters [68]; and (iv) a 15 × 15 × 5 k-point mesh. The
virtual crystal approximation was used by setting the nuclear
charge Z = 8.5 at O (F) sites. The resultant bands are shown
in Fig. 2. Without SOC, the band splitting along � to X yields
an estimate for t2. When SOC is present, the band splitting
along X to M yields λy, and the band splitting along � to X
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FIG. 2. DFT bands of BiS2 near the X point (a) without and
(b) with the SOC. The bands highlighted in the box are our focus.

yields
√

λ2
x + t2

2 . The DFT calculated splittings suggest that
λx is the largest parameter by a factor of 3–4, while t2 and λy

are comparable. This suggests that the conditions to achieve a
large critical field are realistic in BiS2-based superconductors.
Note that the largest observed Pauli fields are found when
the S is substituted by Se [63]. Se has a larger SOC than S,
suggesting that the λi parameters will be increased from what
we estimate here. This is currently under exploration.

It is worthwhile contrasting the above theory with that for
Fe-based materials in which electron pockets exist near the
M point of space group 129. The M point is described by
class Dtype1

4h,1 . In this case, an analysis similar to BiS2 gives an

enhancement of only
√

2 of the Pauli field for in-plane fields.
For c-axis fields, this class implies a significantly enhanced
Pauli limiting field. These results are consistent with experi-
mental fits to upper critical fields in Fe-based superconductors
that reveal that the upper critical field for in-plane fields is
Pauli-suppressed while that for the field along the c-axis is not
[69]. The contrast between Fe-based materials and BiS2-based
materials highlights the importance of the different classes. In
particular, the lower orthorhombic symmetry of the X point
allows protection for in-plane fields not afforded to the M
point, where the theory is strongly constrained by tetragonal
symmetry.

2. Pair density wave states

In BCS theory, a spin-singlet superconductor is suppressed
by the Zeeman effect. Under a sufficiently strong magnetic
field, the pairing susceptibility can be peaked at nonzero
Cooper pair momenta, leading to a pair density wave or FFLO
state [70–72]. A schematic phase diagram for a centrosym-
metric system is shown in the left panel of Fig. 3. The typically
first-order phase transition (double solid line) between the
uniform and FFLO state ends at a bicritical point (Tb, Hb), i.e.,
the FFLO state only exists for T < Tb. A weak-coupling cal-
culation reveals that for the usual FFLO phase, Tb/Tc = 0.56.

It is known that for locally noncentrosymmetric supercon-
ductors, FFLO-like phases can appear at lower fields Hb and
higher temperatures Tb than the usual FFLO-like instability
[5]. This is closely linked to the symmetry-required insta-
bility to a pair density wave state for noncentrosymmetric
superconductors when a field is applied [2]. For a noncen-
trosymmetric system under magnetic field, both inversion and
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FIG. 3. Schematic phase diagram for a spin-singlet superconduc-
tor under the Zeeman effect. Single solid lines denote continuous
phase transitions, while double solid lines denote first-order phase
transitions.

time-reversal symmetry are broken. As a result, the pairing
susceptibility is generically peaked at nonzero momentum and
Tb = Tc. For locally noncentrosymmetric superconductors, in-
version symmetry is locally broken on each sublattice. In an
extreme case, if the two sublattices are decoupled, then the
system effectively becomes noncentrosymmetric, and under a
small magnetic field, an FFLO state can exist right below the
zero-field superconducting Tc. However, these sublattices are
generically coupled so that Tb = Tc is not realized in practice.
Here we show that for type-1 Hamiltonians, FFLO-like states
can in principle exist up to Tb = Tc.

To show this, we consider the 2D version of class Dtype1
4h,1

and use the pairing susceptibility to calculate Tb and Hb. In
2D, class Dtype1

4h,1 has the following normal state Hamiltonian:

HD4h,1 = h̄2

2m

(
k2

x + k2
y

) − μ + t1kxkyτ1 + λxτ3(kyσx + kxσy)

+ Hxσx. (17)

λx denotes the strength of the local inversion symmetry
breaking (local Rashba SOC), while t1 is the intersublattice
coupling. The pairing susceptibility for an s-wave state with

gap function τ0ψk is

χpairing(Q) = − 1

β

∑
ωn

∑
(p,p+Q)∈FS

Tr[G0(Q + p, ωn)G0(p, ωn)],

(18)

where G0 is the normal state Green’s function written in
Nambu space. The FFLO state is favored if the pairing
susceptibility is peaked at nonzero Q. We examine the posi-
tion of the bicritical point (Tb, Hb) as a function of λx/(t1kF ).
We use the following two equations to locate the bicritical
point: (i) The bicritical point lies on the BCS transition for
the uniform superconductivity. (ii) The bicritical point is a
continuous phase transition between uniform and FFLO su-
perconductivity, where ∇2

Qχpairing(Q) = 0. The result is shown
in Fig. 4. 1000 × 1000 points are sampled in the 2D Brillouin
zone. Other parameters are t1 = 0.2, t = μ = 1. An energy
cutoff of Ec = 0.1 is applied to determine the position of the
Fermi surface.

These results show that for zero λx/kFt1, a usual FFLO
phase is found (that is, Tb/Tc ≈ 0.56). As the SOC λx in-
creases, or equivalently as kF decreases, Tb increases and
approaches the zero-field critical temperature. In the mean-
time, Hb decreases monotonically.

We have shown that the FFLO phase can exist up to Tb = Tc

for a 2D version of class Dtype1
4h,1 . The key is that SOC is the

leading-order term in the kp theory, and this is also the case for
other type-1 Hamiltonians. Hence the optimal conditions for
an enhanced FFLO phase to occur are when fields are applied
in-plane (perpendicular to the c-axis) for classes Dtype1

2h,1 , Dtype1
4h,1 ,

Dtype1
4h,3 , and Dtype1

4h,5 .

B. Odd-parity superconductors

For odd-parity superconductors, the field fitness parameter
F̃k,ĥ can become less than 1 [51]. Of particular interest is
when F̃k,ĥ = 0 since this implies that Tc is unchanged by the
time-reversal symmetry-breaking field (this is independent of
the effective g-factor) [51]. For anomalous pseudospin, this
possibility leads to two consequences not expected for spin-
triplet states made from usual spin-1/2 fermions. The first is
a field-induced transition from an even- to an odd-parity state.
The second is that, in spite of the presence of strong SOC,
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FIG. 4. The position of the bicritical point (Tb, Hb) as a function of λx/kF t1.
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the superconducting state is immune to magnetic fields for all
field orientations. We discuss these each in turn.

1. Field-induced even- to odd-parity transitions

In CeRh2As2, a field-induced even- to odd-parity transition
has been observed for the field oriented along the c-axis in this
tetragonal material [7,8]. Earlier, we argued that this was due
to the anomalous pseudospin that arises on the Brillouin zone
faces in the nonsymmorphic space group P4/nmm [9]. Here
we show how this can be generalized to other space groups
that admit type-1 kp theories and determine which classes
are optimal for observing such a transition. As discussed in
Sec. IV C, an attractive electron-phonon-like interaction gives
rise to both a usual s-wave τ0ψk state and an odd-parity τ3ψk

state. These two states have the same pairing interaction, but
the gap projected onto the band basis is generally smaller for
the τ3ψk state than for the τ0ψk state, implying that the τ0ψk

state has the higher Tc. For the type-1 classes Dtype1
2h,1 , Dtype1

4h,1 ,

Dtype1
4h,3 , and Dtype1

4h,5 , anomalous pseudospin leads to T ′
c s that are

nearly the same for the even-parity τ0ψ and odd-parity τ3ψ

states. These classes are therefore promising for observing a
field-induced transition from an even-parity to an odd-parity
state.

To determine if a such a field-induced transition occurs, we
compute F̃k,ĥ for a pairing state 
̃ = τ3. We find for type-1 kp
theories

F̃k,ĥ = (ĥ · λk)2
(
t2
1,k + t2

2,k + |λk|2
)

|λk|2[ĥ
2(

t2
1,k + t2

2,k

) + (ĥ · λk)2]
. (19)

Notice that if ĥ · λk = 0, then F̃k,ĥ = 0, which maximizes Tc.
To determine the field orientations for which F̃k,ĥ = 0, we
examine the form of λk in the type-1 classes discussed above.
In all these classes, the λz,k component appears with a higher
power of momenta than the other components. Consequently,
the field should be applied along the ẑ direction. As an ex-
ample, consider the class Dtype1

4h,3 . Here λz,k ∝ kxkykz(k2
x − k2

y )
while λx,k ∝ ky and λy,k ∝ ky. In this case, λk will be in-plane
to an excellent approximation, and an even- to odd-parity
transition can be expected for the field along the c-axis. Con-
sequently, classes Dtype1

2h,1 , Dtype1
4h,1 , Dtype1

4h,3 , and Dtype1
4h,5 , and hence

space groups 56, 58, 59, 62, 128, 129, 130, 136, 137, and 138,
are promising for realizing a field-induced even- to odd-parity
transition.

2. Field immune odd-parity superconductivity

For a conventional spin-triplet superconductor (with 
 =
dk · σ) formed from usual spin-1/2 pseudospin, SOC typically
pins the direction of the vector dk. If the applied field is
perpendicular to dk, that is, if dk · ĥ = 0, then the Tc for this
field orientation is unchanged [73–75]. Since there exists at
least one field direction for which dk · ĥ = 0, it is not expected
that usual spin-triplet superconductors are immune to fields
applied in all directions. For anomalous pseudospin, this is
not the case. It is possible for an odd-parity state to be robust
against suppression for arbitrarily oriented magnetic fields. To
show how this is possible, we calculate F̃k,ĥ for 
 = τ0(dk · σ )

for type-1 kp theories, which yields

F̃k,ĥ =
[(

t2
1,k + t2

2,k

)
dk · ĥ + (dk · λk )(λk · ĥ)

]2

[(
t2
1,k + t2

2,k

)
ĥ

2 + (λk · ĥ)2
][(

t2
1,k + t2

2,k

)
|dk|2 + (dk · λk )2]

. (20)

We first note that near the nodal plane, the effective g-factor
is small for in-plane fields n̂ · h = 0, so that for these field
orientations superconductivity is not strongly suppressed (this
is true for both even- and odd-parity superconducting states).
Hence, to show that an odd-parity state survives for all field
orientations, we need to show that F̃k,ĥ ≈ 0 for a field applied

along the nodal plane normal where λk · ĥ becomes maximal.
Near the plane we expect that λk · ĥ �

√
t2
1,k + t2

2,k. Also,
(t2

1,k + t2
2,k) is small compared to λ2

k, so F̃k,ĥ is dominated by
the dk · λk term in the numerator. Hence if the denominator√

t2
1,k + t2

2,k|dk| is much bigger than dk · λk, then F̃k,ĥ ≈ 0.

Given that λk · n̂ is the largest SOC component, this require-
ment is equivalent to λ⊥ � t1,2 and dk ⊥ n̂ (where λ⊥ is the
magnitude of the SOC perpendicular to n̂).

As a relevant example of the above mechanism, we con-
sider UPt3 [30]. The superconducting state in UPt3 is believed
to be an E2u state, with order parameter 
 = ηp(σxky +
σykx ) + η f σzkzkxky (we only include one component of this
two-component order parameter since similar arguments hold
for the second component). In general, since the p-wave and
f -wave components have the same symmetry, both ηp and η f

are nonzero. However, theories based on the usual pseudospin
typically require ηp = 0 due to the experimental observations
discussed below [22,76,77]. Below we further show that ηp =
0 is not required for these experimental observations when
anomalous pseudospin is considered. Indeed, these experi-
ments are consistent with η f = 0 and ηp = 0 if pairing occurs
predominantly near the nodal plane kz = π/c.

Thermal conductivity experiments suggest the existence of
line nodes [30]. For usual pseudospin, the state σxky + σykx is
either fully gapped or has only point nodes. This is one reason
to expect that ηp = 0. However, as illustrated in Table II, line
nodes are expected for this state on the kz = π/c plane (note
that this conclusion also follows from Refs. [23,24,26]). This
is relevant for UPt3 since it is known to have the “starfish”
Fermi surface near this nodal plane [30], which belongs to
class Dtype1

6h .
In terms of paramagnetic suppression, the superconducting

state is known to be more robust under B ⊥ ẑ compared to
B ‖ ẑ [77]. For the usual pseudospin, this requires dk ‖ ẑ, and
thus ηp = 0. However, on the “starfish” Fermi surface, the
small g-factor for B ⊥ ẑ can serve to protect the p-wave state
against paramagnetic suppression. As discussed above, the
suppression from B ‖ ẑ depends on the ratio λx,y/t1,2, while
the g-factor for B ⊥ ẑ depends on the ratio (t1,2, λx,y)/λz.
The requirement λx,y/t1,2 > (t1,2, λx,y)/λz is thus sufficient to
match the observations on the upper critical fields. If both
ratios are much smaller than 1, the p-wave state is immune
to paramagnetic suppression for a field along arbitrary direc-
tions. This could be relevant to the approximately unchanged
Knight shift in the superconducting state [78]. We note that
the use of F̃k,ĥ to determine the magnetic response relies on
the validity of projection to a single band. However, for class
Dtype1

6h , band degeneracies exist along three Dirac lines for
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TABLE IV. Spin alignment of eightfold-degenerate TRIM.

Spin alignment Space group momenta

σx 54(U1U2), 54(R1R2), 56(U1U2), 60(R1R2), 61(S1S2), 62(S1S2), 205(M1M2)

σy 52(S1S2), 56(T1T2), 57(T1T2), 57(R1R2), 61(T1T2), 130(R1R2), 138(R1R2)

σz 60(T1T2), 60(U1U2 ), 61(U1U2), 62(R1R2), 128(A3A4), 137(A3A4), 176(A2A3), 193(A3), 194(A3)

which this projection is not valid. In Appendix B, we include a
detailed numerical calculation that includes interband effects.

VI. EIGHTFOLD-DEGENERATE POINTS: APPLICATION
TO UCoGe

The arguments presented above relied on the fourfold de-
generacy at TRIM points when SOC is not present. However,
some of these TRIM points have an eightfold degeneracy
without SOC. It is reasonable to ask if the conclusions found
for kp theories of fourfold-degenerate points discussed above
survive to eightfold-degenerate points. To address this, we
have determined the symmetries of all orbital operators in
Appendix C. We find that in most cases, the eightfold de-
generacy at these TRIM is split by a single SOC term of the
form Oσi, where O is a momentum-independent 4 × 4 orbital
matrix. In Table IV, we give the direction of the spin com-
ponent σi that appears in this SOC term at the TRIM point.
The existence of this single SOC term ensures small effec-
tive g-factors for fields perpendicular to the spin-component
direction. Consequently, the conclusions associated with the
effective g-factor anisotropy discussed in Sec. V still hold for
these eightfold-degenerate points. We note that the eightfold
degeneracy at the A point of space groups 130 and 135 is not
split by SOC, and these points provide examples of double
Dirac points examined in [79,80].

One material for which these eightfold-degenerate points
are likely to be relevant is the ferromagnetic superconductor
UCoGe, which crystalizes in space group 62 (Pnma) [31].
UCoGe is believed to be a possibly topological odd-parity
superconductor [21,31]. Our Fermi surface (given in Fig. 5)
reveals that all Fermi surface sheets lie near nodal planes with
anomalous pseudospin and further reveal tube-shaped pockets
that enclose the zone-boundary S point and stretch along the

FIG. 5. DFT Fermi surface of UCoGe.

S-R axis. Here we focus on these Fermi surfaces. This fea-
ture agrees reasonably well with previous works [21,81,82]
using the local density approximation, and the existence of
these tube-shaped Fermi surfaces is consistent with quan-
tum oscillation measurements [83]. Here density-functional
theory calculations for UCoGe were carried out using the
full-potential linearized augmented-plane-wave method [66].
The Perdew-Burke-Ernzerhof form of exchange correlation
functional [67], wave-function and potential-energy cutoffs of
16 and 200 Ry, respectively, muffin-tin sphere radii of 1.4 Å
for U and 1.2 Å for Co and Ge, respectively, the experimental
lattice parameters [84], and an 8 × 12 × 8 k-point mesh were
employed for the self-consistent-field calculation. Spin orbit
was fully taken into account in the assumed nonmagnetic
state. The Fermi surface was determined on a dense 30 ×
50 × 30 k-point mesh and visualized by using FERMISURFER

[85].
Both the R and S points are eightfold-degenerate TRIM

when SOC is not included for space group 62. Interestingly,
from Table IV, the effective g-factors for fields along the ŷ
and ẑ directions are zero at the S-point and zero for fields
along the x̂ and ŷ directions at the R-point. This indicates
that superconductivity (both even- and odd-parity) on the
tube-shaped Fermi surfaces will be robust against magnetic
fields applied along the ŷ direction. This is the field direction
for which the upper critical field is observed to be the
highest and for which an unusual S-shaped critical field
curve appears [31]. We leave a detailed examination of the
consequences of anomalous pseudospin in space group 62 on
superconductivity to a later work.

VII. CONCLUSIONS

Nonsymmorphic symmetries allow the existence of nodal
planes at Brillouin zone edges when no SOC is present.
When SOC is added, the pseudospin on these nodal planes
has different symmetry properties from usual pseudospin-1/2.
Here we have classified all space groups and effective single-
particle theories near TRIM points on these nodal planes,
and we examined the consequences of this anomalous pseu-
dospin on the superconducting state. We have shown how
this enhances the Tc for odd-parity superconducting states
due to attractive interactions, leads to unexpected supercon-
ducting nodal properties, allows large Pauli limiting fields
and pair density wave states for spin-singlet superconductors,
and gives rise to field-immune odd-parity superconductivity
and field-driven even- to odd-parity superconducting tran-
sitions. Some of these properties have also been predicted
for locally noncentrosymmetric superconductors, however
anomalous pseudospin applies even when the crystal site sym-
metry contains inversion symmetry. This greatly extends the
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number of materials that can exhibit this superconducting
response. While we have emphasized nodal planes on which
anomalous pseudospin exists, there are also materials for
which anomalous pseudospin develops on nodal lines and not
on nodal planes. Some such materials also exhibit unusual re-
sponse to magnetic fields [86–88], suggesting a broader range
of applicability for anomalous pseudospin superconductivity.
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APPENDIX A: FULL EXCITATION SPECTRUM ON THE NODAL PLANE

On the nodal plane, the Bogoliubov–de Gennes Hamiltonian takes the form

H =
∑

k

�†
k

(
ε0,k + τ3(λk · n̂)(σ · n̂) 
k



†
k −ε0,k − τ3(λk · n̂)(σ · n̂)

)
�k. (A1)

It is possible to classify the gap symmetry as even or odd under both inversion and mirror symmetries. For momenta on the nodal
surface, we have

U †
P
kUP = ±
−k,

(A2)
U †

M
kUM = ±
k,

where for type 1 TRIM, UP = τ1 and UM = −iτ3σz, and for type 2 TRIM, UP = τ0 and UM = −iτ2σz. We label the gaps as

1(2),i, j , where i = ± labels the parity symmetry and j = ± labels the mirror symmetry. Here, for clarity, we drop the k labels
(note that k is unchanged by the mirror symmetry). For the type 1 TRIM, we write the gap functions in terms of the complete
set of gap functions with the correct symmetries given in Table III as


1,++ = ψ0τ0 + (dz · n̂)(σ · n̂)τ3,


1,+− = ψxτ1 + (dz × n̂) · (σ × n̂)τ3 + dyτ2,


1,−+ = (d0 · n̂)(σ · n̂)τ0 + (dx × n̂) · (σ × n̂)τ1 + ψzτ3 + (ψ × n̂) · (σ × n̂)τ2,


1,−− = (d0 × n̂) · (σ × n̂)τ0 + (dx · n̂)(σ · n̂)τ1 + (ψ · n̂)(σ · n̂)τ2, (A3)

where di are odd functions of k, and ψi are even functions of k. Using Eq. (A1), the corresponding quasiparticle excitation
energies can be found to be

E1,++ = ±′√(ε0 ± λ · n̂)2 + (ψ0 ± dz · n̂)2,

E1,+− = ±′
(√

ε2
0 + ψ2

x + (dz × n̂)2 + d2
y ± λ · n̂

)
,

E1,−+ = ±′√(ε0 ± λ · n̂)2 + (ψz ± d0 · n̂)2 + (dx × n̂)2 + (ψ × n̂)2 ± 2(dx × ψ) · n̂,

E1,−− = ±′
(√

ε2
0 + (d0 × n̂)2 + (dx · n̂)2 + (ψ · n̂)2 ± λ · n̂

)
, (A4)

where the prime denotes independent choices of the sign. For type-2 TRIM, we similarly have


2,++ = ψ0τ0 + (ψ · n̂)(σ · n̂)τ2,


2,+− = ψxτ1 + ψzτ3 + (ψ × n̂) · (σ × n̂)τ2,


2,−+ = (d0 · n̂)(σ · n̂)τ0 + (dx × n̂) · (σ × n̂)τ1 + (dz × n̂) · (σ × n̂)τ3 + dyτ2,


2,−− = (d0 × n̂) · (σ × n̂)τ0 + (dx · n̂)(σ · n̂)τ1 + (dz · n̂)(σ · n̂)τ3. (A5)

The quasiparticle excitation spectra for these states are

E2,++ = ±′√(ε0 ± λ · n̂)2 + (ψ0 ± ψ · n̂)2,

E2,+− = ±′
(√

ε2
0 + ψ2

x + ψ2
z + (ψ × n̂)2 ± λ · n̂

)
,

E2,−+ = ±′
√

(ε0 ± λ · n̂)2 + (dy ± d0 · n̂)2 + (dx × n̂)2 + (dz × n̂)2 ± 2(dx × dz ) · n̂,

E2,−− = ±′
(√

ε2
0 + (d0 × n̂)2 + (dx · n̂)2 + (dz · n̂)2 ± λ · n̂

)
. (A6)
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APPENDIX B: MAGNETIC SUSCEPTIBILITY UPT3

In the main text, we illustrated how the p-wave state in
UPt3 is immune to the magnetic field along arbitrary direc-
tions. An important step is to consider the small g-factor for
field B ⊥ ẑ. However, the discussion is not complete. In the
normal state, there exist fourfold-degenerate Dirac lines on
the plane kz = π/c, where the g-factor is not small. In terms
of the field fitness, Eq. (20) in the main text only considered
doubly degenerate bands. In principle, extra terms in the field
fitness are needed to describe these Dirac lines. However,
the Fermi surface is not right on the nodal plane. This can
make the Dirac lines unimportant. In this Appendix, we will
explicitly check the field response in the superconducting state
through a numerical calculation on a tight-binding model for
UPt3.

In the following calculations, we will focus on the Knight
shift (spin-susceptibility). Knight shift measures spin polar-
ization at atom sites. By extracting spin susceptibility χs, one
can determine pairing functions of an unconventional super-
conductor. For a single-band spin-triplet superconductor, the
change of Knight shift depends on the orientation of magnetic
field with respect to the d-vector of the superconducting state.
If the magnetic field is perpendicular to the d-vector, the
Knight shift should be a constant across superconducting Tc.

If the magnetic field is parallel to the d-vector, the Knight
shift will decrease to zero as temperature approaches zero. For
the multiband nonsymmorphic superconductor UPt3, Knight
shift is almost unchanged for all field orientations, suggesting
the importance of spin-orbit coupling in this heavy fermion
material.

One of the Fermi surfaces (“starfish”) of UPt3 is flat and lo-
cated near the high-symmetry plane kz = π/c. Zeeman terms
Bxσx and Byσy then becomes interband. From nondegenerate
perturbation theory, spin susceptibilities are inversely propor-
tional to the band gap. This is different from the intraband
Zeeman effect, where susceptibilities are proportional to the
density of states on the Fermi surface, according to degenerate
perturbation theory.

Since the superconducting gap is much smaller than the
band gap, interband susceptibilities will be unchanged across
Tc. If the superconductivity is mainly developed on the above
flat Fermi surface, then the Knight shift is expected to be
unchanged for in-plane magnetic fields, regardless of the su-
perconducting pairing symmetry. If the d-vector is in-plane,
then the Knight shift will also be unchanged for a perpen-
dicular magnetic field. In this Appendix, we will explicitly
illustrate this idea to understand the experimental results on
UPt3.

The 4 × 4 normal state Hamiltonian reads [22]

H = ε(k) + gz(k)σzτ3 + a1(k)τ1 + a2(k)τ2 + [gx(k)σx + gy(k)σy]τ3,

εk = 2t
∑

i=1,2,3

cos k‖ · ei + 2t3 cos kz − μ, gz(k) = gz0

∑
i

sin k‖ · ei,

a1(k) = 2t ′ sin
kz

2

∑
i=1,2,3

sin k‖ · ri, a2(k) = 2t ′ sin
kz

2

∑
i=1,2,3

cos k‖ · ri,

gx(k) = gx0
(

f 2
x − f 2

y

)
sin kz, gy(k) = gy0 fx fy sin kz,

fx ≡ sin k‖ · e1 − sin k‖ · e2 + sin k‖ · e3

2
, fy ≡

√
3 sin k‖ · e2 − sin k‖ · e3. (B1)

Here (kx, ky, kz ) are relative to the high-symmetry point
(0, 0, π ). Relevant vectors ei and ri can be found in Fig. 6.
τi matrices live in the sublattice space. On the high-symmetry
plane kz = 0, the intersublattice hopping a1,2 and the spin-flip

FIG. 6. Crystal structure of UPt3 with the unit vector e1 =
(1, 0, 0).

SOC gx,y vanish. |k, m = 1,↑〉 and |k, m = 2,↓〉 states form
a pseudospin band, while |k, m = 2,↑〉 and |k, m = 1,↓〉
states form another band.

We now study spin susceptibilities. We will focus on a
p-wave state in the E2u channel. Its d-vector is in-plane: d =

(T )( fx,− fy, 0). fx and fy are introduced in Eq. (B1), and
they transform as kx and ky. The gap magnitude is taken to be

(T ) = 
0

√
1 − T/Tc. t = 1, t3 = −4, gz0 = 2, μ = 12,

and 
0 = Tc = 0.001 is taken in the calculation.
To illustrate the effect of the anomalous pseudospin, we

start with a toy model with zero intersublattice hopping and
spin-flip SOC: t ′ = gx0 = gy0. The corresponding four terms
vanish in the normal state Hamiltonian: a1 = a2 = gx = gy =
0. In this extreme case, the spin susceptibilities are unchanged
across Tc, as shown in the left panel of Fig. 7.

We now turn on the spin-flip SOC (gx0 and gy0) while
keeping the intersublattice hopping t ′ to be zero. hxσx de-
velops an intraband component, which will be suppressed
in the superconducting state. As a result, the total χx deep
in the superconducting state starts to decrease as a function
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FIG. 7. Spin susceptibilities as a function of temperature, for (left) a1 = a2 = gx = gy = 0, which would be the case if the Fermi surface
lay exactly on the high-symmetry plane, (middle) nonzero spin-flip SOC but zero intersublattice hopping, and (right) nonzero intersublattice
hopping but zero spin-flip SOC.

of temperature. For χz, spin-flip SOC induces higher-order
terms in the E2u channel. The d-vector develops a nonzero
z-component in the band basis. This causes a decrease in χz.
The result for gx0 = gy0 can be found in the middle panel of

Fig. 7. The interband susceptibilities in the normal state are
indicated by dashed lines.

We now turn on the intersublattice hopping t ′, while keep-
ing the spin-flip SOC (gx0 and gy0) to be zero. A similar

TABLE V. Symmetries of orbital operators at the eightfold-degenerate points.

Space group momenta Point group D2h

52(S1S2) Ag + 2B1g + B2g + 2B3g + 2Au + B1u + B3u + [Ag] + [B2g] + [B1u] + 2[B2u] + [B3u]
54(U1U2) Ag + 2B1g + 2B2g + B3g + 2Au + B1u + B2u + [Ag] + [B3g] + [B1u] + [B2u] + 2[B3u]
54(R1R2) Ag + 2B1g + 2B2g + B3g + 2Au + B1u + B2u + [Ag] + [B3g] + [B1u] + [B2u] + 2[B3u]
56(U1U2) Ag + 2B1g + 2B2g + B3g + 2Au + B1u + B2u + [Ag] + [B3g] + [B1u] + [B2u] + 2[B3u]
56(T1T2) Ag + 2B1g + B2g + 2B3g + 2Au + B1u + B3u + [Ag] + [B2g] + [B1u] + 2[B2u] + [B3u]
57(T1T2) Ag + 2B1g + B2g + 2B3g + Au + B2u + 2B3u + [Ag] + [B2g] + [Au] + 2[B1u] + [B2u]
57(R1R2) Ag + 2B1g + B2g + 2B3g + Au + B2u + 2B3u + [Ag] + [B2g] + [Au] + 2[B1u] + [B2u]
60(R1R2) Ag + 2B1g + 2B2g + B3g + Au + 2B2u + B3u + [Ag] + [B3g] + [Au] + 2[B1u] + [B3u]
60(T1T2) Ag + B1g + 2B2g + 2B3g + 2Au + B2u + B3u + [Ag] + [B1g] + 2[B1u] + [B2u] + [B3u]
60(U1U2) Ag + B1g + 2B2g + 2B3g + Au + B1u + 2B2u + [Ag] + [B1g] + [Au] + [B1u] + 2[B3u]
61(R±

1 R±
2 ) Ag + 3B1g + 3B2g + 3B3g + 3[Ag] + [B1g] + [B2g] + [B3g]

61(S1S2) Ag + 2B1g + 2B2g + B3g + Au + 2B1u + B3u + [Ag] + [B3g] + [Au] + 2[B2u] + [B3u]
61(T1T2) Ag + 2B1g + B2g + 2B3g + Au + B2u + 2B3u + [Ag] + [B2g] + [Au] + 2[B1u] + [B2u]
61(U1U2) Ag + B1g + 2B2g + 2B3g + Au + B1u + 2B2u + [Ag] + [B1g] + [Au] + [B1u] + 2[B3u]
62(S1S2) Ag + 2B1g + 2B2g + B3g + Au + 2B1u + B3u + [Ag] + [B3g] + [Au] + 2[B2u] + [B3u]
62(R1R2) Ag + B1g + 2B2g + 2B3g + 2B1u + B2u + B3u + [Ag] + [B1g] + 2[Au] + [B2u] + [B3u]
130(R1R2) Ag + 2B1g + B2g + 2B3g + 2Au + B1u + B3u + [Ag] + [B2g] + [B1u] + 2[B2u] + [B3u]
138(R1R2) Ag + 2B1g + B2g + 2B3g + 2Au + B1u + B3u + [Ag] + [B2g] + [B1u] + 2[B2u] + [B3u]
205(M1M2) Ag + 2B1g + 2B2g + B3g + Au + 2B1u + B3u + [Ag] + [B3g] + [Au] + 2[B2u] + [B3u]

Space group momenta Point group D4h

128(A3A4), 137(A3A4) A1g + A2g + 2B1g + 2B2g + A1u + A2u + 2B2u + [A1g] + [A2g] + [A1u] + [A2u] + 2[B1u]
130(A1A2), 135(A1A2) A1g + 2A2g + B1g + 2B2g + A1u + B1u + 2B2u + [A1g] + [B1g] + [A1u] + 2[A2u] + [B1u]
130(A3A4), 135(A3A4) A1g + 2A2g + B1g + 2B2g + 2A1u + A2u + B2u + [A1g] + [B1g] + [A2u] + 2[B1u] + [B2u]

Space group momenta Point group C6h

176(A2A3) Ag + Bg + E1g + E2g + Au + Bu + E1u + [Ag] + [Bg] + [Au] + [Bu] + [E2u]

Space group momenta Point group D6h

193(A3) A1g + B2g + E1g + E2g + A1u + B1u + E1u + [A2g] + [B1g] + [A2u] + [B2u] + [E2u]
194(A3) A1g + B1g + E1g + E2g + A1u + B2u + E1u + [A2g] + [B2g] + [A2u] + [B1u] + [E2u]

Space group momenta Point group Th

205(R1R3) Ag + 3Tg + [Ag] + [Eg] + [Tg]
205(R2R2) Ag + 3Tg + 3[Ag] + [Tg]
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effect is expected for χx due to the intraband contribution.
For χz, since σz is a good quantum number, χz will be
unchanged. The result can be found in the right panel of
Fig. 7.

Experimentally, the superconducting state is known to be
more robust under B ‖ x̂ compared to B ‖ ẑ. In other words,
the decrease in χx needs to be smaller than χz. This scenario
is closer to the second limit.

APPENDIX C: EIGHTFOLD REPRESENTATIONS

In Table V we list the symmetries of all orbital operators
near the eightfold-degenerate points. The point group that
keeps the TRIM point invariant can be found in the title. The
bracket notation [·] is also used for antisymmetric operators,
which was τ2 in the main context, but in eightfold cases the
antisymmetric component is not unique due to the higher
degrees of freedom.
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