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Statistical mechanics for non-Hermitian quantum systems
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We present a systematic study of statistical mechanics for non-Hermitian quantum systems. Our work reveals
that the stability of a non-Hermitian system necessitates the existence of a single path-dependent conserved
quantity, which, in conjunction with the system’s Hamiltonian, dictates the equilibrium state. By elucidating the
relationship between the Hamiltonian and the supported conserved quantity, we propose criteria for discerning
equilibrium states with finite relaxation times. Although our findings indicate that only non-Hermitian systems
with real energy spectrum precisely possess such conserved quantities, we also demonstrate that an effective
conserved quantity can manifest in certain systems with complex energy spectra. The effective conserved
quantity, alongside the effective transitions within their associated subspace, collectively determines the system’s
equilibrium state. Our results provide valuable insights into non-Hermitian systems across more realistic contexts
and hold potential for applications in a diverse range of physical systems.
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I. INTRODUCTION

In recent years, non-Hermitian quantum systems have gar-
nered significant interest due to their unique and intriguing
properties. These systems exhibit a rich variety of phenomena,
including exceptional points (EPs) [1–3], non-Hermitian skin
effect [4–22], and the breakdown of bulk-boundary correspon-
dence [4–7,23]. Most of the research focus has been on the
ground state properties of these systems. However, in realistic
scenarios, these systems are inevitably coupled with envi-
ronment, leading to a noncoherent superposition of excited
and ground states. Such situations are generally treated using
statistical mechanics. To develop a more comprehensive un-
derstanding of non-Hermitian quantum states, it is essential to
consider the statistical mechanics of non-Hermitian systems.

In the context of statistical mechanics, conserved quantities
play a pivotal role in determining the equilibrium properties of
a system. The probability of a system’s microstate occurring is
determined by the associated conserved quantity (typically en-
ergy). The vast majority of research involving non-Hermitian
quantum systems at finite temperatures has treated the sta-
tistical mechanics of non-Hermitian quantum systems as a
direct extension of Hermitian quantum systems—the equi-
librium state density matrix is determined by the system’s
Hamiltonian, which encodes the energy of each state [24–33].
However, non-Hermitian quantum systems, as a distinct class
of open systems, do not adhere to strict energy conservation
despite having a time-translation invariant Hamiltonian. This
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deviation from Hermitian systems implies that the original
statistical mechanics framework may no longer be applicable
to non-Hermitian systems. In fact, the lack of strict energy
conservation may even render the existence of a stable state
questionable [34–36].

In this paper, we conduct a systematic study of quantum
non-Hermitian systems coupled to thermal bath, investigating
their thermodynamic properties and stability conditions. We
have found that the stability of non-Hermitian systems neces-
sitates the existence of a path-dependent conserved quantity.
The path-independent part of the conserved quantity, together
with the system’s Hamiltonian, determines the equilibrium
state of the non-Hermitian system. As this conserved quantity
constrains the thermalization path of the system, for certain
conserved quantities, the thermalization path becomes, in a
sense, extremely long, resulting in divergent relaxation times
and making the equilibrium state challenging to observe. In
order to exclude these difficult-to-observe equilibrium states,
we have established a relationship between the non-Hermitian
system’s Hamiltonian and the supported conserved quantity,
which aids in determining which equilibrium states have finite
relaxation times. Furthermore, although we discovered that
only non-Hermitian systems with real energy spectra precisely
possess such conserved quantities, we have found that in more
general cases with complex energy spectra, even though the
system lacks an exact conserved quantity, when the thermal
bath and system are weakly coupled, an effective conserved
quantity rapidly emerges within this system. This conserved
quantity, in conjunction with the effective transitions occur-
ring within its associated subspace, jointly determines the
system’s equilibrium state.

This paper is organized in the following way. In Sec. II, we
introduce the system under investigation and outline some ba-
sic assumptions. In Secs. III and IV, we develop the statistical
mechanics theory for quasi-Hermitian systems and more gen-
eral non-Hermitian systems, providing criteria to determine
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the stability of such systems and identifying their equilibrium
states when stability is present. In Sec. V, we showcase the
application of our theory using a PT -symmetric two-level
model as an example. Finally, in Sec. VI, we conclude our
results and discuss the implications of our findings for the
understanding of non-Hermitian systems in various contexts.

II. FRAMEWORK

The traditional research areas in statistical mechanics can
be divided into two distinct categories: (i) systems weakly
coupled with a large thermal bath and (ii) isolated systems.
In this study, our focus lies on the former, specifically investi-
gating the non-Hermitian system in contact with a Hermitian
thermal bath. This choice is motivated by the fact that, in most
experimental scenarios, non-Hermiticity is prepared solely
within a small system, while both the environment and the
coupling between the environment and the system remain
Hermitian. Consequently, our investigation focuses on sys-
tems weakly interacting with Hermitian thermal baths, as this
approach is better aligned with the practical aspects of ex-
perimental setups. On the other hand, isolated non-Hermitian
systems may lack the capacity for self-thermalization, ren-
dering the establishment of a statistical theory for isolated
non-Hermitian systems unattainable [34–36].

The time evolution equation of the density matrix for a
non-Hermitian system is given by [37–39]

i
d

dt
ρ = Ĥρ − ρĤ† + [tr(Ĥ† − Ĥ )ρ]ρ, (1)

where ρ represents the density matrix. The first two terms
correspond to the standard Liouville evolution, while the third
term ensures the normalization of the density matrix. In this
paper, for the sake of mathematical simplicity, we always
assume that the dimension of the Hilbert space is finite. The
Hamiltonian of the entire system, denoted by Ĥtot, is com-
prised of three components:

Ĥtot = ĤNH ⊗ ÎB + ÎS ⊗ ĤB + ĤBS, (2)

where ĤNH represents the non-Hermitian Hamiltonian of the
system S, ĤB corresponds to the Hamiltonian of the thermal
bath, and ĤBS denotes the coupling between the system and
the thermal bath. It is important to note that, under this defini-
tion, an imaginary number can be added to the non-Hermitian
Hamiltonian without affecting the time evolution equation of
the density matrix. Therefore, in this paper, for simplicity, we
always adjust the maximum imaginary part of the eigenvalue
of the non-Hermitian system to zero. The coupling term, ĤBS ,
can be generally expressed as

ĤBS =
∑

a

λaĈa ⊗ B̂a + H.c., (3)

where λa is a real number quantifying the strength of coupling
between the system and the thermal bath, Ĉa is the opera-
tor acting on the system, and B̂a is the operator acting on
the thermal bath, a = 1, 2, 3, . . . , n. There are often multiple
expressions for the same coupling. We choose the operators
Ĉa, Ĉ†

a and B̂a, B̂†
a, ÎB to be linearly independent. We set the

operator acting on the thermal bath and ÎB to be linearly inde-
pendent to prevent the Hamiltonian of the system from being

FIG. 1. Illustration for a thermal non-Hermitian system: S rep-
resents the non-Hermitian system, while B denotes a Hermitian
thermal bath at certain temperature T . The coupling between the non-
Hermitian system and the Hermitian thermal bath is also Hermitian.

written in the form of similar coupling, making the system’s
Hamiltonian and coupling unable to be distinguished clearly.

We have assumed that both ĤB and ĤBS are Hermitian.
Owing to the weak coupling condition, we consider λa � 1.
This system is referred to as a thermal non-Hermitian system.
See illustration in Fig. 1. The expectation value of a physical
quantity for a mixed state is defined in the standard way. That
is, the expectation value of the physical quantity Ô is given by

〈Ô〉 = 1

trρ
tr[Ôρ]. (4)

In developing the statistical mechanics for non-Hermitian sys-
tems, the concept of temperature is indispensable. We define
the temperature of non-Hermitian systems as follows.

Definition 1. The temperature of the non-Hermitian sys-
tem is defined as the temperature of the Hermitian bath if
the corresponding thermal non-Hermitian system can reach
an equilibrium state.

The equilibrium state is defined as the steady state for
thermalizable thermal non-Hermitian systems. We define the
steady state in a common way, that is, the density matrix when
time tends to infinity (if the limit exists). The definition of
the “thermalizable” will be provided later. It is worth noting
that this definition reduces to the conventional temperature
definition in the case of a Hermitian system, ensuring consis-
tency and compatibility with well-established thermodynamic
concepts.

III. QUANTUM STATISTICAL MECHANICS
FOR QUASI-HERMITIAN SYSTEMS

In this section, we focus on the thermal quasi-Hermitian
systems, which involve a quasi-Hermitian system coupled
with a Hermitian thermal bath. A quasi-Hermitian system
is characterized as a real-spectrum system (in this paper,
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we consistently avoid EPs and treat them as a limiting case
for systems without EPs). The PT -symmetric system at a
PT -symmetric phase serves as a prime example of a quasi-
Hermitian system. While seemingly simple, the equilibrium
state of a quasi-Hermitian system lays the ground for com-
prehending the equilibrium state of a general non-Hermitian
system. We will later illustrate that the equilibrium problems
of non-Hermitian systems can be reduced to those of quasi-
Hermitian systems.

A. Stability of quasi-Hermitian systems

A quasi-Hermitian system represents a non-Hermitian con-
figuration characterized by a delicate balance between gain
and loss. This delicate balance renders the system susceptible
to perturbations that may induce exponential amplification of
specific state probabilities over time, significantly affecting
the system’s steady state. This phenomenon exposes the in-
herent instability of such systems.

To preserve system stability, it is important to maintain a
purely real energy spectrum, thereby safeguarding the overall
system balance. In the case of thermal quasi-Hermitian sys-
tems, individual subsystems and their corresponding thermal
baths exhibit real spectrum. Nevertheless, the introduction
of coupling often disturbs the real spectrum of the com-
plete system. Consequently, the steady state heavily relies
on the intricacies of the coupling between the bath and the
system, as well as on the subtle details of the bath Hamilto-
nian. A discussion based on the master equation is provided
in Appendix B for further technical insights. We refer to
this phenomenon, in which all components are Hermitian
or quasi-Hermitian but lose the quasi-Hermitian property
upon combination, as quasi-Hermiticity breaking. A thermal
quasi-Hermitian system without quasi-Hermiticity breaking is
stable.

The real eigenvalues’ condition implies that a system can
be transformed, at a minimum, into a Hermitian matrix in the
form of diag(λ1, λ2, λ3, . . .) via a similarity transformation,
with λi representing the eigenvalues. This leads to the follow-
ing assertion, which emphasizes an attribute concerning the
absence of quasi-Hermiticity breaking: for systems devoid of
quasi-Hermiticity breaking, a similarity transformation must
exist that transforms the total Hamiltonian Ĥtot into a Hermi-
tian form.

Moreover, due to the Hermitian nature of the thermal bath,
the similarity transformation takes the form Ŝtot = Ŝ ⊗ ÎB.
The right side of the direct product can be any unitary trans-
formation, which is tantamount to a basis transformation
and does not influence the physical interpretation. We do
not differentiate this transformation from the identity trans-
formation. The operator Ŝ can transform the non-Hermitian
operator ĤNH into a Hermitian operator Ĥ0, i.e., Ŝ−1ĤNHŜ =
Ĥ0. The remaining question is whether the coupling ĤBS can
retain its Hermitian property under a similarity transforma-
tion.

Lemma 1. A thermal non-Hermitian system is a thermal
quasi-Hermitian system without quasi-Hermiticity breaking if
and only if there exists a positive definite Hermitian operator
Tc in the non-Hermitian system such that the following two
conditions are satisfied.

(1) Symmetric condition: the coupling operator Ĉa satisfies
[Ĉa, Tc] = 0 for all a. Alternatively, in physical terms, the
coupling needs to have symmetry Tc.

(2) Conjugacy relation: ĤNHTc − TcĤ†
NH = 0.

Proof. On the one hand, we demonstrate that an operator
satisfies conditions (1) and (2) must exist for the thermal
non-Hermitian system without quasi-Hermiticity breaking.
We have shown that the coupling after the similarity trans-
formation needs to be a Hermitian operator. This requires∑

a

λa[Ŝ−1ĈaŜ ⊗ B̂a + Ŝ−1Ĉ†
a Ŝ ⊗ B̂†

a]

=
∑

a

λa[(Ŝ−1Ĉ†
a Ŝ )† ⊗ B̂a + (Ŝ−1ĈaŜ )† ⊗ B̂†

a]. (5)

Because the difference operators are linear independent in the
right of the direct product, we have Ŝ−1ĈaŜ =(Ŝ−1Ĉ†

a Ŝ )†.

Therefore, by using Ŝ−1ĈaŜ =(Ŝ−1Ĉ†
a Ŝ )†, we get

Ŝ (Ŝ−1ĈaŜ )Ŝ† = Ŝ (Ŝ−1Ĉ†
a Ŝ )†Ŝ†

or

ĈaTc = TcĈa. (6)

We find that Ĉa and Tc ≡ ŜŜ† are commutative. It is evident
that the operator Tc defined in this way is Hermitian and its
eigenvalues are equal to the squares of the singular values
of the invertible operator Ŝ . Consequently, Tc is a positive
definite Hermitian operator.

It is also easy to verify that, since Tc is related to the simi-
larity transformation that changes ĤNH into a Hermitian form,
ĤNH and Tc satisfy the relation ĤNHTc − TcĤ†

NH = 0. This is,
in fact, another equivalent definition of quasi-Hermiticity for
the Hamiltonian ĤNH [40,41].

On the other hand, if there is an operator Tc satisfying
conditions (1) and (2), we can define Ŝ = √

Tc. Because Tc is
a positive definite Hermitian operator, such an Ŝ always exists
and we can verify that it transforms the system’s Hamiltonian
into a Hermitian operator which has real spectrum. (It should
be noted that the similarity transformation used to transpose
the system’s Hamiltonian into a Hermitian operator is not
unique. Alternative methodologies for constructing it exist. As
an illustration, consider Ŝ = √

Tc Û , where Û is defined as a
unitary operator.) Thus we have proven Lemma 1. �

The conditions (1) and (2) of Lemma 1 can be combined
into a single condition, which is encapsulated by the following
theorem.

Theorem 1. A thermal non-Hermitian system is a thermal
quasi-Hermitian system without quasi-Hermiticity breaking
if and only if there exists a conserved quantity in the form
of Pc(t )Tc within the non-Hermitian system. Here Pc(t ) ≡
Tt exp(2

∫ t
0 〈ϒ̂〉) is a path-dependence factor, where Tt is the

time order operator. 〈ϒ̂〉 is the expectation value of ϒ̂ and
ϒ̂ is defined as the non-Hermitian part of the non-Hermitian
Hamiltonian, i.e., ϒ̂ ≡ 1

2i (ĤNH − Ĥ†
NH). Tc is a positive de-

fined Hermitian operator in the non-Hermitian system.
Proof. First, we prove that the thermal quasi-Hermitian

system without quasi-Hermiticity breaking has this conserved
quantity. The condition for P(t )Tc to be a conserved quantity
operator is that d

dt [Pc(t )Tcρ(t )] = 0 holds for all initial density
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matrices. This requirement is equivalent to

(ĤNHTc − TcĤ†
NH) + [Tc, ĤBS] = 0. (7)

Applying Lemma 1, we get that both terms on the left-hand
side of the equation are zero. Therefore, P(t )Tc is a conserved
quantity.

Secondly, we prove that if there is such a conserved
quantity, the thermal non-Hermitian system is a thermal
quasi-Hermitian system without quasi-Hermiticity breaking.
If there is such a conserved quantity, we require that (ĤNHTc −
TcĤ†

NH) + [Tc, ĤBS] = 0. In more detail,

(ĤNHTc − TcĤ†
NH) ⊗ ÎB

+
∑

a

λa([Tc, Ĉa] ⊗ B̂a + [Tc, Ĉ†
a ] ⊗ B̂†

a) = 0, (8)

because B̂a, B̂†
a, ÎB are chosen to be linearly independent; then

we get the two conditions of Lemma 1. Therefore, we proved
the theorem. �

We also have proved that the existence of conserved quan-
tity is equivalent to the two conditions of Lemma 1. Therefore,
technically, Lemma 1 can be used to specifically judge
whether this conserved quantity exists in the system. We call
conserved quantities like Pc(t )Tc path-dependent conserved
quantities. In subsection B, we will demonstrate that Tc, which
is the path-independent part of the conserved quantity and
quasi-Hermitian system Hamiltonians ĤNH, collectively de-
termines the equilibrium state of the system. It is important to
note that the existence of such quasiconserved quantities does
not restrict the final state of the system for a given initial state,
but rather constrains the thermalization path. To some extent,
certain paths are very long, implying that the equilibrium
state having these conserved quantities is not easy to observe.
These aspects will be discussed in subection C. The concept
of path-dependent conserved quantities plays a pivotal role
in understanding the intricate dynamics and phenomena in
quasi-Hermitian and non-Hermitian systems.

B. Equilibrium state of stable quasi-Hermitian systems

In this subsection, we discuss the equilibrium state of
stable quasi-Hermitian systems. When the thermal bath is in-
corporated into the total Hamiltonian, the entire large system
becomes an isolated system. In previous research, the eigen-
state thermalization hypothesis (ETH) [42–54] has emerged as
a generic mechanism for thermalization in such systems. ETH
has been extensively tested in numerical simulations of small
quantum systems and all known examples of thermalizing
Hermitian systems comply with ETH. In this paper, we do not
distinguish between “thermalizable” and “satisfying ETH” for
Hermitian systems.

The ETH proposes that, in chaotic Hermitian quantum
systems, the matrix elements of simple observables display
a smooth variation along the diagonal in the energy eigen-
sates |Ei〉, accompanied by fluctuations suppressed by the
entropy-based exponential factor. This can be mathematically
expressed as

〈Ei|Ô|Ej〉 = fÔ(E )δi j + gÔ(E ,�E )e−S(E )/2. (9)

In this expression, fÔ denote smooth O(1) functions, E =
Ei+Ej

2 , �E = |Ei − Ej |, and gÔ is a function of order unity
for �E = 0 that goes to zero as �E becomes large. The
ETH is crucial in describing thermalization, as it allows for
the demonstration that starting from any initial state |ψ (t )〉
in a large system, where the coefficients cα ≡ 〈α|ψ (t )〉 are
strongly clustered around an energy E (with |α〉 representing
the eigenstate with energy α), the system will asymptotically
approach an equilibrium state described by the microcanoni-
cal ensemble. Mathematically, this is expressed as

lim
t→∞ 〈ψ (t )|Ô|ψ (t )〉 = 〈Ô〉micro. (10)

For the investigated thermal quasi-Hermitian system, a
similarity transformation Ŝtot exists that maps it to a Hermitian
system. In light of this, we introduce the following definition.

Definition 2. A thermalizable quasi-Hermitian system is
a thermal quasi-Hermitian system without quasi-Hermiticity
breaking, which can be transformed into a Hermitian system
that is thermalizable.

The equilibrium state of the quasi-Hermitian system is de-
fined as the steady state of the thermalizable quasi-Hermitian
system. In the vast majority of cases, thermal quasi-Hermitian
systems without quasi-Hermiticity breaking satisfy Definition
2, due to the fact that the transformed Hermitian system inher-
ently includes a thermal bath.

Next, we deduce the equilibrium state of the thermalizable
quasi-Hermitian system. The information about the equilib-
rium state of the quasi-Hermitian system is encoded in the
expectation value of the operator Ô. It is assumed that this
operator is local enough to depend only on the degrees of
freedom of the quasi-Hermitian system, i.e., Ô = ÔS ⊗ ÎB.
Based on our basic assumptions in Sec. II, the expectation
value of Ô at the equilibrium state is defined as

〈Ô〉eq ≡ lim
t→∞ 〈ψ (t )|NHÔ|ψ (t )〉NH. (11)

Here |ψ (t )〉NH is the state of the thermalizable quasi-
Hermitian system and 〈ψ (t )|NH ≡ (|ψ (t )〉NH)†. We require
the normalization of the initial state |ψ (0)〉NH and assume that
the wave function coefficients cα of the system (determined
by |ψ (0)〉NH = cα|α〉R, where |α〉R is the self-normalized
right eigenstate of the system’s Hamiltonian with energy α)
are strongly clustered around a certain energy value E . The
time evolution of the state |ψ (t )〉NH determined by requir-
ing ρ(t ) ≡ |ψ (t )〉NH〈ψ (t )|NH satisfies Eq. (1). Notice that
〈ψ (t )|NHÔ|ψ (t )〉NH can be expressed as

〈ψ (t )|NHÔ|ψ (t )〉NH = 〈ψ̃ (t )|NHÔ|ψ̃ (t )〉NH

〈ψ̃ (t )|NH|ψ̃ (t )〉NH
, (12)

where |ψ̃ (t )〉NH ≡ e−iĤtott |ψ (0)〉NH and 〈ψ̃ (t )|NH ≡
(|ψ̃ (t )〉NH)†. In this representation, the normalization of
the initial state is not required. As such, the state of the
system can be expressed as

|ψ̃ (t )〉NH = Ŝ ⊗ ÎB|ψ (t )〉0, (13)

where Ŝ represents the similarity transformation capable of
constructing an operator Tc = ŜŜ† that satisfies Lemma 1.
|ψ (t )〉0 ≡ e−iĤ0,tott |ψ (0)〉0 is the normalized state for systems
with thermalizable Hermitian Hamiltonians Ĥ0,tot = (Ŝ−1 ⊗
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ÎB)Ĥtot (Ŝ ⊗ ÎB). Since similarity transformations do not alter
the energy of states, under the constraint that the eigenstate
thermalization hypothesis holds for the Hermitian system af-
ter the similarity transformation, the change in the magnitude
of the state with energy α is a smooth function fŜ (α) and does
not significantly affect the relative proportions of the state’s
magnitude. Therefore, the wave function of the Hermitian
system is also strongly clustered around the energy E .

Consequently, the following expression is obtained:

lim
t→∞〈ψ̃ (t )|NHÔ|ψ̃ (t )〉NH = lim

t→∞ 〈ψ (t )|0Ŝ†ÔSŜ ⊗ ÎB|ψ (t )〉0,

lim
t→∞〈ψ̃ (t )|NH|ψ̃ (t )〉NH = lim

t→∞ 〈ψ (t )|0Ŝ†Ŝ ⊗ ÎB|ψ (t )〉0.

(14)

The expression 〈ψ (t )|0Ŝ†ÔSŜ ⊗ ÎB|ψ (t )〉0 is the expectation
value of the operator Ô′ = Ŝ†ÔSŜ in the thermalizable Hermi-
tian system with Hamiltonians Ĥ0,tot . Similarly, 〈ψ (t )|0Ŝ†Ŝ ⊗
ÎB|ψ (t )〉0 is the expectation value of the operator Ô′′ = Ŝ†Ŝ in
the same Hermitian system. Therefore, based on our previous
discussion, both limits exist. We have

〈Ô〉eq = lim
t→∞

〈ψ̃ (t )|NHÔ|ψ̃ (t )〉NH

〈ψ̃ (t )|NH|ψ̃ (t )〉NH

= limt→∞〈ψ̃ (t )|NHÔ|ψ̃ (t )〉NH

limt→∞〈ψ̃ (t )|NH|ψ̃ (t )〉NH

= 〈Ô′ ⊗ ÎB〉micro

〈Ô′′ ⊗ ÎB〉micro
. (15)

For any subsystem which is weakly coupled with other parts
of the system and Ô is local enough to only depend of de-
grees of freedom of the subsystem, i.e., Ô = Ôsub ⊗ Î , we
have 〈Ô〉micro = 〈Ôsub〉canonical [54]. Specifically, 〈Ô〉micro =

1
trsubρ

trsub[Ôsubρ], where the density matrix ρsub = e−βT Ĥsub,
with βT = 1/T being the inverse temperature. We have set
the Boltzmann constant to be unity. Therefore,

〈Ô〉eq = 〈Ô′〉canonical

〈Ô′′〉canonical

= trs(Ô′e−(Ŝ−1ĤNHŜ )/T )/trs(e−(Ŝ−1ĤNHŜ )/T )

trs(Ô′′e−(Ŝ−1ĤNHŜ )/T )/trs(e−(Ŝ−1ĤNHŜ )/T )

= trs(Ŝ†ÔSŜe−(Ŝ−1ĤNHŜ )/T )

trs(Ŝ†Ŝe−(Ŝ−1ĤNHŜ )/T )

= 1

trs(ρNH)
trs(ÔSρNH), (16)

where ρNH = e−βT ĤNHTc. If the Hilbert space is limited to sub-
systems, the subscript can be omitted. Therefore, ρNH can be
regarded as the density matrix of the quasi-Hermitian system.
This density matrix is Hermitian, i.e., ρNH = (ρNH)†. Then it
is obvious that 〈Ô〉 is real, i.e., 〈Ô〉 = 〈Ô〉∗.

We note that, in this case, it can be demonstrated that the
density matrix of any other weakly coupled Hermitian subsys-
tem within the larger system is given by ρsub = e−βT Ĥsub . This
result indicates that the Hermitian component of the thermal
non-Hermitian system possesses a temperature T . Therefore,

according to Definition 1, e−βT ĤNHTc can be referred to as the
thermal state of a non-Hermitian system at temperature T .
Consequently, we obtain the following.

Theorem 2. The equilibrium state of thermalizable quasi-
Hermitian systems (with conserved quantity P(t )Tc) at
temperature T is

ρNH = e−βT ĤNHTc. (17)

In the derivation of Theorem 2, we have assumed that the
wave function coefficients cα are strongly clustered around
a single energy value E . This condition seems to impose a
stringent constraint on the initial state ρS(t = 0) of the system
S. However, in general, the system is “much smaller than”
the thermal bath, i.e., the energy scale of the system is sig-
nificantly smaller than the energy scale of the thermal bath.
Consequently, the initial state of the system has an insignif-
icant impact on the overall energy distribution. Therefore, as
long as the initial state of the thermal bath is suitable (e.g.,
the thermal bath is initially in equilibrium at temperature T ),
the aforementioned condition can be satisfied regardless of the
initial state of the system S. This implies that the constraints
posed by the condition are not as restrictive as they may
initially appear and the results of Theorem 2 can be widely
applicable.

In general, systems satisfying the ETH exhibit ergodic
behavior. It is important to note that, for such systems, the time
average of physical quantities over sufficiently long periods
must be unique. This is because the evolution from different
initial states can always be considered as the evolution of
the same state with varying initial times. Consequently, there
must be only one Tc (up to a multiplicative factor. A more
rigorous discussion regarding this assertion is provided in
Appendix C), which is uniquely determined by the coupling
Ĉa.

C. Restriction of relaxation time on equilibrium states

In discussing the equilibrium states of quasi-Hermitian
systems with finite relaxation times, it is important to in-
vestigate their characteristic properties. The states presented
above correspond to non-Boltzmann distributions. It is well
established that, for Hermitian systems, the weights of dis-
tinct quantum states adhere to the Boltzmann distribution,
expressed as ρ = e−βT Ĥ . However, for non-Hermitian sys-
tems, the conventional Boltzmann distribution transforms into
a non-Boltzmann distribution, denoted by ρNH = e−βT ĤNHTc.
It is essential to note that the Boltzmann distribution, con-
structed under the assumption that the probability of states
with energy En is Pn ∝ e−βT En , is generally not satisfied. The
probability of states with energy En is PNH

n ∝ e−βT EnWn 
=
e−βT En , where Wn = 〈En|LTc|En〉L, with |En〉L being the left
eigenstate which is biorthogonal to |En〉R. To characterize
the deviation from the Boltzmann distribution, we define the
abnormal index as

A = ln

(∑
n

WnPNH
n

)
(18)

or A = ln〈Tc〉ρNH , where 〈 〉ρNH denotes the expectation value
concerning the density matrix ρNH. We select the average
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value of Wn to be 1 or tr Tc = dim Tc. For the Boltzmann
distribution, A = 0 must hold. If A < 0, this suggests that the
system prefers occupying higher energy states than the Boltz-
mann distribution predicts. Conversely, if A > 0, the system
tends to favor lower energy states.

By necessity, the distribution of non-Hermitian systems
should reduce to the Boltzmann distribution under the Her-
mitian limit. However, it appears that the distribution in
Theorem 2 is not reducible to the Boltzmann distribution—
according to prior result, for systems in the Hermitian limit,
a set of equilibrium states ρ = e−βT ĤTc seems to exist, which
deviates from the standard Boltzmann distribution ρ = e−βT Ĥ .

The key point is that the equilibrium state provided by
Theorem 2 represents a physically plausible equilibrium state.
Nonetheless, numerous quasi-Hermitian systems display di-
vergent relaxation times in the equilibrium state. For instance,
under the Hermitian limit, if Tc is unequal to the identity
matrix Î , Pc(t )Tc is reduced from a path-dependent conserved
quantity to an ordinary conserved quantity. Unlike path-
dependent quantities, the presence of conserved quantities can
impede system thermalization, resulting in the system’s final
state preserving the same physical quantity as the initial state,
whereas the final state of a thermalizable system should be
independent of the initial state.

More specifically, if finite relaxation time is required, the
existence of path-dependent conserved quantities imposes
a certain constraint between the non-Hermitian strength of
the system and the abnormal index of the equilibrium state.
Utilizing the expression of conserved quantities, we can
estimate

〈Tc〉ρ0
∼ eAeγ τ , (19)

where γ ≡
√

trϒ2/ dim ϒ represents the non-Hermitian
strength of the system and τ denotes the relaxation time of
the system. This leads to

τ ∼
∣∣∣∣A

γ

∣∣∣∣. (20)

If its relaxation time τ diverges, then such a state cannot
be experimentally achieved. Based on this observation, we
propose the following theorem

Theorem 3. For a thermalizable quasi-Hermitian system, if
its equilibrium states exhibit finite relaxation times, its abnor-
mal index A cannot be significantly larger than the system’s
non-Hermitian strength γ .

D. Summary

In this section, we briefly summarize the three theorems of
the theory of quasi-Hermitian systems and their relationships.
Quasi-Hermitian systems are inherently unstable; Theorem 1
provides the necessary physical conditions for achieving sta-
bility in such systems. Lemma 1 offers a more technical
representation of this theorem, which is advantageous for
theoretical applications. Next, Theorem 2 describes the physi-
cally allowable equilibrium states of a stable quasi-Hermitian
system. It is essential to note that, due to the inherent char-
acteristics of non-Hermitian systems, these equilibrium states
often possess exceedingly long relaxation times. As a result,

they become experimentally unobservable; Theorem 3 pro-
vides a method to exclude these unobservable states, enabling
a focus on practically observable states in quasi-Hermitian
systems. In conclusion, these three theorems offer a compre-
hensive understanding of the stability, equilibrium states, and
relaxation times of quasi-Hermitian systems.

IV. QUANTUM STATISTICAL MECHANICS
FOR NON-HERMITIAN SYSTEMS

For non-Hermitian Hamiltonians possessing complex
eigenvalues, the eigenvalues with negative imaginary com-
ponents demonstrate dissipation at a rate proportional to the
imaginary part of the corresponding eigenstate (we have to
adjust the maximum imaginary part of the eigenvalue of the
non-Hermitian system to zero). During the evolution of time,
in the weak coupling limit, these dissipative states will decay
rapidly (compared to the timescale of nondissipative state
evolution) and hence do not significantly impact the dynamics
of nondissipative states. Consequently, the steady state of the
system can be well described by the Hamiltonian restricted to
the subspace of nondissipative states. A more detailed tech-
nical discussion based on the master equation is presented in
Appendix D.

Therefore, in the case of a non-Hermitian system, the
original model is reduced to a subspace consisting of m-
fold degenerate quantum states that share the same maximum
imaginary part among all eigenvalues. Specifically, the Hamil-
tonian of the system and the coupling between the system and
the bath restricted to this subspace are

ĤR
NH = PĤNHP, (21)

ĤR
BS =

∑
a

λa[(PĈaP) ⊗ B̂a + (PĈ†
a P) ⊗ B̂†

a], (22)

where P = ∑
ImEm=0 |m〉R〈m|L is the projection operator

to the subspace with zero imaginary part. We call this
system a reduced thermal quasi-Hermitian system. We de-
fined a thermal non-Hermitian system as thermalizable if
its corresponding reduced thermal quasi-Hermitian system
is thermalizable. Therefore, studying the equilibrium state
of a non-Hermitian system only requires investigating the
equilibrium state of the reduced thermal quasi-Hermitian
system.

A. Equilibrium state of non-Hermitian systems

The only difference between the reduced thermal quasi-
Hermitian system and the thermal quasi-Hermitian system
introduced in the previous section is that PĈaP and PĈ†

a P
are not necessarily Hermitian conjugates. However, after re-
peated deduction, we find that Theorems 1, 2, and 3 still
hold. Therefore, we also can employ Theorems 1, 2, and 3 to
investigate the reduced quasi-Hermitian system and obtain the
equilibrium state of the non-Hermitian system. Only the form
of Lemma 1 has changed a little. Condition (1) in Lemma 1
is changed to PĈaPT R

c − T R
c P†ĈaP† = 0 for all a, where T R

c
is a positive definite Hermitian operator defined in the Hilbert
space where the reduced quasi-Hermitian system is located.
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We note that the reduction of the equilibrium state of
a non-Hermitian system to the equilibrium state of a re-
duced quasi-Hermitian system is only valid in the regime
of sufficiently weak coupling. This approximation relies on
the dissipative timescale τdiss being much smaller than the
timescale of evolution for nondissipative states τnondiss. In
fact, it will be shown in Appendix D that the error δ of this
algorithm is approximately δ ∼ τdiss/τnondiss. Therefore, this
equilibrium state is actually an approximation. Only when
the conserved quantity in Theorem 1 exists do non-Hermitian
systems have an exact equilibrium state.

B. Role of conserved quantity in equilibrium states
of non-Hermitian systems

In the context of a physical perspective, the emergence of
this approximate equilibrium state is intimately connected to
the existence of conserved quantities. While the system ini-
tially lacks exact conserved quantities, the dissipative state’s
dissipation leads to the rapid appearance of an approximate
conserved quantity PR

c (t )T R
c on the timescale τdiss. Notably,

the system’s thermalization process has barely commenced on
this timescale. This implies that the thermalization process is
consistently protected by the conserved quantity, resulting in
stability of a non-Hermitian system. The conserved quantity in
conjunction with the effective transitions within the subspace
ĤR

NH codetermines the system’s equilibrium state.
In addition, we point out that projecting the system and

ascertaining whether the reduced thermal quasi-Hermitian
system satisfies Theorem 1 indeed furnishes a method for
assessing the presence of the emerged conserved quantity
PR

c (t )T R
c within the original system.

C. Thermodynamic quantities of non-Hermitian systems

In the field of statistical mechanics for Hermitian sys-
tems, partition function Z = tr ρ and its consequential free
energy F = −T ln Z serve as insightful tools for effectively
calculating physical quantities. Similarly, in the realm of
non-Hermitian systems, these elements may play equally sub-
stantial roles.

Hence we propose the partition function for non-Hermitian
systems as

Z (ĤNH, T, Tc) = tr
(
e− 1

T ĤR
NHT R

c

)
, (23)

with the corresponding free energy given by

F (ĤNH, T, Tc) = −T ln Z (ĤNH, T, Tc). (24)

Having defined these components, we can proceed to discuss
the definitions of thermodynamic quantities in non-Hermitian
systems and their associations with partition functions and
free energy.

The thermodynamic average of physical quantities, which
predominantly appear as derivatives of the Hamiltonian
concerning specific parameters, is initially discussed. In non-
Hermitian systems, for a generic parametrized operator Ô =
∂ĤNH(λ)

∂λ
, it is established that

〈Ô〉 ≡ 1

Z
tr(ÔρNH) = −T

∂ ln Z[ĤNH(λ), T, Tc]

∂λ
(25)

and equivalently that

〈Ô〉 = ∂F [ĤNH(λ), T, Tc]

∂λ
. (26)

These equations provide a well-rounded framework for eval-
uating both Hermitian and non-Hermitian systems.

Next, we consider energy. The internal energy is generated
by weighting each energy state by its probability, culminating
in

E =
∑

n

EnPn = 1

Z
tr
(
ĤR

NHρNH
) = F − T

∂F

∂T
. (27)

In this context, energy is defined as the real part of an eigen-
state’s eigenvalue, with the imaginary part representing the
state’s dissipation rate. Similar to the Hermitian case, energy
can be formulated via the Legendre transformation of free
energy.

Lastly, entropy in non-Hermitian systems is presented as
the von Neumann entropy:

S = −tr(ρ̄NH ln ρ̄NH), (28)

where ρ̄NH = ρNH

trρNH
. The entropy measures the degree of

disorder or uncertainty inherent in a system. Notably, in
non-Hermitian systems, entropy is not equivalent to the
derivative of free energy concerning temperature, i.e., S 
=
− ∂F

∂T . This deviation highlights the distinctive attributes of
non-Hermitian systems.

V. EXAMPLE

A. Two-level system

We consider a sample two-level non-Hermitian system
coupled to a thermal bath, featuring a spinless fermion dis-
tributed across two lattice sites. The Hamiltonian of this
non-Hermitian system is given by

ĤNH = σx + iγ σy (29)

on the pseudospin space (|↑〉
|↓〉), where |↑〉 and |↓〉 represent

the quantum states of a single fermion on site 1 and site
2, respectively. The coupling between system S and bath B
is captured by the term ĤBS = ∑

a γaĈa ⊗ B̂a. Here, B̂a and
Ĉa denote the operators of systems B and S, respectively.
We define Ĉa = n̂a as the particle number operator of S on
lattice site a, with a = 1, 2. We assume that γa � γ , 1 for
our analysis. This system can be implemented by a controlled
open quantum system S coupling to two environments B and
E [39].

For the non-Hermitian Hamiltonian ĤNH, at γ = 1, a typi-
cal PT -symmetry spontaneous breaking occurs: for the case
γ < 1, the energy levels for states |+〉R and |−〉R are E± =
±
√

1 − γ 2. For the case γ > 1, the energy levels for states
|+〉R and |−〉R are E± = ±i

√
γ 2 − 1. For the case γ = 1, the

system is at the exceptional point with state coalescing and
energy degeneracy, i.e., E± = 0.

First, we consider the PT -symmetric breaking phase. Due
to the system having a complex energy spectrum, we need to
project the system into the subspace where the eigenstate with
the largest imaginary part is located. The projection operator
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can be expressed as

P = |+〉R〈+|L, (30)

where |+〉L is the eigenstate of Hamiltonian Ĥ†
NH, which sat-

isfies L〈+|+〉R = 1. With this projection operator acting on
the Hamiltonian and the coupling terms, we get the following
result:

ĤR
NH = 0, (31)

ĤR
BS =

∑
a

γa〈+|Ln̂a|+〉R(|+〉R〈+|L ) ⊗ B̂a. (32)

Here, ĤR
NH and ĤR

BS represent the projected Hamiltonian of the
system and the projected coupling term between system S and
bath B, respectively. According to the expression of ĤR

NH and
ĤR

BS , we can determine the reduced conserved quantity T R
c is

T R
c = |+〉R〈+|R = 1

2 (I +
√

1 − γ −2σy + γ −1σz ). (33)

By using ρNH = e−βT ĤR
NHT R

c , we have

ρNH = 1
2 (I +

√
1 − γ −2σy + γ −1σz ). (34)

The expectation value of 〈�σ 〉 ≡ (〈σx〉, 〈σy〉, 〈σz〉) is calculated
as

〈�σ 〉 = (0,
√

1 − γ −2, γ −1). (35)

This result can also be obtained from the partition function.
The partition function of the system is

Z (�λ) = tr
(
e− 1

T (ĤR
NH+�λ·�σ )T R

c

)
, (36)

where �λ · �σ = λxσx + λyσy + λzσz. The expectation value is

〈�σ 〉 = −T ∇�λ ln Z (�λ)|�λ=0 = (0,
√

1 − γ −2, γ −1). (37)

Next, we consider the PT -symmetry phase. For this sys-
tem, the Tc is

Tc = I + γ σz. (38)

In the pseudospin space, this is equivalent to a rotational sym-
metry along the z direction. In the original representation, the
symmetry necessitates that the operator can be expressed as a
sum of local operators. Specifically, since any local operator
adheres to this symmetry, it is quite natural for the coupling to
conform to it as well. The equilibrium state protected by Tc is

ρNH = 1

2
I + γ

2
σz − 1

2

√
1 − γ 2

e2
√

1−γ 2/T − 1

e2
√

1−γ 2/T + 1
σx. (39)

The expected value 〈�σ 〉 is calculated as

〈�σ 〉 =
⎛⎝−

√
1 − γ 2

e2
√

1−γ 2/T − 1

e2
√

1−γ 2/T + 1
, 0, γ

⎞⎠. (40)

Similar to the PT -symmetric phase, this result can also be
given by the partition function. The partition function of the
system is

Z (�λ) = tr
(
e− 1

T (ĤNH+�λ·�σ )Tc
)

(41)

FIG. 2. (a) Permissible values of α as a function of non-
Hermitian strength γ . (b) Equilibrium state anomalous index A for
varying α and γ values. We set T = 0.1. (c) Acceptable α values
(blue region) as a function of non-Hermitian strength γ considering
relaxation time constraints. The area with A/γ > 1.25 (yellow re-
gion) is excluded. (d) Convergence rate V to the equilibrium state
for a given coupling ĤBS , with the convergence rate of the Hermitian
case set to 1.

and the expected value 〈�σ 〉 is calculated as

〈�σ 〉 = −T ∇�λ ln Z (�λ)|�λ=0

=
⎛⎝−

√
1 − γ 2

e2
√

1−γ 2/T − 1

e2
√

1−γ 2/T + 1
, 0, γ

⎞⎠. (42)

Observe that this state does not conform to a Boltzmann
distribution. The system exhibits an abnormal index with
A = ln(1 + γ 2) 
= 0, indicating that the system follows a non-
Boltzmann distribution. To determine if these equilibrium
states are restricted, we can compute A/γ . It is discov-
ered that the value will not significantly exceed 1, which
implies that these equilibrium states can be experimentally
observed.

B. Equilibrium state protected by another conserved quantity

In this subsection, we do not limit the coupling between the
system and the thermal bath, consider all possible equilibrium
states of the system, and judge which equilibrium states have
too long a relaxation time to be observed in the experiment,
as an application of Theorem 3. Since the conserved quantity
in the PT -symmetric breaking phase is trivial, we will only
consider the PT -symmetric phase in this subsection.

Through direct calculation, we obtain Tc satisfying
ĤNHTc − TcĤ†

NH = 0 can be expressed as

Tc = I + γ σz + ασx, (43)
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FIG. 3. (a) Expectation value of σz as a function of γ for T = 1.
(b) Expectation value of σy as a function of γ for T = 1. (c) Expec-
tation value of σx as a function of γ with a shaded region indicating
the relaxation time is within acceptable limits (relaxation time not
exceeding twice the Hermitian case) for T = 1. In the figure, red,
purple, and cyan lines correspond to α = −0.6, 0, 0.6, respectively.
The dashed line signifies the system condition where the relaxation
time exceeds twice the Hermitian case.

where −
√

1 − γ 2 � α �
√

1 − γ 2, as shown in Fig. 2(a). We
can get the corresponding equilibrium state

ρNH = 1

2
I + γ

2
σz − 1

2

√
1 − γ 2

k e2
√

1−γ 2/T − 1

k e2
√

1−γ 2/T + 1
σx, (44)

where k =
√

1−γ 2−α√
1−γ 2+α

. The expectation value 〈�σ 〉 is calculated

as

〈�σ 〉 =
⎛⎝−

√
1 − γ 2

k e2
√

1−γ 2/T − 1

k e2
√

1−γ 2/T + 1
, 0, γ

⎞⎠, (45)

as seen in Fig. 3. The same result can also be obtained by
using the partition function method. This distribution has an
abnormal index,

A = ln

⎡⎣1 + γ 2 − α
√

1 − γ 2
k e2

√
1−γ 2/T − 1

k e2
√

1−γ 2/T + 1

⎤⎦, (46)

as seen in Fig. 2(b). We calculated the values of A/γ and
found that they are larger near the y axis, suggesting that the
equilibrium states corresponding to these conserved quantities
should be excluded from consideration; see in Fig. 2(c). To
verify this result, we construct a coupling that satisfies the
symmetry Tc(γ , α) and calculate the relaxation time. For a

system with parameter (γ , α), a possible coupling is

ĤBS = γ1

2

⎛⎜⎝ 1 + 1√
( α

γ
)2+1

1√
( γ

α )2+1
1√

( γ

α )2+1
1 − 1√

( α
γ

)2+1

⎞⎟⎠ ⊗ B̂1. (47)

We compute the time evolution and obtain the relax-
ation time of such a system, which is proportional to√

( α

γ
√

1+α2 )2 + 1 ∼ A/γ . As shown in Fig. 2(d), the region

exhibiting longer relaxation times, as determined by this direct
calculation, aligns well with the area derived from Theorem 3.

VI. CONCLUSIONS

In conclusion, our systematic investigation of statistical
mechanics for non-Hermitian quantum systems has revealed
valuable insights into their thermodynamic properties and
stability conditions. Our analysis has demonstrated that the
stability of these systems requires the existence of a single
path-dependent conserved quantity, be it exact or approxi-
mate, which, when combined with the system’s Hamiltonian,
governs the equilibrium state. By identifying the relation-
ship between the Hamiltonian and the associated conserved
quantity, we have proposed criteria for discerning equilibrium
states with finite relaxation times.

Our investigation provides important insights into un-
derstanding non-Hermitian systems in practical contexts,
establishing the foundation for potential applications of quan-
tum non-Hermitian systems. Future research can build on
our findings by exploring more complex systems. Adding
to this, our exploration of the statistical mechanics associ-
ated with non-Hermitian systems sets a firm groundwork
for forthcoming research into their thermodynamic behav-
ior. A distinctive aspect is that non-Hermitian systems, due
to their non-Boltzmann distribution, are expected to exhibit
unique thermodynamic properties. Therefore, a deepened un-
derstanding of these properties could facilitate more nuanced
applications. Additionally, our research points towards an
intriguing possibility—that changes in the conserved quan-
tities during tuning of the system’s Hamiltonian could give
rise to new singularities within the partition function, po-
tentially ushering in unprecedented thermodynamic phase
transitions. This prospect presents an exhilarating avenue for
future exploration, broadening the scope of research within
this fascinating domain.
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APPENDIX A: MASTER EQUATION OF
QUASI-HERMITIAN SYSTEMS

Generally speaking, the derivation of a quantum Marko-
vian master equation is performed in the interaction picture.
Thus we write the time evolution equation of the den-
sity matrix of system and the bath as in the interaction
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picture [55–57]

d

dt
ρI

S+B(t ) = −i
[
V̂I (t )ρI

S+B(t ) − ρI
S+B(t )V̂ †

I (t )
]
, (A1)

where ρI
S+B(t ) = eiĤeff,0tρS+B(t )e−iĤ†

eff,0t and V̂I (t ) = eiĤeff,0t ĤBSe−iĤeff,0t is the interaction Hamiltonian in the interaction picture
and Ĥeff,0 = ĤNH ⊗ ÎB + ÎS ⊗ ĤB. Here ρS+B is the (non-normalized) density matrix of the thermal bath and system. Its
equivalent integral form is

ρI
S+B(t ) = ρI

S+B(0) − i
∫ t

0
ds

[
V̂I (s)ρI

S+B(s) − ρI
S+B(s)V̂ †

I (s)
]
. (A2)

Substituting Eq. (A2) into Eq. (A1), we obtain

d

dt
ρI

S+B(t ) = −i
[
V̂I (t )ρI

S+B(0) − ρI
S+B(0)V̂ †

I (t )
] −

{
V̂I (t )

∫ t

0
ds

[
V̂I (s)ρI

S+B(s) − ρI
S+B(s)V̂ †

I (s)
]

−
∫ t

0
ds

[
V̂I (s)ρI

S+B(s) − ρI
S+B(s)V̂ †

I (s)
]
V̂ †

I (t )

}
. (A3)

After taking the partial trace over the degrees of freedom of thermal bath B and using the Born approximation
trB[V̂I (t )ρI

S+B(0) − ρI
S+B(0)V̂ †

I (t )] = 0, ρI
S+B(s) ∼ ρI

S(s) ⊗ ρI
B, and the Markov approximation ρI

S(s) ∼ ρI
S(t ), we have

d

dt
ρI

S(t ) = −trB

{
V̂I (t )

∫ t

0
ds

[
V̂I (s)

[
ρI

S(t ) ⊗ ρI
B

] − [
ρI

S(t ) ⊗ ρI
B

]
V̂ †

I (s)
]

−
∫ t

0
ds

[
V̂I (s)

[
ρI

S(t ) ⊗ ρI
B

] − [
ρI

S(t ) ⊗ ρI
B

]
V̂ †

I (s)
]
V̂ †

I (t )

}
. (A4)

We substitute s by t − s; then the above equation can be expressed as

d

dt
ρI

S(t ) = trB

[∫ t

0
ds V̂I (t − s)ρI

S(t ) ⊗ ρI
BV̂ †

I (t ) −
∫ t

0
ds V̂I (t )V̂I (t − s)ρI

S(t ) ⊗ ρI
B

]
+ H.c. (A5)

For the interaction Hamiltonian V̂I (t ) = eiĤeff,0t ĤBSe−iĤeff,0t , we insert the identity operator Î = ∑
m |m〉R〈m|L ⊗ ÎB in it and get

V̂I (t ) = eiĤeff,0t

⎡⎣∑
a,b

∑
m

|m〉R〈m|LγaĈa

∑
n

|n〉R〈n|L ⊗ B̂a

⎤⎦e−iĤeff,0t

=
∑
a,b

∑
m

∑
ω

e−iωt |m〉R〈m|LγaĈa|m + ω〉R〈m + ω|L ⊗ B̂a(t ), (A6)

where |m〉R/|m〉L is the right/left eigenstate of ĤNH with eigenvalue Em. ω = En − Em and |m + ω〉 means the state with energy
En = Em + ω. We have utilized an alternative general expression for ĤBS , where ĤBS = ∑

a γaĈa ⊗ B̂a. In this case, γa are real
numbers, and Ĉa, B̂a are Hermitian operators. Here we define a non-Hermitian operator

Âa(ω) =
∑

m

|m〉R〈m|LγaĈa|m + ω〉R〈m + ω|L, (A7)

where a = 1, 2, 3, . . . , L. Then V̂I (t ) can be written as

V̂I (t ) =
∑

a

∑
ω

e−iωt Âa(ω) ⊗ B̂a(t ). (A8)

Substituting this form of V̂I (t ) to Eq. (A5), we get

d

dt
ρI

S(t ) =
∑
a,b

∑
ω,ω1

ei(ω1−ω)t Âb(ω)ρI
S(t )Â†

a(ω1)
∫ t

0
ds eiωstrB

(
B̂†

a(t )B̂b(t − s)ρI
B

)
−

∑
a,b

∑
ω,ω1

ei(ω1−ω)t Âa(ω)Âb(ω)ρI
S(t )

∫ t

0
ds eiωstrB

(
B̂†

a(t )B̂b(t − s)ρI
B

) + H.c., (A9)
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where a, b = 1, 2, 3, . . . , L. We employ the reservoir correlation functions

�ab(ω) =
∫ t

0
ds eiωstrB

(
B̂†

a(t )B̂b(t − s)ρI
B

)
(A10)

to simplify the above equation. Eventually, d
dt ρ

I
S(t ) of the system S in the interaction picture is

d

dt
ρI

S(t ) =
∑
a,b

∑
ω,ω1

ei(ω1−ω)t�ab(ω)
[
Âb(ω)ρI

S(t )A†
a(ω1) − Âa(−ω1)Âb(ω)ρI

S(t )
] + H.c. (A11)

We use the rotating wave approximation to average out the high-frequency part of quantum transition processes and ignore the
case of ω 
= ω1 and then get

d

dt
ρI

S(t ) =
∑
a,b

∑
ω

{
�ab(ω)

[
Âb(ω)ρI

S(t )Â†
a(ω) − Âa(−ω)Âb(ω)ρI

S(t )
] + H.c.

}
. (A12)

APPENDIX B: INSTABILITY OF QUASI-HERMITIAN
SYSTEMS WITHOUT CONSERVED QUANTITY

In this section, we demonstrate the instability of quasi-
Hermitian systems by examining the diagonal elements of
the steady-state density matrix. The diagonal elements of the
density matrix represent the occupation probabilities of the
corresponding states. By studying these elements, we can gain
insights into the stability and dynamics of the quasi-Hermitian
system.

By using Eq. (A12), the diagonal terms of the density
matrix defined as P(n, t ) = 〈n|LρI

S(t )|n〉L satisfy

d

dt
P(n, t ) =

∑
m

[W (n|m)P(m, t ) − T (m|n)P(n, t )], (B1)

where

W (n|m) =
∑
a,b

γab(Em − En)〈m|RγaĈa|n〉L〈n|LγbĈ
†
b |m〉R,

T (n|m) =
∑
a,b

γab(Em − En)Re(Fab,mn) + SabIm(Fab,mn).

(B2)

Here |n〉L is the left eigenstate which corresponds to |n〉R and
satisfies R〈n|n〉L = 1. Fab,mn = γaγb〈m|RĈa|n〉L〈n|RĈ†

b |m〉L,
where γab is the real part of 2�ab, and Sab is the image part
of 2�ab.

We define a matrix A, the element of which is Ann =
W (n|n) − ∑

m T (m|n), and Amn = W (m|n). If a physical
steady-state solution exists, it must be required that det(A) =
0. Otherwise, it means that there is no steady state in the
system. However, generally speaking, when there is no spe-
cial constraint, the determinant of a matrix will not be 0.
This means that, in general, quasi-Hermitian systems have no
steady state. In order to make the system have a steady state,
and the steady state of the system have a certain stability,
for example, it will not be destroyed by the slight change
of Hamiltonian in the thermal bath. The steady state of the
system is determined by the relative proportion of each matrix
element. When adjusting the Hamiltonian of the thermal bath,
we can change the relative size of the real part and imaginary
part of the system and affect the proportion of matrix ele-
ments. Therefore, a necessary requirement to keep the system

stability is ImFaa,mn = 0. for all a and m, n. This means

〈m|RĈa|n〉L ∝ 〈n|RĈ†
a |m〉∗L

or

〈m|0Ŝ†ĈaŜ−1|n〉0 = k〈n|0Ŝ†Ĉ†
a Ŝ−1|m〉∗0

or

TcĈa = kĈaTc. (B3)

Taking the trace on both sides of the equation, we get

tr(TcĈa) = k tr(TcĈa). (B4)

This is equivalent to k = 1 or tr(TcĈa) = 0. We think that the
small change of Hamiltonian of the thermal bath should not
affect the steady state of the system. Therefore, we can add a
constant to Ĉa so that tr(TcĈa) 
= 0. Therefore, we get k = 1.
We have

[Tc, Ĉa] = 0. (B5)

In other words, the necessary condition for a system to
have a stable state is that the system has a conserved quantity.
Conversely, it can be proved that det(A) = 0 if the system has
a conserved quantity. Recalling the definition

γab =
∫ ∞

−∞
dt eiωt trB(ρBB̂†

a(t )B̂b(0))

≡
∫ ∞

−∞
dt eiωt 〈B̂†

a(t )B̂b(0)〉 (B6)

and using the Kubo-Martin-Schwinger (KMS) condition
〈B̂†

a(t )B̂b(0)〉 = 〈B̂b(0)B̂†
a(t + i 1

T )〉, we derive the temperature
dependent behavior of γab, i.e.,

γab(−ω) = e−ω/T γba(ω). (B7)

We can deduce that T (n|m)e−En/T Wn = T (m|n)e−Em/T Wm.
It can be verified that det(A) = 0 and the steady-state solution
is given by Pn ∝ Wne−βT En , which is consistent with the result
obtained in the text.

APPENDIX C: UNIQUENESS OF Tc FOR
THERMALIZABLE QUASI-HERMITIAN SYSTEMS

In this Appendix, we aim to reach a consensus that a
thermalizable non-Hermitian system can be characterized by a
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unique Tc (up to an irrelevant multiplicative factor that leaves
the expectation values of physical quantities unaffected).

To establish this, we first consider the restrictions of er-
godicity of the non-Hermitian system under investigation on
the operator Tc. Consider a subsystem. Ergodicity can be
interpreted as follows: if the initial state of the subsystem is
confined within a particular subspace, and continues to remain
within that same subspace after time evolution, it indicates
that the system lacks ergodicity. Conversely, if the system pos-
sesses ergodicity, then there does not exist such a subspace.

Assume two distinct Tc satisfying Lemma 1, represented as
Tc1 and Tc2. According to Lemma 1’s first condition, they can
be expressed as

Tci =
∑

m

tmi|m〉R〈m|R, (C1)

where i = 1, 2. |m〉R/|m〉L represent the biorthogonality
right/left eigenstates of ĤNH. {tmi} is a set of positive real
numbers. Now, define the operator

T∗ = Tc1 − κTc2, (C2)

where κ = min( tm1
tm2

). It can be verified that

T∗|m〉L = tm2

(
tm1

tm2
− κ

)
|m〉R. (C3)

For cases where Tc1 and Tc2 are not merely different by a
multiplicative factor, we can delineate a subspace:

V ∗ =

⎧⎪⎨⎪⎩|v〉||v〉 =
∑

k,
tk1
tk2

=κ

λk|k〉L, λk ∈ C

⎫⎪⎬⎪⎭. (C4)

As preparation for further discussion, we calculate tr(T∗ρ) for
an arbitrary ensemble ρ = ∑

i Pi|i〉〈i|. We have

tr(T∗ρ) =
∑

i

Pi〈i|T∗|i〉

=
∑

i

∑
m

Pi|〈i|m〉R|2tm2

(
tm1

tm2
− κ

)
. (C5)

Based on the above expression, if a quantum state exists in
the ensemble that does not belong to the subspace V ∗, we have
tr(T∗ρ) 
= 0. Conversely, if all states belong to the subspace V,
we have tr(T∗ρ) = 0.

Suppose the system’s ensemble at t = 0 mixes states
within the subspace V ∗, i.e., ρ = ∑

i Pi|vi〉〈vi|, where |vi〉 ∈
V ∗. We can verify that T∗ also adheres to conditions (1) and
(2) of Lemma 1. Hence Pc(t )T∗ is a conserved quantity. The
existence of the conserved quantity Pc(t )T∗ yields

tr[T∗ρ(t )] = tr[T∗ρ(t = 0)]/Pc(t ) = 0. (C6)

This fact signifies that, if the states within the ensemble orig-
inated in the subspace V ∗ at the initial time, post the time
evolution, the states within the ensemble will continue to
reside in the subspace V ∗. In such a scenario, Pc(t )T∗ acting
as a path-independent conserved quantity causes the break of
the system’s ergodicity. Thus it is observed that ergodic non-
Hermitian systems possess at most one conserved quantity.

Notably, both non-Hermitian and Hermitian systems, inter-
connected by the similarity transformation Ŝ , share ergodicity.

If the non-Hermitian system possesses a subspace V ∗ that
breaks ergodicity, then the corresponding Hermitian system
will have a subspace V ∗

0 = {Ŝ−1|v〉||v〉 ∈ V ∗} that also breaks
ergodicity. Because the thermalizable Hermitian system ex-
hibits ergodicity, therefore, the thermalizable non-Hermitian
system exhibits ergodicity as well. This indicates that, up to an
irrelevant multiplicative factor, a thermalizable non-Hermitian
system has a unique Tc.

APPENDIX D: REDUCE NON-HERMITIAN SYSTEMS
TO QUASI-HERMITIAN SYSTEMS

First, we present the master equation of a general non-
Hermitian system. We consider the evolution equation of a
non-Hermitian system under such an interaction representa-
tion:

d

dt
ρI

S+B(t ) = − i
[
V̂I (t )ρI

S+B(t ) − ρI
S+B(t )V̂ †

I (t )
]

+ [
ImĤeff,0ρ

I
S+B(t ) + ρI

S+B(t ) ImĤ†
eff,0

]
,

(D1)

where ρI
S+B(t ) = ei ReĤeff,0tρS+B(t )e−i ReĤ†

eff,0t , V̂I (t ) =
ei ReĤeff,0t ĤBSe−i ReĤeff,0t is the interaction Hamiltonian in
the interaction picture, and Ĥeff,0 = ĤNH ⊗ ÎB + ÎS ⊗ ĤB. The
operator ReĤeff,0 is defined as sharing the same eigenstates
with Ĥeff,0, but with eigenvalues corresponding to the real
part of Ĥeff,0’s eigenvalues. Similarly, the operator ImĤeff,0 is
defined as sharing the same eigenstates with Ĥeff,0, but with
eigenvalues corresponding to the imaginary part of Ĥeff,0’s
eigenvalues. Both operators are quasi-Hermitian. Compared
with the evolution equation of a quasi-Hermitian system
ReĤeff,0, the evolution equation of a non-Hermitian system
has one more term. Let us explain how this term representing
dissipation reduces the steady state of the system to that of
the reduced quasi-Hermitian system.

We note that dissipation will mainly introduce a new term
to the Liouville superoperator:

Ldiss mn,kl = (λm + λn)δmn,kl . (D2)

Here, λn is the imaginary part of the eigenvalue correspond-
ing to the eigenstate labeled by n. Under the condition of
strong dissipation, the Liouville superoperator introduced by
the thermal bath’s coupling should be treated as a perturbation
term. According to degenerate perturbation theory, in leading
order, the state with the maximum eigenvalue of the original
Liouville superoperator LNH is equivalent to the state with
maximum eigenvalue of LR, which satisfies

LR = PLNHP, (D3)

where P is the projection superoperator projecting to the
subspace with Ldissρ = 0. That is, P (ρ) = ρ for Ldissρ = 0
and P (ρ) = 0 for Ldissρ 
= 0. This is equivalent to solving the
quasi-Hermitian problem with

ĤR
NH = PĤNHP (D4)

and coupling

ĤR
BS =

∑
a

λa[(PĈaP) ⊗ B̂a + (PĈ†
a P) ⊗ B̂†

a]. (D5)

Here, P is defined by PÔP = P (Ô).
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FIG. 4. Algorithm for determining the equilibrium state of the non-Hermitian system.

To analyze the applicability of this approximation, we ex-
amine the corrections to the steady-state density matrix due
to transitions between nondissipative and dissipative states.
Within the first-order range, the presence of this transition
term does not impact the density matrix of the system within
the subspace of nondissipative states. We only need to analyze
the portion of the density matrix that does not belong to the
space of dissipative states.

First, we consider the off-diagonal matrix elements of
the density matrix. This non-Hermitian term contributes an
additional decoherence rate, which causes the off-diagonal
terms outside the subspace to vanish rapidly. Therefore, the
off-diagonal terms are all zero. Secondly, we examine the
diagonal matrix elements of the density matrix. In the non-
Hermitian case, when |λn| � |γa|, the solution can be derived
using perturbation theory. To this order, we obtain the prob-
ability of the system being in the dissipative states n as

P(1)
n = −∑

s
W (n|s)

2λn
Ps ∼ τdiss

τnondiss
. Here, Ps represents the prob-

ability of the steady-state density matrix’s eigenstates in the
nondissipative states. τdiss represents the dissipative timescale
and τnondiss denotes the timescale of evolution for nondissipa-
tive states. Under the weak coupling limit, this term is indeed
approximately zero. Therefore, we show the effectiveness of
the reduction method considered in the text under the weak
coupling limit.

APPENDIX E: ALGORITHM FOR DETERMINING THE
EQUILIBRIUM STATE OF NON-HERMITIAN SYSTEMS

In this Appendix, we provide an algorithm (Fig. 4) for
determining the equilibrium state of non-Hermitian systems
as a useful summary of the paper. To avoid excessive com-
plexity in the algorithm, we assume that all quasi-Hermitian
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systems without quasi-Hermiticity breaking are thermaliz-
able quasi-Hermitian systems. While this assumption is not

strictly accurate, it holds true for the vast majority of
cases.
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