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Generating samples from the output distribution of a quantum circuit is a ubiquitous task used as a building
block of many quantum algorithms. Here we show how to accomplish this task on a noisy quantum processor
lacking full-blown error correction for a special class of quantum circuits dominated by Clifford gates. Our
approach is based on coherent Pauli checks (CPCs) that detect errors in a Clifford circuit by verifying commuta-
tion rules between random Pauli-type check operators and the considered circuit. Our main contributions are as
follows. First, we derive a simple formula for the probability that a Clifford circuit protected by CPCs contains a
logical error. In the limit of a large number of checks, the logical error probability is shown to approach the value
≈7εn/5, where n is the number of qubits and ε is the depolarizing error rate. Our formula agrees nearly perfectly
with the numerical simulation results. Second, we show that CPCs are well suited for quantum processors with a
limited qubit connectivity. For example, the difference between all-to-all and linear qubit connectivity is only a
3× increase in the number of CNOT gates required to implement CPCs. Third, we describe simplified one-sided
CPCs, which are well suited for mitigating measurement errors in the single-shot settings. Finally, we report
an experimental demonstration of CPCs with up to 10 logical qubits and more than 100 logical CNOT gates.
Our experimental results show that CPCs provide a marked improvement in the logical error probability for the
considered task of sampling the output distribution of quantum circuits.
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I. INTRODUCTION

Quantum error mitigation (QEM) is a versatile set of tools
for improving reliability of quantum circuits executed on
noisy hardware [1–3]. QEM supplements more traditional ap-
proaches to quantum fault-tolerance based on error-correcting
codes. It is well suited for quantum processors available today
that do not yet meet stringent gate fidelity requirements of
full-blown quantum error correction. Most of the known QEM
methods combat noise by measuring a redundant set of data
generated by a suitable ensemble of noisy quantum circuits.
Classical postprocessing is then applied to the measured data
to filter out the contribution of noise and predict the outcome
that would be observed in the absence of noise. A comprehen-
sive review of modern QEM protocols can be found in [4].

In contrast to quantum error correction, QEM introduces
only a minor (if any) overhead in terms of ancillary qubits
and circuit depth while obviating the need to compile a cir-
cuit using a fault-tolerant gate set such as the Clifford + T
library, and tolerates error rates above the threshold of the
known quantum codes. However, QEM has two major limi-
tations. First, the error mitigation overhead, as measured by
the number of circuit repetitions, scales exponentially with
the circuit size, limiting the scope of QEM to relatively shal-
low circuits. While this overhead appears unavoidable, the
exponential scaling becomes very mild in the regime of small
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error rates enabling QEM demonstrations for medium-size
circuits with 20 or more qubits and 1000 or more gates [5,6].
Perhaps more importantly, the scope of almost all known
QEM protocols is severely limited in terms of how the output
of a quantum circuit can be accessed. Namely, these pro-
tocols apply only to quantum algorithms with an expected
value readout. Such algorithms can use the output state of
a quantum circuit only to measure the expected value of
some observable such as a Pauli operator, a Hamiltonian
composed of several Pauli terms, or a projector onto some
basis state. Notable examples of quantum algorithms with
the expected value readout are variational quantum simulators
[7–9] and supervised learning with quantum kernels [10,11].
However, unlocking the full computational power of quantum
algorithms may require a single-shot readout—the ability to
generate samples from the probability distribution describing
the output of a quantum circuit. Thus, if ψ denotes the output
state of a quantum circuit, we would like to sample a bit string
x from the probability distribution |〈x|ψ〉|2. For example,
simulation algorithms based on the quantum phase estimation
[12], Shor’s factoring algorithm [13], Grover’s search [14],
quantum approximate optimization algorithm [15] (QAOA),
quantum volume benchmarks [16], random circuit sampling
[17], and quantum-enhanced Markov chain Monte Carlo algo-
rithms [18] all require single-shot readout. Moreover, certain
families of quantum circuits with the expected value readout
can be efficiently simulated on a classical computer (in time
polynomial or quasi-polynomial in the number of qubits),
whereas their counterparts with the single-shot readout are
believed to be hard for classical simulators. This is the case,
for example, for geometrically local constant-depth circuits
on a finite-dimensional grid of qubits [19–21], instantaneous
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quantum polynomial circuits [22], and QAOA circuits with a
few entangling steps [23–26]. These results strongly suggest
that single-shot readout can endow quantum circuits with
extra computational power [27]. Thus the ability to do error
mitigation for quantum circuits with the single-shot readout is
a highly desirable yet elusive goal.

In the present paper, we examine QEM protocols pioneered
by Roffe et al. [29] and developed further by Debroy and
Brown [30]. The key building block of these protocols is a
coherent Pauli check. It enables single-shot error mitigation
for arbitrary circuits composed of Clifford gates as well as
layers of Clifford gates embedded into a larger, possibly non-
Clifford circuit. A coherent Pauli check (CPC) detects errors
by verifying commutation rules between Pauli and Clifford
gates, as described in more detail in Sec. II. A single CPC
applied to a payload circuit with n qubits requires the overhead
of only one ancillary qubit and at most O(n) gates while
eliminating roughly 50% of the errors that may occur in the
payload circuit. Despite their promise, QEM protocols based
on CPCs have received surprisingly little attention. Recent
works by Debroy and Brown [30], and Gonzales et al. [31]
examined the effectiveness of CPCs using numerical sim-
ulations. Here, we propose a simple theoretical model that
can be used to predict the performance of QEM protocols
with multiple CPCs for a very large number of qubits. Our
model takes into account errors that occur in the payload
circuit as well as errors introduced by CPCs themselves. We
observe a nearly perfect agreement between the predictions of
our model and numerical simulation results. Next, we show
how to enhance the performance of CPCs by augmenting
them with flag qubits and how to efficiently implement QEM
protocols with multiple CPCs for the linear nearest-neighbor
(LNN) qubit connectivity. Finally, we report an experimental
demonstration of error-mitigated quantum circuits with CPCs
and single-shot readout.

Let us briefly comment on the earlier work relevant for our
study. The key ideas behind CPCs are analogous to entan-
glement assisted quantum error correction proposed by Brun,
Devetak, and Hsieh [32]. These authors explored catalytic
quantum codes described by Pauli check operators that do
not obey the standard pairwise commutativity condition. It
was observed that catalytic codes can nevertheless be useful
for quantum communication in the presence of entanglement
shared between the sender and the receiver. Moreover, it was
found that even a small amount of preexisting entanglement
can enable reliable transmission of a large number of qubits.
The authors of [32] also commented that “catalytic quantum
codes open the possibility of application to error correction in
quantum computing where we can think of decoherence as a
channel into the future.” This possibility was explored further
by Chancellor, Roffe et al. in [29,33,34] who introduced the
notion of CPCs and used them as a tool for constructing
conventional quantum error-correcting codes. Reference [29]
also reported the first experimental demonstration of CPCs.
However, the main focus of [29,33,34] was on realizing a
fault-tolerant quantum memory (the identity payload circuit).
A seminal study by Debroy and Brown [30] pioneered ap-
plications of CPCs in the context of quantum computing
and circuit verification. Reference [30] developed strategies
for optimizing Pauli checks and numerically observed that

fidelities of small Clifford and near-Clifford circuits can be
significantly improved in the presence of CPCs. Most of the
constructions used in the present paper were introduced in
[30]. More recently, Gonzales et al. [31] analyzed the per-
formance of CPCs in the presence of coherent (non-Pauli)
errors and proposed an efficient algorithm for finding Pauli
checks compatible with a given payload circuit composed of
Clifford gates and single-qubit (non-Clifford) Z rotations. We
note that CPCs can also be viewed as a partially fault-tolerant
implementation of error correction with flag qubits introduced
by Chao and Reichardt [35].

II. COHERENT PAULI CHECKS

In this section, we summarize the construction of CPCs
proposed in [29–31]. Let Pn and Cn be the groups of n-qubit
Pauli and Clifford operators respectively. By definition, any
element of Pn has a form ωQ1 ⊗ Q2 ⊗ · · · ⊗ Qn, where Qj ∈
{I, X,Y, Z} are single-qubit Pauli operators and ω ∈ {±1,±i}
is a phase factor. The Clifford group Cn contains all n-qubit
unitary operators U such that UPnU † = Pn. Clifford group is
a finite group of the size 22n+n2 ·∏n

j=1(4 j−1) = 22n2+O(n).

A. Two-sided checks

For any Clifford circuit U ∈ Cn and any Pauli L ∈ Pn with
corresponding R = ULU † ∈ Pn it holds that quantum circuit

(1)

where the desired Pauli operator R can be efficiently computed
using the standard stabilizer formalism. The circuit identity
Eq. (1) holds even if U is a part of a larger quantum circuit
that possibly contains non-Clifford gates. Suppose now that
U contains some faulty gates. For simplicity, we will con-
sider the depolarizing noise model such that a faulty gate is
modeled by an ideal gate followed by a Pauli error. Since U
contains only Clifford gates, any Pauli error can be propagated
to the beginning of U , which results in a noisy circuit Ũ = UE
for some Pauli error E ∈ Pn. We conclude that a noisy version
of the quantum circuit identity Eq. (1) is

, (2)

where s = 0 if the error E commutes with L and s = 1 if E
anticommutes with L. We will refer to s as an error syndrome.
By definition, s = 0 with certainty in the absence of errors. A
CPC works by measuring the syndrome s using one ancillary
qubit and postselecting on the outcome s = 0. The simplest
version of a syndrome measurement circuit is illustrated in
Fig. 1 for n = 3 qubits. We refer to the operators L, U , and R
as the left Pauli check, the payload circuit, and the right Pauli
check respectively.

We can detect an error E whenever it anticommutes with
the left Pauli check L. Therefore, if we know anything about
the expected distribution of the errors E , we could choose L
such that the probability of catching an error is maximized
[the corresponding right Pauli check R is uniquely determined
using Eq. (1)]. When the error distribution is not known in
advance, a good strategy is to pick the L at random from the
uniform distribution on the Pauli group Pn. This choice of L
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FIG. 1. Example of a coherent Pauli check with n = 3 data qubits. Superscript indices in the right-side circuit denote the different
components of the three-qubit Pauli terms L and R.

ensures that any nonidentity error E occurring in the payload
circuit anticommutes with the check L with probability 1/2.
If the errors are uniformly distributed, we can detect half of
all the errors in the payload circuit using only a single Pauli
check.

To increase the fraction of detected errors, the CPC con-
struction can be extended to multiple Pauli checks. The
simplest version of this is illustrated in Fig. 2 for m = 3
checks. Alternatively, we could view the circuit formed by
the previous m − 1 checks as yet another Clifford circuit, and
apply a check on it to obtain nested checks. This scheme
also provides some means of detecting an error in the pre-
vious checks themselves. For our simple scheme, we can pick
the left checks Li with i = 1, 2, . . . , m uniformly at random
from the Pauli group Pn and determine the corresponding
right checks as Ri = ULiU †. Since there is no advantage in
applying the same check twice, we can sample from the Pauli
group without replacement to ensure that all the left checks
are unique. The identity operator commutes with all possible
errors, and we therefore omit this element from the Pauli
group when sampling. In the generalized scheme, we again
postselect on the zero syndrome for each of the m checks. As
the number of checks m grows, CPC is capable of detecting
more and more errors in the payload circuit, at the cost of an
exponentially decreasing postselection probability.

B. One-sided checks

We now propose a special optimization to the CPC scheme
for the case where the data qubits are measured directly after
applying the (checked) payload circuit. The error-mitigation
protocol based on one-sided CPCs may find applications in

FIG. 2. Example of a coherent Pauli check on three data qubits.
The check consists of three nested left-right checks, each defined by a
pair of Pauli terms Li and Ri and implemented using a single ancillary
check qubit. For postselection, the measurements on all three check
qubits should be zero.

quantum state tomography based on classical shadows [36]
where a random Clifford operator applied to the state of in-
terest is directly followed by the measurement of each qubit
in the standard basis. Instead of considering some Pauli error
E ′ occurring at the beginning of the payload circuit, we can
push it through the circuit and obtain the equivalent error
E = UE ′U †. The error syndrome s now depends on whether
E commutes or anticommute with the right Pauli check R.
Given that we are now at the end of the circuit, we can
disregard all Pauli-Z components in E , since these do not
affect measurements in the standard basis. This leaves us with
an effective error E ∈ {I, X }⊗n. Without loss of generality,
it suffices to then choose the right Pauli check R from the
n-qubit Pauli-Z group {I, Z}⊗n, and set the associated left
check to L = U †RU . By inserting a pair of Hadamard gates
between the left and right Pauli check gates on the ancillary
check qubit, and inserting pairs of Hadamard gates between
successive checks within the right check (see right-hand side
of Fig. 3), the right check consists of a series of subcircuits of
the form

(3)

Next to the subcircuit, we show the effect it has on the
computational basis states. For an input state |q1, q2〉 we
can concisely represent the result of this transformation
as |q1⊕q2, q2〉, where ⊕ denotes the Boolean exclusive-OR

(XOR) operation. In the absence of readout errors, we can
perform these operations on the classical bits representing
the measurements and therefore implement the right Pauli
check entirely classically. When measurement errors can be
modeled as a product of symmetric bit-flip channels, we can
equivalently apply any readout error before or after the mea-
surement. When implementing the right check as a quantum
circuit any readout error on the payload qubits will not be
detected and may pass postselection, depending on the mea-
sured syndrome value, which itself may be affected by readout
errors. When implementing the right check classically, the
readout error on the data qubits can be viewed as a part of
the payload circuit error. Detection depends on whether the
combined error commutes with the right check or not, and
whether errors are present on the check qubits, either during
the application of the circuit or during readout. With suffi-
ciently many checks it may be possible to avoid postselection
and instead apply error correction of the classical bits using
the measured syndromes; we have not pursued this option.
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FIG. 3. Illustration of (a) a Clifford payload circuit U with Pauli-Z right checks Ri and corresponding left checks Li = U †RiU , just prior
to measurement; (b) simplified left-only Pauli check circuit in which the right checks are evaluated classically. Note that check qubits can be
measured before the payload circuit has completed or even started.

C. Flag qubits

As gates implementing the left and right checks are
themselves subject to noise, errors can occur on them. For
two-sided check circuits, there can additionally be a consider-
able amount of idle time between the left and right checks as
payload circuits and possibly other checks are applied. Such
long idle times leave check qubits susceptible to noise such
as thermal relaxation or coherent errors. Although such noise
can be partially alleviated using techniques such as dynamical
decoupling, some overall noise will remain. We can push any
noise term occurring on the check qubits toward the end of
the circuit. In the absence of readout errors, any Pauli X or
Y error on the check qubit will result in a syndrome value of
one, directing the rejection of the data, since the postselection
criterion is not satisfied. When the error on the check qubit is
Z , it will remain undetected by measurement in the compu-
tational basis. Although having a Pauli-Z error itself prior to
measurement is harmless, it can be caused by a Pauli-Y error
prior to the final Hadamard gate in the check circuit. This
is important since pushing a Pauli X or Y noise term on the
control of a conditional-P gate with P ∈ {X,Y, Z} introduces
a Pauli P error on the target qubit. That means that some error
on the check qubit, which eventually reveals itself as a Pauli-Z
error could have introduced errors on the data qubits along the
way. As such, we may want to have a mechanism for catching
this type of error as well. For this, we introduce a second
ancillary qubit that flags errors on the check qubits as follows:

This can be seen as a coherent Pauli-X check that applies
only to the check qubit. If needed, this scheme can be repeated
by adding another flag qubit to guard against errors on the
first flag qubit, and so on. Given that the idle time of nested
checks only increases we can expect the outer levels to be
more susceptible to noise. Given that ideally, idle time is a
particular form of an identity operation it is also possible to
apply the CPC approach to guard against error during this time
by applying one or more checks with idle time as the payload
circuit.

D. Readout-error mitigation

In Sec. II B we noted that one-sided checks allow us to
incorporate readout errors on the data qubits as a part of the
payload error. A special case of this is to have an empty
payload on a single target qubit at the end of the circuit and
catch any Pauli-X or Y errors (which manifest themselves as
bit-flips in the computational basis measurement) using a one-
sided Pauli-Z check. In essence, this amounts to setting up a
repetition code prior to readout. Adding two levels of checks
results in a three-bit measurement for the target qubit. We can
then postselect the measurement if all bits are equal and the
code word is valid, or loosen this criterion and apply majority
voting on the measured bits to resolve the measurement of the
target qubit. Repeated Pauli-Z checks are implemented by ap-
plying the CNOT gates on each ancillary repeat qubit controlled
by the target qubit, or previously connected repeat qubits.
Similar ideas for readout-error mitigation were proposed in
[37,38]. We illustrate the circuit construction for readout-error
mitigation in Fig. 4.

E. Linear qubit connectivity

The implementation of coherent Pauli checks based on the
circuit expansion shown in Fig. 1 requires high-degree qubit
connectivity. Most contemporary quantum processors support
only limited qubit connectivity and therefore require such cir-
cuits to be implemented using a set of two-qubit gates enabled
by the qubit-to-qubit connectivity map. Without special care,
such transformations could result in an unnecessarily large
number of SWAP operations. We now present an approach
that efficiently maps check circuits onto a chain of qubits
with linear nearest-neighbor (LNN) connectivity. We illustrate
this for a three-qubit left-side check circuit on three data
qubits in Fig. 5(a), omitting for clarify the Hadamard gates
that precede the conditional Pauli operations. As a result of
the linear connectivity, two-qubit gates are available only on
neighboring qubit pairs. The corresponding right-side circuit
mirrors this along the y axis with left checks L substituted
by the appropriate right checks R. The initial qubit order
starts with all check qubits Ci, and is followed by the data
qubits Dj . The idea of the construction is to apply controlled
single-qubit Pauli operations on the adjacent check and data
qubits, followed by a SWAP operation to update the qubit order
(illustrated by the crossing qubit lines implementing the SWAP

operation). When flag qubits are desired the initial qubit order
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FIG. 4. Example circuits for (a) a Pauli-Z checked virtual identity gate; (b) the simplification based on circuit identity Eq. (3) along with a
classical implementation of the right-side check; (c) addition of a checked virtual identity gate on the first check qubit; omitting the classical
operations results checks where all classical bits should match.

interleaves check and flag qubits, as shown in Fig. 5(b). We
then apply all checks and repeatedly swap qubits until all
check qubits are clustered together and ready for application
of the left check circuit. When a quantum processor only
supports operations locally equivalent to the CNOT gate, it
would seem that each of the gray blocks in Fig. 5(c) requires
three CNOT operations to implement the SWAP, and one ad-
ditional CNOT operation, possibly combined with single-qubit
gates, whenever L[ j]

i ∈ {X,Y, Z}. The efficiency of the pro-
posed approach stems from the fact that this template can be
simplified, as shown in Figs. 5(d)–5(f): Controlled X , Y , and
Z operations followed by a SWAP can all be implemented using
two rather than four CNOT gates. Interestingly, the conditional
identity operation, which itself does not require any gates,
followed by a SWAP is now the most expensive, requiring three
CNOT gates.

III. ANALYSIS

A. Asymptotic Pauli-check performance

The performance of coherent Pauli checks is characterized
by the postselection rate (that is, the fraction of shots that

pass the selection criteria), and the logical error rate in the
shots that passed the selection. We now show how to compute
these quantities, both for a finite number of checks and in
the asymptotic regime where the number of checks goes to
infinity.

1. Markov model

In order to model the performance of the Pauli-check
framework we iteratively add single checks and use a sim-
ple Markov model to update a state vector that represents
the probability of being in one of the following three states:
(1) detected error, (2) undetected error, and (3) no error. The
detected-error state means that up to that point, at least one of
the checks was activated, which means it will fail postselec-
tion and we will eventually discard data from this circuit run.
As such, once this state is reached, we remain in this state.
The undetected-error state means that some error occurred in
the payload or check gates, but none of the checks so far was
activated. The no-error state indicates that no errors occurred
in either the payload circuit or the checks considered so far.
Denoting by εpl the probability that the payload circuit is

FIG. 5. Efficient implementation of (a) the left check circuit, and (b) the left side of the flags over LNN. The building block (c) consisting
of a controlled single-qubit Pauli followed by a SWAP can be simplified for X , Y , and Z Paulis [(d)–(f)]. A layout for implementing Pauli
measurements similar to (a) was given in [39].
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affected by an error, we can write the initial state, including
only errors in the payload circuit, as

π (0) =

⎛
⎜⎜⎝

π
(0)
1

π
(0)
2

π
(0)
3

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

εpl

1 − εpl

⎞
⎟⎠. (4)

The state is updated in a Markovian manner and the state re-
sulting from the application of the cth check is given by π (c) =
T (c)π (c−1). The only way we can transition into an error-free
state π

(c)
3 is if we started in an error-free state and had no error

in the check gates, which occurs with some probability t (c)
ok .

We can arrive at or stay in the undetected state π
(c)
2 in several

ways. Starting from an error-free state, we could have noise
in the check gates (including errors on both the check and
data qubits) that goes undetected, which happens with some
probability t (c)

u . If we are already in the undetected-error state,
we can stay there if the current error commutes with the check,
which is assumed to occur with probability one half, and we
either have no error or an undetectable error. Alternatively,
also with probability one half, the error anticommutes with
the check, but detection is then negated by a detectable error,
which occurs with probability t (c)

d . Since t (c)
ok + t (c)

u + t (c)
d = 1

it follows that the overall transition probability is 1/2. Apply-
ing similar logic to the detected-error state and assuming that
the various probabilities are independent of the check index c,
we obtain the following transition matrix:

T =

⎛
⎜⎝

1 1
2 td

0 1
2 tu

0 0 tok

⎞
⎟⎠. (5)

The postselection and logical error rates for a state π = π (c)

are given by

P(postselect) = π2+π3 and P(logical error) = π2

π2 + π3
.

From the upper-diagonal form of T in Eq. (5) it immediately
follows that the characteristic length ξ = 1/ log(λ1/λ2) is
equal to 1/ log(1/tok ), whenever tok � 1

2 .

2. Errors in the check gates

We now study the transition probabilities td and tok , and
consequently tu = 1 − (td + tok ). For this we first consider
two-sided Pauli checks on a fully-connected topology. Each
check is implemented using a set of gates before and after
the payload circuit, which we respectively refer to as the
left-check and right-check gates. For simplicity we assume
that single-qubit gates are noiseless and that the controlled-
Pauli gates CP with P ∈ {X,Y, Z} are affected by identical
two-qubit depolarizing noise channels

Dε (ρ) = (1 − ε)ρ + ε

15

15∑
i=1

PiρP†
i . (6)

Since Dε is invariant under conjugation by any two-qubit
Clifford gate, we can freely choose whether the noise appears
before or after the gate. In fact, we can push the noise channel
through any adjacent one- and two-qubit Clifford gates and

always assume the error occurs directly prior to each left
check and directly following each right check. For each CP
gate in the right check the error occurs with probability ε. The
resulting Pauli term on the control qubit following the check
will then be I with probability 3/15 and one of X , Y , or Z with
probability 4/15 each. We assume that any error on a check
qubit affects the data qubits, and are therefore interested only
in the overall Pauli term on the check qubit. Given that all
errors due to the check gates can be assumed to occur before
and after the left and right checks, we can logically cancel the
check and combine all error terms on the check qubit. Since
there are no longer any gates connecting the check and data
qubits, we can disregard the payload circuit. A single error
is detectable if the Pauli term on the check qubit is either X
or Y , and is undetectable otherwise. It can be verified that an
even number of detectable errors results in an undetectable
I or Z term on the check qubit, and we can therefore only
detect an error when there is odd number of detectable errors
in the gates that implement the check. For a check that is
implemented using k CP gates, each with a detectable error
probability of p = 8ε/15, the overall rate of detectable errors
is given by

td =
∑
odd 	

(
k

	

)
p	(1 − p)k−	 = 1

2
(1 − (1 − 2p)k ). (7)

For the implementation of the checks on a linear topology
we can first push the error for each of the two or three gates
in a single check to the beginning or end of the block. As
illustrated in Fig. 5(a), we see that although the check qubit
moves between physical qubits, it can be regarded as a fixed
qubit. Therefore, there is no logical difference to the all-to-all
connectivity and the above analysis continues to hold with
p = 8ε/15, albeit with a different number k of CP gates.
Likewise, for one-sided checks, we can push all errors to the
end of the left check and consider detectable errors as a bit
flip of the readout. Regardless of the setting, the probability
of having no errors is given by tok = (1 − ε)k . The proba-
bility of undetectable errors is given by tu = 1 − (td + tok ).
As a simplification, we disregarded the possibility that noise
in the check circuit could leave the data qubits untouched.
For instance, the only noise affecting a check could be an
XI term following the final two-qubit gate in the right-side
check, or noise terms on the data qubits could cancel. Some
of these errors may be classified as detected errors, which
decreases the model’s postselection probability. In addition,
it may increase the probability of undetected errors, which
increases the logical error rate. As such, this simplification
may lead to a slightly pessimistic result. Under the assumption
that errors commute or anticommute with the checks with
probability 1/2, the model would then give a lower bound
on the postselection probability and an upper bound on the
logical error rate.

We now consider the number k of two-qubit gates needed
to implement the checks. The expected number of gates for
uniformly sampled payload operators U is given in Table I.
Since we randomly sample the checks, there will clearly
be some variation around the expected value. For two-sided
checks we have the following result:
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TABLE I. The number of CNOT gates for a single check on n data
qubits is concentrated around the given k values.

Description k

Fully connected, left and right checks 3n/2
Fully connected, left checks only 3n/4
Linear, left and right checks 9n/2
Linear, left checks only 9n/4

Lemma 3.1. Let L be a left check sampled uniformly at
random from the Pauli group, and define R = ULU †, with
arbitrary Clifford U . Then the number of gates k needed for
the implementation of a two-sided Pauli check associated with
L and R satisfies

βn − δ
√

2n � k � βn + δ
√

2n

with probability at least 1−2e−δ , where β = 3
2 for all-to-all

and β = 9
2 for linear nearest-neighbor connectivity.

Proof. Consider a left Pauli check L = ∏n
i=1 L[i]. Let ki be

the number of CNOT gates used to implement the controlled-
L[i] gate. In the all-to-all settings, ki = 0 with the probability
1/4 (when L[i] = I) and ki = 1 with the probability 3/4 (when
L[i] = X,Y, Z). Thus the expected value of ki equals 3/4.
In the LLN settings, ki = 3 with the probability 1/4 (when
L[i] = I) and ki = 2 with the probability 3/4 (when L[i] =
X,Y, Z). Thus the expected value of ki equals 9/4. The num-
ber of CNOT gates used to implement the full left check (i.e.,
controlled-L gate) is k = ∑n

i=1 ki. It has the expected value
βn/2, where β = 3/2 and β = 9/2 for the all-to-all and LLN
settings respectively. By Hoeffding’s inequality, the random
variable k deviates from the expected value of βn/2 by more
than δ

√
n/2 with probability at most e−δ . Exactly the same

arguments apply to the right check R = ULU †, since R is
distributed uniformly on the Pauli group for any fixed Clifford
U . Thus, on average, one needs βn CNOT gates to implement
a two-sided Pauli check. Although R and L, and therefore the
number of gates in the left and right checks, are correlated, it
follows from the union bound that the probability of at least
one of the gate counts exceeding the given range is bounded
by 2e−δ . It follows that their sum deviates from βn by no
more that 2δ

√
n/2 = δ

√
2n with probability at least 1−2e−δ ,

as stated. �
For left-only checks, we randomly sample the right checks

uniformly at random from the Pauli-Z or identity. The weight
of the left checks, and consequently the number of gates
needed to implement the check, depends on the payload
circuit. When the payload circuit implements a random per-
mutation on n data qubits the weight of the left checks matches
that of the right checks and has an expected value of n/2.
In order to characterize bounds on the number of gates, we
therefore also need to assume that U is sampled uniformly
at random from the group of n-qubit Clifford operators. The
result then holds with β = 3/4 for all-to-all and β = 9/4 for
linear nearest-neighbor connectivity.

3. Asymptotic logical error rate

For the asymptotic logical error rate, we can disregard the
part of the Markov model that is associated with the probabil-

ity mass of the detected errors. In particular, we consider only
the lower-right block of the transition matrix,

T ′ =
(

1
2 tu
0 tok

)
.

The case tu = 0 occurs only when ε = 0, in which case we
have td = 0 and tok = 1. For each added check the number of
undetected errors in postselection can only decrease, while the
fraction of circuit instances with no error remains the same.
Consequently, the logical error rate will decrease to zero. In
the general case where tu > 0, scaling the relevant part of the
state vector is needed, we can write(

1
2 + αtu
αtok

)
= T ′

(
1
α

)
. (8)

A fixed point occurs whenever (1, α)T is a (scaled) eigenvec-
tor of T ′, which implies

α

1
= αtok

1
2 + αtu

. (9)

This is satisfied for α = 0 or α = (tok − 1
2 )/tu. Since the state

vector cannot have negative entries, we must have α = 0 for
tok � 1

2 , implying an asymptotic logical error rate of 1. For
tok > 1

2 it follows from the upper-diagonal form of T ′ that tok

is the dominant eigenvalue of T ′. When εpl < 1, the initial
α will be strictly positive, and it follows from Eq. (9) that
α = (tok − 1

2 )/tu. This means we converge to a logical error
rate of

π2

π2 + π3
= 1

1 + α
= tu

tu + tok − 1
2

= tu
1
2 − td

.

Putting everything together, we can concisely express the
asymptotic logical error rate as

Easymp. =
{

tu/
(

1
2 − td

)
if tok > 1

2 and εpl < 1

1 otherwise.
(10)

We can expand the first case as follows:

tu
1
2 − td

= 1 − (td + tok )
1
2 − td

= 1 + 1 − 2tok

1 − 2td

= 1 + 1 − 2(1 − ε)k

(1 − 16
15ε)k

= 14

15
kε + O(k2ε2),

where the last expression follows from Taylor series expan-
sion around ε = 0, and k is as given by Table I. For left-right
checks on a fully connected topology this gives an approx-
imate logical error rate of 7nε/5. As for postselection, it
follows from Eq. (8) that the ratio of successive postselection
rates is given by

s(α) :=
1
2 + αtu + αtok

1 + α
.

For tok > 1
2 and α � 0 we have

ds

dα
(α) = tu + tok

1 + α
−

1
2 + α(tu + tok )

(1 + α)2
= tu + tok − 1

2

(1 + α)2
� 0,
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which means that s(α) is monotonically nondecreasing for
α� 0. As a result, it follows that

1
2 = s(0) � s(α) � lim

α′→∞
s(α′) = tu + tok .

In other words, at worst the postselection rate is halved at
every iteration; at best is it multiplied by tu + tok . The logical
error rate is invariant under the normalization of (π ′

2, π
′
3) =

(1, α) and can therefore be expressed as 1/(1 + α). With
decreasing logical error rate or, equivalently, increasing α, the
decrease in postselection rate slows down. Finally, it follows
from Eq. (8) and the asymptotic value of α = (tok − 1

2 )/tu, that
the postselection rate asymptotically decreases by a factor

s
((

tok − 1
2

)
/tu

) =
1
2 + (

tok − 1
2

) + tok
(
tok − 1

2

)
/tu(

tu + tok − 1
2

)
/tu

= tok
(
tu + tok − 1

2

)
tu + tok − 1

2

= tok .

4. Numerical simulations

For a better understanding of the performance of CPC and
the derived asymptotic floor values of the logical error rate
we numerically simulate the method. As the first step, we
sample a 20-qubit Clifford operator uniformly at random [40]
and map it to a quantum circuit that is optimized for the LNN
connectivity (see [40,41] for more details). We then generate
checked circuits with randomly sampled one- or two-sided
checks over either all-to-all or LNN architecture, giving four
distinct settings. The resulting circuits are all Clifford, which
allows to simulate them in a compact tableau representation
based on the stabilizer formalism [42]. Instead of tracking the
state as it evolves by successive application of the gates, we
represent by each row of the tableau the accumulated error of
a single circuit instance. Application of a gate then amounts to
pushing the error through the gate. For a noisy gate we sample
a random Pauli term according to the associated Pauli channel
and multiply it by the existing noise term. When all gates
in the circuit have been processed we end up with sampled
error terms as they would occur just prior to measurement. In
our simplified setting, we assume that state preparation, read-
out, and all single-qubit operations are noiseless. We further
assume that all two-qubit gates are affected by depolarizing
noise channels [see Eq. (6)] with identical ε values. Without
loss of generality we can assume that the initial state of the
data qubits is given by U †|0〉, which means that in the absence
of gate errors, we should measure the all-zero state. Based on
this assumption, we can process the errors captured by the
tableau and, possibly after classical application of the right
check, determine whether the sample is accepted during posts-
election, and whether an error occurred on the data qubits. For
the one-sided check, we disregard any Pauli-Z components
in the errors since these do not affect the measurements. For
the two-sided checks, we assume that the final state is not
yet measured but instead participates in further computations.
Any nonidentity Pauli terms on the data qubits are therefore
considered to be an actual error.

For the simulations, we allow up to 20 checks, and for each
setting, we determine the number of correct and postselected
shots as the average over 20 random check instances, each

with 105 shots. The resulting logical error and postselection
rates, based on the depolarizing strength ε = 0.003, are shown
as dots in Fig. 6. We superimpose as solid lines the values
predicted by the Markov model using the k values from Table I
and a payload error rate εpl as estimated by the numerical
simulation with zero checks. Finally, we indicate the asymp-
totic logical error rate as given by Eq. (10) by a horizontal
dotted line. Despite the simplifying assumption, we observe
that the theoretically predicted values are remarkably close to
the simulated values.

B. Readout-error mitigation using checks

We now consider an instance of the readout-error mit-
igation scheme described in Sec. II D. As mentioned in
Sec. II B, measurement errors that occur during one-sided
Pauli-Z checks can be considered to be errors associated with
the payload circuit. By defining an empty payload at the end
of the circuit, just prior to measurement, we can therefore use
a Pauli-Z check to detect measurement errors. Repeating the
same on the measurement of the check itself, we obtain a
quantum circuit with nested checks, as illustrated in Fig. 7(a).
The purpose of the circuit is to obtain an accurate readout of
the object qubit at the bottom using the ancillary qubits above
it. The dashed boxes model the locations where independent
bit-flip errors are expected. By applying the right-side checks
classically it can be verified that an outcome is accepted only
when all measured bits match. As can also be seen directly
from the circuit itself, we effectively encode the object qubit
using a repetition code prior to readout, and accept only valid
code words during decoding.

1. Error modeling

For modeling of the logical readout error, we first assume
that each measurement is affected by independent symmet-
ric bit-flip channels, each with a bit-flip probability m. As
seen in Fig. 7(a), we model the measurement errors prior to
measurement. This is merely for convenience and we could
equivalently have modeled them as classical noise following
an ideal measurement. Each CNOT gate is followed by inde-
pendent symmetric bit-flip channels on the control and target
qubits, with transition probabilities gc and gt , respectively.

If there are no checks, we accept all measurements and
therefore have a logical readout-error rate equal to m. For
the remainder of this discussion we assume there is at least
one check. This means that the overall measurement error
on the objective qubit combines the CNOT control error and
the measurement error, resulting in a combined bit-flip chan-
nel with transition probability m′ = gc(1 − m) + (1 − gc)m.
Given the symmetry of the noise channels, we can assume,
without loss of generality, that the object qubit is in the |0〉
state. Measurement of the object qubit therefore results in 0
with probability 1−m′ and 1 with probability m′.

We analyze the performance of the Pauli-checked readout
using a Markov model with each step representing an addi-
tional check. For the measurement outcome to be accepted we
require successive checks to match the outcome of the object
qubit. We also keep track of the state of the (ancillary) qubit
prior to the CNOT control and measurement errors, as this is
the state that will propagate to the next ancillary qubit. We
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FIG. 6. Plots of (a) the logical error rate and (b) the postselection rate as a function of the number of Pauli checks based on simulated data
(dots) and evaluation of the theoretical model (solid lines) for a randomly sampled 20-qubit Clifford circuit with depolarizing noise (ε = 0.003)
on the two-qubit gates. The asymptotic logical error rates for the settings in plot (a) are indicated by the horizontal dotted lines. The simulated
results are obtained by combining data from 105 noisy circuit instances each for 20 randomly sampled check instances. The logical error rate
vs the inverse postselection rate is plotted in (c). Plot (d) shows the asymptotic logical error rates as a function of ε for different settings.

represent the current state and the required measurement value
as a tuple. Finally, we need an error state that indicates that
a mismatch in the measured values was encountered. Using
these components we represent the initial state as

init =

⎛
⎜⎜⎜⎜⎜⎝

|0〉, measure 0
|1〉, measure 0
|0〉, measure 1
|1〉, measure 1

error

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 − m′

0
m′

0
0

⎞
⎟⎟⎟⎟⎟⎠.

Application of the CNOT gate on ancillary qubit initialized to
|0〉 results in a state that matches the previous state. However,
we then need to apply noise on the target qubit (that is,
the current ancillary qubit), which can flip the current state.
This amounts to the multiplication of the current state by the

transition matrix

G =

⎛
⎜⎜⎜⎜⎝

1 − gt gt 0 0 0
gt 1 − gt 0 0 0
0 0 gt 1 − gt 0
0 0 1 − gt gt 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

At this point we leave the current state unaffected and merely
determine the probability with which the (noisy) measurement
matches the desired result, and with which probability it fails
to match, which gives a state transition to the error status.
Depending on whether we are dealing with an intermediate
or the final check, the measurement error is given by m′ or m.
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FIG. 7. (a) Instance of a quantum circuit for reading out the bottom qubit with two checks. The dotted boxes indicate the location and
probabilities c and m of bit-flip errors in the model due to CNOT gates and measurements, respectively. (b) The logical measurement error
obtained using simulation of the model based on 106 samples (dots) as well as using the theoretical model (solid lines) when we fix the
physical readout-error rate m to 30% and use CNOT gates with error rates gc = gt chosen from the set 5%, 15%, 25%. The asymptotic logical
measurement error is indicated by the horizontal dotted line. For comparison we also plot the results obtained using majority voting of the
measured bits for even and odd numbers of checks (asterisks and light dashed lines). (c) The asymptotic logical measurement error as a function
of CNOT error rate c for three different readout-error rates m.

Denoting this error by α we have a transition matrix

M(α) =

⎛
⎜⎜⎜⎜⎝

1 − α 0 0 0 0
0 α 0 0 0
0 0 α 0 0
0 0 0 1 − α 0
α 1 − α 1 − α α 1

⎞
⎟⎟⎟⎟⎠.

When applying k checks we have k−1 intermediate checks
with combined measurement error m′, and one final check
with measurement error m. The final state after k�1 checks
can therefore be expressed as

final(k) = M(m)G(M(m′)G)k−1init. (11)

Given a final state we can express the postselection and correct
measurement probabilities respectively by

〈postselect, final〉 with postselect = (1, 1, 1, 1, 0)T

〈correct, final〉 with correct = (1, 1, 0, 0, 0)T .

Here and below we write 〈a, b〉 ≡ ∑5
i=1 aibi for the inner-

product of five-dimensional vectors a and b. We can
consequently write the logical measurement success rate as
〈correct, final〉/〈postselect, final〉.

2. Asymptotic measurement error

In order to compute the asymptotic measurement success
rate, it helps to consider the eigendecomposition M(m′)G =
V V −1 = ∑

i λiviw
T
i , where  is a diagonal matrix contain-

ing the eigenvalues λi, the columns vi of V represent the
associated right eigenvectors, and the left eigenvectors wi are
given by the columns of (V −1)T . Using the definition of the
success rate and Eq. (11), we have

〈correct, final(k)〉
〈postselect, final(k)〉

=
∑

i λ
k−1
i 〈correct, M(m)Gvi〉 · 〈wi, init〉∑

i λ
k−1
i 〈postselect, M(m)Gvi〉 · 〈wi, init〉 . (12)

The largest eigenvalue of M(m′)G is λ0 = 1 with correspond-
ing eigenvector w0 = (0, 0, 0, 0, 1)T . Observe, however, that
we can completely ignore this term in Eq. (12), since
〈w0, init〉 = 0. As the number of checks k goes towards in-
finity, the only remaining λi terms of relevance are those that
match the second largest eigenvalue λmid. Denoting the in-
dices i for which λi = λmid and observing that the scalar term
λk−1

mid appears in both the enumerator and the denominator, we
find that

lim
k→∞

〈correct, final(k)〉
〈postselect, final(k)〉

=
∑

i∈I〈correct, M(m)Gvi〉 · 〈wi, init〉∑
i∈I〈postselect, M(m)Gvi〉 · 〈wi, init〉 . (13)

Keep in mind, however, that the asymptotic postselection rate
will go to zero with the number of checks, unless the measure-
ment error rate m and CNOT gate error rates gc and gt are all
zero.

3. Simulation of measurement checks

The output distribution of the circuit in Fig. 7(a) is easily
sampled using numerical simulation. This allows us to eval-
uate the performance of the measurement checks in various
settings. We first validate the Markov model used to predict
the error rates. For this, we fix the physical readout error m to
30% and use CNOT gates with errors gc=gt chosen from the
set {5%, 15%, 25%}. We generate 106 samples for different
numbers of checks and plot the computed logical measure-
ment error rates as dots in Fig. 7(b). For small numbers of
checks, the sampled values closely match those generated
by the model, indicated by solid lines. As the number of
checks increases, the postselection rate decreases, leading to
larger variations in the sampled values. The asymptotic error
rates are shown as horizontal dotted lines. For comparison,
we also show the logical measurement error rates obtained
using majority voting of the measurement for even and odd
numbers of checks, shown as asterisks connected by light
dashed lines. For odd numbers of checks, we reject any
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FIG. 8. Logical measurement error rates as a function of both CNOT and physical measurement error rates along with iso-contours indicating
a fixed logical error rate. The curves and scale of the error bar changes as the number of checks is increased from zero in (a) to three in (d).
The saturated regions in the bottom right of plots (b)–(d) indicate parameter combinations for which the checked result is worse than direct
measurement.

samples where the number of 0 and 1 bits in the measurement
matches. When the number of checks is zero or one, the two
schemes are equivalent. For larger numbers of checks, we
see that the logical measurement error for majority voting is
significantly higher than that obtained using the more strin-
gent requirement that all measurement bits match, as used in
the Pauli-check approach. (Similar conclusions regarding the
difference in majority and unanimous decoding were found
in [38].) Figure 7(c) shows the asymptotic error rate as a
function of the CNOT error rates gc=gt for three initial values
of m. When m < 1

2 , the asymptotic error rate goes towards
zero as the CNOT error decreases. When w = 1

2 , the logical
error rate remains at a half regardless of the CNOT error rate.
The same applies irrespective of the measurement error rate
when the CNOT error rate is one half. The asymptotic readout-
error rate for w > 1

2 goes towards one with decreasing CNOT

error rate.
In Fig. 8 we show the logical measurement error rates

obtained for different combinations of CNOT and measurement
error rates when using up to three checks. Compared with the
asymptotic results in Fig. 9 we see that the logical error rate

obtained using a limited number of checks quickly approaches
the asymptotic value. Contour lines in the figures show pa-
rameter combinations resulting in the same logical error rate.
The bottom-right regions of the plots with saturated colors
indicate parameter combinations for which the logical error
rate exceeds the physical error rate. In those regions, there is
clearly no advantage in using Pauli checks as they will only
deteriorate the measurement accuracy.

IV. NONASYMPTOTIC PERFORMANCE

The theoretical model derived in Sec. III A allows us to
evaluate the asymptotic performance of CPC under simpli-
fying assumptions. In order to evaluate the performance in
a more practical setting, the model requires a number of
changes. First, we need to consider noise on gates other
than CNOT gates and replace the uniform depolarizing noise
with more general Pauli channels that are specific to each
gate. Moreover, given that check and flag qubits in two-sided
checks are generally idle for at least the duration of the pay-
load circuit, errors due to thermal relaxation can be substantial
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FIG. 9. Asymptotic logical readout-error rate after mitigation using a repetition code implemented with a chain of CNOT gates of length
going towards infinity (in the limit, the postselection rate will be zero). The readout errors are given as a bit-flip channel with equal probability
of transitioning from 0 to 1 and vice versa. The CNOT error rates are the gc and gt values, each indicating a bit-flip probability. Measurements
are accepted only when all bits match. The saturated region indicates parameter combinations where the asymptotic result is worse than direct
measurement without checks.

and should therefore be included as well, along with readout
errors. Second, in order to evaluate the performance of CPC
with additional flag qubits, we need to extend the Markov
model and keep track of the exact Pauli term on the check
qubits. Finally, instead of assuming the payload error to be
known in advance, we need to estimate or bound the error
rates in a tractable manner. In this section, we discuss these
extensions along with other techniques needed to obtain more
accurate performance estimates of CPC in the nonasymptotic
regime.

A. Circuit preparation

When preparing a quantum circuit for execution on a
quantum processor we need to make sure that all gates are
supported. Typically, the processor only provides a limited set
of elementary gate types such as CNOT and RZ gates. In ad-
dition, certain two-qubit gates may be defined only on qubits
that are physically connected, thereby further limiting the set
of available gates. We assume that the payload circuit has been
provided in such a way that it can run directly on the selected
qubits. We therefore only need to make sure we appropriately
implement the check and flag circuits. Here we assume that
the controlled Pauli gates and swap operations already follow
the qubit topology and that no additional swap operations are
needed. Successive single-qubit operations can be combined
and converted into an appropriate sequence of elementary
single-qubit gates. For further analysis by the model described
later in this section we need to keep track of which gates
belong to which part of the circuit. Most notably, we keep
track of the Pauli-swap blocks illustrated in Fig. 5 and their
inverses for the left and right checks. For each check, we keep
track of the blocks used to implement it, and likewise for the
flags. Gates have different durations, and the next step is to
schedule the operations and assign a start and stop time for
each gate. This allows us to identify qubit idle times, which
are padded with delays for simulation to capture thermal
noise. When submitting to quantum processors, idle times
can be replaced by appropriate dynamical decoupling [43,44]
sequences.

B. Tableau simulation

Clifford circuits can be efficiently simulated using binary
tableaus, where each row represents an n-qubit Pauli operator
as a bit string of length 2n. The initial n-qubit state |0〉〈0| can
be expressed in the Pauli-Z basis, resulting in a tableau of size
n × 2n. Applying gates such as CNOT and S to the current state
amounts to simple predetermined updates to the tableau that
only affect few columns, thus enabling simulation of deep
circuits. Sampling a single measurement outcome, however,
may require updating the entire tableau and therefore forms
a major computational expense, despite being polynomial in
the number of qubits. Fortunately, we can avoid simulating
measurements if we assume that measurement errors can be
modeled as the product of single-qubit symmetric bit-flip
channels. Doing so ensures that the measurement noise is
independent of the state, and allows us to model measurement
errors as a Pauli-X noise channel just prior to an ideal mea-
surement. Instead of simulating an initial state and sampling
at the end, we use the tableau representation to simulate the
evolution of Pauli error strings as they change and accumu-
late throughout the circuit. That is, each row in the tableau
represents the noise term for a single run of the circuit, ini-
tialized to the identity operator and possibly updated by a
Pauli noise channel representing state preparation. Per gate
we then update the tableau as before, which conjugates the
noise terms, effectively pushing them through the gate. Per
row, we then sample a Pauli term from the noise channel
associated with the gate and update the existing term using the
exclusive-OR operator on the two bit strings. (If gate noise is
modeled to occur prior to the gate we first sample and update
the tableau before applying the ideal gate.) Once all gates
have been applied, possibly including the noise channels for
state preparation and measurement, we are left with the Pauli
noise terms that apply just prior to measurement. As for the
outcomes themselves, we know that in the absence of noise
the check and flag qubits will be zero. We would therefore
measure one if and only if the corresponding Pauli error term
is X or Y . In the two-sided Pauli-check scheme we assume
no measurements are made on the data qubits, and therefore
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only need to know whether an error occurred on these qubits
or not. That is, we only need to check whether the Pauli string
has identity terms on the data qubits. For the one-sided Pauli
check we ignore the Pauli-Z component of the errors and
perform the right-check classically based only on the Pauli-X
component.

C. Performance model

Given a noise model in which gate noise depends on the
type of each gate and the qubits it operates on, it no longer
suffices to work with average numbers of controlled gates
in a check. Instead, we need to consider noise on a per-gate
bases, and additionally include timing information in order to
capture thermal relaxation of qubits. Closed-form expressions
for the logical error and postselection rates are clearly no
longer feasible, but with minor modifications to the Markov
model from Sec. III A 1, we can still obtain estimates of the
circuit performance. The updated model consists of an outer
and an inner Markov model. The inner model tracks the state
of a single check as the different gates and idle times are
considered. The result of the inner model is then used to
update the outer model, which is updated at the level of entire
checks. The outer model closely matches the Markov model
from Sec. III A 1 and contains four states that indicate whether
or not there is an error on the data qubits, and whether or not
a check or flag was raised so far. The only difference here is
the addition of a state that tracks raised check or flag qubits
without an error; in the original model, this state was grouped
together with detected errors. Updates to the outer model are
done in much the same way as before, and for the initial state
we still require the error rate for the given payload circuit. In
general, we can no longer calculate this error rate exactly and
we therefore use upper and lower bounds, which we derive in
the next section.

The inner model tracks the probability of different Pauli
(error) terms on the check and flag qubits, along with infor-
mation on whether or not there is an error on the data qubits.
The reason we need to keep track of the exact Pauli term on
the check qubit, is because the flag qubit check depends on it.
When flags are present we maintain a state vector of length
2 × 42 = 32, which can be reduced to 2 × 4 = 8 in case the
flag qubit is omitted.

For the inner model we separately consider the left and
right sides of each check and will refer to these as segments.
For each segment, we first evaluate the probability of having
an I , X , Y , or Z Pauli term on the check qubit, combined
with a state that indicates whether the segment introduced
any error term on the data qubits. This gives a state vector
with eight probabilities. For two-sided checks, we evaluate the
probabilities in the state vector by pushing all errors toward
the beginning of the left segment and towards the end of the
right segment. Logically, we can then cancel both sides of
the check and combine the two state vectors by combining
the Pauli terms, assuming that any newly introduced error
terms on the data qubits do not cancel. At this point, if we
assume the data qubits have existing errors, we introduce an
I or an X term on the check qubit with equal probability,
reflecting the assumption that any error on the data qubits
(anti)commutes with the check with probability one half. This

is conveniently implemented by averaging the I and X and the
Y and Z probabilities.

When flag qubits are present, we extend the Pauli terms
by an identity term on the flag qubit, and extend the model
to cover all 42 two-qubit Pauli terms, for a total of 32 prob-
abilities. For all-to-all connectivity, we can easily deal with
flag qubits, since there is never any interaction between qubits
associated with different Pauli checks. For the linear nearest-
neighbor setting, however, this does not generally hold. For
instance, in the example circuit shown in Fig. 5(b), the right-
most SWAP gate acts on the check qubit C1 for the first check,
and the flag qubit F3 for the third check, thus breaking the
Markovian assumption. For two-sided checks with flags on
the linear nearest-neighbor topology, we therefore factor the
noise for the SWAP gates in the flag circuit by looking at the
marginal probabilities of the Pauli terms on each of the two
qubits separately. This effectively decouples the noise terms
and restores Markovianity at the expense of modifying the
noise channel.

For a given left or right check we evaluate the state vector
using a Markov model that iterates over the individual Pauli
elements that constitute the check. These elements are imple-
mented using a single controlled-Pauli gate in the all-to-all
case, and using the blocks shown in Fig. 5 in the case of
linear nearest neighbors. Consider, for instance, a Pauli-X
element from a left check, as shown in Fig. 10(a). By combin-
ing the controlled-Pauli and SWAP gates, the implementation
would consists of two CNOT gates with noise, indicated by
the red boxes in Fig. 10(b). Since each check element is a
quantum circuit on two qubits, we can explicitly evaluate
the individual noise channels and push them through to the
beginning or end of the element by conjugating the Pauli
terms. We then combine the Pauli channels using convolution
(efficiently implemented by element-wise multiplication of
the Pauli fidelities) to obtain a single noise channel associated
with the element [see Fig. 10(c)]. With this we can consider
the update process of the state vector. Each state has a given
Pauli noise term on the check qubit, for instance, a Pauli-Y
term in Fig. 10(d). We push this through the element, as shown
in Fig. 10(e) and can then determine the contributions to the
next state vector. Conceptually, suppose the red noise channel
yields a Pauli ZY term. Then, following the multiplication of
Y X and ZY , the overall noise term would be XZ . This has an
X term on the check qubit, and given that the second term is
not the identity, this introduces an error on the data qubits. In
case the second term would be the identity, we would simply
maintain the current state of whether or not an error occurred.
We can process all of the eight elements of the current state
this way to determine the updated state. Note that the up-
dated state only records whether or not a Pauli error occurred
on the data qubits; the exact terms are discarded and their
individual probabilities are consolidated in the overall state
vector.

For left-only checks, we compute the state vector by push-
ing noise towards the end of the checks, processing elements
from left to right. Since left-only checks are only applicable
when data qubits are measured at the end, we can disregard
Pauli-Z errors on those qubits at the end of the circuit. In
order to account for this to some extent, we slightly modify
the processing of individual elements when updating the state
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FIG. 10. Example of (a) a single Pauli-X element from a left check along with (b) its optimized noisy implementation. Gate noise (indicated
by the rounded red boxes) can be pushed towards the beginning of the block (c). Any existing noise term on the check qubit (d) can be pushed
through the gate block (e) for combination with the noise channel.

vector. Instead of just looking at the Pauli term that appears
on the data qubit, we augment it with identity terms and push
it through the payload circuit. Whenever the resulting term
contains only I and Z terms we treat it as not introducing
any new error onto the data qubits. For simplicity, and indeed
tractability, we assume that X or Y errors on the data qubits
do not cancel or combine to Pauli-Z terms. Finally, note that
readout errors on the data qubits are included in the overall er-
ror probability of the payload circuit and that left-only checks
are never combined with flag qubits.

D. Bounds on the payload circuit error probability

The logical error and postselection probabilities depend
on the error rate of the payload circuit. For a given Clifford
payload circuit, it is therefore important that we can estimate
or at least bound this error rate using the available information
on the individual the gate errors. Assuming that gate errors
are Pauli channels, it is in principle possible to propagate all
gate errors to the end of the circuit and form the overall Pauli
noise channel affecting the payload. However, this approach
scales exponentially in the number of qubits and is therefore
impractical for all but the smallest payload circuits. What we
can do is compute aggregated error channels Ci for succes-
sive gates on small subsets of qubits and use these combined
channels in further calculations. We characterize each channel
Ci by two scalar values. The first, si, denotes the “success
probability” of the channel, namely the probability that no
error occurred. The second, αi, denotes the largest coefficient
of a nonidentity Pauli coefficient in the channel. Both values
are invariant under conjugation of the noise channel with
Clifford operations, and without loss of generality, we can
therefore assume that all intermediate noise channels occur
at the end of the circuit. We now define an aggregated noise
channel C	 that combines channels C1 through C	. The overall
success probability S	 is now defined as the probability that
the aggregated channel appears noiseless; either because none
of the subchannels had any noise, or because noise terms
canceled. We obtain a lower bound L	 on the overall success
probability if we discount error cancellation and require that
all subchannels are error-free,

L	 =
	∏

i=1

si.

For an upper bound we need to consider a more optimistic
scenario where errors cancel. For a pair of Pauli channels
with coefficients ui and vi respectively for Pauli Pi, the total

probability of canceling errors is given by their inner product
〈u, v〉 = ∑

i uivi since only matching coefficients cancel. It is
then natural to ask which channel coefficients v maximize this
probability for a given u. In case the noise-free probabilities
u0 and v0 are fixed, and denoting by ū and v̄ the nonidentity
Pauli coefficients, this amounts to solving

maximize
v̄�0

〈ū, v̄〉 subject to ‖v̄‖1 = 1 − v0.

This expression is closely related to the definition of the dual
norm of the one norm, and the optimum is given by ‖ū‖∞ =
(1 − v0) · maxi{ūi}. Applying this to the combination of chan-
nels C1 with C2, we obtain the upper bound s1s2 + α2(1 − s1),
which can be rewritten as (s2 − α2)s1 + α2. By repeatedly
adding single channels to previously combined channels, we
can obtain an upper bound on the success probability for C.
In case si � αi, which is always true if the error rate 1 − si �
1/2, we can define the upper bound

Ui := (si − αi )Ui−1 + αi,

starting with U0 = 1. Since Pauli channels commute, we per-
mute the order in which we specify the channels. This does
not affect the actual noise channel, but can have an effect on
the the upper bound Uk . As such, it is possible to further lower
the upper bound by carefully selecting the channel order.

In the special case where all channels satisfy si = s and
αi = α, we have

Uk = (s − α)k + α

k−1∑
i=0

(s − α)i = (s − α)k + α
1 − (s − α)k

1 − (s − α)
.

(14)

For a payload circuit consisting of k two-qubit gates, each
affected by a depolarizing channel with error probability ε,
we have s = 1 − ε and α = ε/15 and it therefore follows from
Eq. (14) that

Uk = (1 − (ε + α))k + α

ε + α
(1 − (1 − (ε + α))k )

= ε

ε + α
(1 − (ε + α))k + α

ε + α
= 15

16

(
1 + 16ε

15

)k

+ 1

16
.

(15)

Given the final upper and lower bounds on the success
probability, Lk and Uk , we immediately obtain bounds on the
error rate by setting Pmin := 1 − Uk and Pmax := 1 − Lk . In the
depolarizing case, whenever the number of gates k is large
enough for Pmin(k) to exceed the critical error rate Pcritical, we
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FIG. 11. Assuming depolarizing channels with error rate ε for all two-qubit gates, plot (a) shows the regions, in terms of the number
of two-qubit gates in a 10-qubit payload circuit, for which two-sided Pauli checks with all-to-all connectivity will improve or deteriorate
performance, along with critical threshold based on upper and lower bounds on the payload error rate. For the (white) region in between the
two boundaries, performance improvements depend on the exact error rate of the payload circuit. The left dotted line corresponds to the limit
of Pmin as the number of gates goes to infinity, and the right dotted line gives the value of ε for which tok reaches 1/2. Plot (b) illustrates the
maximum number of qubits in the payload circuit for which Lk < 1/2. This is the largest number of qubits for which tok may not reach the
critical value of 1/2. For a guaranteed performance we could find the largest number of qubits for which the number of check gates k satisfies
tok � Uk < 1/2.

can improve the logical error rate by applying Pauli checks.
On the other hand, when k is sufficiently small such that
Pmax(k) < Pcritical it does not make sense to apply Pauli checks,
since doing so increases the logical error rate. Earlier we also
noted that the asymptotic logical error rate goes to one as
tok � 1/2. The bounds derived in this section can be used to
bound tok based on the number of gates k used to implement
the check (see also Table I). For a given error rate ε, the
lower bounds derived in this section allow us to determine
the maximum number of qubits in the payload circuit for
which tok < 1/2 may still hold. If the lower bound attains or
exceeds one-half, we are guaranteed that the logical error rate
increases to one. We illustrate the various bounds in Fig. 11.

When analyzing the payload errors in the context of left-
only checks, we can disregard all Pauli-Z components in the
error. In this case, we can still follow the same derivation as
above, albeit with some minor changes. In order to obtain the
noise channels Ci we still propagate errors to the end of a
contiguous group of gates on a subset of the qubits, but now
need to push all Pauli terms through the remaining gates to the
end of the payload circuit. We then discard the Pauli-Z compo-
nent of the channel terms and form a new channel consisting
only of Pauli-X operators. In addition to this, we generally
want to include one additional noise channel to model the
readout errors. The combination of successive noise channels
into aggregated upper and lower bounds remains unchanged.

E. Simulation and model results

Given the simulation and modeling tools developed earlier
in this section, we can now compare the performance of coher-
ent Pauli checks with and without flags, as well as the relative
performance of one- and two-sided checks in terms of their

logical error and postselection rates. In the case of two-sided
checks, the expanded noise model also allows us to study
the effect of thermal relaxation during the idle times between
the left and right checks. Simulation allows us to consider
both all-to-all and linear nearest-neighbor architectures, and
enables us to evaluate the accuracy of the model, which can be
substantially faster than sampling, certainly in regimes where
the postselection rate is low.

1. Noise modeling

Before we can run the simulation, we need to construct a
noise model that better captures noise in actual processors.
For this, we start with the error model for IBM’s 127-qubit
superconducting quantum processor ibm_washington, which
is periodically updated and available through Qiskit Aer [45].
Gate noise estimates are provided as local noise channels,
which we simplify to Pauli channels based on the Pauli fi-
delities. Measurement errors are modeled as classical bit flips
occurring after qubit measurements and represented by 2 × 2
stochastic matrices, one for each qubit. For simplicity, we
average the off-diagonal elements and renormalize to obtain
symmetric bit-flip channels. Finally, following [46], we model
the combined effect of amplitude damping and dephasing on
idle qubits as single-qubit Pauli channels with coefficients

px(t ) = py(t ) = 1
4 (1 − e−t/T1 ),

pz(t ) = 1
4 (1 + e−t/T1 − 2e−t/T2 ),

pi(t ) = 1 − (px + py + pz )(t ),

where T1 and T2 represent the qubit thermal relaxation and
dephasing times, and t denotes the duration of the qubit idle
time. To control the strength of the noise, we introduce a
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FIG. 12. The effects of scaling the T1 and T2 values by factors (a) 0.2, (b) 0.6, and (c) 1.0, on simulated and modeled logical error (top) and
postselection rates (bottom) for a randomly sampled Clifford payload circuit on 10 qubits with all-to-all connectivity. Simulation data points
are based on 10 million samples each. Simulated logical error rates with fewer than ten postselected samples are omitted.

scaling factor α for each of the noise types. For Pauli noise
channels associated with gates, we change the channel such
that each Pauli fidelity f is mapped to f α . For α = 1/2 this
means that we halve the noise level in the sense that we need
to apply the Pauli channel twice to obtain the original noise
level. For measurement errors, we multiply the off-diagonal
elements of the stochastic transition matrices by α, followed
by renormalization. Finally, the noise associated with qubit
idle time is scaled by dividing both the T1 and T2 times by α.

The qubits used in the linear nearest-neighbor setting are
easy to embed in the heavy-hex connectivity. This means
that all gates and their associated noise channels are directly
available. Given the heavy-hex connectivity of the processor
and correspondingly, the restricted set of gates, we need to
artificially extend the noise model if we are to simulate cir-
cuits that assume a fully-connected topology. Given a target
number of qubits, we sample gates, along with their noise
model and duration, uniformly at random with replacement,
from the gates defined on the selected qubit chain. The same
is done for the T1 and T2 times and the measurement errors.
For two-qubit gates we ensure that both orientations of the
gate share the same noise and duration.

2. All-to-all connectivity

With the noise model in place, we are now in the position
to compare the performance of the one- and two-sided Pauli
checks with all-to-all qubit connectivity. As the payload, we
randomly sample a 10-qubit Clifford payload circuit that is
implemented over LNN [40]. The circuit contains 274 CNOT

gates and, considering only two-qubit gates, has a circuit
depth of 88. With the CNOT noise scaled by a factor of 0.3 and

ignoring idle time within the payload circuit, the simulated
payload error rate using 10 million samples is around 81.95%
when considering all Paulis errors and 76.21% when disre-
garding Pauli-Z errors. The corresponding bounds evaluated
using the model given in Sec. IV D are 79.82–81.96% and
72.77–76.66%, respectively.

We scale the noise on delay gates, which represent idle
time, by factors 0.2, 0.6, and 1.0 and evaluate the performance
using both simulation and the performance model described in
Sec. IV C, with error rate set to the modeled upper bound. In
both cases we sample up to 20 random Pauli checks in such
a way that per set of checks, each qubit has a nonidentity
Pauli in at least one check. Using 10 million shots per problem
instance, we obtain the results shown in Fig. 12. With limited
noise on qubit idle time, we see from Fig. 12(a) that all
three methods (two-sided checks with and without flags and
one-sided checks) significantly reduce the logical error rate
with added checks. Performance stabilizes around ten checks;
using additional checks does not lower the logical error rate
and only reduces the postselection. Among the three methods,
the one-sided check has both the lowest logical error rate and
the highest postselection rate. A two-sided check with flags
has a lower error rate compared to a two-sided check without
flags, at the cost of a much lower postselection rate. This trend
becomes even clearer when increasing the noise on idle qubits
in Figs. 12(b) and 12(c). With increased noise between the two
segments of the checks, the logical error rate increases and
eventually causes the flags and checks to deteriorate perfor-
mance rather than improve it. The performance of one-sided
checks is largely unaffected by these changes in the noise,
as a result of the limited idle time present in the circuits for
one-sided checks. The modeled logical error and postselection
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FIG. 13. The (a) logical error rate and (b) postselection rate using all-to-all checks on a 30-qubit random Clifford circuit with LNN
implementation. Noise on CNOT and delay gates are reduced by a factor of 10, the measurement error rate is multiplied by a factor 0.1. The
markers indicate simulated results based on 10 million samples. Results with fewer than 10 postselected samples are omitted. The solid and
dotted lines represent the modeled results using payload error rates given respectively by the modeled upper bound and the estimate obtained
from simulation without checks.

rates, indicated by the solid lines in Fig. 12, closely match
those obtained using the simulation. The computational time
for modeling is only a small fraction of the time needed for
the simulation, especially for settings where the postselec-
tion rate is low and many samples are required for accurate
estimates.

As a second setup for all-to-all connectivity we consider
a randomly sampled 30-qubit Clifford operator. The operator
assumes only LNN connectivity and the resulting circuit has
2897 CNOT gates and a CNOT-depth of 328. This depth could
be optimized further using recent constructions described in
[40,41], but we did not pursue this. Given the large number of
qubits involved we scale down the CNOT and delay noise by
a factor of 10, and multiply the readout measurement error
by a factor of 0.3. This gives an estimated payload error
rate of 99.63%, which reduces to 98.94% when ignoring all
Pauli-Z errors. The corresponding bounds obtained from the
model are 96.75–99.79% and 92.93–99.37%, respectively. We
simulate up to 20 checks and plot the resulting logical error
and postselection rates in Fig. 13 along with the modeled
results. In this case, the modeled results are not as close to the
simulated results as before. However, replacing the modeled
upper bound on the payload error rate with the sampled one
(zero checks) again yields quite a good agreement. Using 20
one-sided checks reduces the logical error rate from 98.95%
down to 4.44%, with a postselection rate of 0.23%. Two-sided
checks have a much lower postselection rate, especially when
flags are added. The best logical error rate obtained without
flags is around 31% when using 29 checks, and 33% with 15
checks and flags. These numbers cannot be expected to be
very accurate due to the low postselection rates and should
therefore be taken as rough estimates. For small numbers of
checks, we see that adding flag qubits helps to reduce the
logical error rate at the cost of a modest decrease in the
postselection rate.

3. Linear nearest-neighbor connectivity

The qubit connectivity on ibm_washington is restricted
to the heavy-hex pattern, which means that any circuit with
CNOT gates on arbitrary qubit pairs first needs to be expressed
using only those gates that match the actual qubit connectivity.
Doing so may require a potentially large number of SWAP

operations, and we therefore proposed the optimized check
implementation in Sec. II E. For our next setup, we find a
linear chain of 50 qubits on ibm_washington, for which the
gate noise is available directly from the noise model of the
backend, provided by Qiskit Aer. We again sample a random
10-qubit Clifford operator and consider the performance of
coherent Pauli checks with increasing numbers of checks. The
results obtained using simulation and modeling for this setting
are plotted in Fig. 14 for various levels of noise.

For the flagged setting, we see that the modeled results start
to deviate from the simulated results as the number of checks
increases. As mentioned in Sec. IV C, this is likely due to the
assumption of independent noise on the qubits for each SWAP

gate used in the LNN implementation of the flags. To verify
this, we also ran the simulation and modeling without any
noise on the SWAP gates, aside from any single-qubit delay
noise that follows the gates. Under this assumption the noise
becomes separable and the model assumptions hold. This is
reflected in the results of the two methods, which now closely
match, as seen by the dotted line and asterisks in Fig. 14.

V. EXPERIMENTS

So far, we have restricted the performance evaluation of
coherent Pauli checks using simulations and modeling. How-
ever, the real purpose of coherent Pauli checks is, of course, to
improve the logical error rate of payload circuits that are run
on actual noisy quantum processors.
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FIG. 14. The logical error rates (top) and postselection rates (bottom) for a random 10-qubit Clifford circuit with up to 20 checks on an
LNN topology. The CNOT and delay noise terms are scaled respectively by (a) 0.3 and 0, (b) 0.3 and 0.2, and (c) 0.5 and 0. The markers
represent simulated data based on 10 million samples, solid lines show the modeled results using the modeled upper bound on the payload
error rate. The dotted line and asterisks show the modeled and simulated rates when using flagged checks when no noise is present on the SWAP

gates used to implement the flags. Data points with fewer than 10 postselected samples are omitted.

A. Pauli checks

The heavy-hex topology of ibm_washington, illustrated
in Fig. 15, means that we have to focus on the linear
nearest-neighbor implementation of Pauli checks. For this
we select two chains of qubits with high-fidelity readout and
CNOT gates, as shown in Fig. 15. We then define a simple
payload circuit on even numbers of qubits, consisting of 48
successive CNOT gates on alternating qubits pairs, such that
all qubits are either the control or the target of a CNOT gate.
Starting with one-sided checks, we add up to 15 randomly
sampled checks to the payload and then accumulate 250 000
shots for each circuit, starting from the zero initial state. We

repeat this process 10 times, each time with newly sampled
checks, and plot the resulting logical error and postselection
rates in Fig. 16. For both qubit chains we see a marked
reduction in the logical error rate on payload circuits on up to
10 qubits, summarized by the table in Fig. 16(e). Increasing
the number of checks beyond 15 may still further reduce the
logical error rate for our payloads of size 6, 8, and 10 qubits,
but the number of shots required to accurately show this may
become prohibitive. As seen in the plots, the variance in the
logical error and postselection rates estimates grows as the
number of checks increases and the rates decrease. As shown
in Fig. 16, the postselection rates for both qubit chains follow
very similar trajectories.

FIG. 15. The topology of ibm_washington with qubits 0–126 labeled left-to-right from top to bottom along with selected qubit chains 1
(yellow) and 2 (blue). The table on the right lists the qubit indices of the chains and provides a snapshot of the device properties on the selected
qubits, providing the minimum, maximum, the average values (in brackets). The exact T1 and T2 times and error rates vary over time and are
therefore only illustrative.
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FIG. 16. Performance of one-sided Pauli checks on ibm_washington for payload circuits of 2 to 10 qubits, consisting of 48 repeated CNOT

gates on alternating pairs of qubits, with (a) and (b) the logical error rates and (c) and (d) the postselection rates for qubit chains 1 and 2. Each
point on the faint curves is based on randomly sampled checks and represents the estimated rate based on 250 000 shots with zero initial state.
The solid line represents the rate obtained by combining the shots from ten such instances (each of which is shown as a separate faint curves
of the same color). The table in (e) lists the initial and final logical error rates and the final postselection rates.

While useful for performance evaluation, a payload con-
sisting of repeated CNOT gates simply implements an identity
operation and therefore has no use in practical applications.
On the other hand, randomly sampled Clifford operators are
a much more representative choice for the payload opera-
tor. However, for such operators it is generally difficult to
determine whether an individual measured bit string on the
data qubits is affected by errors or not. Take for instance
the payload circuit that applies a Hadamard gate on each
of the data qubits. In this case each bit string would represent a
valid outcome, making it impossible to detect errors unless we
look at the distribution, which quickly becomes intractable.
As a trade-off, we therefore generate Clifford circuits that
implement random qubit permutations. Although these cir-
cuits are typically shallower in depth than general Clifford
circuits, they have the advantage that we can easily determine

the desired outcome. To make the experiments more interest-
ing, we entangle alternating pairs of neighboring data qubits
by initializing them as EPR pairs. Combined with the permu-
tation circuit, this creates possibly long-distance entanglement
between certain pairs of qubits. We therefore know that mea-
surements of qubits at permuted indices should match. In
this case, we only miss errors that simultaneously affect both
qubits of one or more pairs. For good overall performance we
sample 10 random payload circuits and Pauli check instances,
for up to 15 checks. The results for the two qubit chains are
shown in Fig. 17. The logical error rate decreases for payloads
over 4 and 6 qubits, with checked circuit CNOT depth reach-
ing 72 and 90, respectively. The error rate for the two-qubit
payload circuits was small to start with and after an initial
increase for a small number of checks it returns to roughly
the same value as that without checks. The logical error rate
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FIG. 17. The performance of Pauli checks on random 10-qubit permutation operators, with successive qubit pairs initialized as EPR pairs.
For each combination of number of checks and qubits we independently sample 10 payload circuits and Pauli checks. We connect results with
the same instance number by lines for better visibility of the fluctuations in the rates. The average logical error rate over the different instances
is indicated by the dark solid line. Plots (a) and (b) show the logical error rate for qubit chains 1 and 2, plot (c) shows the postselection rate for
the first qubit chain. The results for the second qubit chain are overall slightly better but otherwise similar and are omitted.

for the 8-qubit payloads gradually decreases and may require
more checks to reduce significantly. However, given the small
postselection rate at that point, this may require a prohibitively
large number of shots. The table shown in Fig. 17(d) provides
a detailed overview of the setting and the results.

We now look at the Pauli check performance on randomly
sampled, but otherwise fixed permutations on 4, 6, and 8
qubits. We randomly sample four series of checks and acquire
250 000 shots for each checked circuit instance. The result-
ing logical error rates, along with the average obtained by
summing all postselection and success counts in Fig. 18(a).
The average logical error rates reduce from 27.20% to 1.86%
on 4 qubits, from 84.23% to 38.61% on 4 qubits, and from
91.74% to 83.78% on 8 qubits. For comparison, we also ran
two-sided checks with the right Pauli-Z checks implemented
as part of the quantum circuit and plot the results in Fig. 18(b).
As with the simulated and modeled results in Fig. 13, we see
that the logical error rates for the two-sided checks deteriorate
with increasing numbers of checks. Given that the one- and
two-sided experiments were run several days apart, we ascribe
the slight differences in the error rates without checks to
automatic recalibration of the gates and gradual changes in
the noise levels. In Fig. 18(c) we show the postselection rates
for both settings.

B. Repeated readout

For our readout mitigation experiments, we use the chain
of 11 qubits on IBM’s 65-qubit superconducting quantum pro-
cessor ibm_ithaca, illustrated in Fig. 19(a). For our purposes,
the chain facilitates the readout of a single qubit with up to
10 checks. As a start, we measure the readout-error rates of
the qubits in the chain. Throughout this section we apply
readout twirling by randomly applying an I or an X gate just
prior to measurement with equal probability and classically
undoing it. Doing so symmetrizes the readout channel of a
single qubit and removes bias in the transitions. For basic
benchmarking of the individual qubit readout rates we prepare
four circuits: two twirl instances for each of the |0〉 and |1〉
initial states. We acquire 8192 measurements for each circuit
instance to estimate the readout errors, which are tabulated
in Fig. 19(b). Since simultaneous readout of several qubits
may change the readout error on the individual qubits we also
measure all qubits simultaneously and derive their error rates.
For this we prepare 256 circuit instances where, randomly
choose the initial state and twirl gates, such that each of the
four combinations on each qubit appears in exactly 64 circuits.
For each circuit instance, we gather 1024 shots, and list the
results in Fig. 19(b). Throughout the remainder of this section,
we always measure all qubits, to avoid large changes in the
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FIG. 18. Logical error rates using (a) left-only and (b) two-sided Pauli-Z checks on a randomly sampled permutation operation on 4, 6,
and 8 qubits. The postselection rates for the left-only check are shown in (c) along with those for the two-sided check (dotted gray lines).

readout noise and consider only the values on the qubits of
interest.

We estimate the CNOT error rates by preparing each of the
neighboring pairs of qubits in the chain, indexed by (i, i + 1),
to the four computational states and applying a CNOT gate
followed by simultaneous measurement of the qubits with a
readout twirl. For each initial state, this gives an empirical
probability distribution p̂ of the four possible outcomes. These
distributions are affected by the readout noise and we correct
them using the estimated 2 × 2 stochastic readout transition
matrices {Ai} for each qubit index i of the chain. Following
[47], we then find the distribution p whose mapping under
the readout transition matrices most closely matches p̂ in
Euclidean norm,

minimize
p∈R4

1
2‖(Ai ⊗ Ai+1)p − p̂‖2

2

subject to p � 0, ‖p‖1 = 1.

Combined, this gives a 4 × 4 stochastic matrix for each of the
CNOT gates. The total error probability per column of these
matrices is listed in Fig. 19(b).

With all ingredients ready we can now measure the target
qubit (the first qubit in the chain) with up to 10 checks. We
consider three measurement settings. In the first, we measure
a qubit directly following the last gate that applies to the qubit.
In the second setting we apply a barrier following the gates on
the qubits and measure all qubits simultaneously. The third
setting matches the second, but applies dynamical decoupling
on the idle time between the gates and the measurements that

arises as a result of the CNOT ladder. A preliminary inspection
of the results shows that there is little difference between
the various settings and we therefore focus on the second
setting. For decoding of the measured bit strings, we use the
unanimous approach in which all bits must match, as well
as majority decoding in which the overall value is set to the
largest number of 0 or 1 bits. In case of a tie, which possible
only with an even number of qubits and therefore an odd
number of checks, we reject the measurement. Fig. 20(a) plots
the results obtained by 128 randomly twirled circuit instances
with the target qubit initialized in the |0〉 state, each sampled
1024 times. (Results obtained with the target state initialized
to |1〉 are similar and therefore omitted.) For 0 or 1 checks
the results of the two decoding schemes are identical. Beyond
that, we see that majority decoding not only has a larger
logical error rate, but also one that can exceed the rate without
any checks. For comparison, we also plot the results obtained
by simulating the respective probability distributions using the
stochastic transition matrices for the CNOT and measurement
operations.

We expect that in the future the fidelity of CNOT gates may
be much higher than that of measurements. Therefore we like
to study this disparity in accuracy. Although we cannot di-
rectly lower the CNOT error rate, what we can do is amplify the
readout noise. Given a single qubit with readout-error rate p
and a target rate r � p, we can apply a classical bit-flip chan-
nel with probability q such that the overall bit-flip probability
p(1 − q) + q(1 − p) = r, which gives q = (r − p)/(1 − 2p).
For each qubit, we can compute the corresponding qi and

FIG. 19. (a) Processor topology of ibm_ithaca along with the selected chain of 11 qubits and (b) estimated error rates of the different
operations on the given qubits (in percent). Measurement errors are determined either by measuring individual qubits, or by measuring all
qubits simultaneously. The CNOT operations use the given qubit as control and the qubit in the column that follows as target.
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FIG. 20. The logical readout-error rates (top) and postselection rates as a function of number of checks using all-equal and majority
decoding (bottom). The results in (a) are based directly on experimental data, and modeled results using the estimated CNOT and measurement
error rates. Plots (b) and (c) show the results obtained when classically boosting the experimental readout noise per qubit to approximately
10% and 30%, respectively.

apply the noise channel to each measured shot. The results
obtained this way for readout errors amplified to 10% and
30% are shown in Figs. 20(b) and 20(c). As expected, with
unanimous decoding, the logical error rate decreases to levels
far below the readout-error rate. Although majority decoding
manages to lower the logical error rate, it does not quite attain
the error rates obtained using unanimous decoding. Finally, in
Fig. 21, we plot the results obtained from modeled probability
distributions when scaling the error terms in the CNOT transi-
tion matrices by a factor α and renormalizing the columns,
while leaving the readout errors at their original levels. At
α=1 we obtain the original experimental results, while for

α=0 we obtain the projected results when all CNOT gates are
noiseless. As α decreases, so do the logical error rates; the
postselection rates, on the other hand, increase.

VI. CONCLUSIONS

Our paper has demonstrated, both analytically and exper-
imentally, that error mitigation methods can be successfully
applied to quantum circuits with a single-shot readout. It was
shown that coherent Pauli checks provide a partially fault-
tolerant implementation of Clifford circuits with a small qubit
and gate overhead. A large sampling overhead associated with

FIG. 21. Modeled logical error rates (a) and postselection rates (b) for different scaling parameters α for the CNOT noise.
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the postselection can be potentially avoided if the measured
syndromes are used to correct errors in the payload circuit,
rather than only detect them. We leave the development of
such error correction protocols for future work. While our
main goal was error mitigation for Clifford payload circuits,
we note that the same methods can be applied to any layer of
Clifford gates embedded into a larger, possibly non-Clifford,
circuit. As a concrete example, our methods can be straight-
forwardly applied to conjugated Clifford circuits proposed by
Bouland et al. [48]. Such circuits have a form LUL−1, where
U is a random n-qubit Clifford operator and L is a layer of
single-qubit SU(2) gates. As shown in [48], sampling the out-
put distribution of conjugated Clifford circuits is classically
hard, under plausible complexity-theoretic assumptions. Since
single-qubit gates can be implemented with high fidelity on
almost all available quantum processors, the dominant source
of errors is likely to be the Clifford layer U and our meth-
ods can be applied to mitigate these errors in the single-shot
setting. An interesting direction for future work is general-
izing coherent Pauli checks to measurement-based models of
quantum computation [49]. For example, the Pauli based com-

putation introduced in [50] can efficiently simulate a universal
quantum computer by initializing a register of n qubits in the
tensor product of single-qubit magic states and performing
a suitable sequence of Clifford gates and measurements. In
this example the dominant source of errors is likely to be
the Clifford part of the computation since the initial magic
states can be prepared with high fidelity by the single-qubit
gates. Finally, our theoretical Markov chain model and the
numerical simulation results indicate that near-term quantum
processors with error rates in the range 0.1% will be capable
of sampling the output distribution of near-Clifford circuits on
approximately 50 qubits.
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