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Topology of rotating stratified fluids with and without background shear flow
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Poincaré inertio-gravity modes described by the shallow water equations in a rotating frame have nontrivial
topology, providing a perspective on the origin of equatorially trapped Kelvin and Yanai waves. We investigate
the topology of rotating shallow water equations and continuously stratified primitive equations with and without
background shear flow. Continuously stratified fluids support waves that are analogous to the edge modes of
weak three-dimensional topological insulators. Background shear flow not only breaks the Hermiticity and
homogeneity of the system but also leads to instabilities. By introducing a gauge-invariant winding number, we
show that singularities in the phase of the Poincaré waves of the unforced shallow-water equations and primitive
equations persist in the presence of both horizontal and vertical shear flows. Thus, the bulk Poincaré bands have
nontrivial topology and we expect and confirm the persistence of the equatorial waves in the presence of shear
along the equator where the Coriolis parameter f changes signs.
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I. INTRODUCTION

Oceanic and atmospheric waves share fundamental physics
with topological insulators and the quantum Hall effect, and
topology plays an unexpected role in the movement of the
atmosphere and ocean fluids [1]. Topology guarantees the
existence of unidirectional propagating equatorial waves on
planets with atmospheres or oceans. In particular, there is a
topological origin for two well-known equatorially trapped
waves, the Kelvin and Yanai modes, caused by the breaking of
time-reversal symmetry by planetary rotation. Coastal Kelvin
waves have also been demonstrated to have a topological
origin [2]; thus Kelvin’s 1879 discovery of such waves [3]
likely marked the first time that edge modes of topological
origin were uncovered in any context (though the topological
nature remained hidden). Recently, reanalysis observations of
Poincaré-gravity waves in the stratosphere have been used
to demonstrate the nontrivial topology of these waves [4].
In light of these discoveries, it is important to consider the
generalization of the shallow water equations to the more
general problem of continuously stratified fluids. At the same
time, it is also crucial to consider fluids driven by shear flows
and damped by friction. Such extensions bring greater realism
to models of actual fluids both on Earth [5] and on other
planets [6]. The extension to background shear may also pave
the way to the treatment of nonlinearities through the use
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of the mean-field quasilinear approximation [7–9] that self-
consistently treats the interaction of waves with mean flows.

The existence of topological edge modes can be under-
stood, via the principle of bulk-interface correspondence,
to be predicted by the nontrivial topology of bulk modes.
Bulk-interface correspondence has been invoked for the
quantum Hall effect and topological insulators [10,11] as
well as for a variety of classical wave systems, includ-
ing nanophotonics [12–15], acoustics [16–18], mechanical
systems [19,20], continuum fluids [1,2,21–23], and plasmas
[24–26]. The principle is clearest for Hermitian systems.
Driving and dissipation, however, lead to non-Hermitian dy-
namics [27–31]. By continuity, weak damping and driving
may be expected to only change the waves slightly, but
what happens as the forcing increases? Efforts have been
put into the topological classification of non-Hermitian sys-
tems [32–35]. Whether or not bulk-interface correspondence
continues to hold remains a central problem. It has been
argued that traditional bulk-interface correspondence breaks
down in non-Hermitian systems [36,37]. Alternatives to the
topological Chern number have been proposed [33,38–41].
Non-Hermitian bulk-interface correspondence has also been
explored experimentally [42,43]. Here, we show that the phase
singularity in the bulk wave functions persists in the presence
of shear flow. The phase of the bulk Poincaré modes exhibits
a vortex or antivortex at the origin in the wave-vector space,
with a change in the phase winding number across the equator.
We show that equatorial Yanai and Kelvin waves persist in the
background shear, consistent with the continued applicability
of the principle of bulk-interface correspondence in the non-
Hermitian realm.

The paper is organized as follows. A brief introduction to
topology in the context of fluid systems is presented in Sec. II.
It includes references to some pedagogical reviews. We derive
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the shallow water equations in the presence of shear and
compare numerical and perturbative methods to find the wave
spectrum in Sec. III. The continuously stratified primitive
equations with and without shear are analyzed in the f -plane
approximation in Sec. IV and the Chern number for each
band is found following the procedure introduced in Ref. [1],
demonstrating a correspondence with weak 3D topological
insulators. In Sec. V, we show that the system is unstable with
both horizontal and vertical shear. In Sec. VI, we numerically
calculate the winding number to demonstrate the topology of
the bulk. We first show that bulk-interface correspondence
holds in the case of spatially varying Coriolis parameters.
(The reader may wish to look at Ref. [4], which attempts
to make the topological concepts discussed here accessible
to climate scientists and geophysical fluid dynamicists.) We
then show our main result, which is that bulk-interface corre-
spondence also appears to hold as background shear is turned
on and the dynamics become non-Hermitian. Discussion and
concluding remarks are made in Sec. VII. Some details of the
calculations are relegated to the Appendices.

II. TOPOLOGICAL INVARIANTS AND
BULK-INTERFACE CORRESPONDENCE

Topology is the branch of mathematics concerned with the
qualitative shapes of objects that remain unchanged under
continuous deformations. The topological equivalence of a
donut and a coffee mug (both have a single hole) is a com-
monly mentioned example, as is the fact that an Möbius strip
cannot be made orientable without tearing the paper and that
it is impossible to comb the spines of a hedgehog (the hairy
ball theorem).

Topology finds noteworthy applications in fluids. Vortex
rings, for instance, show persistence that is rooted in topol-
ogy. The persistence of vortex rings was striking enough
for William Thomson (Lord Kelvin) to attempt to develop a
theory of atoms based upon vortex rings in the hypothetical
aether. Kelvin’s circulation theorem states that the circulation
(the line integral of the fluid velocity) around a closed loop
that is advected with the fluid and thus deformed by the inter-
nal motion remains constant in the absence of viscosity and
forcing. Tornadoes, hurricanes, Jupiter’s red spot, and even
cutoff low-pressure regions in Earth’s atmosphere and vortex
loops in the ocean are all examples of persistent vortices.

Topology may also be applied to more abstract mathemat-
ical spaces. In work recognized by the 2016 Nobel Prize in
Physics, David Thouless and his collaborators demonstrated
that the quantized conductance of the integer quantum Hall
effect can be understood mathematically in terms of the
topology of complex-valued wave functions that live on a
compact Brillouin zone [44]. The electrical Hall conductance
is proportional to an integer Chern number that characterizes
the topology of the wave functions. This quantization has a
physical interpretation as electrical currents that propagate
around the boundary of the semiconducting material in dis-
crete modes, modes that owe their existence to the principle
of bulk-interface correspondence. The principle states that
nontrivial topology away from a boundary implies the exis-
tence of unidirectional waves trapped along the boundary. The
quantum of resistance, h/e2, can be measured so precisely

that it has now been adopted as the international standard of
resistance.

The topology of linearized wave equations is fre-
quently quantified in terms of the Chern number [45]. See
Refs. [4,46–48] for some pedagogical reviews. However, the
Chern number has a number of drawbacks. In contrast to
systems on spatial lattices (where the Chern number was first
applied), for continuous systems such as fluids the Chern
number need not be integer valued as it depends on how
an integral over the Berry curvature is regularized at high
wave vectors. This ambiguity can sometimes be avoided by
compactification [1,2]. Our viewpoint here is that this is more
of a mathematical problem than a physical one because at
small scales dissipation becomes strong providing a natural
(albeit non-Hermitian) regularization at high wave numbers.
Ultimately, at the smallest scales, the fluid description passes
over to Hamiltonian molecular dynamics. It is unclear how to
extend the Chern number to systems with dissipation, driving,
or nonlinearities—all properties of real fluids.

By contrast, these ambiguities do not arise for a winding
number invariant. To demonstrate the concept of the winding
number, it is necessary to define the gauge-invariant, complex-
valued quantity � in the frequency-wave-vector space for a
given eigenmode,

�n(kx, ky) ≡ h∗
n(kx, ky) vn(kx, ky), (1)

where h is the height, v is the meridional velocity, and n
is an eigenmode index. Note that the frequency depends on
(kx, ky) and n. Normal wave modes, which are defined only up
to an overall phase and magnitude, have their overall phases
cancel out in Eq. (1), leaving only the relative phase difference
between h and v and making � gauge invariant.

The idealized rotating shallow-water model on the f
plane is an illustration of the winding number. Figure 1
shows the positive and negative frequency Poincaré modes
(inertio-gravity waves) and the zero-frequency geostrophi-
cally balanced mode. The geostrophically balanced mode
becomes Rossby waves if the Coriolis parameter varies with
latitude. The topology of Poincaré-gravity modes is charac-
terized by a vortex or antivortex in the frequency-wave-vector
space, with winding number ±1. A winding number of +1
means � increases (decreases) by 2π as one moves around the
center of the vortex in a clockwise (counterclockwise) sense.
On the other hand, the winding number of the geostrophic
balanced mode is 0 (topologically trivial). The winding num-
ber, as an alternative to the Chern number, serves the same
function by quantifying the topology of the bands.

A band inversion is a phenomenon where the winding num-
ber flips sign. This can occur for the Poincaré-gravity waves
when either the Coriolis parameter or the wave frequency
changes signs. According to the bulk-interface correspon-
dence, the number of waves that traverse the otherwise
forbidden region in the frequency space is the change in the
winding number, which is two in this case.

Spectral flow in frequency-wave-vector space as the zonal
wave number increases shows that the negative frequency
Poincaré band loses two modes, the geostrophic band gains
and loses one mode, and the positive frequency Poincaré
band gains the two modes. These are the equatorial Kelvin
and Yanai waves (the Yanai waves are also called mixed
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FIG. 1. Dispersion relation in frequency-wave-vector space of the rotating shallow water equations in the f -plane approximation as a
function of latitude. The upper and lower bands are positive and negative frequency modes of the Poincaré waves, and the color indicates the
sign of the winding number of the upper band (blue = −1, red = +1) as shown by the plots of the argument of �(kx, ky ) in the lower half of
the figure (see text). At the equator f = 0, the frequency gap vanishes in a Weyl point and a topological transition occurs (purple) as the two
bands invert. The subinertial range has only a zero-frequency band (black) containing modes in exact geostrophic balance. The inset shows
the dispersion relation on the equatorial β plane with the quasigeostrophic Rossby waves, the Poincaré waves, and the unidirectional Kelvin
and Yanai waves. The vector plot corresponds to the south pole (left) and the north pole (right), respectively. (Figure and caption adapted from
Ref. [4].)

Rossby-gravity waves). The two equatorial modes move with
an eastward group velocity at all zonal wave numbers, and this
unidirectional propagation is a consequence of the breaking of
time-reversal invariance by the planetary rotation.

III. ROTATING SHALLOW WATER EQUATIONS
WITH HORIZONTAL SHEAR

We begin this section by presenting the linearized rotating
shallow water equations in the presence of horizontal shear
and later consider vertical shear in the continuously strati-
fied primitive equations. (See Chap. 5, “Zonally symmetry
wave—mean interaction theory,” of Ref. [49] for relevant
background.) Note that x and y are zonal and meridional
coordinates, respectively. For simplicity, we only consider
shearing flow moving in the x direction: U (y) = (U (y), 0).
We first introduce the following dimensionless quantities:

t̃ = 2�t, η̃ = η

H
, H̃ (y) = 1 + h(y)

H
, ũ = u

c
,

U = U

c
, f̃ (y) = f (y)

2�
, x̃ = x

Ld
, (2)

where c = √
gH is the gravity waves speed in nonrotating

shallow water equations, � is the planet rotation rate, H is
the zonally averaged depth in the absence of shear, and Ld =
c/2� is the global Rossby radius of deformation. Note that
we assume Ld is much smaller than the domain width, which
allows us to treat the two equators independently. In terms of
these nondimensionalized quantities and dropping the tildes

for clarity, the shallow water equations after linearization and
nondimensionalization are given as follows (see Appendix A
for the derivation):

∂t u + U (y)∂xu + v∂yU (y) + ∂xη − f (y)v = 0,

∂tv + U (y)∂xv + ∂yη + f (y)u = 0,

∂tη + H (y)(∂xu + ∂yv) + v∂yH (y) + U (y)∂xη = 0, (3)

where u, v are, respectively, the x and y components of fluid
velocity in the horizontal directions, f (y) is the Coriolis pa-
rameter, H (y) is the mean layer depth and η is the fluctuation
in the depth about this mean; thus the total layer depth is given
by h = H (y) + η. Note that H here is a function of y due to
the balance with the horizontal shear flow [see Eq. (5) below].

We now further specialize to the case of a background basic
shear flow that oscillates sinusoidally in the y direction:

U (y) = U0 sin

(
2πy

�

)
, (4)

where U0 is the magnitude of the shear flow measured in
units of c ≡ √

gh and � is the wavelength of the shear. Note
that linear shear U (y) ∝ y is incompatible with the periodic
boundary conditions that we adopt in the following to elimi-
nate any boundaries from the bulk problem that would confuse
the application of the bulk-interface correspondence principle,
as the only boundaries that we consider here are those located
where the Coriolis parameter vanishes. Geostrophically bal-
ancing the basic flow then determines the mean depth H (y),
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which satisfies

∂H (y)

∂y
= − f (y)U (y). (5)

In the f -plane approximation, f (y) = f0 for a constant f0 and
the mean depth is

H (y) = 1 + U0 f0�

2π
cos

(
2πy

�

)
. (6)

A. Waves on a planet with two equators

To investigate whether or not bulk-interface correspon-
dence continues to hold in the presence of horizontal shear, we
first examine the dispersion relation of shallow water waves in
the presence of both rotation and shear. The wave frequencies
are found numerically with the open-source pseudospectral
DEDALUS package [50]. We employ Ny = 61 spectral modes
in the y direction, sufficient to resolve the waves and odd in
number so symmetry about y = 0 can be preserved. We check
that increasing the resolution Ny does not change the frequen-
cies significantly, including the Rossby wave frequency and
the dispersion of the geostrophic modes. We choose

f (y) = sin

(
2πy

Ly

)
(7)

and set Ly = 4π , where Ly is the width of the periodic domain
(Fig. 2). This choice respects the periodic boundary conditions
and is sometimes called a planet with two equators as the
Coriolis parameter changes signs twice across the domain [1].

Assuming the sinusoidal horizontal shear Eq. (4), which
is antisymmetric about the equator located at y = 0, has the
same periodicity as the domain size (� = Ly), the mean depth
is

H (y) = 1 + U0

[
Ly

8π
sin

(
4πy

Ly

)
− y

2

]
. (8)

Similarly, if the shear is symmetric about the equator at y = 0,
namely,

U (y) = U0 cos

(
2πy

�

)
, (9)

from geostrophic balance, the mean depth is

H (y) = 1 + U0Ly

8π
cos

(
4πy

Ly

)
. (10)

We consider both profiles in the following.
In the absence of shear, Fig. 2(a), equatorial Kelvin

waves and Yanai waves appear in the gap between the
high-frequency Poincaré and low-frequency planetary waves.
These waves have a topological origin [1]. They propagate
unidirectionally (their group velocity does not change sign
for all kx), as guaranteed by topology. Note that while the
wave crest of the Rossby wave indeed always has a westward
component, its group velocity can be both directions, as can
be seen from the wave dispersion in Fig. 2(a). As there are
two oppositely oriented equators, there are both eastward
and westward propagating modes localized respectively at

(a)

(b)

(c)

FIG. 2. Numerical evaluation of the frequency-wave-number dis-
persion of the linearized shallow water equations obtained with
DEDALUS with Ny = 61 spectral modes showing the spectral flow
of the Kelvin and Yanai waves between bands. Colors show the
projected real space position and y∗ = 〈	|y|	〉/Ly. (a) No shear.
(b) Imposed sine shear [Eq. (4)] with U0 = 0.2, and (c) cosine shear
[Eq. (9)] with U0 = 0.2. The Coriolis parameter varies sinusoidally
[Eq. (7)] and changes signs at y = 0 (y∗ = −1) and y = ±Ly/2
(y∗ = 1). We set Ly = 4π . Black solid lines represent the frequency
of the ky = 0 Poincaré modes in the absence of shear and in the
f -plane approximation: f = 1: ω = ±√

k2
x + f 2.

each equator. When shear U0 �= 0 is turned on, the planetary
Rossby waves are Doppler shifted and we observe continuous
spectra near the zero frequency [51]. The continuous spec-
trum spans ω = ±U0kx. The dispersion of the Poincaré modes
also changes with increasing kx; see Figs. 2(b) and 2(c). The
Kelvin and Yanai waves remain localized near the equators.
We have also investigated spectra with larger values of U0

and find that the Kelvin and Yanai waves persist so long as
U0 is not too large. If U0 is too large, the bulk bands and
the boundary modes become difficult to distinguish due to
significant changes in the frequency of the bulk modes and the
large Doppler shift of the planetary waves, especially in the
case of the sine shear flow. We show below that the continued
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presence of the waves is consistent with the persistence of
bulk-interface correspondence in the presence of shear.

B. Bulk waves on the f plane

We now develop a purely spectral approach to include
shear that is amenable to either direct diagonalization or a
perturbative expansion. First, we briefly review shallow water
waves on the f plane in the absence of shear flow [1]. We
expand the eigenmodes in the plane wave basis, (u, v, η) =
	(kx, ky, f0) = 	̂ exp(ikxx + ikyy − iωt ). In this basis, the
linear wave operator is a 3×3 matrix:

L0(kx, ky, f0) =
⎛
⎝ 0 i f0 kx

−i f0 0 ky

kx ky 0

⎞
⎠. (11)

The amplitudes of the normal modes 	±,0(kx, ky, f0) with
frequencies ω±,0 can be obtained by diagonalizing L0. The

positive Poincaré mode frequency is ω+ =
√

k2
x + k2

y + f 2
0

with the eigenmode,

	+ =

⎛
⎜⎜⎜⎜⎝

− kx
k + i f0ky

k
√

k2+ f 2
0

ky

k − i f0kx

k
√

k2+ f 2
0

k√
k2+ f 2

0

⎞
⎟⎟⎟⎟⎠, (12)

where k ≡
√

k2
x + k2

y . A highly degenerate geostrophically
balanced mode appears at zero frequency, ω0 = 0 (the degen-
eracy is lifted when the Coriolis parameter varies with latitude
or in the presence of shear):

	0(kx, ky, f0) = 1√
k2 + f 2

0

⎛
⎝−iky

ikx

f0

⎞
⎠. (13)

Finally, the negative Poincaré mode has angular fre-
quency ω− = −ω+ with corresponding wave function
	−(kx, ky, f0) = 	+(−kx,−ky,− f0), reflecting the fact that
the wave amplitudes in real space are real valued.

For Poincaré-gravity waves, the gauge-invariant quantity
displays a vortex or antivortex (depending on the signs of the
frequency and the Coriolis frequency) centered at the origin
in wave-vector space,

�±(kx, ky) = ky − isgn( f0)kx

f0
, (14)

where we use the long-wavelength approximation k2 	 f 2
0 .

The vortex (antivortex) has winding number ±1, which con-
stitutes its topological charge. Representing the phase of �

with an arrow makes these patterns evident, as shown in Fig. 1.
The zero-frequency geostrophic mode, by contrast, has in the
same limit

�0(kx, ky ) = ikx

f0
, (15)

and thus has a domain wall at kx = 0 and zero winding num-
ber. Its topological charge therefore vanishes.

C. Horizontal shear flow on the f plane

In the presence of shear flow, the system is no longer
translationally invariant along the y direction. While the linear
wave operator can still be expressed as a matrix in wave-
vector space, it is no longer composed of 3×3 block matrices
along the diagonal. We first rewrite Eqs. (3) in position space
in the form of a matrix of differential operators:

L̂(x, y, f0,U0) = i

⎛
⎜⎜⎝

U (y)∂x
∂U (y)

∂y − f0 ∂x

f0 U (y)∂x ∂y

H (y)∂x H (y)∂y − ∂H
∂y U (y)∂x

⎞
⎟⎟⎠.

(16)

This linear operator preserves the parity-time (PT) symmetry
despite the broken Hermiticity, and spontaneous PT-symmetry
breaking has been known to lead to instabilities [52,53]. How-
ever, note that if the shear flow has dependence on both x and
y (i.e., U (x, y)), PT symmetry would be broken. Substituting
in the sine shear flow U (y) from Eq. (4) with H (y) satisfying
the geostrophic balance in Eq. (5), we obtain

L̂(x, y, f0,U0) = i

⎛
⎜⎜⎝

U0 sin
( 2πy

�

)
∂x

2πU0
�

cos
( 2πy

�

) − f0 ∂x

f0 U0 sin
( 2πy

�

)
∂x ∂y[

1 + U0 f0�

2π
cos

( 2πy
�

)]
∂x

[
1 + U0 f0�

2π
cos

( 2πy
�

)]
∂y − U0 f0 sin

( 2πy
�

)
U0 sin

( 2πy
�

)
∂x

⎞
⎟⎟⎠. (17)

Note that the linear wave operator has a y dependence, which means that when expanding H in wave-vector space, different
modes with different k′

ys can mix. Without loss of generality, we assume � = 1. We can consider the simplest case where there
are only three modes, ky, ky ± 2π , in the basis. In this case, the full linear wave operator is a 9×9 matrix that can be decomposed
into 3×3 blocks, which can be formally represented as follows:

L9×9(kx, ky, f0,U0) =

⎛
⎜⎝

L0(kx, ky + 2π, f0) T1(kx, ky, f0,U0) 0

T2(kx, ky + 2π, f0,U0) L0(kx, ky, f0) T1(kx, ky − 2π, f0,U0)

0 T2(kx, ky, f0,U0) L0(kx, ky − 2π, f0)

⎞
⎟⎠, (18)
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(a) (b) (c)

FIG. 3. Comparison of the frequency of the lowest positive frequency Poincaré modes from (a) full diagonalization and (b) perturbation
theory of the 9×9 linear wave operator. (c) The difference between the two frequencies in (a) and (b).

where L0 is given in Eq. (11) and T1 and T2 are the transition
matrices between modes:

T1(kx, ky, f0,U0) = 〈kx, ky + 2π |L̂|kx, ky〉

= U0

2

⎛
⎝ ikx 2π i 0

0 ikx 0
f0kx

2π

ky f
2π

+ f0 ikx

⎞
⎠,

T2(kx, ky, f0,U0) = 〈kx, ky − 2π |L̂|kx, ky〉

= U0

2

⎛
⎝−ikx 2π i 0

0 −ikx 0
f0kx

2π

ky f0

2π
− f0 −ikx

⎞
⎠. (19)

The derivation of T1 and T2 can be found in Appendix B.
The matrix T1(kx, ky, f0,U0) connects wave number ky to
ky + 2π and T2(kx, ky, f0,U0) connects ky to ky − 2π . Note
that T1 �= T †

2 and the linear wave operator is non-Hermitian.
The frequency spectrum and the eigenvectors can then be
obtained by diagonalizing the full matrix L(kx, ky, f0,U0). We
validate our results by comparing our spectra with the ones
obtained with DEDALUS [50] in Appendix C.

D. Perturbative treatment of shear

We also consider a perturbative expansion of the eigen-
functions (values) in powers of the shear [54–56]. We may
treat the shear flow perturbatively by considering the quantity
δL = L − L0, namely, the off-diagonal blocks in Eq. (18).
The correction to the frequency of the Poincaré mode first
appears at second order in the shear:

ωn = ω(0)
n +

∑
m �=n

δLnmδLmn

ω
(0)
n − ω

(0)
m

, (20)

where δLmn = 〈m|δL|n〉, and m and n are indices that label a
wave-vector state with some ky. The wave functions including
the first-order correction are given as follows:

|n〉 = |n(0)〉 +
∑
m �=n

δLmn

ω
(0)
n − ω

(0)
m

|m(0)〉, (21)

where |n(0)〉 and |m(0)〉 are unperturbed wave functions cor-
responding to some ky. The perturbed eigenmodes are still
labeled by wave vector (kx, ky) despite the fact that they con-
tain contributions from modes at other ky. To second order
in the shear U0, the frequencies only involve intermediate
modes at wave vectors (kx, ky ± 2π ); higher orders of per-
turbations involve increasing departures of the wave number
away from kx = 0. Figure 3 compares the frequency obtained
from full diagonalization of the 9×9 linear wave operator to
the spectrum from second-order perturbation theory. The two
spectra agree well with each other. Through comparing the
perturbative spectrum and the full diagonalization, we show
that, first, the bulk can be classified by (kx, ky) and, second,
the change of the bulk Poincaré wave is smooth as a func-
tion of U0. Therefore, we argue that using the bulk-interface
correspondence is valid despite the broken Hermiticity. As
discussed later in Sec. VI, the first- and second-order per-
turbative corrections to the wave functions do not alter their
topological properties.

E. Wave dynamics

Figures 4 and 5 show snapshots of the propagation of wave
number 2 (kx = 4π/Lx) Kelvin and Yanai waves subjected to
sine and cosine shear. The waves remain localized near the
y = 0 equator as they propagate. The wave amplitude grows
in time with the sine shear [Figs. 4(b) and 4(d)] and decays
in time with the cosine shear [Figs. 5(b) and 5(d)], consistent
with the imaginary part of the frequency eigenvalues that cor-
respond to growth and decay, respectively, for the two types
of the shear. Note that since the sine shear is odd in y, the
Kelvin wave also becomes asymmetric in y as time evolves
[Fig. 4(b)].

IV. PRIMITIVE EQUATIONS WITH AND
WITHOUT SHEAR

We turn next to the continuously stratified primitive equa-
tions. It has been shown that nonrotating stratified fluids with
profiles of stratification that transition with increasing depth

033191-6



TOPOLOGY OF ROTATING STRATIFIED FLUIDS WITH … PHYSICAL REVIEW RESEARCH 5, 033191 (2023)

FIG. 4. Time evolution of the η-component of (a), (b) the Kelvin wave and (c), (d) the Yanai wave for sine shear with U0 = 0.1, Ny = 121,
Nx = 71, Ly = 20π , Lx = 10.

from marginally unstable to stable have a wave of topological
origin along the interface [57]. We make the standard Boussi-
nesq approximation, and the vertical velocity or variation in
the buoyancy replaces the depth as one of the dynamical
fields.

We first analyze the topological character of the linear
stratified equations in the absence of shear by calcu-
lating the topological invariant within the bulk f -plane
approximation. The linearized and nondimensionalized equa-
tions can be derived from the underlying hydrostatic equations

(see Appendix D for the detailed derivation):

∂u

∂t
= −U (y)

∂u

∂x
− v

∂U (y)

∂y
+ f (y)v − ∂η

∂x
,

∂v

∂t
= − f (y)u − U (y)

∂v

∂x
− ∂η

∂y
,

∂

∂t

∂η

∂z
= −w − U (y)

∂2

∂x∂z
η, (22)

FIG. 5. Time evolution of the η component of (a), (b) the Kelvin wave and (c), (d) the Yanai wave for cosine shear with U0 = 0.1, Ny = 121,
Nx = 71, Ly = 20π , and Lx = 10.
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where w is the vertical velocity and the vertical depth variation
η, and the buoyancy b are related by the diagnostic relation-
ship ∂zη = b.

On the f plane, it is again natural to switch to a basis
of plane waves which decouples the modes with different
wave numbers in the z direction, kz. The incompressibility
constraint in this basis takes the form ∇ · u = i(kxu + kyv +
kzw) = 0, permitting the replacement of w and η with b, u,
and v. In the absence of shear, Eqs. (22) now correspond in
this basis to the linear wave operator:

L0 =

⎛
⎜⎜⎝

0 i f0 −i kx
kz

−i f0 0 −i ky

kz

i kx
kz

i ky

kz
0

⎞
⎟⎟⎠. (23)

The eigenfrequencies of Eq. (23) are ω± = ±
√

f 2
0 + k2/k2

z
and ω0 = 0 with corresponding eigenvectors,

	± = 1

N1

⎛
⎜⎜⎜⎝

∓ikzkx

√
f 2
0 k2

z + k2 + f0k2
z ky

∓ikzky

√
f 2
0 k2

z + k2 − f0k2
z kx

k2kz

⎞
⎟⎟⎟⎠,

	0 = 1

N2

⎛
⎜⎜⎝

−kxky

k2
x

f0kxkz

⎞
⎟⎟⎠, (24)

where k2 = k2
x + k2

y , and N1,2 are normalization constants.
We consider the positive frequency eigenvector at fixed

nonzero kz. Letting fz = f0kz and dividing 	+ by kz, we have

	± = 1

N3

⎛
⎜⎜⎝

∓ikx

√
f 2
z + k2 + fzky

∓iky

√
f 2
z + k2 − fzkx

k2

⎞
⎟⎟⎠, (25)

where N3 is the new normalization constant. The Berry con-
nection is

Im〈	+|∇p|	+〉 = (−2 fzky

√
f 2
z + k2, 2 fzkx

√
f 2
z + k2, 0

)
,

(26)

where p = (kx, ky, fz ). The result is the same as the Berry
connection of the positive Poincaré mode of the shallow water
equations [1]. The difference of the Chern number between
the two hemispheres, �C±, can be calculated analytically
by integrating the Berry curvature over the unit sphere in
(kx, ky, fz ) space. For the Poincaré modes, the difference
�C± = ±2. By bulk-interface correspondence, for each kz,
there are two pairs of boundary Kelvin and Yanai modes (one
pair each for the two oppositely oriented equators). These
stacks of boundary modes are analogous to the edge modes
found in weak three-dimensional topological insulators [45].

With sinusoidal horizontal shear flow, the eigenmodes of
Eq. (22) can be obtained by the methods outlined in Sec. III C.
The method again shows excellent agreement with the result
obtained from DEDALUS (not shown in the paper).

With a vertical shear flow, the primitive equations are mod-
ified to be the following:

∂u

∂t
= −U (z)

∂u

∂x
− f (y)v − ∂η

∂x
,

∂v

∂t
= − f (y)u − U (z)

∂v

∂x
− ∂η

∂y
,

∂

∂t

∂η

∂z
= −w − U (z)

∂2η

∂x∂z
. (27)

In this paper, we consider a linear vertical shear flow,
namely, U (z) = U0z. We numerically simulated the spectra
in the (y, z) space using DEDALUS as shown in Fig. 6 with
U0 = 0.01. Similar to Fig. 2, we use a sinusoidal Coriolis
parameter f (y) = sin(2πy/Ly) with Ly = 10π . Both Yanai
and Kelvin waves are present at different values of vertical
wave number kz.

V. SHEAR INDUCED INSTABILITY

To investigate the stability of the waves in the presence
of horizontal shear, we follow Ref. [58]. Introducing the
background potential vorticity Q(y) = f (y)−∂yU (y)

H (y) , perturba-
tions are bounded if there exists some constant α ∈ R such
that the following two conditions hold for all y ∈ [− Ly

2 ,
Ly

2 ]:
(i) [α − U (y)] ∂yQ(y) � 0 and [α − U (y)]2 � H (y). For the
sine horizontal shear flow, condition (ii) can be satisfied, but
condition (i) requires that the function g(U0, y) = U0 sin(2πy)
to be greater or equal to zero over the entire domain, but this
condition is violated for any U0 �= 0. The analysis is similar
with a cosine shear. Thus, the bulk modes are always unstable
in the presence of horizontal shear. We numerically confirm
the instability of the bulk modes by presenting the imaginary
part of the frequency spectrum in Fig. 7. When U0 �= 0, the
spectrum has a nonzero imaginary part that grows linearly in
U0 for small shear. The instability is most prominent in the
planetary Rossby modes.

In the presence of the linear vertical shear with rigid-lid
boundaries, since the derivative of U (z) has the same sign
at the upper and lower boundaries, Eady instabilities are
present at low wave numbers [5]. We numerically verified
the presence of Eady instabilities by simulating the primitive
equations and observed that the spectra are unstable at low
wave numbers.

Despite the presence of instabilities with both horizontal
and shear flows, the gauge-invariant phase is a robust method
of quantifying the topological nature of the system.

VI. NUMERICAL CALCULATION OF BULK
WINDING NUMBERS

For Hermitian systems, bulk-interface correspondence
[10,59] establishes a relationship between the topological in-
variant, the Chern number of the bulk, and the number of
edge modes. It states that that the difference in the number
of counterpropagating edge modes equals the difference in
the Chern number in two bulk regions that are connected at
a boundary: �C = nL − nR, where nL and nR are the number
of left-moving and right-moving modes. The Chern number
can be calculated analytically for the rotating shallow water
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FIG. 6. The spectral flow of Kelvin and Yanai waves between the band gaps exhibited by the linearized primitive equations with a linear
vertical shear U0 = 0.01 obtained from DEDALUS with Ny = 24, Nz = 24, Ly = 10π, Lz = 2π using Fourier basis. The vertical wave number
is (a) kz = 1, (b) kz = 2, and (c) kz = 3. The solid black lines are the dispersion relation for the f -plane approximation with f = 1, Eq. (24).
As in Fig. 2, the color indicates proximity to the two equators. The missing scattered points are due to the difficulty in separating out the modes
that correspond to different vertical wave numbers kz.

equations. Each of the three bands may be parametrized on
the unit (kx, ky, f ) sphere. The Chern number may then be
found by integrating the Berry curvature over the surface of
the sphere with a fixed radius

√
k2 + f 2 [1].

In the presence of shear, however, the linear wave operator
is no longer Hermitian, and a rigorous bulk-interface corre-
spondence principle is not in hand. We may still investigate
the topological properties of the bulk wave functions and
compare with the boundary mode spectrum to test whether
or not bulk-interface correspondence continues to operate.
However, the presence of shear breaks translational invariance
in the y direction and the integral of the Berry curvature
becomes difficult to evaluate. As an alternative, we instead
look for singularities in the phase of the wave functions which
appear as vortices in wave-vector space [60]. In the context of

FIG. 7. Imaginary part of the frequency of the lowest-frequency
planetary waves obtained from full diagonalization of the 69×69
linear wave operator.

polarization physics, it has been shown that the winding of the
polarization azimuth, or the wave-function phase, equals the
enclosed Chern number [61,62]. We set the Coriolis parameter
such that it is in the bulk (namely, it does not change signs),
and examine the phase of the wave functions in (kx, ky) to
check whether there is a vortex or antivortex in the phase.

A. Spatially varying Coriolis parameter

Delplace et al. [1] used an f -plane approximation to an-
alytically calculate the Chern number to show the nontrivial
topology of the equatorial waves. However, realistically, Cori-
olis parameter is a function of the latitude and translational
invariance is always broken in the bulk. Here, we first verify
that translational invariance in the bulk is not required. To
do this, we preserve Hermiticity by considering a spatially
varying Coriolis parameter in the absence of the shear flow
and find the winding number of the Poincaré modes. We
choose

f (y) = f0 + � f sin

(
2πy

Ly

)
, (28)

so we may adapt the formalism introduced in Eq. (18) to write
the linear wave operator in wave-vector space with transition
blocks:

T1(� f ) = � f

2

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, T2(� f ) = T1(kx, ky,� f )T .

(29)

By diagonalizing the linear wave operator, we can obtain the
spectrum of shallow water equations with the y-dependent
f (y). We choose � f and f0 such that f (y) does not change
sign anywhere; thus we remain in the bulk and no edge
modes should arise. Figure 8 shows the bulk spectrum with
� f = 0.5 and f0 = 1. Frequencies obtained by diagonaliza-
tion [Fig. 8(a)] in wave-vector space agree with those obtained
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(a) (b)

FIG. 8. Numerical calculation of the bulk eigenfrequencies for the spatially varying Coriolis parameter. (a) Diagonalization of the 69×69
wave-vector space linear wave operator. (b) DEDALUS with Ny = 23 for � f = 0.5, f0 = 1, and L = 4π . Black dotted lines in (a) and solid lines
in (b) represent the frequency of Poincaré modes in the f -plane approximation with f0 = 1: ω = ±√

k2
x + f 2

0 . Colors in (b) indicate proximity
to the two oppositely oriented equators.

with DEDALUS [Fig. 8(b)] and confirm that there are no Kelvin
or Yanai waves.

B. Gauge invariant phase

We proceed to calculate the topological index of the bands
by searching for singularities in the phase of the frequency
eigenfunctions in wave-vector space. The eigenfunctions have
gauge freedom, as the phase of the three components can be
rotated together by an arbitrary amount φ(k) at each point in
wave-vector space:

	±,0(k) → eiφ(k)	±,0(k). (30)

As mentioned previously in Sec. II, we remove the gauge
redundancy by multiplying the v component of the Poincaré
modes by the complex conjugate of the η component, η∗(k) =
η(−k),

�±(k) ≡ v±(k) η±(−k), (31)

leaving only the internal phase difference between the
two amplitudes. Figure 9 depicts the argument of �±(k),
tan−1(Re(�)/Im(�)), of the positive Poincaré modes as a

function of kx and ky for the spatially varying Coriolis pa-
rameter of Eq. (28), where the eigenmodes are obtained
by diagonalizing the 69×69 linear operator. The positive
Poincaré bands exhibit, respectively, a vortex (winding num-
ber 1) and an antivortex (winding number −1) centered at
the origin in wave-vector space where the phase cannot be
uniquely defined for positive and negative f0, respectively.
The difference in the winding number between the two bands
equals 2. The difference in the winding number for either
Poincaré band changes by 2 going between the two hemi-
spheres. The planetary waves have no vortex as expected
(Fig. 10).

By virtue of the single valuedness of �±(k), the winding
number must be integer valued and thus topological in char-
acter. Unlike the calculation of the Chern number, which is
found by integrating the Berry curvature over wave-vector
space, no integrals are required for the calculation of the
winding number, and the noncompact nature of wave-vector
space for continuous fluids does not cloud its interpretation.

The Chern number equals the negative of the total winding
within a closed domain, so �C = ν− − ν+, where ν± is the

FIG. 9. Arrows representing argument of �±(k) = v±(k)η±(−k) of the lowest positive frequency Poincaré modes as indicated by the
direction of the arrows, in the absence of shear but with the sinusoidal Coriolis parameter Eq. (28) with f0 = −1 (left) and f0 = 1 (right),
� f = 0.5, � = 10π , and Ly → ∞. The x and y components of the arrow represent the real and imaginary parts of �±(k). The length of the
arrows is rescaled to be equal. Colors represent normalized magnitude |�| in arbitrary units. Going in the clockwise direction, the arrows along
the black circle smoothly wind by a phase of 2π , suggesting a winding number of 1.
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FIG. 10. Same as Fig. 9 but for a Rossby mode in the absence of shear but with the sinusoidal Coriolis parameter Eq. (28) with f0 = −1
(left) and f0 = 1 (right), � f = 0.5, � = 10π , and Ly → ∞.

winding number of the positive (negative) frequency Poincaré
mode and a vortex (antivortex) corresponds to a winding
number ±1 [61]. Thus �C+ = −2 for f0 > 0 and �C− = 2
for f0 < 0, in agreement with the Chern numbers found for
the f plane [1]. By bulk-interface correspondence [10,59], the
difference in the number of prograde- and retrograde-moving
edge modes at the equatorial interface where f changes signs
equals the change in the Chern number {�C+,�C0,�C−},
consistent with the two modes of topological origin local-
ized near each equator. The localized Yanai and Kelvin
waves in Fig. 2(a) thus have their origin in topology, just
as they do for the shallow water equations using an f -plane
approximation [1].

C. Sinusoidal horizontal shear

Next, we find the winding number of the Poincaré modes
in the shallow water equations subjected to the sinusoidal
horizontal shear. Figure 11 shows the phase of �±(k) for
U0 = 0.3 and constant Coriolis parameter f0 = ±1 showing

qualitatively similiar vortices as those in Fig. 9. Again the
positive frequency Poincaré modes exhibit a vortex for f0 > 0
and an anti-vortex for f0 < 1 at the origin in wave-vector
space (the phase singularity is absent for the planetary modes).
The change in the winding number of 2 is consistent with
the number of edge modes seen in the spectrum [Figs. 2(b)
and 2(c)]. This result suggests that the localized Kelvin and
Yanai modes that traverse the gap between Rossby modes and
the bulk Poincaré modes have a topological origin like the
equatorial modes in the absence of shear. This is the main
result of the paper, and we note that the result also holds in
perturbation theory with the 9×9 linear wave operator, as the
perturbative corrections to the wave function do not alter the
winding number. The appearance of Kelvin and Yanai waves
along the equators shown in Sec. III A is thus consistent with
the persistence of the bulk-interface correspondence in the
presence of shear.

Finally, we study the phase of the gauge-invariant quan-
tity �±(k) for the linearized primitive equations with and

FIG. 11. Same as Fig. 9 but for the lowest positive frequency Poincaré modes as indicated by the direction of the arrows for the case of
sinusoidal horizontal shear U0 = 0.3 within the f -plane approximation for f0 = −1 (left) and f0 = 1 (right) with Ly → ∞. Colors represent
normalized magnitude |�| in arbitrary units.
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(a)

(b)

(c)

FIG. 12. Same as Fig. 9 but for a positive Poincaré mode with a
linear vertical shear flow with U0 = 0.05 within the f -plane approxi-
mation for f0 = −1 (left) and f = 1 (right). (a) kz = 1, (b) kz = 2, (c)
kz = 3. Obtained using DEDALUS with Nz = 20 and Lz = 2π using a
Fourier basis.

without forcing from sinusoidal horizontal shear. The phase
singularity of �±(k) for primitive equations (not shown) is
similar to that depicted in Figs. 9 and 11. Without shear,
the positive and negative frequency Poincaré modes have
opposing winding numbers, and the winding number also
changes polarity when f changes signs, in agreement with the
analytic calculation of the Chern number. The vortex of the
bulk Poincaré modes continues to be robust in the presence
of shear, despite the combined effects of broken translational
invariance, non-Hermiticity, and instability. We have veri-
fied that the dispersion relation of the shear-forced primitive
equations on the planet with two equators continues to ex-
hibit spectral flow of the Kelvin and Yanai waves across the
band gaps.

D. Linear vertical shear

We proceed to calculate the winding number of the
Poincaré modes in the primitive equators subject to the linear
vertical shear flow. Primitive equations with a vertical shear
flow U (z) are given as Eq. (27), which we simulate using
DEDALUS. Figure 12 shows that in the presence of linear
vertical shear flow, the bulk Poincaré mode exhibits phase
singularity, and the winding number depends on the sign of
the Coriolis parameters for all vertical wave numbers k′

zs.
This suggests that the Yanai and Kelvin waves in Fig. 6 are
topologically nontrivial. Note that while Fig. 12 is obtained
with a Fourier basis and thus the effect of the rigid-lid
boundary is removed, we verified that the winding numbers
are similar to Fig. 12 with a no-slip boundary condition
using a Chebyshev basis for each coefficient. Therefore, the
topological nature of the boundary waves is robust against the
presence of the Eady instability.

VII. DISCUSSION AND CONCLUSION

We investigated the topological properties of rotating shal-
low water equations and stratified primitive equations in the
presence of shear flow that breaks translational invariance in
the meridional direction and Hermiticity and introduces insta-
bilities. The winding number of the phase of �±(k) serves
as a convenient probe of topological properties of the wave
functions. This alternative to calculating the Chern number
remains computationally tractable in the absence of transla-
tional invariance and Hermiticity. It may find applications to
experimental and observational data as well as to idealized
theoretical models such as those studied here, as it can be
obtained from the (usually neglected) phase information of the
cross-periodogram between different fields such as the zonal
velocity and geopotential height. To verify that the method
yields sensible results, we studied the bulk modes in the pres-
ence of a spatially varying Coriolis parameter that does not
change signs and demonstrated consistency with the standard
calculation of the Chern number on the f plane [1]. An alter-
native and equivalent way of quantifying the topological in-
variant is through the spectral index by counting the number of
upward-going eigenvectors for increasing momentum, which
is useful when we have access to the wave function [46,63].

Our main result is that the winding number for both
the shallow water equations and primitive equations remains
unchanged in the presence of forcing by background shear
flow. The difference in the winding number of the Poincaré
bands on opposite sides of the equator matches with the
number of unidirectional waves localized at the equator, con-
sistent with a topological origin for these forced Kelvin and
Yanai waves. For the stratified primitive equations, there are
topologically protected modes at each allowed vertical wave
number in analogy to the physics of weak three-dimensional
topological insulators.

We note that we do not rigorously prove the bulk-interface
correspondence for the shear flows, nor topological protec-
tion. However, we show that the bulk spectrum in f-plane
approximation evolves smoothly with increasing U0 and the
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phase singularities persist in both the numerically found
eigenmodes and in low-order perturbation theory, at least if U0

is not too large. It may be possible to generalize the approach
taken in Ref. [64] for frictionally damped shallow water waves
to the problem of background shear. That system, and the
problems investigated here, are invariant under the combined
operation of parity and time reversal (PT). We leave this,
and an investigation of the maximum shear that will support
equatorial waves of topological origin, for future work.
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APPENDIX A: LINEARIZED SHALLOW WATER
EQUATIONS IN THE PRESENCE OF HORIZONTAL SHEAR

We begin with the nonlinear shallow-water equations in the
presence of rotation,

∂utot

∂t
+ (utot · ∇)utot = −g∇h − f × utot,

∂h

∂t
+ ∇ · (hutot ) = 0, (A1)

where utot = u + U , u = (u, v), U = (U (y), 0) is the shear
flow along the zonal direction, f = f (y)ẑ is the Coriolis pa-
rameter, and h = η + H (y). To the linear order, Eq. (A1) can
be written as follows:

∂u

∂t
+ U (y)

∂u

∂x
+ v

∂U (y)

∂y
+ g

∂η

∂x
− f (y)v = 0,

∂v

∂t
+ U (y)

∂v

∂x
+ g

∂η

∂y
+ f (y)u = 0,

∂η

∂t
+ H (y)

(
∂u

∂x
+ ∂v

∂y

)
+ v

∂H (y)

∂y
+ U (y)

∂η

∂x
= 0. (A2)

A deformation length scale Ld and gravity wave speed c are
defined to be

Ld ≡ c

2�
, c ≡

√
gH , (A3)

where H is the zonally averaged depth without shear [H (y) =
H + h(y)]. Introducing the dimensionless quantities t̃ = 2�t ,
η̃ = η

H , H̃ (y) = 1 + h(y)
H , ũ = u

c , U = U
c , f̃ (y) = f (y)

2�
, and

x̃ = x
Ld

, the linearized equations of motion [Eq. (A2)] around
the basic state (u = 0, h = H) can then be written as follows:

∂t̃ ũ + Ũ (y)∂x̃ ũ + ṽ∂ỹŨ (y) + ∂x̃η̃ − f̃ (y)ṽ = 0,

∂t̃ ṽ + Ũ (y)∂x̃ ṽ + ∂ỹη̃ + f̃ (y)ũ = 0,

∂t̃ η̃ + H̃ (y)(∂x̃ ũ + ∂ỹṽ) + ṽ∂ỹH̃ (y) + Ũ (y)∂x̃η̃ = 0. (A4)

For convenience, we drop the tilde in the main text.

(a) (b)

FIG. 13. Frequency spectra of the shallow water equations in the
f -plane approximation with f = 1 and subjected to sine shear U0 =
0.5. The frequencies are obtained by (a) diagonalizing the 69×69
wave-vector space linear wave operator and from (b) DEDALUS with
Ny = 23.

APPENDIX B: THE SHALLOW WATER LINEAR WAVE
OPERATOR IN WAVE-VECTOR SPACE

The matrix elements of the linear wave operator Eq. (16) in
wave-vector space may be written using Dirac braket notation
as 〈k′

x, k′
y|L̂|kx, ky〉. Since the linear wave operator has no

dependence on x, these matrix elements are nonzero only for
k′

x = kx. Along the y direction, we make use of the following
relations:

1

Ly

∫ Ly/2

−Ly/2
dy sin

(
2πy

�

)
ei(k′

y−ky )y

= 1

2i
[δk′

y,ky−2π/� − δk′
y,ky+2π/�], (B1)

and

1

Ly

∫ Ly/2

−Ly/2
dy cos

(
2πy

�

)
ei(k′

y−ky )y

= 1

2
[δk′

y,ky−2π/� + δk′
y,ky+2π/�]. (B2)

In the absence of shear (U0 = 0), the linear wave operator
in k space is a block-diagonal matrix, with the diagonal
blocks being L0(kx, ky, f ) and with no off-diagonal blocks.
The 3×3 linear wave operators L0 at wave vectors (kx, ky ) and
(kx, ky ± 2π ) are connected by the sinusoidal horizontal shear
as a wave at wave vector ky mixes with modes k′

y = ky ± 2π .
For a given kx, we need to diagonalize the full matrix in the
basis of ky, ky ± 2π, ky ± 4π, . . ., imposing a finite cutoff in
|k′

y| to keep the dimension of the matrix finite.

APPENDIX C: COMPARISON WITH DEDALUS

We validate our diagonalization scheme by comparing with
DEDALUS [50]. Figure 13 compares the spectra from diago-
nalizing a 69×69 linear wave operator corresponding to the
23 retained wave vectors in the y direction with the spectrum
obtained from DEDALUS. To enable the comparison, the lin-
ear wave operator has been truncated to finite dimension in
wave-number space to match the total number of equations in
DEDALUS. The full diagonalization captures both the spread
of the geostrophic modes and the bulk Poincaré modes. Note
that the small difference in the geostrophic modes is due to the
fact that the sample points along the y direction in DEDALUS is
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(a) (b) (c)

FIG. 14. Comparison of the frequencies of the positive Poincaré and planetary modes. (a) Full diagonalization of the 69×69 linear
wave operator. (b) DEDALUS with Ny = 23. (c) The difference between frequencies of the lowest positive Poincaré mode obtained from full
diagonalization, ωF, and Dedalus, ωD in (a) and (b).

nonuniform whereas in the direct diagonalization, k′
ys are sam-

pled uniformly. Figure 14 compares the positive frequency
modes obtained from full diagonalization versus those found
using DEDALUS. The two methods show excellent agreement.
The frequency of the Poncaré modes increases with increasing
shear and remain distinct beyond U0 = 0.6. We can apply the
same procedure to obtain the transition matrices T1 and T2 for
the cosine shear, and the spectra agrees with Figs. 13 and 14,
as expected.

APPENDIX D: PRIMITIVE EQUATIONS

Using the same nondimensionalization as Appendix A, the
nondimensional Boussinesq primitive equations are given as
follows [5]:

R0
Du
Dt

+ f (y) × u = −∇φ,

R0
Db

Dt
+

(
Ld

Ly

)2

N2w = 0,

∂zφ = b,
∂xu + ∂yv + ∂zw = 0, (D1)

where w is the vertical velocity, φ is the kinetic pressure, and
b is the buoyancy fluctuation about an average stratification,
N2 = ∂b/∂z, and Ld is the deformation radius, and R0 is the
Rossby number. We consider the linearized equations

R0
∂u
∂t

+ f (y) × u = −∇φ,

R0
∂b

∂t
+

(
Ld

Ly

)2

N2w = 0,

∂zφ = b,

∂xu + ∂yv + ∂zw = 0. (D2)

Here, R0 and NLd/Ly can be set to unity by appropriate
rescaling of the variables. In the Fourier space, −ikzφ = b
and ikxu + ikyv + ikzw = 0. Therefore, we can eliminate φ

and w by writing them in terms of b, u, and v. In the f -plane
approximation, the dispersion relation for the Poincaré modes
is ω2 = f 2 + (k2

x + k2
y )/k2

z .
Finally, we consider the imposition of sinusoidal hori-

zontal shear flow. We assume the system is periodic in the
zonal and meridional directions and has rigid lids at z = 0
and z = Lz, where Lz is a constant. Let utot = u + U , u =
(u, v), U = (U (y), 0) and φ = η + H (y). From geostrophic
balance, U (y) and H (y) must satisfy Eq. (5). Substituting
utot and φ into Eq. (D1) and discarding nonlinear terms, we
obtain

∂u

∂t
= −U (y)

∂u

∂x
− v

∂U (y)

∂y
+ f (y)

R0
v − 1

R0

∂η

∂x
,

∂v

∂t
= − f (y)

R0
u − U (y)

∂v

∂x
− 1

R0

∂η

∂y
,

∂

∂t

∂η

∂z
= − 1

R0

(
Ld

Ly

)2

N2w − U (y)
∂2

∂x∂z
η. (D3)

Again, R0 and N2(Ld/Ly)2 may be set to unity. By doing so,
Eq. (D3) simplifies to

∂u

∂t
= −U (y)

∂u

∂x
− v

∂U (y)

∂y
+ f (y)v − ∂η

∂x
,

∂v

∂t
= − f (y)u − U (y)

∂v

∂x
− ∂η

∂y
,

∂

∂t

∂η

∂z
= −w − U (y)

∂2

∂x∂z
η. (D4)
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