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Hyperuniform many-particle systems are characterized by a structure factor S(k) that is precisely zero
as |k| — 0; and stealthy hyperuniform systems have S(k) = 0 for the finite range 0 < |k| < K, called the
“exclusion region.” Through a process of collective-coordinate optimization, energy-minimizing disordered
stealthy hyperuniform systems of moderate size have been made to high accuracy, and their novel physical
properties have shown great promise. However, minimizing S(k) in the exclusion region is computationally
intensive as the system size becomes large. In this paper, we present an improved methodology to generate
such states using double-double precision calculations on graphical processing units (GPUs) that reduces the
deviations from zero within the exclusion region by a factor of approximately 10°° for system sizes more than
an order of magnitude larger. We further show that this ultrahigh accuracy is required to draw conclusions about
their corresponding characteristics, such as the nature of the associated energy landscape and the presence or

absence of Anderson localization, which might be masked, even when deviations are relatively small.
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I. INTRODUCTION

Disordered hyperuniform systems are isotropic like a glass
but have long-range correlations that result in the anomalous
suppression of density fluctuations over large distances [1].
This feature endows them with unique physical properties not
possible in ordered (periodic or quasiperiodic) systems [2-5].
The disordered varieties include perfect glasses, fermionic
point processes, disordered jammed particle packings, quan-
tum states, certain plasmas, galaxy distributions, eigenvalues
of random matrices, and myriad other examples (see Ref. [6]
and references therein).

A defining feature of a disordered hyperuniform system in
d-dimensional Euclidean space R¢, aside from its isotropy, is
that the structure factor S(Kk) vanishes as the wave number k =
|k| tends to zero [1,6]. An important subclass is the stealthy
disordered hyperuniform system in which S(k) = 0 for a finite
range of wave numbers 0 < k < K. This range defines the
exclusion region in Fourier space where no single-scattering
events can occur [7-10], leading to them being theoretically
analyzed as d-dimensional “hard-sphere fluids” in Fourier
space [10]. Disordered stealthy hyperuniform systems stand
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out among all nonstealthy hyperuniform ones because they
anomalously suppress density fluctuations not only at infinite
wavelengths but down to intermediate wavelengths [6]. More-
over, “holes” in any disordered stealthy hyperuniform point
pattern are strictly bounded with a well-defined maximal size
in the thermodynamic limit [6,11,12]. All of these remarkable
attributes are responsible for the novel wave, transport, and
mechanical properties of disordered stealthy hyperuniform
systems [6]. For example, a scheme that maps stealthy hy-
peruniform point patterns onto disordered dielectric networks
resulted in the first moderately sized amorphous photonic
solid samples with complete photonic band gaps comparable
to those in periodic networks with the advantage that the band
gaps are isotropic [13]. Since this work, disordered stealthy
systems have been extensively fabricated [2,4,14-28] and
studied computationally especially due to their novel optical
[2,15,18,20-22], photonic [4,14,17,19,28], electronic [29,30],
phononic [23-26], and transport [16,27] properties.

Since hyperuniformity is a large-scale property of a
system, it is imperative to be able to generate sample sizes
much larger than those presently possible [31] in order
to ascertain whether their novel properties persist as the
sample size becomes large. Indeed, this question was recently
explored in the context of photonics, where numerical evi-
dence was presented to show that among various disordered
nonhyperuniform and hyperuniform dielectric network solids,
only certain stealthy hyperuniform ones may form band gaps
in the thermodynamic limit [28]. Importantly, the band gaps
for networks with near stealthiness [small but positive S(k)
within the exclusion region] eventually closed as the system
size grew with a rate inversely proportional to the distance to
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stealthiness Smax, Which we define in the present work as

Smax = max S(k). 1)
0<k<K
The work reported in Ref. [28] emphasizes the importance
of computationally creating appreciably larger disordered
stealthy hyperuniform systems, but ones with the smallest
value of Sy,x within the exclusion region.

Remarkably, disordered stealthy hyperuniform point pat-
terns are highly degenerate ground states for certain nontrivial
oscillatory pair potentials (see Ref. [10] and references
therein). Such ground states have been generated using a
collective-coordinate energy optimization scheme [7,9,32,33].
As such, they inevitably have a small positive residual S(k)
in the exclusion region, i.e., small Sp,x, due to the level of
precision with which they were prepared. In dimensions d =
1-3, the largest simulated disordered stealthy hyperuniform
systems have had N = 103, 10%, and 8 x 10° particles, respec-
tively [34], and the highest accuracy achieved has been Sp,x ~
10722 [33]. In order to extrapolate reliably to the thermody-
namic limit, significantly larger systems with a small Sp,x
are required. However, the computational cost of the standard
collective-coordinate minimization schemes scales as at least
O(N?) (derived in Sec. III), making it nearly impossible to
reach the requirements without fundamentally modifying the
procedure.

In this paper, we show that the collective-coordinate min-
imization is highly parallelizable and requires very little
memory access, making it ideally suited for a GPU (graphical
processing unit)-based algorithm. The high degree of paral-
lelization afforded by GPUs allows us to create systems 20
times larger than previous best efforts [34] in comparable
time and with S;,x reduced by 30 orders of magnitude, i.e.,
Smax ~ 1071, This enables us to study the energy landscape
associated with the stealthy hyperuniform potential and lays
the groundwork for extrapolations to both the thermodynamic
and high-d limits. While the techniques used are indepen-
dent of dimension, we focus on d =2 with system size
N =2 x 10° as a trial case for its ease of representation.

Moreover, we show the importance of creating states with
the smallest Sy.x by showing that values of Sy.x which were
deemed relatively small in the past can still vastly degrade
certain desired physical properties. For each application, it
is then necessary to ask what level of Syax is sufficient. In
particular, we show that for two-dimensional (2D) two-phase
media derived from stealthy hyperuniform point patterns, a
full transparency interval for light propagation in which there
is no Anderson localization depends on having Spa.x pre-
cisely zero over the exclusion region. Thus, the ability to
generate stealthy hyperuniform systems over an exponentially
wide range of Sy is essential for extrapolating to the ther-
modynamic limit. This high precision is also necessary to
understand key properties of the ground-state manifold of the
stealthy hyperuniform potential—namely its connectivity and
dimension—especially near critical points.

II. DEFINITIONS

The collective-coordinate method for generating disor-
dered stealthy hyperuniform point patterns is based on finding

the ground state for a system of point particles whose total
potential energy is the sum of pairwise potentials v(r), where
v(r) is bounded and integrable such that its Fourier transform
?(k) exists and is a positive function with compact support
over the interval 0 < |k| < K. Given a set of N points at posi-
tions r; within a periodic box F' of volume vr in R<. The total
potential energy ®(r") has the Fourier representation [10]

N
o) = 7 DSk — Y vk [, ()

0<k<K 0<k<K

where S(Kk) is the structure factor of a single configuration
defined by

(k)|
N

Sk) = , 3)
where K is a nonzero reciprocal lattice vector of F', and 7i(k)
is the complex collective density variable given by

N
fitk) =Y exp(—ik - ;). )

j=1

The second term in (2) is structure independent, and so
we drop it. The potential & is thus bounded from below
by ® = 0, which defines the ground-state manifold within
which all states are stealthy hyperuniform. Note that because
9(k) is strictly positive, it does not modify the definition
of the ground-state manifold, though it does provide a
weight function that will funnel any dynamic or thermal
processes on the & landscape towards specific ground
states [33].

The periodic hypercubic box has side length L, and all
k vectors form a hypercubic lattice of lattice spacing 27 /L,
meaning one can count the number of unique k vectors for
which 0 < k < K. Because the structure factor has inversion
symmetry, i.e., S(k) = S(—k), if there were (2M + 1) vec-
tors for which O < k < K, then only M are independent. The
parameter y measures the fraction of degrees of freedom con-
strained relative to the total of d(N — 1) degrees of freedom
in a d-dimensional point pattern, i.e.,

M

T4dlN—1) )

X
Ground states with x > 1/2 in d < 4 always form ordered
hyperuniform structures, and so we restrict ourselves here
to x < 1/2 in d = 2. Results for other dimensions will be
reported elsewhere.

The energy landscape for the stealthy hyperuniform poten-
tial in the disordered regime (x < 1/2ind > 1 or x < 1/3
in d = 1) is simple. Previous studies have shown that the
inherent structure for any initial condition—defined as the
nearest local energy minimum accessible without a barrier
crossing [36]—is itself one of the many degenerate global
minima [7-9,33]. Thus, a simple quench, achieved via stan-
dard local energy minimization methods, generically yields a
ground state. While previous studies found this to be true to
an arbitrarily assigned threshold ® < 10722 [33], this finding
will be verified to greater accuracy in this work.
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FIG. 1. Stealthy hyperuniform point patterns of N = 2 x 10° particles with x = 0.1, 0.2, 0.3, and 0.4. Each image only shows 1/16th of
all the data for better visualizations. Full configuration data are deposited through Princeton Data Commons [35].

III. SIMULATIONS

Generating disordered stealthy hyperuniform systems in-
volves finding true ground states of ® in Eq. (2). When x <
1/2, the disordered ground states are infinitely degenerate in
the thermodynamic limit [10]. Both the initial conditions and
the choice of (k) affect the particular ground state obtained
[33]. For the purposes of illustration, we use random initial
conditions defined by a Poisson point process and (k) =
eoLY®(K — k), where ©(x) is the Heaviside function and &
sets the units of energy.

To minimize Eq. (2), we need its value and the gradient

F,=-V,o0") = RS Z kv (k)Im[7i(k) exp(ik - r;)],

v
Fock<k

(6)

which is another input of a minimizer. Here, we use the fast
inertial relaxation engine (FIRE) minimization [37], because
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FIG. 2. (a) The structure factor, after optimization, yields Sy.x &
107!, (b) The order metric 7 plotted as a function of x for the
simulation data (red circles) compared to the theoretical curve for
entropically favored states [10]..

it requires fewer computations and converges faster than com-
parable minimizers.

By far, the most computationally expensive quantity of
the minimization is the gradient, which contains two sums.
First, one calculates all M independent values of 7i(k), each of
which contains N terms. Then, one must calculate the gradient
for all N particles, each of which contains a sum over M terms.
Each of these calculations involves MN = xN(N — 1)d terms
and needs to be recalculated at every step of the minimization,
setting the minimum timescale for minimization as O(N?).
The substantial numerical speedup comes from the realiza-
tion that both Egs. (4) and (6) are simple parallel reduction
sums, which are ideally suited for GPUs. To implement
these quenches, we use the GPU-based packing software
pyCudaPack [38-44], because of its highly optimized
modular implementation of a variety of pair interactions
[38,39,43,44] using various minimizers [39] on double-
doubles [40—42]. Minimizations proceed until & is at the
minimum value attainable within machine precision, which
for N =2 x 10 is ®/gy ~ 1074, These are thus ground
states to within double-double numerical precision.

It is well established that short- and intermediate-range
order increase with the size of the exclusion region between
x =0and 1/2 in d = 2 [7-10,33]. A positive order metric
that measures the degree to which translational order increases
with x across length scales is [10]

1
T=—

D4 Jga

1

2 —
h*(r)dr = GnDy 2

/ [S(k) — 1Pk, (7)
Rd

where p is the number density, A(r) is the total correlation
function [45], S(k) is the ensemble average of Eq. (3) in the
thermodynamic limit, and D is a characteristic length scale,
taken as D = K~!. For an ideal gas (spatially uncorrelated
Poisson point process), T = 0 because hA(r) =0 for all r.
Thus, a deviation of T from zero measures translational order
with respect to the fully uncorrelated case. While t diverges
for perfect crystals and quasicrystals in the infinite-system
limit, its rate of growth as a function of system size still
provides a useful measure of the translational order in such
ordered systems [46,47].
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IV. RESULTS AND DISCUSSION

We create five disordered stealthy hyperuniform systems in
d = 2 at each value of x = 0.1, 0.2, 0.3, and 0.4 to demon-
strate the ultrahigh accuracy of our GPU-based algorithm.
Our results have both high precision—in that they are done
using double-doubles— and high accuracy, as measured by
exceptionally small values of Sp,x. Figure 1 shows one system
at each value of x. To demonstrate the level of accuracy,
we plot the structure factor on a logarithmic scale [Fig. 2(a);
see Fig. 4 in the Appendix for the linear scale]. Here, Siax
depends explicitly on the form of ©(k), with our particular
choice yielding Smax = S (kmin)-

While S(k > K) depends strongly on initial temperature
[33], in Fig. 2(b) we find that the theoretical curve for t
derived for low-temperature initial states departs by rela-
tively small amounts compared to the data obtained from
high-temperature states (i.e., random initial conditions). This
implies that while the respective pointwise behaviors of the
pair correlation function and S(k) may sometimes differ for
certain small ranges of their arguments, the integrated mea-
sure of order across length scales for stealthy hyperuniform
states from low-7 and high-T initial states, as measured by
7, are essentially the same. Whether this remains true in other
dimensions is a subject for future work.

We now vividly demonstrate the importance of small Sy«
by mapping stealthy hyperuniform patterns into two-phase
dielectric media and quantifying the attenuation of electro-
magnetic waves propagating through them. Specifically, we
map 2D stealthy hyperuniform point patterns that are exactly
stealthy (i.e., Smax = 0) in the thermodynamic limit via the-
oretical methods described in Ref. [10] into a distribution
of disks (phase 2) of dielectric constant &, = 1 in a matrix
(phase 1) of dielectric constant ¢; = 11.6 by circumscribing
each point with identical disks of radius a without overlap
[16,48,49]. The resulting area fraction covered by disks is
¢>» = 0.112. By a similar analysis, we allow Sy.x to be a free
parameter. The spectral density Jy (k) of these disks is com-
puted from the formula [49] Fv (k) = 4m¢s[J; (ka)/k]ZS(k),
where J; (x) is the Bessel function of the first kind of order 1.
The resulting ¥y (k) is valid in the thermodynamic limit and
inherits the distance to stealthiness Syax of the original point
patterns, in which Sy« is either exactly zero or a specified
positive value [50]; see Fig. 3(a). We obtain the effective
dynamic dielectric constant 15 (k;) of such two-phase media
for incident light of transverse electric (TE) polarization and
wave number k; by using a nonlocal strong-contrast approx-
imation [see Eq. (73) for d = 2 in Ref. [51]] that depends
on ¥y (k), which accurately captures multiple scattering ef-
fects to all orders beyond the quasistatic regime (i.e., 0 <
ki& <1, where & is a characteristic inhomogeneity length
scale).

The key property of interest here in this system is the
imaginary part of ¢! (k; ) which measures the degree to which
the media effectively attenuate light, as shown in Fig. 3(b).
Importantly, perfect stealthy hyperuniform media with Sp,x =
0 exhibit full transparency (i.e., Im[e]F(k;)] =0) up to a
finite wave number in the thermodynamic limit, implying
the absence of Anderson localization [52-54]. By contrast,
a stealthy hyperuniform medium with a moderate distance

10°
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FIG. 3. 2D media consisting of packings of identical disks of di-
electric constant &, = 1 and packing fraction ¢, = 0.112 in a matrix
of dielectric constant €; = 11.6. The disk centers have S(k) = Spax
in the exclusion region (k < K). (a) Semilog plot of the spectral
density ¥y (k) as a function of a dimensionless wave number k/K.
(b) Semilog plot of the imaginary part of the effective dynamic di-
electric constant Im[@gTE (ky)] for transverse electric (TE) polarization
vs the dimensionless incident wave number k; /K in phase 1. While
the presence of the transparency regime is independent of x, for
illustration we have chosen y = 0.4.

to stealthiness (0 < Smay < 1) has a positive Im[eTE(k;)]
proportional to Spax up to k; = O(K), implying that trans-
mittance through this medium is increasingly suppressed with
a larger sample size or a larger Smax, and that Anderson
localization likely emerges. Thus, to better understand the
insulator-conductor transition as the system size increases, it
is essential to generate much larger samples with a small Sy«
via the techniques described here.

V. CONCLUSIONS

Through the use of GPU minimizations with double-
double precision, we are able to dramatically increase the
size and reduce the distance to stealthiness of stealthy
hyperuniform point patterns. The ability to create disordered
stealthy hyperuniform systems of both large sizes and
ultrasmall Spax 1s imperative to study their novel properties.
While the requirement for large sample sizes has been
recognized, the need for a small S, has gone largely
unnoticed due to the inability to create large samples. Indeed,
most previous studies were based on relatively small sample
sizes (100 <N <1000) with 10710 < S0 S 1075, A
capacity to create much larger systems with very small values
of Smax can shed light on the emerging novel properties of
stealthy hyperuniform systems that depend on having a small
distance to stealthiness. One such open question is whether
isotropic photonic (or phononic) band gaps exist in two-phase
systems derived from stealthy hyperuniform point patterns in
the thermodynamic limit [28]. In addition, while disordered
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stealthy hyperuniform systems of moderate sizes are known to
be transparent up to a finite k for electromagnetic [15,17,51]
and elastic waves [21,25,26], it is not known whether this
transparency interval persists in the thermodynamic limit.
If it does persist, this implies no Anderson localization.
Our theoretical analysis [summarized in Fig. 3(b)] shows
that this transparency property increasingly degrades as
Smax and the system size are made larger, stressing the
importance of making Sp.x for a given system as small as
possible, which is now achieved with ultrahigh accuracy
via our improved numerical methodology. Samples of much
larger size with vastly smaller Sp,x can now be potentially
fabricated by combining our designs with photolithographic
and 3D printing techniques [55-57] to explore the presence
or absence of Anderson localization [52,53,58] in disordered
stealthy hyperuniform systems as a function of sample
size.

These high-precision results also lay the groundwork for
further characterization of the energy landscape of the stealthy
hyperuniform potential. Indeed, we now have abundant evi-
dence that local minima do not exist (or are extremely rare) for
x < 1/2, implying that states with high values of Sy,.x found
in previous studies are not locally stable; rather, they are the
result of incomplete minimization, making them excited states
with an effective positive temperature and a modified isother-
mal compressibility [10]. Future work will aim to characterize
the ground-state manifold, particularly its connectivity, the
topology near crystalline states, and the topological change
that occurs when x = 1/2 (especially as a function of di-
mension) and how these landscape properties modify the
physical properties of disordered stealthy hyperuniform sys-
tems. Moreover, with larger systems, one will be able to probe
higher-order correlation functions beyond 7 in determining
the structural order in stealthy hyperuniform systems [34].
Additionally, while we have focused here on isotropic exclu-
sion regions, it is straightforward to generalize to anisotropic
exclusion regions, and thus statistically anisotropic ground
states [59,60].
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FIG. 4. (a) Data from Fig. 2 plotted on a linear scale. (b) The
pair correlation function g, (r) for the same set of data. Note here the
exclusion region forming for low r as x increases. Length scales are
set by the choice K = 1. Both (a) and (b) are consistent with Fig. 1
of Ref. [33]

APPENDIX: PAIR CORRELATION FUNCTION
AND STRUCTURE FACTOR

In Fig. 2, the structure factor was shown on a semilog
scale in order to demonstrate the level of accuracy achieved in
creating stealthy hyperuniform systems with a minimal Sy,x.
Here, in Fig. 4(a), it is shown on the more familiar linear scale.
Also included is a plot of the pair correlation function g(r);
see Fig. 4(b). As noted throughout the text, this data set is
taken from random initial conditions and thus does not follow
the predictions for entropically favored states shown in Ref.
[10]. Instead, it should be compared to Fig. 1 of Ref. [33],
with which it is entirely consistent.
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