
PHYSICAL REVIEW RESEARCH 5, 033187 (2023)

Time evolution of uniform sequential circuits

Nikita Astrakhantsev ,1,* Sheng-Hsuan Lin ,2 Frank Pollmann,2,3 and Adam Smith 4,5

1Department of Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
2Technical University of Munich (TUM), TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany

3Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany
4School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

5Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,
University of Nottingham, Nottingham, NG7 2RD, United Kingdom

(Received 4 November 2022; revised 17 August 2023; accepted 21 August 2023; published 14 September 2023)

Simulating time evolution of generic quantum many-body systems using classical numerical approaches has
an exponentially growing cost either with evolution time or with the system size. In this work we present a
polynomially scaling hybrid quantum-classical algorithm for time evolving a one-dimensional uniform system
in the thermodynamic limit. This algorithm uses a layered uniform sequential quantum circuit as a variational
Ansatz to represent infinite translation-invariant quantum states. We show numerically that this Ansatz requires a
number of parameters polynomial in the simulation time for a given accuracy. Furthermore, this favorable scaling
of the Ansatz is maintained during our variational evolution algorithm. All steps of the hybrid optimization are
designed with near-term digital quantum computers in mind. After benchmarking the evolution algorithm on a
classical computer, we demonstrate the measurement of observables of this uniform state using a finite number of
qubits on a cloud-based quantum processing unit. With more efficient tensor contraction schemes, this algorithm
may also offer improvements as a classical numerical algorithm.
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I. INTRODUCTION

Performing time evolution of quantum states far from
equilibrium represents a challenging problem for the con-
temporary study of quantum matter. Beyond rare analytically
tractable settings [1–3], exact numerical methods scale with
the Hilbert space, whose dimension scales exponentially with
the number of degrees of freedom. Approximate methods
based on tensor networks have released this constraint with
the cost of exponential scaling with bipartite entanglement en-
tropy [4,5]. While this offers dramatic advances for area-law
entangled ground states [6], the simulation of nonequilibrium
states is generically still limited to short time due to the fast
entanglement growth [7], although in certain cases nonequi-
librium phenomena are accessible even at long times using
additional approximation [8–10].

Recent developments of programmable quantum comput-
ers and simulators allow for large-scale studies of quantum
many-body systems [11,12]. The simulation of nonequilib-
rium dynamics is one of the tasks where quantum advantage is
anticipated in the near term, as its complexity scales linearly in
the system size and time [13,14] on quantum devices. In the
case of a finite system, several algorithms for current noisy
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intermediate-scale quantum (NISQ) devices were developed
to simulate quantum dynamics on a finite system [15–20].

Simulation of dynamics for formally infinite translationally
invariant systems facilitates understanding of physics in the
thermodynamic limit. However, the scaling of complexity for
quantum algorithms in this limit is subtler than in the finite
system case [13,14]. Recent works have shown that is possible
to simulate infinite systems with a finite number of qubits
[21,22]. It is now crucial to address the scalability and stability
of quantum algorithms working in the thermodynamic limit.
In this work we present a hybrid quantum-classical algorithm
for time-evolving translation-invariant systems in one dimen-
sion and demonstrate both the expressibility and scalability of
our algorithm.

We consider the layered uniform sequential circuits (l-
USC) Ansatz, which is a generalization to the single-layer
USC Ansatz introduced in Ref. [21]. The l-USC Ansatz
forms a subclass of dense USC (d-USC), which are equiva-
lent to matrix-product states [23,24]. Moreover, we propose
a gradient-based algorithm for time-evolving quantum states
within the manifold spanned by l-USC. This includes a routine
for computing the transfer matrix and environments of the uni-
form states that does not require tomography or postselection,
which would lead to an exponential scaling.

To benchmark the proposed algorithm, we simulate it on
a classical computer. We show that the number of variational
parameters required to accurately time evolve a quantum state
for the time t with the l-USC Ansatz scales only polynomially
in t . Finally, having obtained the time-evolved l-USC state
representation on a classical computer, we compute physical
observables on a cloud-based quantum processing unit (QPU)
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and demonstrate agreement with quasi-exact results obtained
with an infinite time-evolution block-decimation (iTEBD) al-
gorithm at a large bond dimension [25].

This article is organized as follows. In Sec. II we introduce
the layered uniform sequential circuit Ansatz and the gradient-
based variational time-evolution algorithm. In Sec. III we
present the simulation results and analyze the effect of the
layered decomposition on the accuracy of the time-evolved
quantum state representation and fixed points of the transfer
matrix. In addition, we show physical observables obtained
from the classically optimized circuit, measured on real quan-
tum hardware. In Sec. IV we discuss the obtained data and
outline the prospects for future work.

II. METHODOLOGY

In this section we introduce and provide motivation for the
l-USC Ansatz, which is a subclass of d-USC where the dense
unitary is replaced by the layered decomposition. We present
the necessary entities, e.g., transfer matrices and the environ-
ments, to measure the physical observables with l-USC. We
then turn to the algorithm for time evolving the l-USC and the
routines to perform the variational time evolution.

A. The layered uniform sequential circuit Ansatz

The main motivation for our Ansatz stems from the great
success of classical simulation for quantum systems with
tensor network methods [6], especially with matrix-product
states (MPSs) applied to one-dimensional systems [26]. The
classical simulation methods are so efficient that it is argued
that there might be no exponential quantum advantage with
quantum algorithms for ground-state problems in quantum
chemistry [27]. In contrast, the fast growth of entanglement
in quantum nonequilibrium dynamics makes classical tensor
network methods inefficient due to the exponentially growing
tensor size with respect to the evolution time. However, for fi-
nite systems it has been shown that these tensors have a simple
structure that can be efficiently represented as quantum-circuit
Ansätze [16,28]. In this work we propose the l-USC for trans-
lationally invariant infinite systems.

An MPS can be equivalently represented as a sequential
quantum circuit [23,24], which we call a d-USC, shown in
Fig. 1(a) for an infinite chain. The d-USC defines the wave
functions

|ψR〉 =
+∞∏

i=−∞
Û i

R(θ)|0〉, |ψL〉 =
−∞∏

i=+∞
Û i

L(θ′)|0〉, (1)

where Û i
R(θ) and Û i

L(θ′) are i-independent unitaries acting
on Nq consecutive qubits i, i + 1, . . . , i + Nq − 1. The “R”
index denotes the right representation, and similarly the left
representation “L” is defined by a different unitary ÛL(θ′)
acting in the opposite order. We show in Appendix A that
the d-USC Ansatz in left and right representations over Nq

qubits are MPSs in left and right isometric forms with the
bond dimension χ = 2Nq−1, respectively.

The l-USC Ansatz is defined as a specific form of Eq. (1),
where each unitary ÛR/L is parameterized by a sequential
circuit of MU layers, as shown in Fig. 1(b). Each layer consists
of a consecutive application of two-qubit gates between neigh-

FIG. 1. (a) Circuit representing 〈ψR(θ)|Ô|ψL(θ′)〉 with |ψL(θ′)〉
and |ψR(θ)〉 being the same state in left and right representations.
The shaded region singles out the repeated circuit element, i.e.,
the transfer matrix. (b) Decomposition of a state unitary into MU

layers of sequential two-qubit gates. (c) Transfer matrix T̂ {AB}
{ab} (θ, θ′)

between the left and right representations |ψL(θ′)〉 and |ψR(θ)〉.
(d) Circuit representation of 〈l, 0|Û †

RÔÛL|0, r〉 on finite number of
qubits. (e) Decomposition of an environment unitary into ME layers
of sequential two-qubit gates.

boring qubits in the direction shown in Figs. 1(a) and 1(b).
While for any d-USC state in the right representation, there
exists an exact d-USC of the same size in the left representa-
tion, this does not always hold for l-USC with the same Nq and
MU unless the state is inversion symmetric. We note that the
l-USC Ansatz belongs to the broad class of quantum circuit
tensor network Ansätze [28,29], where the dense unitaries in
the isometric tensor networks are replaced by various kinds of
local circuits, e.g., brick-wall circuits or sequential circuits.
The d-USC and l-USC wave functions are both universal:
if one allows arbitrary Nq, MU , all translationally invariant
quantum many-body states can be approximated to arbitrary
accuracy in either d-USC or l-USC form. The required Nq, MU

indicates the complexity of the quantum many-body state.
As an example, the Greenberger-Horne-Zeilinger (GHZ) state
[30] can be represented exactly with Nq = 2, MU = 1. Rig-
orous studies of the scaling properties of the quantum circuit
Ansatz could give us more insight into the properties of quan-
tum states, for example, the recent work for ground states
[31]. In this work we focus on studying the expressivity of
the Ansatz applied to time evolution with both a free fermion
and a nonintegrable Hamiltonian.

The l-USC with local circuits acting on Nq qubits defines
a subclass of states within the manifold of d-USC or equiv-
alently a uniform MPS of bond dimension χ = 2Nq−1. As
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a generic two-qubit gate, up to a global phase, requires 15
parameters [32], the l-USC Ansatz is parametrized by at most
15(Nq − 1)MU optimization parameters [33], as compared to
22Nq+1 parameters necessary for the dense parametrization in
the d-USC Ansatz. In previous works, it has been shown that
similar Ansätze on a finite system are polynomially more
efficient in representing ground states [28] and exponentially
more efficient in representing time-evolved states [16]. Pre-
vious works studying the dynamics of infinite systems have
been focused on the specific case Nq = 2, MU = 1. The ques-
tion remains whether there is also an exponential advantage
in the thermodynamics limit in expressing quantum states
produced under nonequilibrium dynamics. In Sec. III we will
demonstrate that l-USC forms a physically relevant subset
of the d-USC states with the corresponding bond dimension,
and allows for efficient time evolution of quantum states. We
begin here with the description of the tools to acquire physical
observable from the l-USC state representation.

1. Transfer matrix

Computation of physical observables and other operations
of an infinite system can be performed on a finite number of
qubits using the transfer matrix and its dominant eigenvectors,
known as environments in the context of tensor networks.
Utilizing the left and right representation of l-USC, we al-
ways consider the (mixed) transfer matrix defined between the
states in left representation, |ψL〉, and in right representation,
|ψR〉, as shown as the shaded area in Fig. 1(a). In Fig. 1(c)
we explicitly write the transfer matrix T̂ {AB}

{ab} (θ, θ′), with {AB}
forming a united out index and {ab} forming a united in index.
The arrow directions indicate the flow of time of the quantum
circuit execution.

With this construction, the transfer matrix is a linear op-
erator T : V ab → V AB mapping a pure state in Hilbert space
V ab to a pure state in Hilbert space V AB. The linear map
is realized by a combination of unitary operators with the
postselection on one qubit, as shown in Fig. 1(c). The transfer
matrix is therefore generally non-Hermitian and nonunitary.
In Appendix B 4, we show that the postselection probability is
close to unity for cases considered in this work. This formal-
ism comes from the construction of the transfer matrix using
simultaneously left and right representations. This is different
from Refs. [21,22], where the transfer matrix is defined with
the inner product of states in the same representation, and
the transfer matrix is a quantum channel mapping between
density matrices.

The left and right environments |l〉 and |r〉 are the domi-
nant eigenvectors of the transfer matrix T̂ satisfying the fixed
point equations T̂ |r〉 = λ|r〉, T̂ †|l〉 = λ∗|l〉, where λ is the
eigenvalue of T̂ with the maximum absolute magnitude. The
absolute value of the eigenvalue |λ| � 1 defines the overlap
density between the two states, and |λ| = 1 if and only if the
states are identical. In such a case the left and right environ-
ments are identical up to complex conjugation, as we prove in
Appendix I.

From the construction of the transfer matrix, these environ-
ments are of dimension 22Nq−2. To translate the environments
into variational quantum circuits, we introduce two 22Nq−2 ×
22Nq−2 parametrized environment unitaries Êr and Êl, such that

|r〉 = Êr(ϕr )|0〉 and |l〉 = Êl(ϕl )|0〉, as shown in Fig. 1(d). Ul-
timately, we also consider the decomposition of environment
unitaries in the form of the sequential circuits decomposition
with ME layers, as shown in Fig. 1(e). We discuss the method
of obtaining the environments in the next section.

2. Evaluating local observables

We evaluate the expectation value of local observables
utilizing the mixed representation,

〈Ô〉 = 〈ψ |Ô|ψ〉
〈ψ |ψ〉 = 〈ψR(θ)|Ô|ψL(θ′)〉

〈ψR(θ)|ψL(θ′)〉 . (2)

In Fig. 1(a) we show the circuit representation of the numera-
tor 〈ψR(θ)|Ô|ψL(θ′)〉, where Ô is a local observable that is
Hermitian and unitary. Using the definition of the environ-
ments, the expectation reduces to

〈Ô〉 = 〈l, 0|Û †
RÔÛL|0, r〉

〈l, 0|Û †
RÛL|0, r〉 = 〈l, 0|Û †

RÔÛL|0, r〉
λ〈l|r〉 . (3)

Therefore, the expectation value of local observables can be
evaluated by measuring finite circuits, which can be imple-
mented on a quantum computer. The projective measurement
on |00 . . . 0〉 at the end of the circuit in Fig. 1(d) has the proba-
bility equal to the squared magnitude of the expectation value
|〈l, 0|Û †

RÔÛL|0, r〉|2. The same applies for the denominator.
Combining this, one can measure the squared magnitude of
the expectation value |〈Ô〉|2. In Appendix B we provide the
derivation of the above equations. In the next section, we
will describe the procedure to measure the expectation 〈Ô〉,
including both real and imaginary parts.

We note that the outlined procedure can be generalized
to evaluating correlation functions of the form 〈ψ |ÂiB̂i+δ|ψ〉,
where the operators Âi, B̂i+δ act on single qubits and are
separated by δ sites.

B. Translationally invariant Trotterization

The time evolution of an initial wave function |ψ0〉 under
the action of a Hamiltonian Ĥ is given by application of
the evolution operator to the initial state |ψ (t )〉 = Ût |ψ0〉 =
exp(−it Ĥ )|ψ0〉. Here we consider a Hamiltonian acting on a
one-dimensional infinite spin-1/2 chain. When Ĥ is local, i.e.,
can be written as Ĥ = ∑

i ĥi with all terms ĥi having a finite
support, we can approximate the evolution operator ÛT using
a sequential Trotter decomposition. A first-order sequential
Trotterization can be written as

ÛT = (û(δt ))k + O(kδt2), (4)

where û(δt ) = ∏
j û j (δt ), û j (δt ) = exp(iδt ĥ j ) and δt = T/k.

A single sequential evolution operator û(δt ) is shown in
Fig. 2(a). Due to the sequential decomposition, û(δt ) and
hence ÛT are translationally invariant with a single site unit
cell. Starting with a translationally invariant state, we always
need only a single unitary Û (θ) parametrizing the state as in
Eq. (1) [34]. All these considerations can be generalized to
cases with a larger unit cell.
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FIG. 2. (a) Quantum circuit for the overlap between the time-evolved left-represented state û(δt )|ψL(θt )〉 at time t and right-represented
state |ψR(θt+δt )〉 at time t + δt . For illustration, here Nq = 3 is chosen. The orange shaded area singles out the transfer matrix. (b) The explicit
form of the transfer matrix T̂ {ABC}

{abc} (θt , θt+δt ). The capital indices {ABC} form a composite out index, similarly {abc} form a composite in index.
The arrow direction indicates the operation order (time flow). (c) The circuit of the generalized functional L. The unitary Ŵ (β) acts on the first
2Nq − 1 qubits of the |00 . . . 0〉 state prepared on 2Nq qubits, then unitary Ô(θ, θ′) acts on all qubits, and V̂ †(α) acts on the last 2Nq − 1 qubits.
(d) General Hadamard test scheme for measurement of the algebraic value of L.

C. The time evolution algorithm

We now introduce a hybrid quantum-classical algorithm to
perform the time evolution of the l-USC representation. At
the time t , we parametrize the state unitary ÛR/L(t ) by a set
of variational parameters θt . The gradients of the parameters
are measured on a quantum computer, and the update is per-
formed on a classical computer. Here, for the sake of concrete
notation, we present the even time steps of the algorithm. In
these steps representation of the wave function flips from left
to right. The odd steps are done similarly, but with flipping
from right representation to left.

To perform the time evolution at an even step, one is
required to find the closest state |ψR(θt+δt )〉 in right repre-
sentation approximating the time-evolved state û(δt )|ψL(θt )〉.
The direct measure of the closeness is the fidelity, i.e., squared
overlap, between the two states,

|ξ (t, δt )|2 = |〈ψR(θt+δt )|û(δt )|ψL(θt )〉|2.
It is the probability of measuring the state | . . . 000 . . .〉 at
the end of the circuit shown in Fig. 2(a). This quantity is
either 1 or 0 in the thermodynamic limit and cannot be used
for posing the optimization problem. Instead, we define the
mixed transfer matrix between the two states over indices
{abc}, {ABC} as shown in Figs. 2(a) and 2(b) with one addi-
tional index coming from the Trotterized unitary. To find the
closest state, we maximize the absolute value of the overlap
density |λ| with respect to the parameters at the next time step
θt+δt . The squared magnitude of the overlap density |λ|2 is the
probability of measuring the state |00 . . . 0〉 at the end of the
circuit shown in Fig. 2(c).

We solve the maximization problem with a gradient ascent
algorithm which requires the knowledge of environments |l〉
and |r〉 and the leading eigenvalue from the mixed transfer
matrix. To obtain the environments |l〉 and |r〉, we employ the

modified power method. We describe the procedure of obtain-
ing the right environment |r〉, while the procedure for the left
environment is similar, apart from the replacement T → T †.
The idea of the power method is to take an initial state |ψ0〉
and project it onto the leading eigenvector of T̂ by repeated
application of T̂ , because limp→∞(T/λ)p → |r〉〈l|. Here we
consider an iterative algorithm, which is a slight modification
of the power method: at each step we find the new vector
|r(ϕ′

r )〉 by performing only a single gradient descent step
maximizing the overlap magnitude |λ|2 = |〈r(ϕ′

r )|T̂ |r(ϕr )〉|2
with respect to ϕ′

r, namely, ϕ′
r ← ϕ′

r + η∇ϕ′
r
|λ|2, where η is

the learning rate. Alternatively, a gradient-free method, such
as Rotosolve [35–38], could be used. The environment vector
is then updated |r(ϕr )〉 ← |r(ϕ′

r )〉 and is used in the next
iteration. At each step, |r(ϕr )〉 has a strictly increasing overlap
with the leading eigenvector of T̂ provided a small enough
step size η. The method is presented in Algorithm 1.

Next, we show in Algorithm 2 how to perform a time
evolution step using gradient ascent method with the environ-
ments we obtained. The algorithm uses a nested variational
approach, in which left and right environments are variation-

Algorithm 1. The power method for an environment.

1: procedure Environment T̂ , ϕp
r

2: ϕr, ϕ
′
r ← ϕp

r � from the previous step
3: while not converged do
4: Measure λ = 〈0|Ê †

r (ϕ′
r )T̂ Êr(ϕr )|0〉

5: Measure ∇ϕ′
r
λ � See Eq. (5)

6: ∇ϕ′
r
|λ|2 = 2Re [λ∗∇ϕ′

r
λ]

7: ϕ′
r ← ϕ′

r + η∇ϕ′
r
|λ|2

8: ϕr ← ϕ′
r

9: return |r(ϕr )〉 = Êr(ϕr )|	0〉
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Algorithm 2. Time evolution algorithm for l-USC.

1: procedure Evolution step θt ,ϕ
t
r, ϕ

t
l

2: θt+δt ← θt

3: ϕr, ϕl ← ϕt
r, ϕ

t
l

4: while not converged do
5: ϕr ← Environment(T̂ (θt , θt+δt ), ϕr );
6: ϕl ← Environment(T̂ †(θt , θt+δt ), ϕl );
7: |r〉 ← Êr(ϕr ), |l〉 ← Êl (ϕl );
8: λ = 〈l|T̂ (θt , θt+δt )|r〉/〈l|r〉;
9: ∇θt+δt |λ|2 = 2 Re[λ∗∇θt+δt λ]; � See Eq. (5)
10: θt+δt ← θt+δt + η∇θt+δt |λ|2;
11: return θt+δt

ally optimized between the consecutive gradient descent steps.
Both algorithms are run until the change of |λ|2 between two
consecutive iterations becomes smaller than 10−12.

Note that we can use the algorithm to find the opposite
representation of the same wave function if the time evo-
lution operator is taken to be the identity. The algorithm
proposed here resembles the time evolution algorithm for a
finite-size system [16,39] and for an infinite system [21]. As
the main difference, in this work the (mixed) transfer matrix
is constructed as the mixed representation 〈ψR(θ)|ψL(θ′)〉.
The environments of the transfer matrix are represented as
quantum states parametrized with layered sequential circuits.
We study the effect of such approximation in Sec. III B.

D. Required measurements

To implement the time evolution Algorithm 2 in prac-
tice, one has to measure the algebraic value of the
overlap λ = 〈0|Ê†

r (ϕ′
r )T̂ Êr (ϕr )|0〉, of its derivative with

respect to the parameters of the environment ∇ϕ′
r
λ =

〈0|∇ϕ′
r
Ê†

r (ϕ′
r )T̂ Êr (ϕr )|0〉, and of its derivative with respect to

the state unitary

∇θt+δt λ = 〈l|∇θt+δt T̂ (θt , θt+δt )|r〉
〈l|r〉 . (5)

We prove the latter formula in Appendix B 3. Notably, the im-
plicit dependency of the right and left environments on θt+δt

gives no contribution to the gradient. These expectation values
can all be expressed in terms of a general overlap functional
L[V̂ (α), Ô(θ, θ′),Ŵ (β)] = 〈0|V̂ †(α)Ô(θ, θ′)Ŵ (β)|0〉. In our
case V̂ (α) and Ŵ (β) are the environment unitaries or their
derivatives, while Ô(θ, θ′) is the transfer matrix or its deriva-
tives. We note that all mentioned unitaries’ derivatives are also
unitary due to the specific parametrization of the two-qubit
gates (for details, see Appendix C).

Absolute and algebraic values of this functional can be
measured on a quantum computer. First, the square of the
magnitude |L|2 is given by the probability of projection onto
the |00 . . . 0〉 state in the circuit in Fig. 2(c) [40]. The algebraic
value of the expectation L and its derivative ∇ϕ′

r
L can be

measured within the Hadamard test procedure [41] shown in
Fig. 2(d). We denote |0̄〉 = |00 . . . 0〉, and the quantum state

before the ancilla qubit measurement reads

|ψM〉 = 1
2 |0〉 ⊗ (|0̄〉 + eiϕV̂ †(α)Ô(θ, θ′)Ŵ (β)|0̄〉)
+ 1

2 |1〉 ⊗ (|0̄〉 − eiϕV̂ †(α)Ô(θ, θ′)Ŵ (β)|0̄〉). (6)

The probability difference in measurement over the ancilla
qubit yields

p(|0〉) − p(|1〉) = Re[eiϕ〈0̄|V̂ †(α)Ô(θ, θ′)Ŵ (β)|0̄〉]. (7)

This scheme can also be used for obtaining algebraic values
of the observable expectation 〈O〉 introduced in Sec. II A.

III. RESULTS

To benchmark the proposed algorithm, we simulate the
quenched dynamics of the transverse-field Ising model with
the longitudinal field

Ĥ = J
∑

i

σ x
i σ x

i+1 + g
∑

i

σ z
i + h

∑
i

σ x
i (8)

over an infinite spin-1/2 chain [42]. The initial wave function
is taken as a fully magnetized state |ψ0〉 = | . . . 000 . . .〉 in the
σ z basis. We use a fourth-order Trotterized iTEBD simulation
with χ = 1024 uniform MPS and δtJ = 10−2 as a quasi-exact
reference labeled iTEBD in all figures. In the following, we
simulate the algorithm on a classical computer to study the
properties of the l-USC Ansatz. The complexity of the l-
USC Ansatz is controlled by MU and Nq. The complexity of
measuring local observables and running the time-evolution
algorithm depends additionally on ME , i.e., the accuracy of
approximating the environments. In Sec. III A we study the
effect of varying Nq and MU in simulating the time evolution
with exact environment obtained by exact diagonalization of
the transfer matrix. In Sec. III B we study the accuracy of ap-
proximating an exact environment with a layered circuit with
finite ME , derive the relation between the required ME and
Nq, and perform the full realistic simulation with both state
and environment presented in the sequential form. Finally, in
Sec. III C we demonstrate measuring the evolution of physical
observables on a QPU with a classically optimized l-USC
circuit.

A. Layered state unitary, exact environment

As the first step, we study the performance of the l-
USC Ansatz using exact environments obtained through direct
diagonalization of the transfer matrix, and perform the al-
gorithm outlined in Algorithm 2. In Fig. 3 we show the
simulation results obtained with MU = 1 and various Nq.

In Fig. 3(a) we plot the evolution of the local magnetiza-
tion 〈σ z(t )〉 and observe that the time of deviation from the
quasi-exact solution increases with Nq. In the inset we plot the
Frobenius norm squared of the difference in the single-site
density matrices between the quasi-exact state and the l-USC,
i.e., ‖ρ − ρexact‖2. The difference shows fluctuating behavior
as a function of tJ , but at some point shows rapid growth. This
fast growth coincides in evolution time t with the noticeable
discrepancy in 〈σ z(t )〉.

To quantify the representation capacity of l-USC, we define
the reachable time t∗ of the given Ansatz as the time when
the error in fidelity density with the quasi-exact (iTEBD)
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FIG. 3. Simulations of time evolution using l-USC with MU = 1 and exact environment for the Hamiltonian in Eq. (8) with g/J = 1.0,
h/J = 0 (upper row) and h/J = 1 with MU = 1 and 4 (lower row). (a) Expectation value of 〈σ̂ z(t )〉 using l-USC with different values of
Nq. Inset: The difference in the single-site density matrices between the quasi-exact iTEBD simulation and optimization of l-USC. (b) The
number of parameters required to reach time t∗ with the fidelity density at least F = 1 − 10−4. The black crosses represent the standard iTEBD
approach with the black dashed line showing an exponential fit. The blue markers show the results for l-USC, and the line shows the linear
fit. Left inset: The reachable time t∗ under the condition F � 1 − 10−4 as a function of Nq. The dashed line shows a linear fit. Right inset:
The error in fidelity density 1 − F for different Nq. (c) Entanglement entropy as a function of evolution time tJ compared with the quasi-exact
result. The horizontal dashed lines mark the theoretical maximum entanglement entropy levels (Nq − 1) log 2. (d)–(f) Same results for the
g/J = h/J = 1 case. In the right inset of (e), linear fits start at Nq = 2 and 5 for MU = 1 and 4, respectively.

state crosses the threshold value 1 − F = 10−4. Here F is the
fidelity density, i. e., squared overlap per unit cell, between
the l-USC state and the iTEBD wave function. In Fig. 3(b) we
plot the number of parameters in a given circuit against the
reachable dimensionless time t∗J . We see that within l-USC,
the required number of parameters grows linearly with the
reachable time. Note that, in contrast, the number of param-
eters required to store a d-USC state grows exponentially in
the reachable time t∗J . Therefore, the l-USC Ansatz defines a
submanifold of uniform MPS that is relevant for representing
states under time evolution; namely, the l-USC is “sparse” as
compared to d-USC (uniform MPS) and requires exponen-
tially fewer parameters.

In practice, one does not have access to the exact state and,
therefore, no access to the error in fidelity. Instead, one can
utilize the leading transfer matrix eigenvalues {λi} obtained
at all steps of the time evolution and define the accumulated
error measure M(t ) = 1 − ∏

i<t |λi|2 to monitor the error
and understand whether the simulation result is reliable. In
Appendix E we demonstrate that this measure follows closely
the true infidelity 1 − F and thus can be used for assessment
of the optimization quality.

Finally, in Fig. 3(c) we show entanglement entropy as a
function of tJ . The deterioration of wave function quality, as
shown in Figs. 3(a) and 3(b), is clearly connected to saturation
of capability of a circuit with given Nq to encode the linearly

growing entanglement entropy of the system. An l-USC of
given Nq could encode at most Sent. � (Nq − 1) log 2 entan-
glement entropy. We show in Fig. 3(c) that the entanglement
grows linearly with time up to saturation. We observe that
for Nq = 2 and 3 the saturated entanglement entropy is close
to the theoretical bound, and for Nq � 4 the entanglement
entropy does not reach the theoretical bound.

To study the effect of increasing the MU in the layered
sequential unitary decomposition. Strikingly, in the integrable
case h = 0 considered in Fig. 4(a), we observe that increasing
MU leads to negligible improvement in the reachable time
t∗J , as compared with the effect of Nq. Similarly, increasing
MU does not lead to significant change in the entanglement
entropy of the time-evolved l-USC Ansatz. In Appendix D,
we numerically demonstrate that in the integrable h = 0 case,
time evolution of the l-USC Ansatz at MU = 1 leads to the
same wave function accuracy, as optimization of the full dense
d-USC Ansatz of the same Nq. In Appendix H we explain why
for the case of the free-fermion model, h = 0, the MU = 1
l-USC Ansatz is sufficient and is equivalent to any higher
MU l-USC Ansatz. In summary, the Gaussian MU = 1 l-USC
Ansatz is equivalent to Gaussian Nq d-USC circuit, when the
quantum Yang-Baxter equation is satisfied.

The picture changes significantly in the nonintegrable case,
h/J = 1. In Fig. 3(d) we plot the evolution of the local magne-
tization, where we observe that the time of deviation from the
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FIG. 4. Fidelity density between the quasi-exact simulation and
the time-evolved l-USC state with Nq = 6 and varied number of
layers MU . Inset: The entanglement entropies obtained within op-
timization of the l-USC circuit at Nq = 6. (a) The integrable case
h = 0. (b) Nonintegrable case h = J .

quasi-exact solution increases with Nq, similarly to Fig. 3(a).
In Fig. 3(e) we show the linear growth of the number of
parameters in a circuit against the reachable time t∗J , for
both the MU = 1 and MU = 4 l-USC wave functions. In this
nonintegrable case, we observe that the slope depends on MU .
In the right inset, we plot reachable time as a function of
Nq for the d-USC Ansatz (MPS) and the l-USC Ansätze. As
expected, at Nq = 2 all reachable times coincide. Then, at
large Nq � 5, the l-USC reachable times grow linearly with
Nq. At small Nq, the MU = 4 l-USC reachable times coincide
with the ones of d-USC, since large MU allows us to approxi-
mate a generic dense Nq unitary with large precision. The left
inset shows the infidelity density as a function of tJ for the
MU = 1 l-USC Ansatz. Notably, the nonintegrable case shows
faster complexity growth for the quantum circuit with slower
entanglement growth, as seen from Fig. 3(f), demonstrating
a diminished but still exponential advantage. Importantly, we
observe that Fig. 4(b) shows strong dependence of the reach-
able time on the number of layers MU , which is in agreement
with the slope variation shown in Fig. 3(e).

Finally, we address the scaling of the total number of gra-
dient steps [Eq. (5)] required to time evolve the wave function
to the maximum reachable time t∗. In Appendix C we show
that it scales near linearly with Nq and with t∗, respectively.
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FIG. 5. (a) Maximum (over evolution time) error of approx-
imating the exact environment by the ME -layered environment
throughout the full simulation shown in Fig. 3(b). Here we consider
h = g = J . The black dashed line shows the environment approx-
imation error at ME = Nq. (b) Expectation value 〈σ̂ z(t )〉 obtained
within the full algorithm of time evolution of l-USC with MU = 1
and layered environment with ME = Nq. Left inset: The reachable
time t∗ of simulations with the exact environment and the layered
environment with ME = Nq. The lines show linear fits. Right inset:
The error in fidelity density 1 − F for different Nq.

This means that the full algorithm has a total resource cost
that scales polynomially with the time that can be accessed
accurately.

B. Optimization with a layered environment

In the previous section, we have shown that the state uni-
tary U can be approximated by the layered quantum circuit
using exponentially fewer parameters than the d-USC Ansatz.
In a real simulation, however, the environments should also
be approximated. We now investigate if the environments
|l〉, |r〉 can also be represented by layered quantum circuits
using fewer parameters. To address the question, we take the
exact environments obtained during the MU = 1 simulation
shown previously in Fig. 3(b) and approximate them with
the ME -layer sequential circuits. The approximation is based
on alternative update with polar decomposition outlined in
Appendix C. For g = h = J , we plot the approximation error
in Fig. 5(a).

We observe that, for a fixed MU = 1, the environment
approximation error increases upon increasing Nq, while the
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error decreases with increasing ME . We set a threshold 10−4

in the approximation errors for the environment, which is
motivated by the respective error threshold in the fidelity den-
sity. From Fig. 5(a), we see that the error in the environment
approximation remains strictly below 10−4 during the whole
time evolution, if it is approximated using ME = Nq layers.
It remains an open question whether the approximation holds
for larger Nq.

When our observation holds, this allows one to determine
the number of variational parameters to approximate the en-
vironment. Since ME ∝ Nq, Nq ∝ t∗J [see Fig. 3(b)], and
each layer of the sequential circuit for the environment con-
tains 2Nq − 2 two-qubit gates, representing the environment
requires O(t2) or O(N2

q ) two-qubit gates. By contrast, repre-
senting the environment exactly using dense unitary requires
O(e2Nq ) or, equivalently, O(e2tJ ) parameters. The fact that
we can approximate the environment with quantum circuits
efficiently makes the overall algorithm scaling polynomially
in time tJ instead of exponentially. We note that although
a priori the complexity of the environment approximation
for the l-USC Ansatz is not known, there exist exact so-
lutions representing the environments for infinite brickwall
circuits [31,43]. These exact solutions are formed by con-
tracting O(N2

depth) number of gates, where Ndepth is the depth
of the brickwall circuit, which is consistent with our finding
here.

Using the condition ME = Nq, we simulate classically the
time evolution algorithm using l-USC with MU = 1, differ-
ent Nq and layered sequential circuits for environment. We
plot the 〈σ z〉 expectation value, the reachable time (tJ )∗ as
a function of Nq and the error in the fidelity density 1 − F
in Fig. 5(b). The reachable time is again determined by the
threshold value F = 1 − 10−4. As shown in the left inset, we
observe slightly smaller reachable times, compared to the sim-
ulation with the exact environment, due to the accumulation
of the approximation errors and approximated environment.
Nevertheless, the reachable time (tJ )∗(Nq) retains the linear
scaling with Nq.

C. Simulation on QPU

Given the available cloud-based QPU from IBM-Q, we im-
plement the circuit shown in Fig. 1(d) for Nq = 2 and measure
|〈σ z(t )〉|2 as the probability of projecting onto the |00 . . .〉
state. The parameters of the environments and states are op-
timized on a classical computer. Unfortunately, the available
hardware does not allow to use controlled two-qubit gates in
large amount, since they require decomposition into several
noncontrolled two-qubit gates. Due to error and noise levels,
this is out of reach for the available device. This prevents
us from measuring the algebraic value of 〈σ z(tJ )〉 using the
Hadamard test. Nevertheless, the numbers of qubits and gates
required to run the algorithm until the time t∗ scale linearly
and quadratically, respectively, with t∗. Depending on the
device connectivity, an additional constant to linear factor in
t∗ overhead may occur in implementing the controlled-unitary
operation. Therefore, with improved read-out and gate noise
level, we expect this algorithm to be usable on the NISQ
devices. For the measurement of the squared magnitude, we
consider two parameter sets: g = 0.2 J , h = 0 and g = 0.8 J ,
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FIG. 6. (a) Expectation value of |〈σ̂ z(t )〉|2 obtained by various
methods: quasi-exact (iTEBD), the presented algorithm with Nq =
2, MU = ME = 1 (l-USC), simulation of an ideal quantum device
(simulator), and on the real hardware ibmq-jakarta (QPU) at
h/J = 0, g/J = 0.2. (b) h/J = 0.05, g/J = 0.8.

h = 0.05 J and Nq = 2, MU = ME = 1. To mitigate the device
noise, we employ the randomized circuits averaging intro-
duced in Ref. [16] (for details, see Appendix G) and readout
error mitigation.

In Fig. 6 we include data obtained from various sources.
This includes the quasi-exact simulation (iTEBD), the clas-
sical simulation of the algorithm (l-USC), simulation of the
magnetization measurement on a fault-tolerant device using
finite number of circuit “shots” (simulator), and, finally, the
direct measurement on real hardware device ibmq-jakarta
(QPU). Due to small expressive power of the quantum circuit
at Nq = 2, MU = ME = 1, the exact and the simulated time
evolution algorithm results agree only up to tJ = 1.4 in the
former and 0.8 in the latter cases. However, the quantum
hardware measurement shows a good degree of agreement
with the classical simulation of the l-USC Ansatz and the
simulation of QPU on a classical computer.

IV. DISCUSSION

In this work we introduced and studied a hybrid quantum-
classical algorithm for time evolution of translationally
invariant infinite systems based on the l-USC Ansatz, which

033187-8



TIME EVOLUTION OF UNIFORM SEQUENTIAL CIRCUITS PHYSICAL REVIEW RESEARCH 5, 033187 (2023)

is a generalization of the sequential quantum circuit motivated
by uniform MPS. We proposed a framework for computing
the overlap density and expectation values of local observ-
ables in the thermodynamic limit based on the new way
of constructing the transfer matrix operator. Unlike previous
works [21,22,43], we construct the transfer matrix in the
mixed representation. In this formalism, the environments are
pure states instead of density matrices. We represent the envi-
ronments by quantum circuits and determine the variational
parameters of these circuits using gradient descent. Based
on the result from classical simulation, we observe that the
number of parameters required to accurately represent the
state at a given time t scales linearly with t , which gives
an exponential advantage compared to classical algorithms
based on MPSs. While such scaling is anticipated based on
the theoretical prediction [14], more interestingly, we observe
numerically that the number of parameters required to rep-
resent the environment scales quadratically in the evolution
time. This suggests that while the Ansatz has a linearly scaling
number of parameters with the evolution time, the overall
algorithm for simulating time evolution of infinite system
has complexity scaling quadratically in the evolution time
using quantum computers with a finite number of qubits.
Importantly, by working directly in the thermodynamic limit,
complexity does not scale with the system size L, which is
in contrast with the O(Lt ) complexity scaling required for
a finite system simulation [16]. We emphasize that, unlike
Refs. [16,21], we consider multilayered decomposition of the
state unitary with MU � 1. As we have seen from Figs. 3(b)
and 3(e), Fig. 4, Appendix D, and Appendix H, considering
MU > 1 leads to improvement in the Ansatz performance only
for time evolution in the nonintegrable h/J = 0 case.

We note that we can also perform imaginary time evolution
with the proposed algorithm with the price of one additional
ancilla qubit [44] to realize the nonunitary gates in the trans-
fer matrix. One straightforward application is the study of
ground states for the infinite systems. However, important
questions remain whether one would observe similar polyno-
mial advantages [28] in representing the ground state using
l-USC for an infinite system, and whether the environments
of the ground states can be efficiently represented as quantum
circuits. Another future direction is to consider the general-
ization for quantum systems and circuits in two dimensions.
For instance, recently the formal generalization of sequential
quantum circuit to finite 2D systems was proposed [45]. The
study of ground states of finite 2D systems is performed using
quantum circuits of isometric tensor network states [46]. We
believe it will be therefore beneficial to generalize the l-USC
Ansatz and extend the algorithm to infinite two-dimensional
systems.

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [47].
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APPENDIX A: CORRESPONDENCE
BETWEEN UNIFORM MPS AND d-USC

In this Appendix we review the equivalence [23,24] of
an MPS of bond dimension χ and the d-USC Ansatz with
Nq = log2 χ + 1 and demonstrate this correspondence within
numerical simulation.

In Fig. 7(a) we depict a d-USC circuit representing a
variational state for Nq = 4. Note that each unitary gate Û [k]

has one incoming index contracted to |0〉 and one outgoing
index being a physical index. The remaining Nq − 1 incoming
and outgoing indices form composite indices αk , shown in

FIG. 7. (a) A typical l-USC circuit representation of a variational
state. (b) Same with internal (not physical and not projected) indices
denoted as αk . (c) The l-USC circuit rearranged to have a typical hor-
izontal arrangement of uniform MPS. (d) The corresponding tensor
network representation with uniform MPS B[k].
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Fig. 7(b), where we redraw the l-USC circuit by introducing
composite indices αk .

To see that such circuit is equivalent to an MPS representa-
tion with χ = 2Nq−1, in Fig. 7(c) we equivalently rearrange the
unitaries. To continue further, we note that after contraction,
unitaries Û [k] have the shape (2, 2Nq−1, 2Nq−1), where the first
dimension corresponds to the physical index ik and the last
two correspond to composite indices αk . Treating them as
hidden bonds of an MPS, we recover a tensor-product state
matrix B̂[k]ik

akbk
with a bond dimension χ = 2Nq−1, defining a

wave function

|ψ〉 =
∑
{ik}

Tr
[
. . . B[k]ik B[k+1]ik+1 . . .

]| . . . ikik+1 . . .〉, (A1)

where the indices in square brackets [k] enumerate lattice
sites, αk are the virtual bond indices (omitted in |ψ〉), and ik
are the physical indices enumerating basis states. This MPS,
as we readily observe, is in the right canonical form satisfying∑

ik ,αk

B[k]ik
αk−1αk

(
B[k]ik

α′
k−1αk

)∗ = δαk−1,α
′
k−1

. (A2)

Equivalently, given an MPS with bond dimension χ in
the right canonical form satisfying Eq. (A2), we can readily
construct a d-USC with unitary Û [k] with Nq = 1 + log2 χ .
To this end, we note that in the right canonical form, B[k] is an
isometry mapping from |αk−1〉 to |αk, ik〉. Any isometry can
be rewritten as a unitary acting on a state |0〉:

B[k] = Û [k]|0〉, (A3)

which represents the contraction of an incoming index of
Û [k] in Fig. 7(a). Thus, Û [k] is the unitary that constructed
from B̂[k] and its orthonormal complement. There is a gauge
degree of freedom in chosen the orthonormal complement as
only part of the unitary acting on |0〉 contribute to the wave
function. We observe equivalent results within iTEBD and our
algorithm with d-USC and thus confirm the correctness of the
implementation.

APPENDIX B: TRANSFER MATRIX

Transfer matrices are utilized for computation of physical
observables and other operations of an infinite system. In
the context of tensor networks, the transfer matrix T̂ of the
quantum state |ψ〉 is defined as the repeating block in the
computation of the inner product, Tr[T̂ N ] = 〈ψ |ψ〉, where
N is the system size. Under the mild assumption that the
state considered is injective, the expression is well defined in
the thermodynamic limit N → ∞ regardless of the boundary
conditions. In the following, we extend the same formalism to
USC.

1. Transfer matrix of USC

Utilizing the left and right representations of the l-USC
Ansatz, we have the freedom to write the inner product
as 〈ψR(θ)|ψL(θ′)〉 = limN→∞ Tr[T̂ N ], of which the repeated
block is defined as the transfer matrix shown as the shaded
area in Fig. 1(a). Such mixed representation allows us to
express the transfer matrix as a linear operator acting on pure
states instead of density matrices.

In general, the states |ψL(θ′)〉 and |ψR(θ)〉 can be of dif-
ferent Nq and MU , and they represent similar but not exactly
identical states. We can define the mixed transfer matrix T̂
between two different quantum states |ψL〉 and |φR〉 as the
repeating block in the computation of their inner product,
ξ = 〈φR|ψL〉 = limN→∞ Tr [T̂ N ]. The left and right environ-
ments |l〉 and |r〉 and the leading eigenvalue λ are defined
similarly to the case of the (not mixed) transfer matrix. In the
thermodynamic limit, the absolute value of the inner product
|ξ | is given by

lim
N→∞

|Tr[T̂ N ]| = lim
N→∞

|λN | =
{

1 |λ| = 1
0 |λ| < 1 , (B1)

which is either an identity or zero, depending on whether the
states are identical. Therefore, a better quantity to consider
is instead the overlap density, which is equal to the absolute
value of the leading eigenvalue of the transfer matrix |λ|,
satisfying the relation

log |λ| = lim
N→∞

1

N
log |ξ |. (B2)

2. Evaluating local observables

One can evaluate the expectation value of an local observ-
ables with respect to the state |ψL(θ′)〉 following the equation

〈Ô〉 = 〈ψ |Ô|ψ〉
〈ψ |ψ〉 = 〈ψL(θ′)|Ô|ψL(θ′)〉

〈ψL(θ′)|ψL(θ′)〉 . (B3)

The last expression can be evaluated with the right en-
vironment in the density matrix form, which satisfies the
fixed-point equations. This is the approach taken by [21,22].
Here, assuming we have the (approximately) identical state in
left and right representations, we take an alternative approach
and approximate the expression by

〈Ô〉 ≈ 〈ψR(θ)|Ô|ψL(θ′)〉
〈ψR(θ)|ψL(θ′)〉 + O

(∣∣∣∣ 

λ1 − λ2

∣∣∣∣
)

. (B4)

The expectation value is now evaluated utilizing the mixed
representation of the transfer matrix. Here  is the norm
difference between the tensors per site describing the states
when collapsing the circuit to uniform MPS form, and λ1, λ2

are the leading and second leading eigenvalues of the transfer
matrix of the state |ψL(θ′)〉. Therefore, the expression is exact
when |ψL(θ′)〉 and |ψR(θ)〉 are exactly the same state. The
expression is a valid approximation, when the norm difference
is smaller than the size of the gap in the transfer matrix of the
physical state |ψL(θ′)〉.

In the simpler case where |ψL(θ′)〉 and |ψR(θ)〉 represent
exactly the same physical state, we can always absorb the
phase factor into one of the state unitaries such that λ = 1.
The numerator and the denominator are then reduced to

〈ψR(θ)|Ô|ψL(θ′)〉 = 〈l, 0|Û †
RÔÛL|0, r〉, (B5)

〈ψR(θ)|ψL(θ′)〉 = 〈l|r〉, (B6)

following the definition of the environments. Therefore, we
can transform the infinite circuit 〈ψR(θ)|Ô|ψL(θ′)〉 shown in
Fig. 1(a) into the finite circuit 〈l, 0|Û †

RÔÛL|0, r〉 given in
Fig. 1(d), which can be implemented on a quantum computer.
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If |ψL(θ′)〉 and |ψR(θ)〉 are not identical, the numerator
is suppressed by the additional factor λN−1, which cancels
out mostly with the additional factor in the denominator λN ,
leading to the expression

〈Ô〉 ≈ lim
N→∞

λN−1〈l, 0|Û †
RÔÛL|r, 0〉

λN 〈l|r〉 = 〈l, 0|Û †
RÔÛL|r, 0〉
λ〈l|r〉 .

(B7)

The expression suggest that for generic cases, one shall also
to take into account the contribution from λ = 1.

3. Derivative of the transfer matrix

In this Appendix, we derive the expression for the deriva-
tive of leading eigenvalue of the transfer matrix with respect to
the state unitary. Consider the transfer matrix T̂ (θ) depending
on variational parameters θ and its left and right envi-
ronments |l (θ)〉, |r(θ)〉, such that T̂ (θ)|r(θ)〉 = λ(θ)|r(θ)〉,
T̂ †(θ)|l (θ)〉 = λ∗(θ)|l (θ)〉. Therefore, the environments and
the leading eigenvalue depend on θ. We express the leading
eigenvalue of the transfer matrix as

λ = 〈l|T̂ |r〉
〈l|r〉 , (B8)

where the θ dependence is omitted for the sake of notation.
Taking derivative with respect to θ, we obtain

∇λ = 〈∇l|T̂ |r〉 + 〈l|∇T̂ |r〉 + 〈l|T̂ |∇r〉
〈l|r〉

− λ
〈∇l|r〉 + 〈l|∇r〉

〈l|r〉 . (B9)

Using T̂ |r〉 = λ|r〉 and 〈l|T̂ = λ〈l|, we note that the first
and third terms in the first fraction cancel out with the second
fraction, leaving

∇λ = 〈l|∇T̂ |r〉
〈l|r〉 . (B10)

4. Postselection probability

Consider an arbitrary N-qubit vector |v〉 parameterized
by a unitary Êv such that |v〉 = Êv|0 . . . 0〉, and the (mixed)
transfer matrix given by T̂ = 〈0last|U †

RUL|0first〉, acting on N
qubits as shown in Fig. 1(c). The action of the transfer matrix
on the vector reads

T̂ |v〉 = T̂ Êv|0 . . . 0last〉
= 〈0last|U †

RUL(1 ⊗ Ev )|0first, 0 . . . 0last〉. (B11)

Therefore, the probability of measuring |0last〉, i.e., |0〉 on the
last qubit, is given by

P(0) = ‖T̂ |v〉‖2. (B12)

Note that by definition, the leading eigenvalue of the transfer
matrix is unity and the absolute value of the leading eigen-
value of any mixed transfer matrix is equal to or less than
unity.

We see that the probability is unity if the input vector is the
environment |r〉, i.e., the leading eigenvector of the transfer

matrix T̂ , since in such case P(0) = ‖T̂ |r〉‖2 = |λ|2 = 1. For
an arbitrary input state |v〉, the probability can be expressed as

P(0) = ‖T̂ |v〉‖2 =
∑

i

|ci|2|λi|2, (B13)

where ci is the coefficient of the eigenbasis of T̂ . As a result,
the probability P(0) is lower bounded by the square of the
coefficient |c1|2 corresponding to the leading eigenvector. We
note that |c1|2 is close to unity in the case of Algorithm 1 if we
initialize the vector using the environments from the previous
time step.

Furthermore, the above property motivates an alternative
algorithm for obtaining the environments by maximizing
probability P(0) using gradient ascent methods. This algo-
rithm is potentially more efficient as it requires only the
measurement of the last qubit, with gradients measured in
absence of ancilla qubits using only the well-known parameter
shift rule [32].

APPENDIX C: DETAILS
OF CLASSICAL OPTIMIZATION OF l-USC

In this Appendix we provide details on optimization of l-
USC that we perform in the course of classical simulation of
the time-evolution algorithm.

1. Unitary parametrization and reunitarization

Optimization of the l-USC Ansatz and environments is
performed with the gradient descent method. To incorporate
the gradient descent method with the quantum circuits running
on a quantum computer, one can employ the decomposition of
a general two-qubit gate into 15 gates of the form

û(α) = exp(iασ a ⊗ σ b), a ∈ {Î, X̂ , Ŷ , Ẑ}, (C1)

introduced in Ref. [32]. These gates have an important prop-
erty, ∂α û(α) = û(α + π/2), i.e., the derivative of these unitary
gates is also unitary. This results in all derivatives of ÛR/L(θ)
or environments being unitary.

In classical optimization, we store N × N unitaries directly
using 2N2 parameters, which is redundant but significantly
speeds up the optimization. To ensure correctness of the al-
gorithm, after each finite gradient descent step, we reunitarize
a gate Û by (1) performing the singular value decomposition
Û = V̂ †D̂Ŵ with D̂ being a diagonal matrix with singular
values and (2) replacing D̂ with a unity matrix: Û → V̂ †Ŵ .

2. Derivative with respect to a gate

The main building block of the optimization is obtaining
derivatives of the expectation values. The outlined recipe is
applicable not only to two-qubit gates, used in the case of
layered state or environment, but also to larger unitaries,
used in the optimization of the dense (exact) environment
or d-USC. Consider an expectation value (generally, a scalar
complex-valued function) that depends on a set of unitary
gates λ(Û1, Û2, . . . , ÛN ). To compute the derivative with re-
spect to Ûk , any such scalar expectation can be written as
λ = Tr ÛkŴ

†
k , with some Ŵk depending on the remaining
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unitaries. Therefore, the derivative reads:

∂λ

∂Ûk
= Ŵk. (C2)

3. Environment optimization

If the proposed time-evolution algorithm is performed
using the a dense representation of environments, the envi-
ronment is obtained by finding the eigenvector of the transfer
matrix with largest magnitude of eigenvalue using the Arnoldi
iteration method.

If the environments are in the layered representation, we
first obtain the exact dense environment |Eexact〉 using the
Arnoldi iteration, and then obtain the two-qubit gates of
the approximating environment by maximizing the overlap
|〈Elayered|Eexact〉|2. In such case, instead of performing a gra-
dient descent with the gradient computed using Eq. (C2), we
employ the polar decomposition rule [50]. The polar decom-
position rule utilizes the fact that the expectation λ = Tr ÛkŴ

†
k

is maximized over all possible unitaries by taking Ûk as the re-
unitarization of Ŵk . Thus, to optimize a layered environment,
we sweep sequentially over all two-qubit gates in |Elayered〉
and change them using the polar decomposition rule. We stop
when the overlap between the environments obtained on two
consecutive sweeps exceeds 1–10−10. For any Nq and at any
tJ , the required number of such sweeps never exceeds 10.

4. Details of gradient descent method and stopping criteria

In classical simulation of the proposed algorithm, we em-
ploy the redundant parametrization of the unitaries. First,
having computed the gradient of |λ|2 with respect to a unitary
Ûk , D̂k = ∂|λ|2/∂Ûk = 2Re [λ∗∂λ/∂Ûk], we project this gra-
dient onto the tangent space of the manifold of N × N unitary
matrices:

D̂k → D̂k − 1
2ÛkÛ

†
k D̂k + 1

2ÛkD̂†
kÛk . (C3)

The resulting unitary is reunitarized.
We employ the ADAM optimizer [51] with the learning

rate η = 3 × 10−3. These two modifications improve the con-
vergence of the algorithm. The optimization finished when the
improvement of the leading eigenvalue of the transfer matrix
between the two consecutive iterations was less than 10−10.

Finally, to speed up the Arnoldi iteration method, we em-
ployed the graphical processing unit Nvidia V100.

5. The total number of gradient iterations

The number of gradient iterations required to perform time
evolution from time 0 to t∗ with the stopping criteria discussed
in this Appendix is proportional to the total potential hardware
run time. Therefore, its scaling is important for the possible
future implementation of the outlined algorithm.

In Fig. 8 we show the total number of gradient descent
iterations as a function of Nq, for the case of the exact en-
vironment and nonintegrable case h/J = g/J = 1. From the
data the scaling is not worse than linear.

FIG. 8. The total number of the gradient descent iterations
Niter. (Nq ) required to reach the time t∗J using the procedure discussed
in this Appendix.

APPENDIX D: SUFFICIENCY (AND NONSUFFICIENCY)
OF THE MU = 1 UNITARY DECOMPOSITION

In this Appendix we demonstrate that the accuracy of the
time-evolved MU = 1 l-USC Ansatz corresponds to the ac-
curacy of the full dense d-USC time-evolved wave function
in the integrable h/J = 0 case, which does not hold in the
h/J > 0 scenario. More precisely, we show in Appendix H
that the Gaussian MU = 1 l-USC is exactly equivalent to
the Gaussian d-USC for the same Nq. To obtain the d-USC
Ansatz wave function at Nq, we optimize the uniform MPS at
χ = 2Nq−1 using the classical iTEBD algorithm. In Fig. 9 we
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FIG. 9. (a) Infidelity density between the quasi-exact solution
and the l-USC Ansatz at MU = 1 or uniform MPS at χ = 2Nq−1 as a
function of tJ at g/J = 1.0, h/J = 0.0. (b) Entanglement entropy as
a function of tJ . The solid line represents the quasi-exact solution.
(c, d) Same results for the case g/J = h/J = 1.0.
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show the fidelity densities and entanglement entropies in the
both layered and full dense cases.

In Fig. 9(a) the infidelity of the uniform MPS differs in the
small tJ region, where the infidelity is vanishing, due to dif-
ferent optimization protocols: in the case of the l-USC Ansatz,
the gradient descent is used, while uniform MPS is optimized
using the singular-value decomposition and provides best
possible approximation at each time step. Nevertheless, the
locations of crossing of the 10−4 infidelity threshold coincide
within our resolution. Therefore, increasing MU would not
improve the l-USC Ansatz performance, as it is bounded from
above by the uniform MPS performance at χ = 2Nq−1.

Then in Fig. 9(b) we show the entanglement entropy ob-
tained within both the approaches. Similarly, the curves are
almost identical in the whole course of time evolution.

Importantly, as shown in Figs. 9(c) and 9(d), unlike the
h/J = 0 case, in the nonintegrable h/J = 1 setup, MU = 1 is
only enough to obtain the full accuracy of the χ = 2 d-USC
Ansatz, corresponding to the Nq = 2 l-USC. At Nq > 2, the
d-USC Ansatz at the bond dimension χ shows better accu-
racy than the l-USC wave function at Nq = log2 χ − 1 with
MU = 1. This suggests that the integrability is the key element
to the sufficiency of MU = 1 in Figs. 9(a) and 9(b).

APPENDIX E: THE ACCUMULATED ERROR M
MEASURE

During a realistic optimization on a quantum hardware, one
has no access to the quasi-exact time-evolved state. Thus, in
order to estimate the current error, one can instead define an
accumulated error measure

M(t ) = 1 −
∏
i<t

|λi|2, (E1)

which is the deviation of the product of leading eigenvalues of
the transfer matrices from unity. Such measure, in the case of
absence of Trotter errors, should serve as an upper bound for
the infidelity 1 − F � M.

However, in this work, we obtain the exact wave func-
tion by running a classical iTEBD algorithm at high bond
dimension, which breaks translation symmetry to a two-site
emergent unit cell, while in proposed algorithm we use a
second-order translational invariant Trotterization. This dis-
crepancy breaks the inequality; however, the two measures
are still strongly correlated. To see this, in Fig. 10 we show
the dependence of the true time-evolution infidelity 1 − F (t )
and the accumulated error measure. We observe that the two
measures cross the 10−4 threshold at close moments of time.

APPENDIX F: ENVIRONMENT
REPRESENTATION COMPLEXITY

In this Appendix we present additional data illustrating
the capacity of the layered representation of environment. In
Fig. 11 we show that the norm of discrepancy between the
exact environment and the layered environment at ME layers
as a function of tJ . The exact environments were obtained
within the time evolution of the l-USC Ansatz with Nq = 6 at
g/J = 1.0. The maximum evolution time tJ is such that the

FIG. 10. Comparison between the true infidelity density 1 − F
computed using the exact solution (crosses) and using the cumulative
estimation metric M(t ) = 1 − ∏

i<t |λi|2. The simulations were per-
formed at g/J = 1.0, h/J = 0 with an exact environment and state
unitary with MU = 1.

overlap density between the Ansatz and the exact state always
exceeds 1–10−4.

We observe that, as the complexity of the state grows with
time evolution, the approximations ME < Nq − 1 are clearly
incapable of accurately representing |rexact〉 in the course of
time evolution.

APPENDIX G: RANDOMIZED CIRCUITS
FOR QPU MEASUREMENT

The quantum circuit considered in this paper is described
by a series of two-site gates {ûi}. When this circuit is im-
plemented on a QPU, the two-qubit gates within qiskit are
decomposed into a series of gates selected from a universal
gate set. A small perturbation of a two-site gate may lead to a
large change of the decomposition. These differences lead to
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FIG. 11. The norm difference between the exact environment
|rexact〉 and the approximated |r(ME )〉 environment at ME layers as
a function of tJ . The 10−4 boundary is chosen in the main text
as the threshold of accurate representation. The data are obtained
within fitting of the exact environment emerging during the Nq = 6
evolution of the l-USC Ansatz at g/J = 1.0.
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FIG. 12. (a) Yang-Baxter equation (1). (b) Merging operation (2).

large fluctuations in the measured observables due to the QPU
noise.

To mitigate these errors, we consider the following proce-
dure. If the two consequent gates ûi and ûi+1 act on the same
qubit q, we sample a random SU (2) matrix v̂ acting only on
the qubit q and modify ûi → ûiv̂, ûi+1 → v̂†ûi+1. We repeat
the measurement scheme in several runs, each time sampling
new single-qubit matrices v̂.

APPENDIX H: SUFFICIENCY OF MU = 1
IN THE INTEGRABLE CASE

In this Appendix we explain why in the integrable case
h = 0, l-USC with MU = 1 is enough to obtain the maximum
reachable time available at given Nq. This includes a proof
and a conjecture. We first show that any Gaussian l-USC with
MU > 1 can be reduced to a Gaussian l-USC with MU = 1
of the same Nq. We then discuss the conjecture that in the
integrable case h = 0, at given Nq, the optimal d-USC approx-
imating the time-evolved state is a Nq-qubit Gaussian.

A Gaussian l-USC is defined as a l-USC Ansatz consisting
of two-site Gaussian unitaries, i.e., Û = eiĥ, where ĥ is a two-
site free-fermion Hamiltonian. These unitaries are also known
as the matchgates, and we use both terms interchangeably.
Importantly, matchgates are closed under multiplication, i.e.,
they remain matchgates, and satisfy the quantum Yang-Baxter

equation [52], which is shown in Fig. 12. In the figure the
gates after the ∼ sign may have different parameters, but
they remain within the matchgate family. We now show that
with the merging operation and Yang-Baster equation, we can
reduce any MU circuit to MU = 1 [53].

To prove that any Gaussian l-USC with MU > 1 can be
transformed into MU = 1 case with the same Nq, we need
additional relations that will be useful. We present these op-
erations in Fig. 13. With these operations, we can show by
induction that the above statement is true. As an illustration,
in Fig. 14 we show the Nq = 4, MU = 3 Ansatz. In the infinite
uniform circuit, we select a pivotal point (blue line) and re-
duce the unitaries adjacent to this point. First, in Fig. 14(a), we
apply the block reduction operation (5) to the unitaries that are
reduced. Then, in Figs. 14(b) and 14(c), we apply the Yang-
Baxter and Merge operations (1 + 2) to remove the unitaries
beyond a single layer as shown in Fig. 14(d). Therefore, the
unitaries adjacent to the pivotal point can be reduced to the
MU = 1 form, and the procedure can be repeated by iteratively
moving the pivotal point.

We show that the MU = 1 l-USC is equivalent to arbi-
trary MU l-USC when the underlying unitaries are matchgates
[52,53]. The proof further implies that a Gaussian d-USC of a
given Nq can be exactly represented as a l-USC with the same
Nq and MU = 1. Since a Gaussian unitary gate acting over Nq

qubits can be exactly represented as a brickwall circuit using
N3

q matchgates [54], any d-USC composed of a Gaussian
unitary acting over Nq qubits is equivalent to a MU = 1 l-USC
with the same Nq by folding the circuits using the operations
introduced above.

Finally, we conjecture that the optimal d-USC with a fixed
Nq approximating the time-evolved state e−iĤt |00 . . . 0〉 is
Gaussian, where the integrable Hamiltonian Ĥ is defined as
in Eq. (8) with h = 0 and a Gaussian d-USC is defined as a d-
USC consisting of Gaussian unitaries. Note that the conjecture
implies that the optimal l-USC with a fixed Nq approximat-
ing the time-evolved state e−iĤt |0〉 is also Gaussian. This is

FIG. 13. (a) Generalized Yang-Baxter transformation (3). To derive it, we repeatedly apply (1). (b) Absorbtion operation (4). After applying
(3) to the green gates, the highlighted (orange) gate can be merged using (2). (c) Block reduction operation (5) by repeatedly applying (4).
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FIG. 14. Graphical proof of the theorem. The blue line represents the pivotal point that indicates which unitaries are being simplified.

because if, at a given Nq, there exists a l-USC with some MU

that is non-Gaussian but approximates the state better than
the optimal Gaussian l-USC, then there exists a non-Gaussian
d-USC of the same Nq that gives a better approximation than
a Gaussian d-USC of the same Nq, which contradicts our
conjecture. This conjecture implies that we shall observe the
same accuracy for numerical simulation using uniform MPS
(d-USC) and the l-USC with MU = 1. Indeed, for all the
numerical simulations performed in this work in the integrable
h = 0 case as shown in Fig. 9 we observed the expected
agreement.

APPENDIX I: THE EQUIVALENCE
OF FIXED POINTS

In this Appendix we show that the left and right environ-
ments (fixed points) of the l-USC transfer matrix in mixed
representation are identical up to complex conjugation. Be-
cause of the formal equivalence between uniform MPS and
d-USC shown in Appendix A, we first show that such property
held in the case of uniform MPS. Consider a uniform MPS in
the �–� canonical form [5,55]

(I1)
where � is a positive-valued diagonal matrix, encoding the
Schmidt values. The combinations of � and � give the left
(normalized) isometric tensor A = �� and the right (normal-
ized) isometric tensor B = ��. The overlap between the same
physical state and itself is given as the following equation:

(I2)

The transfer matrix in the mixed representation is constructed
with the left isometric tensor A = �� colored in light red and
the right isometric tensor B∗ = �∗�∗ colored in light green.
From the left and right isometric conditions, we see that the
left and right environments are simply �∗ and �, respectively.
In this specific case, since the diagonal matrix � is real and
positive, the left and right environments are identical.

In the above case, we consider the isometries with gauge
fixing, leading to the �–� canonical form. In general, the
d-USC is equivalent to uniform MPS in isometric form with-
out gauge fixing. That is, we are allowed to insert identity
operators U †U = 1 and V †V = 1 to the left and the right of
the � tensor, respectively, where the U and V are arbitrary
unitaries. Similarly, the transfer matrix is constructed by the
left and right isometric tensors describing the same physical
state, but now in arbitrary gauge. The overlap is then given by
the equation

(I3)

As a result, the left isometric tensor is now given by A =
U1��U †

1 colored in light red, and the right isometric tensor is
given by B∗ = V ∗

2 �∗�∗V T
2 colored in light green. Similarly,

by isometric conditions, the left environment is U ∗
1 �∗V T

2

while the right environment is U1�V †
2 . Therefore, the left

environment and the right environment are identical up to
complex conjugation.

Since any l-USC state can be viewed as a d-USC state, the
statement also applies to the l-USC Ansatz: when the l-USC
transfer matrix is constructed in the mixed representation,
the left and right environments are identical up to complex
conjugation.
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