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Quantum criticality of bandwidth-controlled Mott transition
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Metallic states near the Mott insulator show a variety of quantum phases, including various magnetic,
charge-ordered states and high-temperature superconductivity in various transition metal oxides and organic
solids. The emergence of a variety of phases and their competitions are likely intimately associated with quantum
transitions between the electron-correlation-driven Mott insulator and metals characterized by its criticality,
and is related to many central questions of condensed matter. The quantum criticality is, however, not well
understood when the transition is controlled by the bandwidth through physical parameters such as pressure.
Here, we quantitatively estimate the universality class of the transition characterized by a comprehensive set of
critical exponents by using a variational Monte Carlo method implemented as an open-source innovated quantum
many-body solver, with the help of established scaling laws at a typical bandwidth-controlled Mott transition.
The criticality indicates a weaker charge and density instability in contrast to the filling-controlled transition
realized by carrier doping, implying a weaker instability to superconductivity as well. The present comprehensive
clarification opens up a number of routes for quantitative experimental studies for complete understanding of
elusive quantum Mott transition and nearby strange metal that cultivate future design of functionality.
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I. INTRODUCTION

The Mott transition is a metal-insulator transition driven
by the Coulomb repulsion of electrons in crystalline solids.
It is driven either by controlling the ratio of the interaction
strength to the bandwidth (bandwidth-controlled transition)
or by carrier doping to the Mott insulator (filling-controlled
transition) [1]. The two types of control are widely realized in
organic solids [2,3] and transition metal compounds [1].

The filling-controlled transition has been relatively well
studied motivated by the high-temperature superconductivity
in the cuprates. Theoretically estimated criticality of the Mott
transition was suggested to cause the charge instability that
gives birth to severe competitions of the high-temperature
superconductivity, strange metal, antiferromagnetism, ne-
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maticity, and charge inhomogeneity including charge order in
the cuprates [4–6]. It is also understood from the tendency
toward the first-order transition that generates a miscibility
gap in the carrier density near the Mott insulator. When the
first-order transition can be suppressed, criticality emerges
around the marginal quantum critical point (MQCP) [7]. The
MQCP critical exponents have not been well explored in ex-
periments, partly because various competing phases including
superconductivity and effect of disorder preempt or mask
criticality. However, the emergence of exotic phases including
the superconductivity in the cuprates may be governed by
the underlying MQCP and therefore the understanding of the
MQCP has crucial importance to reveal the mechanism of the
competing phases.

On the other hand, the bandwidth-controlled transitions
have also been widely observed. They normally appear as
first-order transitions, which terminate at a critical endpoint at
nonzero temperatures. The universality class of this endpoint
was proposed to belong to that of the classical Ising-model
[8,9]. When the critical temperature is reduced to zero as the
MQCP, the universality class should be distinct [7,10]. One of
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the central questions is whether the universality class can lead
to strong quantum fluctuations and quantum entanglement,
which triggers emergence of novel functionality including
high-temperature superconductivity similarly to the incentive
to gain insights for the filling-controlled case [6]. However,
the bandwidth-controlled Mott transition at the MQCP and
the related charge instability are not well explored even
theoretically.

We summarize the basic structure around the MQCP of the
metal insulator transition found in the earlier work, which is
illustrated in Fig. 1 [10]. The MQCP appears as the endpoint
of the finite-temperature critical line, namely, the endpoint of
the first-order transition, while it also appears as the endpoint
of the quantum critical line (QCL) running at temperature
T = 0. The reason why the critical line continues beyond
the MQCP is that the metal and insulator must always have
a clear phase transition boundary at T = 0 unlike the case
of the quantum Ising model such as that with the transverse
magnetic field where the transition disappears beyond the
conventional quantum critical point. Our focus in this paper is
the universalty class of the bandwidth-controlled MQCP and
not the criticality of the QCL, because the MQCP is excpected
to show stronger quantum fluctuations and entanglement
with enhanced charge fluctuations that may trigger exotic
phases [10].

In the literature, the motivation of the study on the quantum
critical point (QCP) in general has come from the expectations
for novel physics, where finite critical temperature is lowered
to zero and associated diverging quantum fluctuations emerge,
which may induce exotic phases. In the present case, this cor-
responds to the MQCP appearing as a single point at T = 0,
although the distinction between the MQCP and QCL is not
well appreciated in the literature. The reason may be due to
the fact that the QCL does not exist in the conventional crit-
ical point (QCP) arising from symmetry-breaking transitions.
Along the quantum critical line (QCL), the criticality should
be different from the MQCP in general.

Significance of the QCP including the MQCP is that the
first-order transition starts from the QCP, which opens the
possibility of coupling to divergent zero-wavenumber modes.
In the case of the metal-insulator transition, this appears as
the divergent charge fluctuations. However, the QCL exists
even in the noninteracting case as in the simple band-insulator
metal transition. For instance, in Ref. [10], the criticality of
the MQCP was clarified for the filling-controlled transition
in detail and the critical exponents are identified as α =
−1, β = 1, γ = 1, δ = 2, ν = 1/2 and η = 0, where γ = 1,
and δ = 2 lead to the divergence of the charge compress-
ibility κ ∝ 1/x, where x is the doping concentration. The
divergent compressibility at the MQCP was supported in a
2D Hubbard model study [4]. In contrast, α = 0, β = 1, γ =
0, δ = 1, ν = 1/2, and η = 0 were reported for the QCL.
Here, the exponents α = 0, γ = 0, and δ = 1 imply that the
fluctuations are not diverging. This is because of the absence
of the opening of the first-order transition and indeed it is
equivalent to the band-insulator-to-metal transition in usual
noninteracting systems. The divergent charge fluctuations for
the filling-controlled MQCP on the verge of the phase sep-
aration or the charge inhomogeneity opens the possibility of
emergent exotic phases such as unconventional superconduc-
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FIG. 1. Schematic phase diagram of Mott metal-insulator transi-
tion. The MQCP (red cross) is the quantum critical point between the
metal and the Mott insulator and simultaneously the end point of the
first order transition and the quantum critical line (green line). Finite-
temperature critical point (T = Tc) (dark blue curve) appears as the
endpoint of the first order boundary (light blue shaded surface. a and
b represent the control parameters and are given by a combination
of t⊥ and U in the present case. In the bandwidth-control case in
general, the electron filling is fixed at an odd integer in this whole
T -a-b parameter space. For details see Ref. [10].

tivity associated with this divergence and fluctuations. In the
dynamical mean-field theory (DMFT) calculation, the metal-
insulator critical point appears at a finite temperature, at which
it was shown that the charge compressibility diverges [11].
However, in the DMFT, one cannot lower the critical temper-
ature to zero to reach the MQCP, while in 2D one can see
such an evolution to the MQCP. Therefore, it is natural to pose
a question how the interplay between the diverging charge
fluctuation and quantum fluctuations takes place at the MQCP
for the bandwidth-controlled case in 2D. In other words, the
nontriviality of the MQCP lies in the fact that the first-order
metal-insulator transition and the resultant MQCP does not
exist in the noninteracting case and it is purely the interaction
effect. By considering this background and the significance
with a direct connection to the quantum critical phenomena in
general, we study the MQCP rather than the QCL. Then the
universality of the QCL for the bandwidth-controlled transi-
tion is left for future studies.

In this article, we study the mechanism and criticality of
the bandwidth-controlled quantum Mott transitions. For this
purpose, we employ anisotropic two-dimensional Hubbard
models at half filling as a typical example. We study the model
by using a state-of-the-art variational Monte Carlo method
(VMC) [12,13], where the open source code is available [14].
See Sec. VII A for details of the numerical method. The
solution of the model shows the existence of the MQCP.
We estimate a comprehensive set of critical exponents of the
MQCP, which shows a perfect consistency with the scaling
theory, which indicates a weaker charge and density insta-
bility in contrast to the filling-controlled transition by carrier
doping, implying a weaker instability to superconductivity as
well. Since the earlier experimental as well as theoretical stud-
ies by the dynamical mean-field study suggest the exponents
different from the present results, we discuss the origin of the
discrepancy.
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FIG. 2. (a) Ground-state phase diagram obtained by the present
VMC calculation. The purple solid and broken lines with open cir-
cles indicate the first-order and continuous metal-insulator transition
(MIT) boundaries, respectively. The green solid curve with open
squares is for the antiferromagnetic transitions (AFT) (see Sec. VII D
for the method to determine the MIT and see Appendix F for the
AFT). Red large circle depicts the MQCP. Error bars are determined
by considering the errors of size extrapolations and statistical errors
of Monte Carlo calculations for finite-size systems. Inset: Lattice
structure used for the present study; t-t⊥-t ′ Hubbard model with
the nearest-neighbor intrachain (red bonds), interchain (blue bonds),
and next-nearest-neighbor (broken black bonds) hoppings t, t⊥ and
t ′ = t⊥/2, respectively. We take t as the energy unit.(b) Critical
exponents of MQCP estimated in this article.

This paper is organized as follows: In Sec. II, we introduce
the model. In Sec. III, the phase diagram is shown in the plane
of the Hamiltonian parameters, which reveals the MQCP. In
Sec. IV, the critical exponents of the MQCP are thoroughly
estimated. In Sec. V, the estimated exponents are analyzed in
terms of the scaling theory. Section VI is devoted to discussion
and summary.

II. MODEL

For the purpose of clarifying the generic feature of the
bandwidth-controlled Mott transition, as an example, we
study the t-t⊥-t ′ Hubbard model at half filling defined by the
following Hamiltonian:

Ĥ = − t
∑

〈i, j〉x,σ

ĉ†
iσ ĉ jσ − t⊥

∑
〈i, j〉y,σ

ĉ†
iσ ĉ jσ

+ t ′ ∑
〈〈i, j〉〉,σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓, (1)

where ĉiσ (ĉ†
iσ ) annihilates (creates) a spin-σ electron at site

i and n̂iσ is its number operator. Here, t (t⊥) is the hopping
between the nearest-neighbor sites in the x (y) direction, t ′ is
that between the next-nearest-neighbor sites and U represents
the on-site Coulomb repulsion. The lattice structure of the
present model is depicted in the inset of Fig. 2, where the
intra-chain transfer t and interchain transfer t⊥ constituting
the square lattice are geometrically frustrated with the next-
nearest-neighbor transfer t ′. The onsite Coulomb interaction
U monitors the correlation effects and the control of U/t trig-
gers the bandwidth-controlled Mott transition. In this model,
by taking the nearest-neighbor transfer t along the chain direc-
tion as the energy unit, namely t = 1, the interchain hopping
t⊥ acts as the parameter to control the dimensionality between
1D (t⊥ = 0) and 2D (t⊥ = t), which enables the control of the

Mott transition temperature to zero, namely allows us to study
the MQCP. Here we fix the ratio of the next-nearest-neighbor
hopping t ′ to t⊥ as t ′ = t⊥/2.

Although we employ a specific model, the notion of univer-
sality that characterizes the 2D MQCP, renders the details of
the model irrelevant. The MQCP essentially emerges between
the metal and Mott insulator and it appears as the endpoint of
both of the first-order transition and the continuous quantum
critical line as sketched schematically in Fig. 1. In addition it
does not retain the C4 rotational symmetry, which is common
to the experimental structure in the organic solids [2,3] and
offer the possibility to capture the generic feature of the 2D
MQCP. Although the transfer terms introduce slightly 1D-like
anisotropy, we confirm that spin and charge fluctuations show
isotropic singular behavior below and represents a typical 2D
criticality. We obtain a comprehensive set of critical exponents
that are consistent with each other in light of the scaling
theory. In contrast to previous theoretical and experimental
studies at finite temperatures T > 0 above the classical critical
endpoint to infer a zero-temperature exponent [15,16], we
focus on the quantum case directly at T = 0. We show, in
Appendix A, the Fermi surface for the noninteracting case.
It changes from 1D-like open Fermi surface for small t⊥ to
2D-like closed one by increasing t⊥ separated by the Lifshitz
transition at t⊥ ≈ 0.62. Similar models have been studied
before [17–19]. Here we focus on the criticality of the Mott
transition, for which we assume that the universality class
does not depend on the details of the model.

III. PHASE DIAGRAM

We first summarize the obtained ground-state phase dia-
gram of the metal, insulator and magnetic phases separated
by metal-insulator and antiferromagnetic transitions in the
parameter space of U and t⊥ in Fig. 2. Hereafter, we mainly
focus on the metal-insulator transition. (Although we do not
discuss details, the antiferromagnetic transition is discussed in
Appendix F and I). For details of the method to determine the
phase boundary, see Sec. VII C. The transition is of first-order
for large t⊥ with a jump in physical quantities while it changes
to a continuous one for smaller t⊥ detected only by the con-
tinuous opening/closing of the charge gap (see Appendix B).
The first-order and continuous transitions meet at the MQCP.
For the first-order part, the transition temperature as well as
the 2D Ising nature of the transition vanishes at the MQCP.
We find the MQCP roughly around t⊥ = tMQCP

⊥ ∼ 0.4 and
U = U MQCP ∼ 1.8, which will be more precisely estimated
in the later part of this article. For t⊥ > tMQCP

⊥ , magnetic and
metal-insulator transitions occur essentially simultaneously as
a first-order transition. However, for t⊥ < tMQCP

⊥ , the two tran-
sitions become separated (see Appendix F for the magnetic
transition) and a nonmagnetic insulator (NMI) phase emerges,
but we do not go into details of the NMI and leave it for
studies elsewhere. We also do not study the universality of
the quantum critical line depicted as the purple dotted line
in Fig. 2. Although the metal-insulator and antiferromagnetic
transitions look slightly separated even for 0.2 < t⊥ < tMQCP

⊥ ,
we do not exclude the possibility of a simultaneous transition
within the numerical error bar. The overall phase structure
obtained here is essentially similar to that obtained by the
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cluster dynamical mean-field theory (CDMFT) at low temper-
ature [20]. A small kinklike structure of the phase boundary
around t⊥ ∼ 0.6 is related to the Lisfshitz transition in the
corresponding noninteracting model (see Appendix A for the
Fermi surface of the case U = 0).

IV. ESTIMATE OF MQCP AND ITS
CRITICAL EXPONENTS

We now present our numerical results on the universality
class at the MQCP. See Sec. VII C for definitions of the critical
exponents, α, β, γ , δ, ν, z, and η analyzed below. Since
we need to estimate the position of the MQCP first and the
MQCP is defined by the point where the first-order transition
disappears, we first estimate when the jump of physical quan-
tities characteristic of the first-order transition vanishes. The
conventional scaling analysis does not work accurately unless
the MQCP point is precisely estimated.

The critical exponent β of the MQCP [Eq. (18)] is
estimated from the jump of the double occupancy of electrons
on the same site, 
D = Dmetal − Dins, where the double
occupancy in the metallic (insulator) side is Dmetal (Dins)
along the first-order transition line in the region t⊥ > tMQCP

⊥
[see Eq. (12) for the definition of the double occupancy]. The
fitting of the VMC numerical data in the range 0.4 � t⊥ � 0.9
plotted in Fig. 3(a) shows that the mean squared error by
defining the mean given by Eq. (18) becomes the minimum
when we employ the MQCP point at tMQCP

⊥ ∼ 0.38 ± 0.05
and β = 0.97 ± 0.05 as is shown in Secs. VII C and VII D
[Fig. 5(a)]. The green curve in Fig. 3(a) is the resultant
optimized fitting. The error bar for tMQCP

⊥ = 0.38
estimated by the bootstrap method (see Sec. VII D for
details of the bootstrap) is included in the error bar of β.
The estimated β is similar to β = 1 in the filling-controlled
transition predicted in the literature [7].

We also simultaneously determine the critical value of U
at the MQCP and critical exponents δ and νz by the combined
analysis with Eq. (29) at tMQCP

⊥ = 0.38, and obtain U MQCP =
1.83 ± 0.03, νz = 1.13 ± 0.19, δI = 0.98 ± 0.03, and δM =
1.05 ± 0.04 (see Figs. 3(b) and 4 as well as Secs. VII C and
VII D), where δ is estimated separately in the insulating (δI)
and in the metallic (δM) phases.

These results imply that the nonsingular linear term pro-
portional to |U − U MQCP| makes the precise estimate of δ

difficult, if δ � 1. However, we will clarify that δ ∼ 1.0 is
consistent with other scaling analyses. The exponent is the
same again with the filling-controlled MQCP estimated as
δ = 1 in Refs. [7,10] within the statistical error.

V. SCALING ANALYSIS

In our calculation, we obtained β ∼ 1.0, νz ∼ 1.1, and δ ∼
1.0. We now analyze this result in the framework of scaling
theory. Here, the singular part of the ground-state energy E
around the MQCP satisfies the form

E ∝ ξ−(d+z), (2)

where ξ is the unique length scale that diverges at the MQCP,
and d and z are the spatial dimension and the dynamical
exponent, respectively. This scaling theory was examined in
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FIG. 3. (a) t⊥-dependence of jumps of extrapolated double occu-
pancy 
D with the choice of tMQCP

⊥ = 0.38 determined in Sec. VII C.
Green curve represents the optimized fitting leading to β = 0.97 ±
0.05. (b) U dependence of extrapolated double occupancy D at
tMQCP
⊥ = 0.38. Green (purple) line represents the fittings to estimate
δI for U > U MQCP (δM for U < U MQCP), which indicate δI = 0.98 ±
0.03 and δM = 1.05 ± 0.04.

Ref. [10], where critical exponents satisfy the following scal-
ing relations:

γ = β(δ − 1), (3)

2 − η = γ /ν (Fisher′s relation), (4)

α + 2β + γ = 2 (Rushbrooke′s relation), (5)

2 − α = (d + z)ν (Josephson′s relation). (6)

All the scaling laws here can be derived from Eq. (2).
Since the metal is characterized by a nonzero carrier den-

sity X as the natural order parameter in distinction from the
insulator (X = 0), the unique length scale ξ that diverges at
the MQCP must be the mean carrier distance given by

ξ ∝ X 1/d . (7)

In this case, we obtain

δ = z/d. (8)

The relation holds for both the bandwidth- and filling-control
transitions. In the bandwidth-control case, X in the metallic
phase is the density of unbound doublon (double occupancy
site) and holon (electron empty site). The last available scaling
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relation is

ν = β/d. (9)

See Ref. [10] and Methods C for the derivation of the scaling
laws.

By using these relations, if only β = q and νz =
p are known, other exponents can be obtained for
d = 2 as α = 2 − (p + q), γ = p − q, δ = p/q, η = 4 −
2p/q, ν = q/2, and z = 2p/q. By using the values p ∼
1.13 ± 0.19 and q ∼ 0.97 ± 0.05 obtained by our simulation,
we find the exponents listed in Fig. 2(b), which can be con-
sistent with α ∼ 0, γ ∼ 0, δ ∼ 1.0, η ∼ 2.0, ν ∼ 1/2, and
z ∼ 2. In fact, our numerical result obtained independently
from the scaling of D − Dc indicates δ ∼ 1, which is consis-
tent with this prediction. Furthermore, the spatial correlation
of the double occupancy D can be used to estimate z + η inde-
pendently from the above estimates, and though the estimate
contains a large error bar, it suggests z + η ∼ 3.3 ± 0.8 (see
Sec. VII C and Appendix G), which is again consistent with
4.0 estimated from the scaling theory.

VI. DISCUSSION AND SUMMARY

The quantum critical exponent νz ∼ 0.6 ∼ 0.9 was in-
directly estimated above the classical Ising-type critical
temperature of the first-order Mott transition, aiming at es-

timating the quantum criticality by calculating the resistivity
along the Widom line continued above the critical temperature
by using the DMFT [15,21]. It was compared with experi-
mental measurements of organic solids, semiconductor moiré
superlattices and transition metal dichalcogenides, because
they all infer the T = 0 criticality again from the Widom line
[16,22,23]. They also argued that the exponent does not ap-
preciably change with the character of the neighboring phases
[16] implying a universal and robust criticality. Ambiguities
of the definition of the Widom line and the estimate at tem-
perature above nonzero critical temperature, however, have
yielded a variety of estimates for the exponent. By taking
into account this ambiguity and also possible errors often
recognized in the exponents estimated from the collapse to
a single scaling plot employed by them (see also the next
paragraph), and by considering a considerable variation of
their estimates do not necessarily contradict our estimate of
νz ∼ 1.13 ± 0.19.

More importantly, the estimate by the DMFT [15,21] is
rigorous at infinite dimensions and the exponents can be dif-
ferent from the present two-dimensional case. Another DMFT
study [24] suggested that the estimated νz in Ref. [15] is
related to the exponent of the instability line of the metastable
insulating state at the boundary of the coexisting region. This
instability line should vanish if the finite-temperature critical
temperature is lowered to zero as in the MQCP. Therefore
in this regard as well, νz estimated along the Widom line
may not necessarily have a connection to the MQCP exponent
studied here. If one wishes to estimate the MQCP exponents
focused in this article, then it is desired to estimate the ex-
ponent by sufficiently suppressing the critical temperature
both in the theoretical and experimental studies. Our analysis
has determined a more comprehensive and quantitative set
of various exponents β, δ, νz and z + η from the scaling of
four independent quantities including the double occupancy
and charge gap, by straightforward estimates directly at zero
temperature precisely for the MQCP. The four exponents are
shown to satisfy a perfect consistency with the scaling theory
and determine all the exponents.

Though we obtained d + z ∼ 4 as if it were at the up-
per critical dimension of the conventional symmetry-breaking
magnetic transition, it does not necessarily mean that the
simple mean-field treatment is justified, because the Mott
transition is not primarily a symmetry-breaking transition.
Indeed, the anomalous dimension drives the nonzero and a
fairly large exponent for η (∼2), which can be analyzed as
a Lifshitz-type topological transition that makes vanishing
Fermi-surface pocket [25]. In fact, the exponents γ ∼ 0, z ∼ 2
and δ ∼ 1 look similar to a case of the 2D Lifshitz transition
described by the emergence of electron and hole pockets [25].

The exponents α = γ ∼ 0 and δ ∼ 1 indicate that the
bandwidth-controlled MQCP does not drive divergent fluc-
tuations in the charge channel, because the susceptibilities
(the second derivatives of the energy with respect to t⊥ and
U ) are not divergent at the MQCP. This is also indicated
by nonsingular dependence of the energy as a function of
the electron density at the MQCP as is shown in Fig. 10 in
the Appendix. This absence is in contrast with the filling-
controlled MQCP, where the divergent charge fluctuations and
the charge inhomogeneity are obtained as a common property
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[4,26,27]. The charge instability is also tightly linked with a
strong effective attraction of the carriers [5,10], which may be
absent here. This is obviously a disadvantageous aspect for the
promotion for the superconductivity. Since the present simple
model and its MQCP do not have any special aspect or unique
symmetry, the universality class found here may be a standard
one applicable widely to 2D MQCP.

On the other hand, the antiferromagnetic transition does
not contradict mean-field-like normal divergent fluctuation
with divergent susceptibility as is clarified in Appendix F. The
antiferromagnetic transition seems to occur at slightly larger
U (U AF ∼ 1.85) than U MQCP ∼ 1.83, but it is not easy to pin
down whether they really differ (see Appendix F). Neverthe-
less, the estimated νAF ∼ 0.5 and ηAF + zAF ∼ 2 definitely
indicate divergent fluctuations characterized by γ AF > 0 and
δAF > 1 with the help of the scaling law independently of the
Mott criticality. In any case, in the scaling properties, metal-
insulator transition at the MQCP and the antiferromagnetic
transition are decoupled as we show in Appendix I. Therefore,
the universality and critical exponents of the MQCP are not
affected by either antiferromagnetic or paramagnetic nature
of the insulating phase and the present system is expected to
represent the general and universal bandwidth-controlled 2D
Mott transition.

We also note that the spin and charge correlations show
essentially 2D isotropic correlations as we see in Figs. 14 and
15 and manifests the 2D nature at the MQCP.

We summarize the significance of the present paper:
(1) The comprehensive set of critical exponents

β, γ , δ, η, ν, and z, is estimated with consistency with
the scaling theory. Our estimate provides us with a unified
understanding of the universality class of clean D = 2 MQCP
for the bandwidth-controlled Mott transition. This is the same
situation that the experiments in the literature aimed at.

(2) The exponents are estimated directly at T = 0 unlike
most of the previous studies.

(3) The employed numerical method is a state-of-the-art
quantum many-body solver provided as the open-source soft-
ware mVMC, which can treat spatial and temporal quantum
fluctuations.

(4) The present comprehensive clarification opens up a
number of possible routes to test by experimental studies
for complete understanding of quantum Mott transition and
nearby strange metal, which is expected to serve for future
design of functionality.

VII. METHODS

A. Numerical method

For the ground-state calculations, we employ a variational
Monte Carlo (VMC) method [12,13]. The optimization pro-
cedure of the VMC method to reach the ground state is
equivalent to the imaginary time (τ ) evolution represented by
the repeated operation of exp(−τH ) for the Hamiltonian H
or equivalently natural gradient method [28,29]. We choose
the periodic-antiperiodic boundary condition, i.e., x(y) direc-
tion is periodic (antiperiodic) because its boundary condition
allows closed shell condition for L × L = 4n × 4n lattices,

which makes the optimization of the variational parameters
easier and statistical errors smaller due to the reduced degen-
eracy. It also makes the extrapolation to the thermodynamic
limit easier in the later procedure. We use the trial wave func-
tion with correlation factors and the spin quantum-number
projection as

|ψ〉 = LSPGPJP (4)
dh |φpair〉, (10)

where PG, PJ, P (4)
dh are Gutzwiller, Jastrow, and doublon-

holon correlation factors and LS is the spin quantum-number
projection. First, we give the pair-product wave function, de-
fined as

|φpair〉 =
⎛
⎝ Ns∑

i, j=1

fi j ĉ
†
i↑ĉ†

j↓

⎞
⎠

Ne/2

|0〉, (11)

where Ns is the number of sites and Ne is the number of
electrons. This wave function has the same form as the
Bardeen-Cooper-Schrieffer (BCS) wave function, in which
the spins are always restricted to pairs of up and down spins
representing the singlet. The pair product function can also
represent any form of the Slater determinant and in addition
it has representability of any mean-field solution including
magnetic, charge and superconducting symmetry breaking.

The averaged double occupancy

D =
∑

i

〈n̂i↑n̂i↓〉/Ns, (12)

where n̂i↑ (n̂i↓) is the number operator of spin-up (spin-down)
electrons, is a key quantity to understand strong correla-
tion effects, especially in the Hubbard model, where 〈· · · 〉 =
〈ψ | · · · |ψ〉/〈ψ |ψ〉 is the expectation value in the ground state.
In fact, the double occupancy is controlled by the Gutzwiller
factor [30]

PG = exp

(
−g

∑
i

n̂i↑n̂i↓

)
(13)

to lower the energy where g is a variational parameter.
To take into account the long-ranged charge correlation, we

also introduce the Jastrow factor [31]

PJ = exp

⎛
⎝−1

2

∑
i �= j

vi j n̂in̂ j

⎞
⎠, (14)

where vi j are variational parameters and n̂i ≡ n̂i↑ + n̂i↓ is the
number operator of electrons.

To express the correlation between doublon (site doubly
occupied by the spin-up and spin-down electrons) and holon
(empty site) in the strongly correlated regions, we introduce a
four-site doublon-holon correlation factor

P (4)
dh = exp

(
−

4∑
m=0

Ns∑
i=1

(
αd

mξ d
im + αh

mξ h
im

))
, (15)

where ξ
d(h)
im denotes the number operator of doublon (holon)

around ith site. and α
d(h)
im are the variational parameters.

We can express the operator ξ
d(h)
im , for example, as ξ d

i4 ≡
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D̂i
∏

� Ĥi+� and ξ h
i0 ≡ Ĥi

∏
τ (1 − D̂i+τ ), where i + � and i + τ

run the nearest-neighbor sites around i and D̂i (Ĥi) is the
doublon (holon) operator defined as D̂i = n̂i↑n̂i↓ [Ĥi = (1 −
n̂i↑)(1 − n̂i↓)].

All of the parameters fi j, g, vi j, αd
m, αh

m defined in
Eqs. (11), (13)–(15) are variational parameters and they are
optimized to lower the energy simultaneously by following
the standard natural gradient method (stochastic reconfigura-
tion method) [28]. We set the 2 × 2-sublattice structure for
the pairing wave function |φpair〉 to reduce the variational
parameters.

We calculate several physical quantities to identify the
ground state. To determine the magnetic order and to distin-
guish a metal from an insulator, we calculate relevant physical
quantities, i.e., the momentum distribution function n(
k) and
the spin structure factor S(
q).

Momentum distribution function n(
k) is given by

n(
k) = 1

2Ns

∑
i, j,σ

〈 ĉ†
iσ ĉ jσ 〉ei
k·(
ri−
r j ), (16)

where 
ri is the vector representing the coordinate of ith state.
In the same way, the spin structure factor S(
q) is calculated

from

S(
q) = 1

3Ns

∑
i, j

〈 
̂Si · 
̂S j 〉ei 
q·(
ri−
r j ). (17)

In the VMC calculations, we prepared several different
initial states [such as the paramagnetic metal (PM) (free
fermion) and antiferromagnetic insulator (AFI) states] and
optimized them until the variational parameters reach the
convergence, which may not necessarily preserve the char-
acter of the initial states and the nature of the optimized
state is identified only after calculating physical quantities.
To investigate the metal-insulator and magnetic transitions
in the thermodynamic limit, we perform calculations of en-
ergy and other physical quantities on the L × L site square
lattice with the periodic-antiperiodic boundary condition for
L = 16, 20, 24, and 28 for each initial state and the size
dependences are examined.

In this article, we perform the size extrapolations and scal-
ing analyses to examine the magnetic order and metallicity in
the thermodynamic limit.

This basic method is widely used and was tested from
various perspectives in a number of benchmarks [13,32,33].
Of course, it can represent various mean-field wave functions
such as charge, spin-ordered, and superconducting states as
well as fermi liquid metals. It was also shown that the strongly
correlated fermionic states such as Tomonaga-Luttinger liquid
and quantum spin liquid are well captured by the present wave
function. The applicability ranges from 2D itinerant Hubbard
model to frustrated quantum spin models, which has proven
to show one of the best accuracies among available quantum
many-body solvers for strongly correlated quantum lattice
systems. Readers are referred to Refs. [4,14,33,34]. Note that
the conventional auxiliary-field quantum Monte Carlo method
has severe sign problem in geometrically frustrated systems
even at half filling. We confirmed that the present case exhibits
desperate sign difficulty of AFQMC at and near the MQCP
for systems beyond the size 12 × 12, which are, however

necessary to analyze the nature of MQCP. See the average
sign plotted in Fig. 18 in Appendix J. In the present case,
the ground state energy per site E/N obtained from precisely
the same VMC method using the form of the wave function
Eq. (10) and the same Hamiltonian at the MQCP, t⊥ = 0.38
and U = 1.83 for 4 × 4 lattice with the periodic-antiperiodic
boundary condition is −0.8665 ± 0.0005, while the value ob-
tained from the exact diagonalization is −0.8700. The error
∼0.4% is similar to the case of the benchmark in Ref. [13].
See also Appendix J. For physical quantities, the double occu-
pancy D = 0.1869 ± 0.0003 and the peak of the spin structure
factor S(
q) = 0.4489 ± 0.0008 at (π, π ) are compared with
the exact values 0.1844 and 0.4301, respectively. This bench-
mark and that in the literature show that the accuracy well
withstands and can be used for the present analyses. See also
Appendix J.

B. Definition of critical exponents and derivation of scaling laws

Here, the double occupancy D is regarded as a natural order
parameter of the metal-insulator transition. We calculate the
critical exponents for the extrapolated double occupancy D by
controlling t⊥ and U , where the scheme for the extrapolation
is given in Appendix G. The exponent β is defined from the
asymptotic scaling form between the jumps of D (namely,

D) and t⊥ measured from the critical point, i.e.,


D(t⊥) = a|t⊥ − tMQCP
⊥ |β (18)

near the MQCP point tMQCP
⊥ , where a is a constant.

The critical exponents δ and γ are defined from

D − DMQCP|t⊥=tMQCP
⊥

∝ |U − U MQCP|1/δ, (19)

dD

dU

∣∣∣∣
U=Uc

∝ |t⊥ − tMQCP
⊥ |−γ . (20)

The definition of the exponent α is given from

d2E

dt2
⊥

∝ |t⊥ − tMQCP
⊥ |−α (21)

for the ground-state energy E .
Insulators are distinguished from metals by a nonzero

charge gap 
c, which is numerically defined by


c ≡ 1
2 [μ(N↑ + N↓ + 1) − μ(N↑ + N↓)], (22)

where the chemical potential μ is given as μ(N↑ + N↓ + 1) =
[E (N↑ + 1, N↓ + 1) − E (N↑, N↓)]/2, and E (N↑, N↓) is the
optimized ground-state energy for systems with the number
of spin-up (spin-down) electrons N↑ (N↓). The scaling of the
charge gap around the MQCP at U = U MQCP is defined as


c(U ) = aU |U − U MQCP|νz, (23)

where ν is the correlation-length exponent and z is the dy-
namical exponent. Here, aU is a constant. This relation is
the consequence of the scaling of the energy scale [15,16],

c ∝ ξ−z, where ξ is the unique length scale which diverges
at the MQCP. The dynamical exponent relates the length
(momentum) to time (energy) scale and the correlation-length
exponent ν is defined from

ξ ∝ |t⊥ − tMQCP
⊥ |−ν . (24)
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Scaling relations Eqs. (8) and (9) are derived in the follow-
ing way [10]: The scaling of the energy, Eq. (2) is rewritten
as E ∝ X (d+z)/d by using Eq. (7). By adding the t⊥ and U
dependences, E has the form

E = −UX + B0(t⊥ − tMQCP
⊥ )X φ + CX (d+z)/d . (25)

Minimizing E for t⊥ − tMQCP
⊥ = 0 gives the scaling between

X and U − U MQCP, namely δ leading to Eq. (8). Equations (8),
(18), and (24) lead to Eq. (9).

The correlation of double occupancy is determined by

Q(
r) = 1

Ns

∑

r′

〈(D̂(
r + 
r′) − 〈D̂〉)(D̂(
r′) − 〈D̂〉)〉, (26)

where D̂(
r) = n̂
r↑n̂
r↓ is the double occupancy operator and
〈D̂〉 is the spatially averaged expectation value in the ground
state. In the scaling hypothesis, this correlation is expected to
follow

Q(
r) ∝ r−(d+z+η−2) (27)

at asymptotically long distance r = |
r|.

C. Methods for determination of metal-insulator
transition and MQCP

In the region of first-order transitions, we see the energy
level crossing between PM and AFI states, which accom-
panies a jump of the double occupancy 
D. The first-order
transition point is identified by this energy level crossing after
the system size extrapolation to the thermodynamic limit. The
metal-insulator transition is corroborated by the opening of
the charge gap and the qualitative change of the momentum
distribution in Appendix D, Fig. 9 depicted for t⊥ = 0.5, 0.7,
and 1.0. In most of the first-order region, we have con-
firmed that the transition indeed represents the simultaneous
transition of metal-insulator and antiferromagnetic transitions
by examining several relevant physical quantities around the
transition point. We have determined the continuous metal-
insulator transition by the opening of the charge gap as is
described in Fig. 7 in Appendix C

The MQCP point is first determined from the point where

D vanishes as is plotted in Fig. 3(a). To determine tMQCP

⊥ and
β simultaneously, we have performed a regression analysis to
optimize t⊥ and β dependencies of 
D in the form Eq. (18)
by minimizing the following χ2:

χ2 =
Ntsample∑

i

(
Di − 
Dfit )
2/(Ntsample − 2) (28)

for Ntsample data point, where 
Dfit has the form (18) and

Di is the simulation data. The logarithmic difference is
appropriate to estimate the error for the power-law function.
In Fig. 5(b), t⊥ dependence of χ2 is plotted for the optimized
exponent β. From the minimum of χ2, tMQCP

⊥ is determined
as 0.38 ± 0.05, where β is 0.97 ± 0.05. The error bar is esti-
mated from the bootstrap analysis explained in Sec. VII D.

Since the MQCP can be signaled by the criticality given by
the exponents β, δ, νz, and the opening of the charge gap, the
value of U MQCP is estimated by the combined analysis of these
three by employing tMQCP

⊥ = 0.38 as is analyzed in Fig. 5(a),

 0

 0.004

 0.008

 0.012

 0.016

 0.020

 1.72  1.74  1.76  1.78  1.80  1.82  1.84  1.86
U

 1.88
χ2

1.7x10-6

 0.37  0.38  0.39

1.6x10-6

1.5x10-6

χ2

(a)

(b)

FIG. 5. (a) t⊥-dependence of χ 2 value for the fitting Eq. (18),
which results in tMQCP

⊥ = 0.38 ± 0.05 and β = 0.97 ± 0.05. (b) U
dependence of χ 2 value for the fittings to combined Eq. (19) and
Eq. (23), which results in U MQCP = 1.83 ± 0.03, νz = 1.13 ± 0.19,
δI = 0.98 ± 0.03, and δM = 1.05 ± 0.04.

where the minimum of the χ2 value now defined as

χ2 =
NU sample∑

i

(ln 
ci − ln 
cfit )
2/(NU sample − 2)

+
NU I−sample∑

i

(ln |DIi − DMQCP| − ln |Dfit − DMQCP|)2/

(NU I−sample − 2)

+
NUM−sample∑

i

(ln |DMi − DMQCP| − ln |Dfit − DMQCP|)2/

(NUM−sample − 2) (29)

suggests U MQCP = 1.83 ± 0.03, νz = 1.13 ± 0.19,
δI = 0.98 ± 0.03, and δM = 1.05 ± 0.04. For fittings to
obtain these critical exponents, we assume Eqs. (19) and (23).

D. Interpolation and bootstrap techniques

To estimate metal-insulator transition points, we introduce
the interpolation techniques by fitting the computed data to
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an assumed form. For reliable estimates for metal-insulator
transition points, we interpolate energy and double occupancy
data as a function of U by the cubic function as

f (U ) = a0U
3 + a1U

2 + a2U + a3 (30)

as the best fit of the U dependence of quantities. The crossing
point of the interpolated energy of each metallic and insulating
state gives us a reliable estimate of the level crossing point for
the first-order transition.

In addition, we estimate the error bar of the level cross-
ing point by using the bootstrap method. Ground-state
energy estimated by our Monte Carlo calculation, EMC con-
tains statistical errors given by the standard deviation σMC.
Namely, we assume that EMC obeys the Gaussian distribution
P(EMC, σ 2

MC) and perform the following procedure:
(1) Generate a number of synthetic samples of the energy

which follows the probability P(EMC, σ 2
MC) around the inter-

polated U dependence of the energy given by Eq. (30) for both
insulating and metallic states.

(2) Calculate the crossing point between the insulating and
metallic states for each synthetic data.

(3) Calculate the variance of the crossing points of the
synthetic data, which gives the estimate of the error bar.

Furthermore, we also apply the bootstrap method for deter-
mining statistical errors for critical exponents and tMQCP

⊥ and
U MQCP in Sec. VII D.
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APPENDIX A: SHAPE OF FERMI SURFACE
FOR NONINTERACTING SYSTEM

Figure 6 shows the Fermi surface for U = 0.

APPENDIX B: CHARGE GAPS IN CONTINUOUS
TRANSITION REGION

Charge gap defined by Eq. (23) is obtained from the pro-
cedure in Sec. VII C. An example of the calculated results

-1.0

-0.5

 0.0

 0.5

 1.0

-1.0 -0.5  0.0  0.5  1.0

t =0.3
t =0.62
t =1.0

kx/π

ky/π

FIG. 6. Fermi surfaces of the model for U = 0 at half filling.
Green, purple, and light-blue curves indicate the Fermi surface at
t⊥ = 1, 0.62, and 0.3, respectively.

for 28 × 28 lattices in the cases of (a) t⊥ = 0.05, (b) 0.1, (c)
0.2, and (d) 0.3 are shown in Fig. 7. The phase boundary of
metal-insulator transitions in Fig. 1 is determined by analyz-
ing these results. The size of the artifact by the finite-size gap

0 speculated from the noninteracting case is illustrated by
the horizontal dotted line.

APPENDIX C: METHOD TO ESTIMATE THE CHARGE
GAP IN PHASE SEPARATION REGION

Figure 8(a) shows that the energy as functions of n shows
phase separation for U � 1.9 in case of t⊥ = 0.38. The carrier
density n is defined as n = Ne/Ns − 1/2. Figure 8(b). illus-
trates the procedure to estimate the charge gap when the phase
separation takes place. Convex (concave) downward curve of
the chemical potential in the electron (hole) doped region in-
dicate the phase separation. By drawing the horizontal line to
make the area of the two regions surrounded by the horizontal
line and the chemical potential curve, the phase separation
region can be obtained, where the pinned chemical potential
during the phase separation is given by the horizontal line. The
difference in the pinned chemical potential between the hole
and electron doped sides is the charge gap.

APPENDIX D: MOMENTUM DISTRIBUTION FUNCTIONS
IN FIRST-ORDER TRANSITION REGION

In most of the first-order transition region, the metal-
insulator and antiferromagnetic transition occur simultane-
ously. To confirm the metal-insulator transition, momentum
distribution functions n(
k) around the energy level crossing
points are shown in Fig. 9, where the shape of n(
k) is qualita-
tively different between the metal and the insulator.

APPENDIX E: ABSENCE OF SINGULARITY IN ENERGY
AS FUNCTION OF CONTROL PARAMETER

Figure 10 shows that the energy as functions of n (a) and
U (b) look nonsingular around the MQCP at U = 1.83 and
t⊥ = 0.38.
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FIG. 7. Examples of charge gaps 
c for 28 × 28 sites in the cases of t⊥ = 0.05 (a), 0.1 (b), 0.2 (c) and 0.3 (d). Thin dashed blue lines are
the finite-size gaps in the noninteracting case.

APPENDIX F: DETERMINATION
OF ANTIFERROMAGNETIC TRANSITION

AND ITS CRITICALITY

The universality of the magnetic transition may belong to
a class different from the Mott transition. As well as metal-
insulator transitions, we see the clear jumps of the staggered

magnetization ms in the region of first-order transitions. How-
ever, the border between paramagnetic and antiferromagnetic
phases is not straightforward in the region of continuous
transitions. Here we first describe how U AF is estimated
and then the estimate of the critical exponent at the MQCP
later.

(b)

-0.80

-0.79

-0.78

E
/N

s

(a)

-0.01  0  0.01

hole dope
electron dope

 0.0

 1.0

 2.0

 3.0

-0.01 -0.005  0  0.005  0.01

electron dope
hole dope

μ

FIG. 8. An example of charge gap estimate by Maxwell rule. (a) Ground-state energy as a function of carrier density n at t⊥ = tMQCP
⊥ = 0.38

and U = 2.5 for 28 × 28-site system. (b) Chemical potential μ vs n for the same case as panel (a). The Horizontal solid lines in both electron-
and hole-doped regions represent the lines used for the Maxwell’s construction, where the horizontal line is drawn to make the areas of the two
shaded regions surrounded by the line and the curve equal. For the curve and line adjacent to n = 0, we count the area of the shaded domain
surrounded by the curve, the horizontal line and the n = 0 vertical line. Then the two crossing points of the line and the curve determines the
two points of the phase separation for each electron and hole side as assured by the thermodynamic stability. The difference in μ between
electron and hole doped sides (the difference of μ between the two horizontal lines) gives the charge gap.
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FIG. 9. Momentum distribution functions n(
k) for t⊥ = 0.5, 0.7 and 1.0 around the metal-insulator transition points. Panels (a), (c), (e)
indicate the metallic phase with sharp Fermi surface, while panels (b), (d), (f) indicate the insulating phase without the Fermi surface.
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FIG. 10. Ground-state energy as a function of carrier density n (a) and U (b), which support the absence of the singular behavior.
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FIG. 11. Correlation-ratio plot for 20 × 20, 24 × 24, and 28 × 28 sites in the cases of (a) t⊥ = 0.05 and (b) t⊥ = 0.1. The crossing points
suggest U AF ∼ 1.48 and 1.73, respectively.

1. Antiferromagnetic transition determined
by correlation ratio method

We determine the boundary of the antiferromagnetic
phase by using the correlation-ratio method [35], where the
correlation-ratio parameter Sg obtained from the spin structure
factor S(q) is given by

Sg ≡ 1 − S(π, π + 
qy)

S(π, π )
. (F1)

Here, π + 
qy is the nearest-neighbor 
k-point to (π, π ). We
plotted this ratio for 20 × 20, 24 × 24, and 28 × 28 sites, to
determine the border of paramagnetic and antiferromagnetic
phases. In the nonmagnetic region, Sg converges to zero with
increasing system size, because S(
q) is finite and continuous
in the thermodynamic limit. However, in the AF region, Sg

converges to one by increasing the system size. It is empir-
ically observed that the different-size curves cross and the
crossing point does not sensitively depend on the system sizes,
which serves as a good estimate of the transition point in
thermodynamic limit [35,36]. We plot the curves and their
crossing points for 20 × 20, 24 × 24, and 28 × 28 sites.

In the same way as fittings of energy and double occu-
pancy, we interpolate the correlation-ratio parameter Sg as a
function of U by assuming the rational function as

g(U ) = a0U 2 + a1U + a2

a3U 2 + a4U + a5
. (F2)

From this fitting we are able to estimate the correlation-ratio
crossing point by the interpolation. The phase boundary of
the magnetic transition in Fig. 1 is thus determined from the
crossing points of Sg for 20 × 20, 24 × 24, and 28 × 28 sites.
We show the correlation-ratio plot for 20 × 20, 24 × 24, and
28 × 28 sites in the cases of t⊥ = 0.05 and 0.1 in Fig. 11,
where the metal-insulator transition is clearly different and the
quantum spin liquid phase (NMI) is found. For t⊥ = tMQCP

⊥ =
0.38 the plot is shown in Fig. 12. Then the magnetic transition
point is consistently estimated as U AF ∼ 1.85 ± 0.02, which
is close to U MQCP ∼ 1.83 ± 0.03, but seems to be slightly
larger within the error bar.

2. Critical exponent at antiferromagnetic transition

We here estimate the critical exponents for the antiferroma-
gentic transition at the MQCP. For this purpose, we adopt the
finite-size scaling relation for the spin structure factor S(q),

S(π, π ) = L−z+2−η fm(uL1/ν ), (F3)

where u = (U − U AF)/U AF and z represents the dynamical
exponent while fm is a scaling function and η is the exponent
associated with the anomalous dimension.

As shown in Fig. 13, we obtain the exponent as

ν = 0.52 ± 0.02, and η + z = 1.9 ± 0.1 (F4)

(a)

 1.6  1.8  2  2.2  2.4
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 0.9

 1

S g

20x20
24x24
28x28

(b)

 0.72

 0.76

 0.8

 0.84

 1.76  1.8  1.84  1.88

U

S g

FIG. 12. Determination of the antiferromagnetic transition along t⊥ = tMQCP
⊥ = 0.38. Analysis by correlation-ratio method by using

20 × 20, 24 × 24, and 28 × 28 lattices is shown in wide region in panel (a) and the zoom-in plot in panel(b).
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FIG. 13. Finite-size scaling of S(π, π ) by using scaling relation
(F3). The data collapse to a single scaling curve is found for ν =
0.52 ± 0.02, and η + z = 1.9 ± 0.1 with U AF = 1.85 ± 0.02.

if the scaling form (F3) is used with U AF = 1.85 at t⊥ = 0.38.
Moreover, if we assume the hyperscaling relation

β

ν
= z + d − 2 + η

2
, (F5)

then we can estimate the critical exponent βAF = 0.49 ± 0.03,
which turns out to be consistent with that of the mean-field
theory (β = 0.5). This is justified when z ∼ 2 so that d +
z = 4 assures that the present system is located just at the
upper critical dimension in the conventional framework of
Ising or Hertz-Moriya [37,38] and the critical exponents are
marginally given by the mean-field values for the symmetry
breaking transition. This is also consistent with z + η ∼ 2
resulting in η ∼ 0, indicating the absence of the anomalous
dimension. Then γ = 1 and δ = 3 derived from the scaling
relation indicate divergent fluctuations in contrast with the
universality of the metal-insulator transition. A large z(∼2)
instead of the normal value z = 1 expected for the antifer-
romagnetic spin wave dispersion could be the consequence
of the proximity from the MQCP. Instead, it is conceivable
that nonnegligible η > 0 makes d + z < 4 so that the devia-
tion from the mean-field value exists, which may drive z to
decrease from 2, though the presence of the diverging fluctu-
ations characterized by γ > 1 and δ > 1 would not change.
These issues should be carefully examined in the future in
the region close to the transition point if U AF is different
from U MQCP. Of course, the AF long-range order requires
the multidimensionality d � 2 of the system. Although the
background broad peak reflects the moderate anisotropy of the
Hamiltonian, the spin structure factor S(q) shown in Fig. 14
clearly demonstrates that the spin correlation is 2D isotropic
behavior for a critical sharp peak at (π, π ) even at MQCP.

APPENDIX G: DOUBLE OCCUPANCY CORRELATION

Spatial correlation of double occupancy D is defined in
Eq. (12). The spatial correlation of the fluctuation of D defined
by Eq. (26) is plotted in Fig. 15, where the fitting of Q(
r) sug-
gests z + η = 3.3 ± 0.8 from Eq. (27). The value is consistent
with the present scaling theory that requires z + η = 4.
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FIG. 14. Spin structure factor at MQCP.

APPENDIX H: SIZE EXTRAPOLATION
OF DOUBLE OCCUPANCY

To analyze the ciriticality by using the double occupancy,
we perform the size extrapolations of D by using the following
formulas:

D(L) = D∞ +
{

bM/L2 (metal)
bI/L (insulator)

}
, (H1)

where D∞ is the double occupancy at the thermodynamic
limit and bM (bI) is the fitting parameter in the metallic (in-
sulating) phase. Examples of the fitting are shown in Fig. 16.
The error bars in Fig. 2 of the main article are determined by
the square root of the mean square error of the fitting.

APPENDIX I: DECOUPLING OF METAL-INSULATOR
AND ANTIFERROMAGNETIC TRANSITIONS

The metal-insulator transition (MIT) is often intertwined
with magnetic fluctuations. A phenomenology that will cap-
ture both the MIT and the spin degrees of freedom necessitates
a scalar order parameter �(x, τ ) that captures the doublon
occupancy, as well as a normalized vector order parame-
ter n(x, τ ) that captures the antiferromagnetic fluctuations.
The field theory has to posses a Z2 × O(3) global symme-
try, �(x, τ ) → −�(x, τ ) and n(x, τ ) → On(x, τ ) with O an

Q
(r)

 1.0x10-1

 1.0x10-2

 1.0x10-3

 1.0x10-4

 1.0x10-5

 1.0x10-6

r 1  10

FIG. 15. Spatial correlation of double-occupancy fluctuation in
x direction defined in Eq. (26). Error bars are those of statistical
errors in the Monte Carlo sampling. The fitting curve is obtained
by using the form Q(
r) ∝ 1/|r|z+η + ∑

n �=(0,0)[(1/|r + L
n|z+η ) −
(1/|L
n|z+η )] to fit the data at r � 3 to estimate the asymptotic form
at long distance. It suggests more or less isotropic power-law decay
with z + η = 3.3 ± 0.8 by taking account of the combined errors of
the fitting and the Monte Carlo sampling.
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FIG. 16. Size extrapolation of the double occupancy at tMQCP
⊥ = 0.38 by using Eq. (H1). The VMC data of the double occupancy are

plotted for the metallic phase (U = 1.5, 1.6, 1.7, and 1.8) (a) and for the insulating phase (U = 1.9, 2.0, 2.1, and 2.2) (b) by using the lattices
with L = 20, 24, and 28.

orthogonal matrix, and effective Lagrangian reads

L = L� + Ln + Lint. (I1)

It accounts for the dynamics of the scalar field and the vector
field as well as the interaction between both of them. We will
refrain from writing down explicit forms for L� and Ln, since
the only information we need to assess if Lint is relevant or
not at criticality are the scaling dimensions of n(x, τ ) and
�(x, τ ). Assuming a singular spatiotemporal length scale λ,
and for a given dynamical exponent z, we expect that the
correlation function of the order parameter � at criticality
follows

〈�(λx, λzτ )�(λx′, λzτ ′)〉 ∝ 1

λ2
�
〈�(x, τ )�(x′, τ ′)〉, (I2)

where 
� is represented by the exponents of the MQCP as
2
� = d + z + η − 2. For those who are not familar with
this critical scaling exponent 
�, see below an example of
the simple φ4 model. At the MQCP our estimates are z ∼ 2
and η ∼ 2 and the equal time doublon-doublon correlation
functions are consistent with 
� � 2. A similar form holds
for the O(3) order parameter n. We are now in a position to
perturbatively understand if the coupling between the spin and
doublon degrees of freedom is irrelevant, marginal or relevant.
The most relevant symmetry allowed interaction between the
O(3) and Z2 fields reads

Lint = g
∫

d2xdτ�(x, τ )2(∇xn(x, τ ))2 + · · · (I3)

We note that due to the normalization of the O(3) order pa-
rameter �2n2 does not provide a spin-charge coupling. The
ellipsis denotes higher order terms under a scale transfor-
mation. Under a scale transformation, the interaction terms
transforms as

g → gλz−2
�−2
n . (I4)

As mentioned above, we know that for the MQCP 
� � 2
and that z � 2. As a result, and for any 
n > 0, g scales to
zero under successive coarse graining scale transformations.
The above provides a compelling argument supporting the

notion that the charge and spin transitions are, in the RG sense,
independent of each other at the MQCP.

Here, we supplement the relation of the scaling exponent
of the correlation defined in Eq. (I2) to the general framework
of the scaling theory in a simple example of conventional φ4

theory for the readers who are not familiar with the scaling
theory of quantum systems. The nondimensional φ4 Hamilto-
nian Hφ is given by

H[φ] =
∫

dd r

[
1

2
(∇φ)2 + A

2
φ2 + B

4
φ4

]
, (I5)

with coefficients A and B. From the assumption of a single
length scale λ, this classical φ4 Hamiltonian requires the scal-
ing of φ from the first term as

[φ] = λ1− d+η

2 , (I6)

where η is the anomalous dimension to account for the re-
lation of λ and the diverging correlation length ξ . From the
second and third terms, we obtain similarly [A] = λ−2 and
[B] = λd+η−4, respectively. When quantum dynamics is in-

AFQMC
VMC

U=1.8,    =0.4
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-0.89

-0.88

E
/N

s

 2  4  6  8  10  12  14
L

FIG. 17. Comparison of ground-state energy between the VMC
and AFQMC for L = 4, 8, and 12 at t = 1, U = 1.8, and t⊥ = 0.4,
which is close to the MQCP.
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FIG. 18. Averaged sign in AFQMC as a function of the effective
imaginary time θt at the same parameter as Fig. 17.

troduced, a mapping of a d-dimensional quantum system to
d + z-dimensional classical representation tells us that we
need to replace d with d + z. Here, z is the dynamical ex-
ponent to represent the scaling of timescale [τ ] = [λ]z. From
this we obtain the criticality of correlation function from the
scaling of φ [Eq. (I6)] as

〈φ(λx, λzτ )φ(λx′, λzτ ′)〉 ∝ 1

λ2
φ
〈φ(x, τ )φ(x′, τ ′)〉, (I7)

with 2
φ = d + z + η − 2.

TABLE I. Comparison of the ground-state energy for the same
parameter as Fig. 17 calculated by the present VMC and AFQMC.
The average sign of the AFQMC simulations, 〈sign〉 at the effective
inverse temperature θt = 10, is also shown.

VMC E/Ns

L = 4 −0.88554 ± 0.00004
L = 8 −0.9346 ± 0.0002
L = 12 −0.9289 ± 0.0002

AFQMC E/Ns 〈sign〉
L = 4 −0.8860 ± 0.0002 1.0000 ± 0.0001
L = 8 −0.9353 ± 0.0002 0.754 ± 0.003
L = 12 −0.931 ± 0.001 0.034 ± 0.001

APPENDIX J: ADDITIONAL BENCHMARK DATA

Here we show the benchmark in comparison to the
auxiliary-field quantum Monte Carlo (AFQMC) calculation
[39–41]. Figure 17 shows the energy comparison of the
present model near the MQCP, namely at U/t = 1.8 and t⊥ =
0.4 up to L = 12, between the present VMC and the AFQMC
calculation which should be exact within the statistical error
after convergence to the ground state. The agreement of these
two methods is satisfactory in these clusters. However, the
average sign of the AFQMC rapidly approaches zero with
increasing system size as is shown in Fig. 18. Beyond L = 12,
it is hard to obtain meaningful results by AFQMC. The esti-
mated ground-state energies and the averaged sign are also
listed in Table I. The AFQMC calculations were carried out
with the ALF-library [42].
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Dobrosavljević, Finite-temperature crossover and the quantum
Widom line near the Mott transition, Phys. Rev. B 88, 075143
(2013).

[22] B. H. Moon, Metal-insulator transition in two-dimensional
transition metal dichalcogenides, Emergent Mater. 4, 989
(2021).

[23] T. Li, S. Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K. Watanabe
et al., Continuous Mott transition in semiconductor moire su-
perlattices, Nature (London) 597, 350 (2021).

[24] H. Eisenlohr, S.-Sup B. Lee, and M. Vojta, Mott quantum
criticality in the one-band Hubbard model: Dynamical mean-
field theory, power-law spectra, and scaling, Phys. Rev. B 100,
155152 (2019).

[25] Y. Yamaji, T. Misawa, and M. Imada, Quantum and topological
criticalities of Lifshitz transition in two-dimensional correlated
electron systems, J. Phys. Soc. Jpn. 75, 094719 (2006).

[26] K. Ido, T. Ohgoe, and M. Imada, Competition among vari-
ous charge-inhomogeneous states and d-wave superconducting
state in Hubbard models on square lattices, Phys. Rev. B 97,
045138 (2018).

[27] A. S. Darmawan, Y. Nomura, Y. Yamaji, and M. Imada, Stripe
and superconducting order competing in the Hubbard model
on a square lattice studied by a combined variational Monte
Carlo and tensor network method, Phys. Rev. B 98, 205132
(2018).

[28] S. Sorella, Generalized Lanczos algorithm for variational quan-
tum Monte Carlo, Phys. Rev. B 64, 024512 (2001).

[29] K. Takai, K. Ido, T. Misawa, Y. Yamaji, and M. Imada,
Finite-temperature variational Monte Carlo method for strongly
correlated electron systems, J. Phys. Soc. Jpn. 85, 034601
(2016).

[30] M. C. Gutzwiller, Effect of Correlation on the Ferromagnetism
of Transition Metals, Phys. Rev. Lett. 10, 159 (1963).

[31] R. Jastrow, Many-body problem with strong forces, Phys. Rev.
98, 1479 (1955).

[32] L. F. Tocchio, F. Becca, and S. Sorella, Hidden Mott transition
and large-u superconductivity in the two-dimensional Hubbard
model, Phys. Rev. B 94, 195126 (2016).

[33] Y. Nomura and M. Imada, Dirac-Type Nodal Spin Liq-
uid Revealed by Refined Quantum Many-Body Solver Using
Neural-Network Wave Function, Correlation Ratio, and Level
Spectroscopy, Phys. Rev. X 11, 031034 (2021).

[34] K. Ido, K. Yoshimi, T. Misawa, and M. Imada, Unconventional
dual 1D-2D quantum spin liquid revealed by ab initio studies
on organic solids family, npj Quantum Mater. 7, 48 (2022).

[35] R. K. Kaul, Spin Nematics, Valence-Bond Solids, and Spin Liq-
uids in SO(n) Quantum Spin Models on the Triangular Lattice.
Phys. Rev. Lett. 115, 157202 (2015).

[36] S. Pujari, T. C. Lang, G. Murthy, and R. K. Kaul, Interaction-
Induced Dirac Fermions from Quadratic Band Touching in
Bilayer Graphene, Phys. Rev. Lett. 117, 086404 (2016).

[37] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165
(1976).

[38] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism,
Springer Series in Solid-State Sciences, No. 56 (Springer,
Berlin, 1985).

[39] S. Sorella, S. Baroni, R. Car, and M. Parrinello, A novel
technique for the simulation of interacting fermion systems,
Europhys. Lett. 8, 663 (1989).

[40] M. Imada and Y. Hatsugai, Numerical Studies on the Hubbard
Model and the t-J Model in One- and Two-Dimensions, J. Phys.
Soc. Jpn. 58, 3752 (1989).

[41] F. Assaad and H. Evertz, World-line and Determinantal Quan-
tum Monte Carlo Methods for Spins, Phonons, and Electrons,
in Computational Many-particle Physics, Springer Series in
Solid-State Sciences, No. 56 (Springer, Berlin, 2008).

[42] F. F. Assaad, M. Bercx, F. Goth, A. Götz, J. S. Hofmann, E.
Huffman, Z. Liu, F. Parisen Toldin, J. S. E. Portela, and J.
Schwab, The ALF (Algorithms for Lattice Fermions) project re-
lease 2.0. Documentation for the auxiliary-field quantum Monte
Carlo code, SciPost Phys. Codebases 1 (2022).

033186-16

https://doi.org/10.1038/nphys3235
https://doi.org/10.1103/PhysRevB.65.115117
https://doi.org/10.1103/PhysRevB.84.045112
https://doi.org/10.1103/PhysRevLett.116.086403
https://doi.org/10.1103/PhysRevB.103.125137
https://doi.org/10.1103/PhysRevB.88.075143
https://doi.org/10.1007/s42247-021-00202-9
https://doi.org/10.1038/s41586-021-03853-0
https://doi.org/10.1103/PhysRevB.100.155152
https://doi.org/10.1143/JPSJ.75.094719
https://doi.org/10.1103/PhysRevB.97.045138
https://doi.org/10.1103/PhysRevB.98.205132
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.7566/JPSJ.85.034601
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRev.98.1479
https://doi.org/10.1103/PhysRevB.94.195126
https://doi.org/10.1103/PhysRevX.11.031034
https://doi.org/10.1038/s41535-022-00452-8
https://doi.org/10.1103/PhysRevLett.115.157202
https://doi.org/10.1103/PhysRevLett.117.086404
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1209/0295-5075/8/7/014
https://doi.org/10.1143/JPSJ.58.3752
https://doi.org/10.21468/SciPostPhysCodeb.1

