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Simulating one-dimensional quantum chromodynamics on a quantum computer:
Real-time evolutions of tetra- and pentaquarks
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Quantum chromodynamics (QCD)—the theory of quarks and gluons—has been studied for decades, but it
is yet to be fully understood. A recent example is the prediction and experimental discovery of tetraquarks,
which opened a new research field. Crucially, numerous unsolved questions regarding the standard model can
exclusively be addressed by nonperturbative calculations. Quantum computers can solve problems for which
well-established QCD methods are inapplicable, such as real-time evolution. We take a key step in exploring
this possibility by designing a real-time evolution of tetraquark and pentaquark physics in one-dimensional
SU(3) gauge theory. We also perform an experiment on a superconducting quantum computer demonstrating an
elementary cell consisting of two staggered sites containing quarks and antiquarks with all three colors. This
experiment represents an exciting step in quantum computation involving quarks with the gauge group of QCD.
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I. INTRODUCTION

Quantum chromodynamics (QCD) provides the fundamen-
tal understanding of the strong nuclear force. It describes a
vast range of hadrons and their properties in terms of just the
quark masses and a gauge coupling. The recent discoveries [1]
of several tetraquark candidates are reminders of the richness
still remaining to be understood within QCD.

Lattice gauge theory is the first-principles nonperturba-
tive theoretical tool for studying QCD. Emerging quantum
computers will allow lattice studies to access new topics
within QCD, such as real-time evolution [2–4]. In this paper,
we use real-time evolution to present a study of tetraquarks
and pentaquarks on a quantum computer. Our calculations
use SU(3) gauge theory in one spatial dimension [5], and
the number of qubits (entangling gates) required scales only
linearly (quadratically) in the number of lattice sites N . To
match the available quantum hardware, our experimental
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demonstrations focus on a lattice of minimal length, i.e., the
basic building block.

Previous quantum computations within U(1) gauge the-
ory [6–14] showed electron-positron pair production. Moving
from this simple Abelian case to a more complex non-Abelian
theory reveals qualitatively new phenomena. For example, in
addition to quark-antiquark pair production (and the existence
of a meson), there is also a gauge-singlet particle having
valence quarks without valence antiquarks (i.e., the baryon).
A recent paper [15] presented the quantum computation of a
baryon mass in a SU(2) gauge theory.

In this paper we consider SU(3), which is the gauge group
of QCD, and demonstrate color-neutral objects (also called
gauge singlets). Color-neutral states of SU(3) are invariant
under arbitrary rotations in color space and thus involve all the
color components (charges) available in the theory, i.e., red,
green, and blue (and their anticolor counterparts). This is in
contrast to Abelian quantum electrodynamics (QED), where
a singlet state involves electron-positron pairs only. Since
the color singlet states are the relevant physical states, their
study and simulation constitute an important step towards the
understanding, description, and prediction of more complex
and realistic experiments.

In order to study the properties and interactions of the
gauge singlets, we perform two experiments. First, we per-
form a quantum simulation of the tetraquark. Specifically, we
identify the state possessing two quarks in a color antitriplet
plus two antiquarks in a color triplet. The mixing of this state
with a baryon-antibaryon pair and with other quantum states
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FIG. 1. Gauge theory on the lattice. In order to study the SU(3)
gauge theory in one dimension, we use the lattice shown in (a),
where space is discretized into unit cells that each hold up to three
quarks (red, green, blue) represented by filled circles and up to
three antiquarks (antired, antigreen, antiblue) represented by striped
circles. Each unit cell is connected to the neighboring one with a
gauge link Ûi. Each particle represented by the fermionic field φ̂i

n

(i = 1, 2, 3) is mapped to a qubit according to the staggerization table
in (b), where n is the index of the qubit. As an example, (c) shows a
pictorial representation of the tetraquark state for an elementary cell
in the strong coupling limit (consisting of a quantum superposition of
orthogonal basis states), along with its spin representation (see text
for details).

is extracted from the quantum computation of time evolution.
Second, we study a pentaquark by considering two quark
flavors of different masses. Taking the infinite-mass limit for
the second flavor allows us to perform an experiment showing
oscillations between a pentaquark and a baryon.

Very recent quantum simulations of SU(2) and SU(3)
gauge theories for particle physics [15–23] have succeeded in
accessing increasingly complex model systems on the route
towards QCD. Our experiment takes this quest a crucial step
forward by arriving at the simulation of physical states of
SU(3) relevant for hadron physics experiments.

II. THEORY

A. SU(3) gauge theory

Our calculations use the Hamiltonian approach where time
is not discretized, and the lattice is purely spatial. We consider
a one-dimensional (1D) lattice with open boundary condi-
tions, where each site n hosts a fermionic field with three
color components, φ̂n = (φ̂1

n, φ̂
2
n , φ̂

3
n )T. We choose to work

with staggered fermions [24] with the convention that odd
sites host antimatter, while even sites host matter, as shown
in Fig. 1(a). The gauge fields are defined on the link between
sites n and n + 1 and mediate the interaction between color
degrees of freedom. The gauge-invariant lattice Hamiltonian

in natural units (h̄ = c = 1) reads

Ĥl = 1

2a

N−1∑
n=1

(φ̂†
nÛnφ̂n+1 + H.c.)

+ m
N∑

n=1

(−1)nφ̂†
n φ̂n + ag2

2

N−1∑
n=1

L̂2
n, (1)

where “H.c.” denotes the Hermitian conjugate, N is the num-
ber of lattice sites with spacing a, m is the quark bare mass,
and g is the bare coupling. The first term in the Hamiltonian
describes the creation of particle-antiparticle pairs with Ûn

being the corresponding gauge operator adapting the gauge
field during pair creation. The second term is the mass term
(the alternating sign appearing here is the signature of the
staggered formulation). The last term encodes the color elec-
tric energy of the system and is expressed in terms of the left
color electric field L̂n on the link n. Furthermore, it is con-
venient to introduce the non-Abelian charges at site n, Q̂a

n =∑3
i, j=1 φ̂i†

n (T a)i j φ̂
j
n , where T a = λa/2 and λa (a = 1, . . . , 8)

are the Gell-Mann matrices [25]. These charges appear in
the non-Abelian version of the Gauss law that physical states
must satisfy [26]. We work in the sector with zero external
charges and zero total non-Abelian charge, i.e., a color sin-
glet state must satisfy Q̂a

tot |�〉 ≡ ∑
n Q̂a

n |�〉 = 0. Besides the
eight non-Abelian charges, the Hamiltonian also conserves
the baryon number B, which measures the matter-antimatter
imbalance (see Appendix A 1). In our first study, we target
tetraquark physics and are therefore interested in the B = 0
subsector where all states contain an equal number of quarks
and antiquarks. In our second study we target pentaquark
physics and consider therefore the sector with B = 1.

B. Effective qubit formulation

To simulate and study the rich physics of the SU(3) theory,
we encode Eq. (1) in a Hamiltonian suitable for quantum
simulations. In a first step, a gauge transformation is applied to
eliminate the gauge degrees of freedom from the Hamiltonian,
allowing us to express the Hamiltonian in terms of fermions
only [27]. This first step is applied to save resources (as
gauge fields are not stored explicitly in the qubit register)
at the expense of introducing long-range interactions. In a
second step, a Jordan-Wigner transformation [28] translates
fermionic matter degrees of freedom into spin 1

2 , i.e., qubit
degrees of freedom (see Fig. 1). It is convenient to rescale the
Hamiltonian with the lattice spacing a, resulting in

Ĥ = Ĥkin + m̃Ĥm + 1

2x
Ĥe, (2)

where m̃ = am and x = 1/(ga)2 are the dimensionless mass
and coupling constant, respectively. In the spin formulation,
the kinetic term is given by

Ĥkin = 1

2

N−1∑
n=1

(−1)n
(
σ̂+

3n−2σ̂
z
3n−1σ̂

z
3nσ̂

−
3n+1

− σ̂+
3n−1σ̂

z
3nσ̂

z
3n+1σ̂

−
3n+2 + σ̂+

3nσ̂
z
3n+1σ̂

z
3n+2σ̂

−
3n+3 + H.c.

)
,

(3)
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FIG. 2. Strong coupling states. The energy eigenstates in the
strong coupling limit form a convenient basis for N = 2 lattice sites
(see text for more details). For the basic building block of the lattice
(see Fig. 1), these are given by the bare vacuum |vac〉, meson |m〉,
tetraquark |T〉, and baryon-antibaryon (baryonium) |B̄B〉. The meson
and tetraquark both carry one unit of electric flux F = 4

3 × 1
2x for

SU(3); this is indicated by the energy splitting in presence of the
electric field term Ĥe. We resort to a two-column representation for
the states in the fermion occupation number basis, where the first
and second columns indicate the state of the antimatter and matter,
respectively.

and the mass term reads

Ĥm = 1

2

N∑
n=1

[
(−1)n

(
σ̂ z

3n−2 + σ̂ z
3n−1 + σ̂ z

3n

) + 3
]
. (4)

The operators σ̂ x = (σ̂− + σ̂+), σ̂ y = i(σ̂− − σ̂+), and σ̂ z

are the usual Pauli matrices. The color electric field Hamil-
tonian takes the form

Ĥe =
N−1∑
n=1

⎛
⎝∑

m�n

Q̂m

⎞
⎠

2

, (5)

where Q̂m is a vector with eight components given by the
non-Abelian charges at site m. The expression of the non-
Abelian charges in terms of qubit operators can be found in
Appendix A 1. In Sec. III C we use this equation to simulate
the time evolution of the electric field energy.

III. QUANTUM SIMULATION AND RESULTS

In the following, we describe our quantum simulation
approach first for the tetraquark study and then for the pen-
taquark study. For both, we focus on the basic building block
consisting of N = 2 lattice sites (the scaling analysis for larger
lattices is given in Appendix B 2). A convenient basis is the
strong coupling one given by m̃ → ∞ and x → 0, i.e., in
the limit in which Ĥm and Ĥe dominate over the kinetic term
Ĥkin. The gauge-invariant (color-neutral) basis states in that
limit can be constructed by successively applying the kinetic
term to the vacuum state. The different basis states obtained
for B = 0 are depicted in Fig. 2 in the fermion occupation
basis, where the first and second columns of the ket describe
the antimatter and matter content of the state, respectively.
While all of them possess the same quantum baryon number,
the numbers of particle-antiparticle pairs contained in them

differ. These states are all eigenstates of the mass Hamiltonian
given in Eq. (4), which counts the number of particles and
antiparticles in a state, with integer eigenvalues 0, 2, 4, and
6 for the vacuum, meson, tetraquark, and baryon-antibaryon
states, respectively. The meson state consists of a color-singlet
superposition of particle-antiparticle pairs. By contrast the
tetraquark state is a color superposition of diquark-antidiquark
pairs. Like a single antiquark, the diquark is a color antitriplet
state.

At finite coupling x and mass m̃, the eigenstates of the
Hamiltonian are given by a superposition of the strong cou-
pling basis states. By studying time evolution under the
Hamiltonian in Eq. (2), we can probe the transitions between
the different eigenstates. In particular, by choosing the ini-
tial state as the strong coupling limit baryon-antibaryon state
(containing six particles and antiparticles in total) and in
the regime where x/m̃ � 1, we can probe a single transition
between the baryon-antibaryon state and the tetraquark state
[see Fig. 3(a)]. When the parameters are chosen outside of
this regime, more than one transition becomes involved in the
time evolution, which makes the dynamics richer and more
complex.

The time evolution is obtained from a Trotter decompo-
sition [30] that we optimize for minimal gate depth [Fig. 6
in Appendix B shows the Trotter circuit for a basic building
block (N = 2)]. While this minimal lattice is described by six
spins (compare Fig. 1), we can simulate the B = 0 sector using
only three qubits, due to the existence of a particle-antiparticle
symmetry (see Appendix A 1). We are interested in tracking
the particle number expectation value

〈N̂ (t )〉 = 〈�0| eitĤ (3)
Ĥ (3)

m e−it Ĥ (3) |�0〉 , (6)

as we evolve the system in time starting from an initial state
|�0〉, with Ĥ (3) being the three-qubit Hamiltonian derived
in Appendix A 2 and given in Eq. (A22). We focus here on
|�0〉 = |B̄B〉, the baryon-antibaryon state in the strong cou-
pling limit (see Fig. 2). In terms of spins, the strong coupling
baryon-antibaryon state is given by |�0〉 = |↓↓↓〉 |↑↑↑〉,
where the first ket refers to antiquarks and the second refers
to quarks (note that only the first ket is implemented in the
quantum simulation and the second is implied, as explained
in Appendix A 1).

For our pentaquark study, we consider two quark flavors,
with light and heavy quark masses m̃ and M̃, respectively [see
Fig. 4(a)]. This scenario can be treated with full generality
with quadratic scaling in the required resources. However, to
allow for the observation of pentaquark physics on currently
available quantum processors, we further reduce the resource
requirements by introducing the following steps. We assume
M̃ 	 m̃, such that the heavy quarks can be treated in the
infinite-mass limit M̃ → ∞. In this case, the heavy quarks
in the model become stationary, i.e., their motional degrees
of freedom become static. These “motionally static quarks”
nevertheless contribute through their dynamic color degrees
of freedom.

As a concrete example, we choose to study pentaquarks
with two heavy quarks [see Fig. 4(b)]. As explained in detail
in Appendix A 4, we derive a modified Hamiltonian for this
specific case and devise a scheme that relegates the parts of
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FIG. 3. Trotter time evolution with one flavor. We perform experiments for the Hamiltonian parameters m̃ = 1.2, x = 0.8 [(a)–(c)] and
m̃ = 0.45, x = 0.8 [(d)–(f)]. The energy spectra on the left are shown to scale, and the bars reflect the proportion to which the strong coupling
states in Fig. 2 contribute to the individual energy eigenstates. The data obtained on three different IBM quantum computers [ibm_peekskill
(b); ibm_geneva for NT = 4 and ibmq_lima for NT = 8 (e)] are shown in the middle column, where the different symbols denote a different
number of Trotter steps, and hence different circuit lengths. The circuit is heavily optimized (see Appendix B 1), contains 10NT CNOT gates,
and has a total circuit depth of 25NT + 1 after transpilation to the employed native gates. For the data points shown in the figure, the error
mitigation has already been applied. The dashed lines mark the exact Trotter evolution obtained via a numerical exponentiation. We further
composed an expected graph for the evolution obtained from the Trotter protocol, which is plotted as a solid black line. The error bars shown
here originate via bootstrapping of the error mitigation method [29]. Error bars corresponding to the quantum projection noise are small due to
the 2048 performed shots and would be hidden by the size of the symbols; hence they are not shown. To obtain the energy differences indicated
by the arrows in the left column [(a) and (d)], we resort to Bayesian inference. The results are shown in (c) and (f), respectively, where the
solid lines denote the mean of 5000 samples drawn from the posterior predictive distribution (see Appendix B 4). From these samples we
also compute the highest density interval (HDI) equivalent, i.e., the gray area marks the interval between the 2.5 and 97.5 percentiles. The
point estimate for the energy gap between |B̄B〉 and |T〉 (a) is given by ω0 = (2π ) · 0.262/[m̃t] with an HDI of (2π ) · [0.254, 0.267]/[m̃t].
For the second case in (d), we find that ω1 = (2π ) · 0.482/[m̃t] with HDI = (2π ) · [0.409, 0.545]/[m̃t] and ω2 = (2π ) · 0.427/[m̃t] where
HDI = (2π ) · [0.297, 0.502]/[m̃t]. Values for other parameters in our probabilistic model can be found in Appendix B 3.

the calculation that do not have to be performed quantumly to
a classical computer. We also show how to split the resulting
time evolution into three separate color subsectors, which
allows us to simulate the problem with only four qubits. As
described in the next section, we apply this resource-efficient
time evolution scheme to the baryon state as the initial state
and observe oscillations between the baryon |B〉 and the pen-
taquark |P〉 [see Fig. 4(c)].

A. Error mitigation

For both studies, we use the self-mitigation method intro-
duced in Ref. [20] (see Appendix B 3 for details). The basic
idea is to use our quantum circuit in two ways. A “physics
run” applies the desired number of Trotter steps, NT, forward
in time to reach the final time of interest. A “mitigation run”

applies NT/2 steps forward in time followed by NT/2 steps
backward in time, which results in a noisy experimental de-
termination of the known initial state. Randomized compiling
is used to surround the CNOT gates with Pauli gates that turn
coherent errors into incoherent errors. We find that the min-
imum number of physics and mitigation runs can be as low
as 40 each, and up to 560 depending on the quantum comput-
ing device chosen. Throughout this paper we always collect
2048 shots from a single circuit execution. As described in
Ref. [20], the noisy observed outcomes measured during the
mitigation runs provide an excellent error mitigation for the
physics runs when compared with the true expected values.
As in Ref. [15], each separate calculation is further accom-
panied by a set of 23 calibration circuits (24 for calculations
involving the pentaquark) to estimate the transfer map mixing
the true outcome probabilities into the observed ones. Let us
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FIG. 4. Trotter time evolution with two flavors. We consider two quark flavors, with light and heavy mass, respectively. (a) The 12-qubit
unit cell for this system with a gauge field connection. Circles with thick rims represent lattice sites hosting heavy quarks (lower row), which
can be considered static, in contrast to the dynamic light mass quarks in the upper half of the unit cell. (b) A pentaquark state involving a heavy
diquark in the strong coupling limit. (c) We simulate time evolutions that start with a baryon as the initial state and are dominated by baryon-
pentaquark oscillations; the kets represent the different orthogonal basis states appearing in the quantum superposition. (d) Experimental
Trotter time evolution data for m̃ = 0.1 and x = 3.0. The experimental data have been obtained from ibmq_lima with two and four Trotter
steps, respectively. Averaging for the error mitigation has been performed over 140 repetitions, and the results of the physical runs as well as
details of the four employed qubits can be found in Appendix B 3.

remark that such a procedure is not preventing the scalability
of our calculations. The increased effort using that technique
is mainly influenced by the randomized compiling, which has
recently been suggested to be linear in the circuit depth [31].
Furthermore, the addition of the mitigation runs increases the
computational effort by a constant factor of 2, which results in
an overall linear scaling of the mitigation efforts in the circuit
depth.

B. Experiment

For our tetraquark study, we perform two Trotter time
evolution experiments on a universal superconducting quan-
tum computer [32] using up to eight Trotter time steps.
In both experiments, the system is initialized in the strong
coupling baryon-antibaryon state |B̄B〉 and evolved in time
under the gauge-invariant three-qubit Hamiltonian given in
Appendix A 2. Since the Hamiltonian preserves the baryon
number, the observed evolution remains within the B = 0
sector.

The first experiment is carried out for the Hamiltonian pa-
rameters x = 0.8 and m̃ = 1.2 [see Eq. (2)]. This quark mass
is large enough to organize the hadron spectrum in an intuitive
way according to the mass: the vacuum, meson, tetraquark,
and baryon-antibaryon states have energies near 0, 2m̃, 4m̃,
and 6m̃, respectively. For reference, Fig. 3(a) shows the spec-
trum and the composition of physical hadron states in terms

of strong coupling states. Since we choose the strong coupling
baryon-antibaryon as the initial state, quark-antiquark annihi-
lation provides a direct connection to the tetraquark state, and
indeed the collected data allow us to observe this oscillation
dominating the time evolution as shown in Fig. 3(b). The
experiment has been performed on the ibm_peekskill device,
where for each data point we run 280 (140, 140) repetitions
in the case of NT = 4 (NT = 2, NT = 6) for physics and miti-
gation runs, respectively. In Fig. 3(c) we perform a Bayesian
analysis [33] to extract the frequency of the oscillation and
thus calculate the mass gap between the baryon-antibaryon
state and the tetraquark state (see Appendix B 4 for more
details). We identify one frequency, where the point estimate
is given by ω0 = (2π ) · 0.262/[m̃t] with the highest density
interval (HDI) of (2π ) · [0.254, 0.267]/[m̃t], which corre-
sponds to the energy gap between |B̄B〉 and |T〉. The HDI
is the interval where we find 95% of the values during the
sampling procedure. In Fig. 3(c) we plot 5000 samples from
the posterior predictive distribution, which within the 2.5 and
97.5% quantile agrees well with the collected data.

The second experiment is carried out on ibm_geneva
(NT = 4, 560 repetitions) and ibmq_lima (NT = 8, 40 repeti-
tions), employing a smaller quark mass m̃ = 0.45 but the same
coupling constant x = 0.8. In this case our quantum calcula-
tion of the real-time dynamics is able to reveal two dominant
energy gaps, resulting in a beat frequency which is easily
visible in Fig. 3(e). Applying the same Bayesian inference
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techniques, we extract two frequency components ω1 =
(2π ) · 0.482/[m̃t] with HDI = (2π ) · [0.409, 0.545]/[m̃t]
and ω2 = (2π ) · 0.427/[m̃t] where HDI = (2π ) ·
[0.297, 0.502]/[m̃t], which confirms the underlying physics.
In particular, the strong coupling |B̄B〉 initial state is once
again mixing with the strong coupling tetraquark, but this
tetraquark is now a significant percentage of two physical
eigenstates, as shown in Fig. 3(d).

For our pentaquark study, we turn our attention to the
subsector with baryon number B = 1 and perform a Trotter
time evolution under the four-qubit Hamiltonian Ĥ (4) derived
in Appendix A 4. This scenario corresponds to a situation
involving two heavy quarks and up to six light quarks, as
shown in Fig. 4(a). We initialize the system in the state
|B〉, which corresponds to a baryon consisting of two heavy
quarks and one light quark [see Fig. 4(b)]. The time evo-
lution under Ĥ (4) induces pair creation processes that cause
the initial state |B〉 to mix with the pentaquark |P〉 [see
Figs. 4(b) and 4(c)] and a tetraquark-baryon pair |Tb〉, which
consists of two heavy particles and four light particles. The
latter is suppressed for our chosen parameter regime x = 3,
m̃ = 0.1, such that the observed dynamics is dominated by
baryon-pentaquark oscillations. The corresponding experi-
mentally calculated real-time evolution of the particle number
is shown in Fig. 4(d). This computation has been performed
on ibmq_lima and realizes NT = 2 and NT = 4 Trotter steps.
Here, we performed around 160 repetitions to realize the full
potential of the error mitigation technique.

C. Time evolution of the gauge field

Our formulation of lattice QCD involves the explicit inte-
gration of Gauss law into the Hamiltonian, which enabled us
to remove the gauge degrees of freedom from the description
[6,27,34,35]. However, we stress that this procedure does not
restrict the access to the dynamics of the gauge field, which is
now expressed in terms of the fermionic field operators. This
can be deduced directly from Eq. (5), which expresses the
energy of the gauge field solely via the non-Abelian charges.
Note that this is indeed a direct consequence of the required
gauge invariance of the system, realized by the interaction of
the gauge field operators Ûn and the fermionic field operators
φ̂n, in combination with Gauss law. The latter implies direct
constraints on the quantum states of the gauge field on all links
surrounding each single site and the state of matter at that site.
In other words, in our case, the state of the gauge field can be
deduced (up to a constant) as soon as the state of matter is
known.

The form of the gauge field Hamiltonian given in Eq. (5)
provides access to the gauge field on each link, when the
corresponding charges Q̂n are measured. As an explicit ex-
ample, we show the time evolution of the total gauge field
Hamiltonian 〈Ĥ (3)

e 〉 in Fig. 5. The dynamics shown there is
complementary to the evolution of the particle number shown
in Fig. 3(b), and importantly, it is deduced from the same data
set. To be more precise, at time m̃t = 0 the system is initial-
ized in the zero-flux baryonium state |B̄B〉. The subsequent
time evolution is then dominated by oscillations between the
baryonium and the tetraquark states, where the latter con-
tains one unit of electric flux, which for SU(3) is equal to

FIG. 5. Trotter evolution of the gauge fields. For the experiment
shown in Fig. 3(b), where the parameters have been chosen as m̃ =
1.2, x = 0.8, we reinterpret the measurement data and plot the energy
contained in the gauge field of the time-evolved state. The system is
initialized in the zero-flux baryonium state |B̄B〉 and subsequently
evolved in time using the three-qubit Hamiltonian derived in Ap-
pendix A. The dynamics is dominated by oscillations between the
baryonium and tetraquark states containing one unit of electric flux.
Full revival of the initial state is not observed due to contamination
of the time-evolved state with other available basis states. Legends
for the data points and the solid line are the same as in Fig. 3(b).

4/3. At time m̃t ≈ 2 we observe a maximum value for the
electric energy. Here, the state of the systems corresponds
mostly to the tetraquark state [see Fig. 3(b)]. Note that the
value of the maximum is not exactly 4/3 as mentioned above,
since the time-evolved state is a superposition still contain-
ing non-negligible baryonium contributions. Equivalently, the
expectation value of the electric energy does not return ex-
actly to zero at time m̃t ≈ 4 as the time-evolved state gets
superimposed with the other contributions that are displayed
in Fig. 3(a).

IV. DISCUSSION AND CONCLUSION

Recent observations of tetraquarks, pentaquarks, and other
hadrons beyond the traditional mesons and baryons have
sparked a great deal of theoretical activity [1], with lattice
gauge theory playing a central role in the determination of
static properties. To access time-dependent dynamics, we turn
to the Hamiltonian approach on quantum computers.

Building on previous proposals [36–64] and demonstra-
tions in simpler gauge theories [15–17,19–21], we have
constructed a one-dimensional lattice gauge theory for QCD
for two cases: one flavor of dynamical matter coupled to
SU(3) gauge fields, and two flavors of matter, one of which
corresponds to infinitely massive quarks. Real-time oscilla-
tions of a tetraquark and a pentaquark with other hadron
states are observed by running experiments on IBM Quantum
hardware [32]. Specifically, we begin from a strong coupling
eigenstate at time t = 0 and see how the tetraquark and the
pentaquark emerge. The success of these simulations required
the use of recent advances in error mitigation [20].

Our approach is based on an elimination of the gauge
degrees of freedom, with that physics being reexpressed
as nonlocal interactions among matter fields. The general
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formalism developed offers a promising approach for studying
larger systems, as the qubit encoding is scalable to larger
lattice volumes and the CNOT count necessary to simulate the
dynamics grows quadratically. Future work will extend this
methodology to two (and ultimately three) spatial dimensions
using the methods developed in Ref. [65]. However, such
studies will require larger quantum computers with increased
qubit counts and improved error mitigation techniques. This
highlights the need for advancements in quantum hardware
and error correction technologies for the accurate simulation
of realistic QCD systems on quantum computers.

Another important route for generalizations is the exten-
sion of wider classes of simulated time evolutions to extract
truly dynamical quantities. Interesting applications include
time correlation functions and the ongoing quest to simu-
late particle collisions with quantum computers. Significant
progress in quantum computer hardware and technologies is
needed to tackle such problems. In particular, the development
of large-scale, fault-tolerant quantum computers capable of
performing complex simulations is essential. Further research
and conceptual work are warranted to fully explore the po-
tential of quantum computation in gaining new insights and
addressing outstanding problems in the field of exotic hadron
physics. Our simulation of SU(3) hadrons on a quantum com-
puter accomplishes a key step on the path toward accessing
increasingly relevant quantum computations for QCD.
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APPENDIX A: THEORY

1. Gauge elimination and qubit formulation

In the following, we discuss how to eliminate the gauge
fields from the Hamiltonian and express it in terms of qubits
only. Due to gauge invariance, the Hamiltonian in Eq. (1)
commutes with the Gauss law operators (which generate the
local gauge transformations) Ĝa

n ≡ L̂a
n − R̂a

n−1 − Q̂a
n, where

L̂a
n and R̂a

n−1 are the a component (with a = 1, . . . , 8) of
the left and right color electric field defined on the link
n, respectively. For a non-Abelian gauge group, the right
and left color electric field are related via the adjoint repre-

sentation R̂a
n = (Û adj

n )abL̂b
n, with (Û adj

n )ab = 2Tr[ÛnT aÛ †
n T b],

where T a = λa/2, and λa (a = 1, . . . , 8) are generators of
the SU(3) Lie algebra and are given by the Gell-Mann
matrices [25]. The Hamiltonian also commutes with the
redness operator R̂ = ∑N

n=1 φ̂1†
n φ̂1

n − N/2, the greenness op-
erator Ĝ = ∑N

n=1 φ̂2†
n φ̂2

n − N/2, and the blueness operator
B̂ = ∑N

n=1 φ̂3†
n φ̂3

n − N/2 which measure the matter-antimatter
imbalance of a specific color. It is, however, more convenient
to combine these three operators into a single gauge-invariant
one which measures the matter-antimatter imbalance irrespec-
tive of the color. We therefore define the baryon number
operator as

B̂ = 1
3 (R̂ + Ĝ + B̂). (A1)

To simulate time dynamics on a quantum computer, we
transform the fermionic Hamiltonian in Eq. (1) into one in-
volving only qubit degrees of freedom. The transformation is
achieved in two steps. We start by first eliminating the gauge
fields following Refs. [15,27]. The resulting dimensionless
Hamiltonian reads

Ĥ = 1

2

N−1∑
n=1

3∑
i=1

(φ̂i†
n φ̂i

n+1 + H.c.) + m̃
N∑

n=1

3∑
i=1

(−1)nφ̂i†
n φ̂i

n

+ 1

2x

N−1∑
n=1

⎛
⎝∑

m�n

Q̂m

⎞
⎠

2

, (A2)

where m̃ = am and x = 1/g2a2. The last term represents the
color electric energy of the system and is expressed in terms
of the non-Abelian charges at site n,

Q̂a
n =

3∑
i, j=1

φ̂i†
n (T a)i j φ̂

j
n . (A3)

In a second step, we triple the size of the lattice to define
3N new sites and distribute the color components of the
fermionic field among them by defining the single component
fields φ̂i

n = ψ̂3n−3+i with n = 1, 2, . . . , N and i = 1, 2, 3 [see
Fig. 1(a)].

We then perform a generalized Jordan-Wigner transforma-
tion on the single component fermionic fields ψ̂n [28]

ψ̂n =
(∏

l<n

sl σ̂
z
l

)
σ̂−

n , ψ̂†
n =

(∏
l<n

sl σ̂
z
l

)
σ̂+

n , (A4)

where sl are phase factors that we choose equal to +1 on
antimatter sites and −1 on matter sites. This choice is con-
venient because it matches the standard color notation, such
as (r̄r + ḡg + b̄b)/

√
3 for a meson. After the Jordan-Wigner

transformation, the kinetic Hamiltonian in terms of qubits is
given by Eq. (3), while the mass Hamiltonian is given by
Eq. (4). In the qubit formulation, the non-Abelian charges
defined in Eq. (A3) read

Q̂1
n = (−1)n

2
(σ̂+

3n−2σ̂
−
3n−1 + H.c.), (A5)

Q̂2
n = i(−1)n

2
(σ̂+

3n−1σ̂
−
3n−2 − H.c.), (A6)

Q̂3
n = 1

4

(
σ̂ z

3n−2 − σ̂ z
3n−1

)
, (A7)
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Q̂4
n = −1

2

(
σ̂+

3n−2σ̂
z
3n−1σ̂

−
3n + H.c.

)
, (A8)

Q̂5
n = i

2

(
σ̂+

3n−2σ̂
z
3n−1σ̂

−
3n − H.c.

)
, (A9)

Q̂6
n = (−1)n

2
(σ̂+

3n−1σ̂
−
3n + H.c.), (A10)

Q̂7
n = i(−1)n

2
(σ̂+

3nσ̂
−
3n−1 − H.c.), (A11)

Q̂8
n = 1

4
√

3

(
σ̂ z

3n−2 + σ̂ z
3n−1 − 2σ̂ z

3n

)
. (A12)

The color electric field Hamiltonian can be obtained by in-
serting the qubit expressions for the non-Abelian charges in
Eqs. (A5)–(A12) into the color electric term in Eq. (A2). We
obtain

Ĥe = 1

3

N−1∑
n=1

(N − n)

× (
3 − σ̂ z

3n−2σ̂
z
3n−1 − σ̂ z

3n−2σ̂
z
3n − σ̂ z

3n−1σ̂
z
3n

)
+

N−2∑
n=1

N−1∑
m=n+1

[
(N − m)

(
σ̂+

3n−2σ̂
−
3n−1σ̂

+
3m−1σ̂

−
3m−2

+ σ̂+
3n−1σ̂

−
3nσ̂

−
3m−1σ̂

+
3m + H.c.

)
(−1)n+m

+ (N − m)
(
σ̂+

3n−2σ̂
z
3n−1σ̂

−
3nσ̂

−
3m−2σ̂

z
3m−1σ̂

+
3m + H.c.

)
− 1

12
(N − m)σ̂ z

3m−2

(
σ̂ z

3n−1 + σ̂ z
3n − 2σ̂ z

3n−2

)
− 1

12
(N − m)σ̂ z

3m−1

(
σ̂ z

3n + σ̂ z
3n−2 − 2σ̂ z

3n−1

)
− 1

12
(N − m)σ̂ z

3m

(
σ̂ z

3n−2 + σ̂ z
3n−1 − 2σ̂ z

3n

)]
, (A13)

which exhibits long-range spin-spin interaction as a direct
consequence of the gauge elimination. The baryon number op-
erator is proportional to the total magnetization of the system
in the qubit encoding

B̂ = 1

6

3N∑
n=1

σ̂ z
n . (A14)

2. Hamiltonian for N = 2 and reduction to three qubits

We are interested in a basic building block consisting of
N = 2 lattice sites. The model is then described by a chain
with six qubits. The terms in the Hamiltonian read

Ĥkin = − 1
2

(
σ̂+

1 σ̂ z
2 σ̂ z

3 σ̂−
4 − σ̂+

2 σ̂ z
3 σ̂ z

4 σ̂−
5 + σ̂+

3 σ̂ z
4 σ̂ z

5 σ̂−
6 + H.c.

)
,

(A15)

Ĥm = 1
2

(
6 − σ̂ z

1 − σ̂ z
2 − σ̂ z

3 + σ̂ z
4 + σ̂ z

5 + σ̂ z
6

)
, (A16)

Ĥe = 1
3

(
3 − σ̂ z

1 σ̂ z
2 − σ̂ z

1 σ̂ z
3 − σ̂ z

2 σ̂ z
3

)
. (A17)

In the sector with baryon number B = 0 (i.e., with zero
matter-antimatter imbalance), the three terms composing the
Hamiltonian commute with the following operator:

ĈP =
3∏

n=1

σ̂ x
n σ̂ x

7−nŴn,7−n, (A18)

where Ŵn,n′ is the SWAP unitary operator between qubits n
and n′. This symmetry corresponds to the composition of a
spatial reflection (P̂) with respect to the middle of the chain
followed by a charge conjugation operation (Ĉ) which flips
the spins. Local spin operators σ̂ a

n transform as (ĈP)†σ̂ a
n ĈP =

(σ̂ xσ̂ aσ̂ x )7−n under the ĈP operation with a = x, y, z and n =
1, 2, . . . , 6. It is thus clear that a convenient basis is the one
spanned by states of the form |�〉 = ∑

i jk ci jk|i〉1| j〉2|k〉3 ⊗
σ̂ x

4 σ̂ x
5 σ̂ x

6 |i〉4| j〉5|k〉6, which are invariant under the ĈP opera-
tion and are B = 0 eigenstates. Working with this basis, the
state of the last three qubits is determined by the state of the
first three. As a direct consequence, we can encode the states
by using only the first three qubits (i.e., the state of the anti-
matter) rather than six. The reduced three-qubit Hamiltonian
reads

Ĥ (3)
kin = − 1

2

(
σ̂ x

1 σ̂ z
2 σ̂ z

3 + σ̂ z
1 σ̂ x

2 σ̂ z
3 + σ̂ z

1 σ̂ z
2 σ̂ x

3

)
, (A19)

Ĥ (3)
m = 3 − σ̂ z

1 − σ̂ z
2 − σ̂ z

3 , (A20)

Ĥ (3)
e = 1

3

(
3 − σ̂ z

1 σ̂ z
2 − σ̂ z

1 σ̂ z
3 − σ̂ z

2 σ̂ z
3

)
, (A21)

and the time evolution is obtained using the Hamiltonian

Ĥ (3) = Ĥ (3)
kin + m̃Ĥ (3)

m + 1

2x
Ĥ (3)

e . (A22)

3. Inclusion of static charges

Static charges can be effectively incorporated in our model
using two flavors of quarks. We use light quarks with mass
m̃ for the dynamical charges and heavy quarks with mass
M̃ 	 m̃ to represent the external static charges. By definition,
the static charges do not enter into the kinetic term, and for
simplicity, we remove their contribution from the mass Hamil-
tonian by a shift in the zero energy definition. The Gauss
law must be modified in order to take the color electric field
created by the static charges into account: the non-Abelian
charges appearing in the color electric Hamiltonian in Eq. (5)
are replaced by ˆ̃Qn = Q̂L

n + Q̂H
n , where Q̂L

n are the light dy-
namical charges defined in Eq. (A3) and Q̂H

n is the heavy
static source distribution at cell n. We choose the following
configuration for the external charges: We place one static
anticharge at cell n1 (odd cell) and a static charge at cell n2

(even cell). The static charge distribution is thus given by
Q̂H

n = q̂n1δn,n1 + q̂n2δn,n2 , where q̂a
n = ∑3

i, j=1 η̂i†
n (T a)i j η̂

j
n and

η̂n are the three color component fermion fields associated
with the static charges. Expanding the square in the color
electric field Hamiltonian Ĥ (q)

e = ∑N−1
n=1 (

∑
m�n

ˆ̃Qm)2, we find
that the color electric field Hamiltonian in the presence of
external charges Ĥ (q)

e is the sum of three contributions

Ĥ (q)
e = Ĥ (q=0)

e + Ĥ (qq)
e + Ĥ (qQ)

e , (A23)

where Ĥ (q=0)
e is the color electric field generated by the light

dynamical charges alone and is given by Eq. (5), the second
term

Ĥ (qq)
e =

8∑
a=1

[(
q̂a

n1

)2
(N − n1) + (

q̂a
n2

)2
(N − n2)

+ 2q̂a
n1

q̂a
n2

(N − n2)
]
, (A24)
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describes the interaction between the two external charges (we
assume n1 < n2 without loss of generality), and

Ĥ (qQ)
e = 2

8∑
a=1

N−1∑
n=1

Q̂a
n

[
q̂a

n1
(N − max(n1, n))

+ q̂a
n2

(N − max(n2, n))
]

(A25)

is the interaction between the external and the dynamical
charges. In order to describe the system in terms of qubits, we
follow the same steps as before using 3N qubits to describe the
dynamical charges and adding six extra qubits at the end of
the chain to describe the external charges degrees of freedom
[see Fig. 4(a)]. For the expression of the external charges in
terms of qubits, we can use the definition equations (A5)–
(A12) with n = N + 1 for q̂a

n1
and n = N + 2 for q̂a

n2
. In total,

we thus need 3N + 6 qubits to describe the system with two
external charges.

4. Trotter Hamiltonian to study pentaquarks

To study the properties of pentaquark states, consisting of
four quarks and one antiquark, we consider the minimal sys-
tem size which can host such a state. We therefore work with
N = 2 for the light dynamical charges, one static anticharge
at site n1 = 1, and one static charge at site n2 = 2. We arrange
the light and heavy quarks in the unit cell containing 12 qubits
as shown in Fig. 4(a), with the first six qubits describing the
light dynamical quarks and the last six qubits encoding the
state of the heavy quarks. We define the total baryon number
B̂ = B̂L + B̂H of the system as the sum of the light quark
baryon number B̂L and the heavy quark baryon number B̂H ,

B̂L = 1

6

3N∑
n=1

σ̂ z
n , (A26)

B̂H = 1

6

3N+6∑
n=3N+1

σ̂ z
n . (A27)

Since we are interested in a pentaquark state, we restrict
ourselves to the sector with total baryon number B = 1. We
choose to study a pentaquark state that contains a heavy
diquark. This choice of pentaquark translates into two con-
straints. First, the absence of anticharge colors on the heavy
antiquark sites encoded in qubits 7, 8, and 9 translates into
fixing these spins in the vacuum state for this part of the
lattice |vac〉 = |↑7↑8↑9〉. Second, imposing that the heavy
quark matter sites (encoded in qubits 10, 11, and 12) represent
a diquark state requires the last three qubits (qubits 10, 11, and
12) to be in a state with total cell magnetization M = 1.

We perform a time evolution experiment starting from the
baryon state (consisting of one light quark and one heavy
diquark) which reads in spin formulation

|�B〉 = 1√
3

(|↑↑↑↑↓↓〉L |↑↑↑↓↑↑〉H

− |↑↑↑↓↑↓〉L |↑↑↑↑↓↑〉H

− |↑↑↑↓↓↑〉L |↑↑↑↑↑↓〉H ), (A28)

where the first ket with subscript L represents the light quarks
while the second one with subscript H encodes the heavy

quarks. It is instructive to show how this combination is ob-
tained. This superposition of three basis kets is the only one
with three particles satisfying the constraint of total baryon
number B = 1 and local (light and heavy) baryon number
conservation as explained above. This state is an eigenstate
of the electric field Hamiltonian equation (A40). Since the
electric field Hamiltonian is diagonal, any normalized linear
combination of these three basis states could in principle
represent a convenient strong coupling eigenstate. However,
the eigenstates are also constrained by the fact that their total
non-Abelian charges must vanish (we are working with color-
neutral objects):

Q̂a
tot |�B〉 =

N+2∑
n=1

Q̂a
n |�B〉 = 0, (A29)

for a = 1, 2, . . . , 8. Using the expression of the non-Abelian
charges in Eqs. (A5)–(A12), we can verify that the combi-
nation in Eq. (A28) is indeed a color-neutral object. For the
charges in the Cartan subalgebra, i.e., the one generated by the
diagonal Gell-Mann matrices, Q3

n and Q8
n [see Eqs. (A7) and

(A12)], the verification is straightforward. The verification for
the nondiagonal charges is not difficult, and we will detail out
as an example the calculation for a = 1 [Eq. (A5)]. We first
write the superposition as

|�B〉 = 1√
3

(|1〉 − |2〉 − |3〉) (A30)

with

|1〉 = |↑↑↑↑↓↓〉L |↑↑↑↓↑↑〉H , (A31)

|2〉 = |↑↑↑↓↑↓〉L |↑↑↑↑↓↑〉H , (A32)

|3〉 = |↑↑↑↓↓↑〉L |↑↑↑↑↑↓〉H . (A33)

Let us now write the action of

Q1
tot =

N+2∑
n=1

(−1)n

2
(σ+

3n−2σ
−
3n−1 + H.c.)

on the three basis states. From the expression of the charge,
it is clear that it acts on the first two spins of each cell and it
has a nonzero effect only if they are in opposite directions.
In terms of particles, the charge Q1

tot generates a tunneling
between red and green particles whenever one site is occupied
and its neighboring site is empty. We have

Q1
tot |1〉 = 1

2 (|↑↑↑↓↑↓〉L |↑↑↑↓↑↑〉H

+ |↑↑↑↑↓↓〉L |↑↑↑↑↓↑〉H ), (A34)

Q1
tot |2〉 = 1

2 (|↑↑↑↑↓↓〉L |↑↑↑↑↓↑〉H

+ |↑↑↑↓↑↓〉L |↑↑↑↓↑↑〉H ), (A35)

Q1
tot |3〉 = 0. (A36)

This shows that |1〉 and |2〉 must come with opposite signs
in the superposition in order to have Q1

tot |�B〉 = 0. Similarly,
the constraints on the remaining charges impose that the ket
|3〉 must come with a sign opposite to the one of the basis state
|1〉, which leads to the superposition in Eq. (A28).
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Note that the state of the first three qubits in the heavy
quark ket is fixed (due to the absence of heavy anticharges)
and the state of the last three qubits in the heavy quark ket
corresponds to the flipped version of the last three qubits in
the light quark ket. As a consequence, the heavy quark sites
do not need to be included in the quantum simulation. This
is also reflected in the Hamiltonian governing the dynamics,
which is given in Eqs. (A15)–(A17) and involves only the first
six qubits.

Since the state of the light quarks is sufficient to reconstruct
the full state of the system, we rewrite the baryon initial state
in terms of the light quark ket only:

|�B〉 = 1√
3

(|↑↑↑↑↓↓〉L − |↑↑↑↓↑↓〉L − |↑↑↑↓↓↑〉L ).

(A37)

Each of the three terms in the superposition corresponds to a
different color sector. The first ket has a light redness number
R̂L = (σ̂ z

1 + σ̂ z
4 )/2 equal to 1. Similarly, the second ket in

the expansion has a light greenness number ĜL = (σ̂ z
2 + σ̂ z

5 )/2
equal to 1, while the last term has a light blueness number de-
fined as B̂L = (σ̂ z

3 + σ̂ z
6 )/2 equal to 1. Since the Hamiltonian

in Eqs. (A15)–(A17) preserves the light redness, greenness,
and blueness quantum numbers, the time evolution will not
mix the different color sectors. As a consequence, it is suffi-
cient to time-evolve only one of the kets in Eq. (A37) rather
than applying the time evolution operator to the superpo-
sition. This observation allows us to significantly decrease
the complexity of our Trotter protocol. We thus use |� (r)

B 〉 =
|↑↑↑↑↓↓〉L as our initial state, where the superscript indicates
that this state belongs to the red sector. Furthermore, since
qubit 1 and qubit 4 are not affected by the time evolution, the
dynamics is effectively governed by the four-qubit Hamilto-
nian Ĥ (4) = Ĥ (4)

kin + (1/2x)Ĥ (4)
e + m̃Ĥ (4)

m with

Ĥ (4)
kin = − 1

2

(−σ̂+
2 σ̂ z

3 σ̂−
5 + σ̂+

3 σ̂ z
5 σ̂−

6 + H.c.
)
, (A38)

Ĥ (4)
m = 1

2

(
6 − σ̂ z

2 − σ̂ z
3 + σ̂ z

5 + σ̂ z
6

)
, (A39)

Ĥ (4)
e = 1

3

(
3 − σ̂ z

2 − σ̂ z
3 − σ̂ z

2 σ̂ z
3

)
. (A40)

We find that a Trotter step time evolution of the four-qubit
Hamiltonian can be realized using 18 CNOT gates. In our
time evolution experiments (see Fig. 4), we measure the total
particle number of the time-evolved state |�(t )〉 = e−it Ĥ |�B〉,

〈N̂ (t )〉 = 〈�(t )| Ĥm |�(t )〉 + 2

= 〈� (r)(t )| Ĥ (4)
m |� (r)(t )〉 + 3, (A41)

where |� (r)(t )〉 = e−it Ĥ (4) |� (r)
B 〉 is the time-evolved state

within the red sector.

APPENDIX B: EXPERIMENTAL DETAILS

1. Trotter evolution

In this section, we provide the circuit implementing one
Trotter step for the tetraquark experiments. Although the
Hamiltonian of Eqs. (A19)–(A21) is expressed in terms of
Pauli X and Z gates, a simple rotation to Y and Z gates allows
for more cancellations among CNOT gates. This is especially

q1

R
Z

(−
2m̃

t)

q2

R
Y

(−
t)

R
Z

(−
t 3
x
)

R
Y

(−
t)

R
Z

(−
t 3
x
)

R
Y

(−
t)

R
Z

(−
t 3
x
)

q3

R
Z

(−
2m̃

t)

R
Z

(−
2m̃

t)

FIG. 6. The first half of a Trotter step is shown in this figure.
The second half is identical except for the interchange of two qubits:
q1 ↔ q3. Note that a pair of CNOT gates can be canceled where the
two halves meet.

valuable on hardware that does not provide all-to-all connec-
tivity among the qubits. The first half of our first-order Trotter
step is displayed in Fig. 6, and to match the available hard-
ware, it does not use any entangling gates directly between q1

and q3. The second half of the Trotter step is the same except
for a relabeling of q1 ↔ q3.

Let us provide details about the procedure to obtain the
Trotter circuit in Fig. 6. We start from the three-qubit Hamilto-
nian in Eqs. (A19)–(A21) and perform a rotation to transform
the X Pauli matrices into Y Pauli matrices. The unitary opera-
tor realizing this rotation is given by

Û = exp
(

i
π

2
(Z1 + Z2 + Z3)

)
(B1)

and transforms the three-qubit Hamiltonian into

Ĥkin = − 1
2 (Y1Z2Z3 + Z1Y2Z3 + Z1Z2Y3), (B2)

Ĥm = 3 − Z1 − Z2 − Z3, (B3)

Ĥe = 1
3 (3 − Z1Z2 − Z1Z3 − Z2Z3). (B4)

Note that the mass term and electric term are not affected by
the rotation as they only depend on Z Pauli operators. Taking
the time evolution operator of each term in the Hamiltonian,
we see that a first-order Trotterization produces terms of the
form

exp

(
i
t

2
Z1Y2Z3

)
, exp

(
i

t

6x
Z1Z2

)
, (B5)

which can be implemented using the following identities:

exp (iθZ1Y2Z3) = CX12CX32RY2(−2θ )CX32CX12 (B6)

and

exp (iθZ1Z2) = CX12RZ2(−2θ )CX12, (B7)

where CXi j is a CNOT gate with control on qubit i and target
on qubit j and RZ j (θ ) = e−iθ/2Zj and RY j (θ ) = e−iθ/2Yj are the
usual single qubit rotation gates. By defining

Ui jk = eit/2ZiYj Zk eitm̃Zk eit/6xZiZ j (B8)
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and using the identities above, the circuit can be obtained by
implementing the following unitary operation:

UTrotter = U123U312U231. (B9)

The error of our first-order Trotter scheme ÛT (t ) of the true
evolution induced by Ĥ = ∑

j ĥ j can be estimated employing
the relation (with spectral norm) [66]

||ÛT (t ) − e−it Ĥ || = O(αt2). (B10)

Here, the ĥ j are specified by the components of the qubit
Hamiltonians and

α =
∑

j,k

||[ĥ j, ĥk]||. (B11)

When applying n Trotter steps, the total error of that evolution
is then given as

∥∥Û n
T (t/n) − e−it Ĥ

∥∥ = O

(
α2t2

n

)
. (B12)

For the cases examined in this paper, we find that

αtetra = 8|m̃| + 8

3|x| , (B13)

αpenta = 2 + αtetra, (B14)

employing Eqs. (A19)–(A21) and Eqs. (A38)–(A40),
respectively.

2. Scalability and resource estimation

The experiments carried out were done for the minimal
number of sites N = 2, to be implemented on current quan-
tum computers. Here we estimate the number of CNOT gates
needed to implement time evolution for larger system sizes N .
For simplicity, we assume here all-to-all connectivity for the
quantum hardware, as available in trapped-ion quantum com-
puters, and estimate the number of CNOT operations required
to simulate one Trotter step for N lattice sites (correspond-
ing to 3N qubits). Consider a Pauli string P̂ = P̂1P̂2 · · · P̂m of
length m with P̂i = {X,Y, Z}. The unitary e−it P̂ can be imple-
mented using 2(m − 1) CNOT gates. This allows us to estimate
the number of CNOT operations by counting the number of
Pauli strings and their length in each term of the Hamiltonian
in Eq. (2). The kinetic term in Eq. (3) has 3(N − 1) terms
of the form σ̂+σ̂ zσ̂ zσ̂− + H.c., which corresponds to two
Pauli strings XZZX and Y ZZY of length 4. Thus 36(N − 1)
CNOT gates are needed to implement one Trotter step for
the kinetic term. The mass Hamiltonian in Eq. (4) can be
implemented using only Z rotations and does not necessitate
the use of entangling gates. The color electric Hamiltonian
in Eq. (A13) is the most costly in terms of entangling gates
as it involves a number of terms growing quadratically with
the size of the system N . The first term in Eq. (A13) has
3(N − 1) Pauli strings of the form ZZ , which amounts to
6(N − 1) CNOT gates. The double sum also involves ZZ
terms, of which there are 9(N2 − 3N + 2)/2, therefore con-
tributing with 9(N2 − 3N + 2) CNOT gates. The four-body
term σ̂+σ̂−σ̂+σ̂− generates nine Pauli strings of length 4
(XXXX, XY XX, XXYY, . . . ); thus we need 54(N2 − 3N +
2) CNOT gates to simulate such a term. Finally, the six-body

term σ̂+σ̂ zσ̂−σ̂−σ̂ zσ̂+ can be decomposed into eight Pauli
strings of length 6 and can be implemented using 40(N2 −
3N + 2) CNOT gates. In total, we thus find that the number
of CNOT gates needed to implement one Trotter step of time
evolution under the qubit Hamiltonian in Eq. (2) is given by
103N2 − 267N + 164 and grows at most quadratically in the
number of lattice sites N .

The general formalism developed presents a promising
approach for studying larger system as the qubit encoding is
naturally scalable to larger lattice volumes. Additionally, the
number of CNOT gates necessary to simulate the dynamics of
the encoded Hamiltonian grows quadratically and not expo-
nentially in the number of qubits. It is also worth noting that
the SU(3) model studied here, which involves the gauge group
of QCD, is significantly more complex than the U(1) model
studied in Refs. [35,67]. This increased complexity translates
to a larger gate depth, with up to 80 CNOT gates being used,
surpassing the number of CNOT gates used in the previous
studies.

As gate depth increases, the need for error correction
techniques may become more crucial, transitioning from
error mitigation to error correction strategies. Future quan-
tum computers are anticipated to have larger qubit registers
and incorporate error correction methods, although these ap-
proaches are still considered works in progress, and different
platforms have their own road maps (depending on the under-
lying hardware and architecture) for achieving scalability.

3. Quantum hardware and error mitigation

In the main text we noted that the experiments have been
carried out on various quantum computers in the IBM lineup.
Table I contains excerpts of the calibration taken by IBM
during the time of our calculations. Note that CNOT gates
take around 300 to 500 ns and hence for 80 CNOT gates the
execution length is on the order of 40 µs, which is faster than
any of the measured coherence times for the qubits used in the
experiments.

As described in the main text, we apply the randomized
compiling techniques as described in Ref. [20] to reduce er-
rors introduced by imperfect CNOT gates. Here, we perform
an average over different executions of the same base circuit,
where each CNOT operation Ûcx is replaced by ÛrÛcxÛ †

r , where
Ûr is a basis transformation that, in an ideal setting, would
not alter the action of the CNOT gate. The Ûr are randomly
chosen from a list of 16 possibilities (see Ref. [20] for the full
list). The averaging then transforms any coherent gate errors
into incoherent ones, which can be equivalently understood as
the random unitary model of quantum decoherence, where de-
coherence is introduced via a classical, randomly fluctuating
field.

We perform two kinds of Trotter evolution circuits on the
hardware. We first perform a physical run, which aims to
evolve the state up to the final time t = t f , and then a second
mitigation circuit evolves the state up to t = t ′ and back to
t = 0. For Trotter steps where NT/2 is even, we have t ′ = t f /2.
Since our circuit always applies two Trotter steps at once, for
NT = 2 (6) we have t ′ = t f ( 4

3 t f ), and the mitigation circuit
contains more CNOT gates than the physical circuit, which
we have to correct for. During the experiment, we alternate
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TABLE I. Excerpts from the calibration of the superconducting qubits employed by IBM around the time of tetraquark experiments 1 and
2 (first three rows), and the last experiment examining the pentaquark (last row).

System name Qubits T1 (µs) T2 (µs) Largest Pauli error Largest CNOT error

ibmq_lima 0, 1, 2 106.58 59.93 153.32 180.56 139.9 161.82 1.962 × 10−4 5.237 × 10−3

ibm_geneva 24, 25, 26 305.17 353.86 444.63 358.17 197.83 392.43 9.966 × 10−4 7.725 × 10−3

ibm_peekskill 22, 24, 25 342.00 269.12 161.79 335.64 333.85 418.65 1.192 × 10−4 4.417 × 10−3

ibmq_lima 0, 1, 3, 4 106.58 59.93 106.47 23.72 180.56 139.9 99.2 30.62 6.403 × 10−4 1.602 × 10−2

between physical and mitigation circuits to avoid any biases
that could be caused by slow drifts in the experimental setting.
We then correct the expectation value of an observable Ô by
comparing its measured value for the physical circuits (index
“phys, meas”) and the measured value for the mitigation cir-
cuits (index “mitig, meas”) as

〈Ô〉phys, true =
(

〈Ô〉mitig, true

〈Ô〉mitig, meas

)κ

〈Ô〉phys, meas, (B15)

where κ is the ratio of the number of CNOT gates in the
physical and the mitigation circuits. Note that 〈Ô〉mitig, true is

(a)

(b)

FIG. 7. (a) Experimental results for m̃ = 1.2 and x = 0.8. The
mitigated data (large symbols with error bars) have already been
shown in the main text. The solid blue symbols correspond to the
physical runs, while the open red symbols are the results of the
mitigation runs. The shape of the symbols denotes the number of
Trotter steps and the specific IBM machine that was employed (see
main text). (b) The equivalent data for the case m̃ = 0.45.

known, since it is given through the state at t = 0 which is the
initial state.

In Fig. 7 we show the collected data that have been used
to produce Fig. 3 of the main text. The physical runs are
shown in blue, while the corresponding mitigation runs are
shown in red, with the symbols according to the mitigated
data. Note that for NT ∈ {2, 6} we have κ = 1

2 and κ = 1
otherwise. Furthermore, the mitigation has been performed
on the observable Ĥ (3)

m − 3 = −(Ẑ1 + Ẑ2 + Ẑ3). For Fig. 8 we
have κ = 1 and mitigated Ĥ (4)

m − 3.

4. Bayesian inference analysis

We model the obtained data D as draws from a normal
distribution with variance σ , where the mean SK is given by a
cosine series

SK =
K∑
i

Ai cos (ωit + φi ) + ξ, (B16)

with uniform priors on the frequencies ωi and the amplitudes
Ai, while the priors for the phases φi and the offset ξ are
normal distributions located at zero. The uniform priors are
adjusted to include the frequencies that are visible from the
data by eye. The prior on σ is given by the maximum of 0.3
and the value of the largest error bar in the data set. Note
that each data set stemming from different NT is modeled as
a separate likelihood while the parameters are shared. After
obtaining a representation of the posterior distribution for the
parameters θ = {Ai, ωi, φi, ξ , σ }, P(θ |D), via Monte Carlo
sampling from Bayes’s rule [33], we sample the posterior pre-
dictive distribution P(D′|D) = ∫

�
P(� = θ |D)P(D′|� = θ ),

FIG. 8. Experimental results for the pentaquark, for m̃ = 0.1 and
x = 3.0. As in Fig. 7, the solid blue symbols mark the physical runs,
while the open red symbols correspond to the mitigation runs. As
before, the shape of the symbols denotes the number of Trotter steps
and the specific IBM machine that was employed.
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TABLE II. Bayesian point estimates and HDI for the two tetraquark experiments, where x = 0.8 and m̃ = 1.2 or m̃ = 0.45, respectively.

m̃ = 1.2 m̃ = 0.45

Point estimate HDI Point estimate HDI

A1 0.689 [0.582, 0.752] 0.622 [0.252, 1.560]
A2 −0.0135 [−0.014, 0.122] 1.182 [0.352, 1.606]
ω1/(2π ) 0.262 [0.254, 0.267] 0.482 [0.409, 0.545]
ω2/(2π ) 0.338 [0.000, 0.712] 0.427 [0.297, 0.502]
φ1 −0.045 [−0.102, 0.020] 0.009 [−0.114, 0.186]
φ2 −0.549 [−3.425, 2.724] −0.025 [−0.083, 0.032]
ξ 5.243 [5.127, 5.304] 4.220 [4.135, 4.299]
σ2 0.056 [0.026, 0.091]
σ4 0.087 [0.047, 0.130] 0.226 [0.083, 0.315]
σ6 0.340 [0.208, 0.461]
σ8 0.145 [0.038, 0.432]

where � denotes the collective random variables for all pa-
rameters. The values for the point estimates and HDI for all
parameters can be found in Table II. Note that in both cases we
chose K = 2. For m̃ = 1.2, the low amplitude of the second
frequency demonstrates well that the dynamics are indeed
dominated by the transition of the baryon-antibaryon and the

tetraquark state, while we find two competing frequencies in
the case m̃ = 0.45. Furthermore, we note that in the latter
case, the highest density intervals (HDIs) of the frequencies
are not overlapping, while the HDI for ω2 in the m̃ = 1.2 case
spans a wide range, indicating that the single frequency ω1 is
mostly enough to describe the whole recorded signal.
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