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Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation
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Simulating fluid dynamics on a quantum computer is intrinsically difficult due to the nonlinear and non-
Hamiltonian nature of the Navier-Stokes equation (NSE). We propose a framework for quantum computing of
fluid dynamics based on the hydrodynamic Schrödinger equation (HSE), which can be promising in simulating
three-dimensional turbulent flows in various engineering applications. The HSE is derived by generalizing the
Madelung transform to compressible or incompressible flows with finite vorticity and dissipation. Since the
HSE is expressed as a unitary operator on a two-component wave function, it is more suitable than the NSE for
quantum computing. The flow governed by the HSE can resemble a turbulent flow consisting of tangled vortex
tubes with the five-thirds scaling of energy spectrum. We develop a prediction-correction quantum algorithm to
solve the HSE. This algorithm is implemented for simple flows on the quantum simulator Qiskit with partial
exponential speedup.
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I. INTRODUCTION

Quantum computing has emerged to be the next disruptive
technology since Feynman pointed out the enormous potential
of quantum simulation [1]. Compared to conventional digi-
tal computing, quantum computing can dramatically reduce
the execution time, memory usage, and energy consump-
tion [2]. There are various hardware techniques for quantum
logic gates [3–9], quantum algorithms for specific tasks
[10–13], and applications [14–21] implemented on a noisy
intermediate-scale quantum computer [22].

Quantum computing is for simulating not only quantum
systems [17,23–31] but also to possibly simulate classical
systems [32–36]. Fluid dynamics, described by the Navier-
Stokes equation (NSE), is notoriously difficult to be fully
simulated on a classical computer at a large Reynolds number
(Re), because the high-Re turbulent flow involves length and
timescales over a wide range of orders of magnitude. The
computational cost with O(Re3) operations for the direct nu-
merical simulation (DNS) of turbulence [37] is unaffordable
in engineering applications [38,39]. Therefore, the combina-
tion of computational fluid dynamics (CFD) and quantum
computing can be promising for the next-generation simula-
tion method [40].

To date, quantum computing has been demonstrated to
be effective to handle some linear problems [14,41–44] but
remains intrinsically difficult in solving nonlinear differential
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equations [45–47] due to the linear nature of quantum me-
chanics. Thus, it appears to be challenging to efficiently solve
the highly nonlinear NSE on a quantum computer. The current
studies on the quantum computation of fluid dynamics can be
divided into three categories.

First, quantum computing was performed for a specific
simplified problem, e.g., one-dimensional (1D) steady in-
viscid Laval nozzle [48], 1D steady channel flow [49], 1D
Burgers equation [50], and 2D thermal convection [51], to
avoid dealing with the intractable full 3D NSE. These works
demonstrated the feasibility of quantum computing in CFD
but cannot be simply extended to complex 3D flows.

Second, quantum algorithms were applied to solving linear
systems [14,52], e.g., the quantum linear solver [53–56] and
Poisson solver [57], to replace a part of a classical CFD
algorithm. These hybrid quantum-classical algorithms involve
frequent data exchanges between classical and quantum hard-
ware. Since the conversion can take even much longer time
than the computational time for solving the equations [58],
only steady problems were considered in these works to avoid
data exchange.

Third, fluid dynamics was described by the approaches that
are more suitable than the NSE for quantum computing, e.g.,
the Madelung transform [59], the generalized Koopman-von
Neumann (KvN) representation [60], the lattice Boltzmann
method [61–66], the tensor network-based method inspired
by quantum many-body physics [67–69], and the variational
quantum algorithms [70]. On the other hand, each of these
methods has certain limitations, e.g., the Madelung trans-
form can only describe inviscid potential flows, and the KvN
representation encounters the nonclosure problem of the prob-
ability density function.

The present study adopts the third approach to describe
fluid dynamics using the hydrodynamic Schrödinger equa-
tion (HSE). The HSE is derived by generalizing the Madelung
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TABLE I. Meanings of the same symbol in different contexts.

ρ u J = ρu h̄

Quantum mechanics Probability density — Probabilistic current Planck constant
Fluid mechanics Mass density Velocity Momentum Arbitrary constant

transform to compressible or incompressible flows with finite
vorticity and dissipation. It can be expressed as a unitary oper-
ator on a two-component wave function, so it is more natural
than the NSE for quantum computing. We develop a quantum
algorithm for solving the HSE with a notable speedup and
implement the algorithm for simple flows on IBM’s quantum
simulator [71].

The outline of the present paper is as follows. Section II
introduces the HSE. Section III compares the flows governed
by the HSE and NSE. Section IV develops and validates the
quantum algorithm. Some conclusions are drawn in Sec. V.

II. THEORETICAL FRAMEWORK
OF THE SCHRÖDINGER FLOW

A. Madelung transform

In quantum mechanics, the probabilistic current for a wave
function ψ (x, t ) is defined as [72]

J(x, t ) ≡ 1

2m
(ψ p̂ψ − ψ p̂ψ ) (1)

with the momentum operator p̂ and particle mass m, where f
denotes the complex conjugate of f and f̂ denotes an operator.
In the coordinate representation, we have p̂ = −ih̄∇ with the
imaginary unit i and Planck constant h̄. Considering a particle
moving in a potential field V ∈ R, its motion satisfies the
Schrödinger equation [73]

ih̄
∂

∂t
ψ (x, t ) =

(
− h̄2

2m
∇2 + V

)
ψ (x, t ). (2)

Without loss of generality, we set m = 1. From Eqs. (1) and
(2), the conservation of the probability density ρ ≡ ψψ reads

∂ρ

∂t
+ ∇ · J = 0. (3)

The form of Eq. (3) is identical to the continuity equation in
fluid mechanics, with a “velocity” u ≡ J/ρ.

The Madelung transform [74] shows an analogy between
quantum mechanics and fluid mechanics. Table I explains the
physical meanings of the same symbol in different contexts.
Using the Madelung transform, the momentum equation

∂u
∂t

+ u · ∇u = −∇V + h̄2

2
∇∇2√ρ√

ρ
(4)

of a fluid flow is obtained from Eq. (2), where the fluid
velocity is

u = ih̄

2

ψ∇ψ − ψ∇ψ

ψψ
= ih̄

2
∇ ln

ψ

ψ
= ∇φ (5)

with ψ = √
ρeiφ/h̄. Equation (4) corresponds to the Euler

equation for a potential flow with vanishing vorticity. It has

very limited applications for general viscous flows with finite
vorticity [75–77].

B. Schrödinger flow

The vorticity ω ≡ ∇ × u is ubiquitous in viscous flows
[78–80]. To introduce the finite vorticity into the hydrody-
namic representation of the Schrödinger equation, we use
a two-component wave function [81–83] represented by a
quaternion as

ψ(x, t ) = a(x, t ) + ib(x, t ) + jc(x, t ) + kd (x, t ) (6)

with the basis vectors {i, j, k} of the imaginary part of the
quaternion and real-valued functions a, b, c, and d . This
quaternion facilitates deriving governing equations of the
fluid flow below, and it is essentially the same as the two-
component spinor [84–87].

The probabilistic current in Eq. (1) is generalized to

J ≡ h̄

2
[(∇ψ)iψ − ψi∇ψ]. (7)

Similarly, the fluid mass density and velocity become ρ ≡ ψψ

and

u ≡ J
ρ

= h̄

2

∇ψiψ − ψi∇ψ

ψψ
, (8)

respectively. Then, we obtain

∂ρ

∂t
+ ∇ · (ρu) =

(
∂ψ

∂t
+ h̄

2
∇2ψi

)
ψ + ψ

(
∂ψ

∂t
− h̄

2
i∇2ψ

)
(9)

after some algebra. With identities iψ = −ψi and i∇2ψ =
−∇2ψi, we derive a sufficient condition,

ih̄
∂ψ

∂t
=
(

− h̄2

2
∇2 + V

)
ψ, (10)

with a real-valued potential V = V (x, t ) which can be nonlin-
ear and time-dependent for the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (11)

Note that Eq. (10) is the Schrödinger-Pauli equation (SPE)
in a quaternion form, which describes the motion of a spin-
1/2 particle without an external electromagnetic field in the
nonrelativistic limit [88–90].

After some algebra (detailed in Appendix A), we derive the
momentum equation

∂u
∂t

+ u · ∇u = − 1

ρ
∇p − ∇VF − h̄2

4ρ
∇s ·

[
∇ ·

(
1

ρ
∇s
)]
(12)
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FIG. 1. Schematic for quantum computing of the SF.

for ψ, along with an equation of state

p = − h̄2

4
s ·
[
∇ ·

(
1

ρ
∇s
)]

. (13)

Here

V = VF + h̄2

8ρ2
|∇s|2 (14)

is a nonlinear potential, where VF = VF (x, t ) is the linear part
corresponding to a specified conservative body force, and

s ≡ ψiψ (15)

denotes a spin vector. The last term in the right-hand side
of Eq. (12) does not appear in the momentum equation of
practical fluid flows. It can be considered as an external body
force involving a dissipation effect, and it degenerates to the
“Landau-Lifshitz force” (LLF) [91,92] for constant ρ.

In sum, we convert the compressible flow with finite vor-
ticity in Eqs. (11), (12), and (13), into an HSE

ih̄
∂ψ

∂t
=
(

− h̄2

2
∇2 + VF + h̄2

8ρ2
|∇s|2

)
ψ. (16)

The HSE can be considered as a SPE with a specific potential
in Eq. (14). The fluid flow governed by the HSE is then called
the Schrödinger flow (SF). Note that Eq. (16) can be re-written
as

ih̄
∂

∂t

[
ψ1

ψ2

]
=
(

− h̄2

2
∇2 + VF − |u|2

2
+ h̄2

2

|∇ψ1|2 + |∇ψ2|2
|ψ1|2 + |ψ2|2

)

×
[
ψ1

ψ2

]
(17)

in the form of the two-component wave function ψ =
[ψ1 ψ2]T with ψ1 = a + ib and ψ2 = c + id . The two wave
function components are coupled via the nonlinear potential.

Comparing with the Gross-Pitaevskii equation [93,94]

ih̄
∂ψ

∂t
=
(

− h̄2

2
∇2 + V + g|ψ |2

)
ψ, (18)

with an external potential V (x, t ) and a coupling constant g,
which is a well-known model equation describing the dynam-
ics of the Bose-Einstein condensate, the HSE (17) has a more
complex nonlinear potential and incorporates the spin effect
of a particle.

Since the real-valued Hamiltonian

ĤSF = |̂p|2
2

+ VF + h̄2

8ρ2
|∇s|2 (19)

of the SF is Hermitian, the evolutionary operator

exp

(
− i

h̄
ĤSF�t

)
≡

∞∑
n=0

1

n!

(
− i

h̄
�t

)n

Ĥn
SF (20)

is unitary, with a time increment �t . We are able to use it to
obtain ψ(x, t ) at a given time from an initial wave function
in quantum computing. The procedure of the simulation and
measurement for the SF is sketched in Fig. 1. This simulation
of the SF only involves the wave function and its derivatives
without fluid quantities, so it is equivalent to a Hamiltonian
simulation for the motion of a particle.

C. Incompressible Schrödinger flow

We consider a special SF for a constant-density incom-
pressible flow with

ρ = ρ0. (21)

The wave function on the sphere S3 with radius
√

ρ0 and the
spin vector in Eq. (15) on S2 with radius ρ0 for this flow
are linked by the Hopf fibration [95]. Taking the material
derivative D/Dt ≡ ∂/∂t + u · ∇ of ρ yields

Dρ

Dt
= Dψ

Dt
ψ + ψ

Dψ

Dt
= 2Re

[
Dψ

Dt
ψ

]
= 0. (22)
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Setting (Dψ/Dt )ψ = f ψ as an pure quaternion in Eq. (22)
yields [96]

Dψ

Dt
= 1

ρ0
f ψψ. (23)

After some algebra, the momentum equation

∂u
∂t

+ u · ∇u = −∇
( |u|2

2
− h̄

ρ3
0

s · f s

)
− h̄

ρ3
0

∇s · f s (24)

in an incompressible flow is obtained, where f s ≡ ψ f ψψ

is also a pure quaternion. Note that the flow governed by
Eqs. (21) and (24) has some physically interesting properties,
such as the helicity conservation [97–99] and the Lagrangian-
like evolution of vortex surfaces [100,101].

In order to obtain the Euler equation from Eq. (24), we
specify

f ψ = − i
h̄

(
p

ρ0
− |u|2

2
+ VF

)
. (25)

Substituting it into Eqs. (24) and (23), we obtain the Euler
equation

∂u
∂t

+ u · ∇u = −∇
(

p

ρ0
+ VF

)
(26)

and the corresponding nonlinear Schrödinger equation

ih̄
∂ψ

∂t
=
[
− h̄2

2
∇2 + p

ρ0
+ VF

+ 5h̄2

8ρ2
0

|∇s|2 − h̄2

4ρ2
0

ψ(∇2s)ψi

]
ψ, (27)

respectively. However, the nondiagonal complex potential in
Hamiltonian

ĤEuler = |̂p|2
2

+ p

ρ0
+ VF + 5h̄2

8ρ2
0

|∇s|2 − h̄2

4ρ2
0

ψ(∇2s)ψi

(28)
in Eq. (27) hinders an efficient quantum algorithm.

To make the Hamiltonian real-valued, Eq. (25) is modified
to

f ψ = − i
h̄

(
p

ρ0
− |u|2

2
+ VF

)
− h̄

4ρ3
0

ψs(s × ∇2s)ψ. (29)

Then we have the modified momentum equation

∂u
∂t

+ u · ∇u = −∇
(

p

ρ0
+ VF

)
− h̄2

4ρ2
0

∇s · ∇2s, (30)

and the incompressible hydrodynamic Schrödinger equa-
tion (IHSE)

ih̄
∂ψ

∂t
=
(

− h̄2

2
∇2 + p

ρ0
+ VF − h̄2

8ρ2
0

|∇s|2
)

ψ. (31)

The physical meaning of the last term in the right-hand side
of Eq. (30), i.e., the LLF [91,92], is further discussed in
Appendix B. The flow governed by Eq. (30) with ρ0 = 1
has been called the incompressible Schrödinger flow (ISF)

[91,92] and studied by numerical simulations [102]. The
Hamiltonian

ĤISF = |̂p|2
2

+ p

ρ0
+ VF − h̄2

8ρ2
0

|∇s|2 (32)

of the ISF is real valued and Hermitian, so the ISF is suitable
for quantum computing. Moreover, the form of the IHSE can
be obtained by setting ρ = ρ0 in the HSE. Specifically, im-
posing the constraint ρ = ρ0 in Eq. (13) and using the identity
s · �s = −|∇s|2 yield

p = − h̄2

4
s ·
[
∇ ·

(
1

ρ0
∇s
)]

= h̄2

4ρ0
|∇s|2, (33)

so Eqs. (19) and (32) are consistent.
Similarly to the incompressible Navier-Stokes equa-

tion (INSE), the pressure p in the IHSE (31) is coupled with
Eq. (30) to ensure the divergence-free velocity. Thus, the
mathematical natures of the HSE (16) with nonconstant ρ and
IHSE (31) are very different, which is similar to the differ-
ence between compressible and incompressible NSEs, so they
have to be solved by different methods. In the present study,
we focus on the physical property and quantum algorithm for
the ISF.

III. COMPARISONS OF INCOMPRESSIBLE
SCHRÖDINGER AND NAVIER-STOKES FLOWS

We investigate two ISFs, the Taylor-Green (TG) flow and
decaying homogeneous isotropic turbulence (HIT), to illus-
trate the similarities and differences between the ISF and the
real viscous flow. Additionally, the evolution of vortex knots
was investigated in the ISF [102].

Since quantum hardware and algorithms for simulat-
ing such complex flows are still under development, the
DNS of the ISF was carried out to solve Eq. (31) with
ρ0 = 1 and VF = 0 on a classical computer. The standard
pseudospectral method [101,103,104] was adopted in a pe-
riodic cube of side L = 2π on 5123 uniform grid points.
The numerical implementation was described in detail in
Ref. [102].

A. TG flow

We apply the TG initial condition in Eq. (C1) to the INSE
and IHSE. The construction of the initial wave function is
detailed in Appendix C. The evolutions of the TG vortex in the
ISF and the incompressible NS flow (INSF) are compared in
Fig. 2 using the contour of the vorticity magnitude |ω|. In the
INSF, the initial bloblike vortices are stretched into sheetlike
structures and move towards symmetry planes at t = 4. In the
ISF, the vortices undergo strongly oscillating shearing motion,
and they break up into smaller-scale vortices at t = 1. The
ISF and the INSF can have very different evolutionary pro-
cesses, where the characteristic timescale of vortex dynamics
in the ISF at h̄ = 1 is much smaller than that in the INSF at
Re = 1000.

The effect of the parameter h̄ in the ISF is similar to
the kinetic viscosity ν in the INSF. Figure 3 shows similar
large-scale vortical structures with h̄ = 1 and 0.1, whereas
much more small-scale tubelike structures emerge for smaller
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(a) t = 0.0 t = 2.0 t = 3.0 t = 4.0 t = 6.0 t = 8.0

(b) t = 0.0 t = 0.1 t = 0.2 t = 0.5 t = 0.8 t = 1.0

FIG. 2. Evolution of |ω| on the x-y plane at z = π for TG vortices in the (a) INSF with Re = 1000 and (b) ISF with h̄ = 1. The contour is
color coded by 0 � |ω|/|ω|max � 1 from blue to red.

h̄ = 0.1. In general, the length scale of vortices is proportional
to h̄ via the vorticity Clebsch mapping [91,92,102], and the
flow stability depends on the value of h̄. In Fig. 3, the flow
with smooth large-scale structures does not have a transition
for h̄ = 1, whereas the flow breaks down into turbulence with
numerous chaotic vortex tubes for h̄ = 0.1. The energy spec-
trum Ek (k) of a turbulent ISF in Fig. 4(b) exhibits a −5/3
scaling law in the inertial range as in classical turbulence
[37]. As h̄ decreases, the inertial range broadens with a more
pronounced −5/3 scaling.

B. Decaying HIT

We construct an initial ψ(x, t = 0), corresponding to a
random divergence-free velocity, for simulating HIT in the
ISF. First, a normalized Gaussian-random wave function

ψ∗ = 1√−2 ln(r1r3)
[
√

−2 ln r1 cos(2πr2)

+
√

−2 ln r1 sin(2πr2)i +
√

−2 ln r3 cos(2πr4) j

+
√

−2 ln r3 sin(2πr4)k] (34)

was generated, where r1, r2, r3, and r4 are independently
generated real random numbers satisfying the uniform dis-
tribution within [0,1]. Second, a divergence-free projection

FIG. 3. Isosurfaces of s1 = −0.9 at t = 1 for TG vortices in the
ISF with (a) h̄ = 1 and (b) h̄ = 0.1. Note that the isosurface of s1 is
a vortex surface [100,101] consisting of vortex lines, and the initial
isosurface is a vortex column shown in Fig. 15(a). The isosurfaces
are color coded by |ω|.

ψ∗∗ = e−iq/h̄ψ∗ was applied, where q is solved from ∇2q =
h̄(∇2ψ∗iψ∗ − ψ∗i∇2ψ∗)/2. Third, ψ∗∗ was evolved using the
IHSE for a time period t0 = 5 to smooth the noisy initial ψ∗∗.
Finally, ψ(x, t = 0) = ψ∗∗(x, t0 = 5) and its corresponding
velocity were taken as the initial conditions of IHSE and
INSE, respectively.

The vortex surface [100] in the fully developed turbulent
ISF at t = 5 is visualized in Fig. 5 using the isosurface of
s1s2s3 = 0.18. We observe a network of entangled vortex
tubes and sheets, which can be mapped to closed curves,
the intersection of s2

1 + s2
2 + s2

3 = 1 and s1s2s3 = 0.18, on the
unit sphere S2 (or the Bloch sphere) via the vorticity Clebsch
mapping [91,92,102]. The geometry of vortex surfaces in the
ISF is in between the vortex filaments in quantum turbulence
[105–107] and the tangle of spiral vortex tubes and sheets
in classical turbulence [103,108,109]. Therefore, the turbulent
ISF manifests the features of both quantum and classical tur-
bulent flows.

Figure 6 shows the evolution of Ek (k) for the decaying HIT
in the ISF with h̄ = 0.1 and the INSF with ν = 0.0005 (or
Re = 2000 for unity length and velocity scales). The scaling
of the energy spectrum in the ISF is close to the −5/3 law
in the inertial range as in classical turbulence [37], and it
decays with time due to energy dissipation. In addition, the
total kinetic energy decays with time in the turbulent ISF as in
the classical HIT (not shown).

IV. QUANTUM ALGORITHM FOR THE
INCOMPRESSIBLE SCHRÖDINGER FLOW

A. Prediction-correction approach

We develop a quantum algorithm for simulating the ISF.
As sketched in Fig. 1, the algorithm can be executed on a
quantum processor with measurements only at the end of
the simulation, so it does not involve frequent information
exchanges between classical and quantum hardware as in
existing hybrid quantum-classical methods [51,53,54,110].
This quantum algorithm can have significant advantages over
classical and hybrid ones in terms of computational speedup,
memory saving, and reduction of noises introduced by mea-
surements.
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100 101 102

k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Ek

(a)

t

k−5/3

100 101 102

k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Ek

(b)

t

k−5/3

FIG. 4. Evolution of the energy spectra for TG vortices in the ISF at t = 1–8 with (a) h̄ = 1 and (b) h̄ = 0.1.

We apply a prediction-correction approach to bypass han-
dling the nonlinear potential in Eq. (14) in the IHSE. As in
classical algorithms [111–113] for simulating incompressible
flows, the pressure is not solved using the pressure-Poisson
equation

∇2 p = ∇ ·
(

u × ω − h̄2

4
∇s · ∇2s

)
− ∇2

(
VF + |u|2

2

)
,

(35)
because the right-hand side in Eq. (35) is difficult to encode
on a quantum computer. First, we perform a prediction to
obtain a temporary wave function using Eq. (31) with ignoring
p − h̄2|∇s|2/8. Second, we apply a divergence-free projec-
tion of the temporary wave function. The flowchart of this
quantum algorithm the ISF is illustrated in Fig. 7. Next, we
elaborate each step in the algorithm in Fig. 7 using a 1D prob-
lem, and it is straightforward to extend the algorithm to 3D
problems.

B. Quantum encoding of the IHSE

In an n + 1-qubit quantum register, the state of a “Pauli
particle” [88–90], whose motion is governed by the IHSE
(31) with ρ = 1, can be encoded as follows. We use n qubits
with state vectors | j0〉, | j1〉, . . . , | jn−1〉 to encode a particle
location. The last qubit | jn〉 = |s〉 stores the spin state of the
particle. The state of each qubit j0, j1, . . . , jn−1, jn takes the

(b)(a) |ω|

0

1.25

2.5

3.75

5

FIG. 5. Visualization of the tangled vortex tubes for the decaying
HIT in the ISF. (a) Isosurface of s1s2s3 = 0.18 color coded by |ω| at
t = 5. (b) Close-up view of the region marked by the blue box in (a).
Some vortex lines (blue) are integrated and plotted on the isosurface
in (b).

value 0 or 1. The domain −d � x � d for the particle location
is discretized into 2n segments with the spacing �x = 2d/2n.
These segments can be represented by the computational ba-
sis |x j〉 = | jn−1 jn−2 · · · j0〉 in the Hilbert space C2n

with the
shorthand | jn−1 jn−2 · · · j0〉 ≡ | jn−1〉 ⊗ | jn−2〉 ⊗ · · · ⊗ | j0〉.

In this way, the quaternionic wave function ψ(x, t ) is ap-
proximated by the state vector

|ψ〉 = 1

N

1∑
s=0

1∑
jn−1=0

· · ·
1∑

j0=0

ψs(x j, t )|s〉 ⊗ | jn−1 jn−2 · · · j0〉

(36)
with ψ0 ≡ a + ib, ψ1 ≡ c + id , x j ≡ −d + ( j + 1

2 )�x, j =∑n−1
i=0 ji2i, and

N =
√√√√ 1∑

s=0

2n−1∑
j=0

|ψs(x j, t )|2 =
√

2nρ =
√

2n. (37)

Hence, the wave function is reconstructed by

ψ(x j, t ) =
√

2n(Re〈x j0 | ψ〉 + Im〈x j0 | ψ〉i + Re〈x j1 | ψ〉 j

+ Im〈x j1 | ψ〉k). (38)

C. Quantum algorithm for solving the IHSE

1. Step 1: Prediction

In step 1, we treat the particle governed by the
IHSE as a free Pauli particle. Namely, Eq. (31) becomes

100 101 102

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Ek t = 0
t = 5, ISF
t = 10, ISF
t = 5, INSF
t = 10, INSF

k−5/3

k

FIG. 6. Evolution of the energy spectra for the decaying HIT in
the ISF with h̄ = 0.1 and the INSF with Re = 2000.
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|ψ(t)〉

|ψ∗(t)〉 = (I2 ⊗ Q̂FT
†
)

(I2 ⊗ ̂P(k2Δt))(I2 ⊗ Q̂FT)

(I2 ⊗ ̂P(VF Δt))|ψ(t)〉

|ψ∗∗(t)〉 = ̂UN |ψ∗(t)〉

∇2q = �
2(∇2ψ∗∗iψ∗∗ − ψ∗∗i∇2ψ∗∗)

|ψ(t + Δt)〉 = I2 ⊗ ̂P(q)|ψ∗∗(t)〉

Measurement

Fluid quantities

State preparation

Step 1

Prediction

Step 2

Normalization

Step 3

Phase calculation

Step 4

Gauge transformation

Measurement

q

Yes

No

cycle

FIG. 7. Flowchart of the quantum algorithm for simulating the
ISF. The dashed boxes highlight the bottlenecks of quantum speedup
in the present algorithm.

ih̄ ∂
∂t ψ(x, t ) = [− h̄2

2 ∂2
x + VF (x)]ψ(x, t ). The motion of such a

particle is described by a temporary solution [24,114–116]

|ψ∗(t )〉 = (I2 ⊗ Q̂FT
†
)[I2 ⊗ P̂ (k2�t )](I2 ⊗ Q̂FT)

× [I2 ⊗ P̂ (VF �t )]|ψ (t )〉 (39)

with the 21 × 21 identity matrix I2 associated to the spin state,
the quantum Fourier transform (QFT) [117–119]

Q̂FT : | j〉 → 1√
2n

2n−1∑
k=0

e2π i jk
2n |k〉, (40)

the Hermitian transpose †, and the diagonal unitary trans-
formation P̂ ( f ) ≡ e−i f /h̄. The QFT can be implemented by
O(n2) quantum gates in Fig. 8, which achieves an exponen-
tial acceleration compared to O(n2n) operations of the fast

Fourier transform. Equation (39) is an approximation based
on the second-order Trotter decomposition [2]

e−i(H0+VF )�t/h̄ = e−iH0�t/h̄e−iVF (x)�t/h̄ + O(�t2), (41)

because the kinetic energy H0 = |̂p|2/2 and VF are not com-
mute, i.e., [H0,VF ] �= 0. The time stepping �t should be small
enough to ensure accuracy.

An efficient quantum implementation of P̂ ( f ) in Eq. (39)
is important. The variable

x j = −d +
(

j + 1

2

)
�x = c0

n−1∑
i=0

( ji2
i + c1) (42)

in V (x) is discretized with constants c0 = �x and c1 = (−d +
�x/2)/(n�x), and thus

P̂ (VF �t ) : | j〉 → e−iVF [c0
∑n−1

i=0 ( ji2i+c1 )]�t/h̄| j〉 (43)

is computable.
Similarly, we express the n-bit number k = ∑n−1

j=0 k j2 j

with k0, k1, . . . , kn−1 ∈ {0, 1} in the momentum operator
P̂ (k2�t ) in Eq. (39). Using the wave number expressed by
[114,120]

k = −
√

1

22n−3

φh̄

�t

⎛⎝1 +
n−1∑
j=0

2 j Ẑ j

⎞⎠, (44)

we obtain

P̂ (k2�t ) = exp

(
iφ

22n−3

) n−1∏
	=0

exp

(
iφ

22n−	−4
Ẑ	

)

×
n−1∏

i, j=0
i> j

exp

(
iφ

22n−i− j
Ẑi ⊗ Ẑ j

)
. (45)

Here Ẑ j denotes a phase-shift gate at the jth qubit and
φ = 22n−5�t/h̄ is a phase shift on a small time step. The
quantum circuit for calculating a Hamiltonian with the form
of Ĥ = exp(i�t Ẑ2 ⊗ Ẑ1 ⊗ Ẑ0) with a given �t is shown in
Fig. 9, using an ancilla qubit [2]. Taking, e.g., n = 3 qubits

|jn−1〉 H R2 · · · Rn−1 Rn

|jn−2〉 H · · · Rn−2 Rn−1

...

|j1〉 · · · H R2

|j0〉 · · · H

(|0〉 + e2πi0.jn−1···j0 |1〉)/√2

(|0〉 + e2πi0.jn−2···j0 |1〉)/√2

(|0〉 + e2πi0.j1j0 |1〉)/√2

(|0〉 + e2πi0.j0 |1〉)/√2

FIG. 8. Quantum circuit for the QFT in Eq. (40) with n qubits, where the SWAP gates for reversing the order of qubits in the end of the
QFT are not shown.
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FIG. 9. Quantum circuit for calculating Ĥ = exp(i�t Ẑ ) with an
ancilla qubit and Ẑ = Ẑ2 ⊗ Ẑ1 ⊗ Ẑ0.

and ignoring the global phase eiφ/8, Eq. (45) becomes

P̂(k2�t ) = exp
[
iφ
(
Ẑ2 + 1

2 Ẑ1 + 1
4 Ẑ0 + 2Ẑ2 ⊗ Ẑ1

+ Ẑ2 ⊗ Ẑ0 + 1
2 Ẑ1 ⊗ Ẑ0

)]
, (46)

which can be realized by a quantum circuit in Fig. 10. Thus,
only O(n2) quantum gates are sufficient to calculate the mo-
mentum operator in Eq. (45).

2. Step 2: Normalization

Since the temporary solution ψ∗(x, t ) obtained from
Eq. (39) in step 1 is not necessarily on S3, i.e., ψ∗ψ∗ �= 1,
it is normalized as

|ψ∗∗(t )〉 = ÛN |ψ∗(t )〉 (47)

in step 2, with an unitary operation ÛN to obtain ψ∗∗ψ∗∗ = 1.
This normalization step appears to be difficult to imple-

ment on a quantum computer. As illustrated in Fig. 11, we
can only conceptually decompose the operator

ÛN = Q2n−1Q2n−2 · · · Q1Q0 =
2n−1∏
i=0

Q2n−1−i, (48)

with scale transformations

Qi :
1√
2n

1∑
s=0

2n−1∑
j=0

ψs(x j, t )|s〉 ⊗ | j〉

→ 1√
2n

1∑
s=0

2n−1∑
j=0

ψs(x j, t )√|ψ0(x j, t )|2 + |ψ1(x j, t )|2 |s〉 ⊗ | j〉.

(49)

Here each Qi may be nonunitary with Q†
i Qi �= I and thus it

is not realizable using a quantum gate, whereas their product
Eq. (48) is unitary. Therefore, an effective quantum algorithm
for calculating ÛN with the complexity O(poly(n)) remains an
open problem.

|s〉

|jn−1〉

|jn−2〉
...

|j1〉

|j0〉

̂UN
=

Q0|s〉 Q1 Q2 Q3 · · · Q2n−1

|jn−1〉

|jn−2〉
...

...

|j1〉

|j0〉

...
...

...

· · ·

· · ·

. . .

· · ·

· · ·

...

FIG. 11. Conceptual quantum circuit for calculating ÛN in
Eq. (48). The dashed boxes mark that Qi, i = 1, 2, . . . , 2n − 1 may
be nonunitary, so they are not realizable quantum gates. Hollow and
solid circles denote control qubits with values 0 and 1, respectively.
The operation Qj on the target qubit |s〉 is active only when the con-
trol qubits are in the state | j〉 = | jn−1 jn−2 · · · j0〉 with j = ∑n−1

i=0 ji2i.

3. Step 3: Phase calculation

After step 2, the divergence of the velocity u∗∗ =
h̄(∂xψ

∗∗iψ∗∗ − ψ∗∗i∂xψ
∗∗)/2 can be nonzero. A divergence-

free projection of u∗∗, as a gauge transformation u → u −
∇q, is applied, where the phase q is solved from a Poisson
equation

∂2
x q = h̄

2

(
∂2

x ψ∗∗iψ∗∗ − ψ∗∗i∂2
x ψ∗∗). (50)

This projection corresponds to the gauge transformation ψ →
e−iq/h̄ψ for the wave function [121].

The encoding of the right-hand side of Eq. (50) without
affecting the quantum state |ψ∗∗〉 appears to be challenging.
A solution of this issue admits an efficient quantum algorithm
[42,122–125] to solve Eq. (50) using O(poly(n)) basic quan-
tum gates.

4. Step 4: Gauge transformation

In the final step, we take a gauge transformation

|ψ (t + �t )〉 = I2 ⊗ P̂ (q)|ψ∗∗(t )〉 (51)

from the temporary state |ψ∗∗〉 at t to the state |ψ〉 at t + �t .
The diagonal unitary transformation

P̂ ( f (x)) : |x〉 → e−i f (x)/h̄|x〉 (52)

of a function f (x) can be implemented by O(2n) generalized
controlled-phase shift gates. They apply the single qubit gate
Fj to a target qubit | j0〉 only when the other n − 1 controlled
qubits are in the state | j〉 = | jn−1 jn−2 · · · j1〉 [114]. An exam-
ple with n = 4 qubits is shown in Fig. 12.

However, such an implementation is inefficient because
its complexity scales exponentially with n. A more efficient

|j2〉

|j1〉

j0〉

|0〉

Rz(φ)

Rz(φ
2 )

Rz(φ
4 )

Rz(φ
2 ) Rz(φ) Rz(2φ) |0〉

FIG. 10. Quantum circuit for calculating P̂ (k2�t ) in Eq. (46) with n = 3 qubits and an ancilla qubit.
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FIG. 12. Quantum circuit for calculating P̂[ f (x)] in Eq. (52)
with n = 4 qubits. Hollow and solid circles denote control qubits
with values 0 and 1, respectively. The operation Fj on the target
qubit | j0〉 is active only when the control qubits are in the state
| j〉 = | j3 j2 j1〉 with j = ∑2

i=0 ji+12i.

quantum circuit can be designed for a specific form of f (x),
e.g., only O(n2) basic quantum gates are used for f (k) =
k2�t in Eq. (39). In general, if f (x) has a specific form, e.g.,
f (x) for the harmonic oscillator, square well, and quantum
tunneling, Eq. (52) can be calculated with the complexity
O(poly(n)).

5. Algorithm complexity

We estimate the total complexity of the quantum algorithm
for solving the IHSE in Eq. (31). The overall quantum cir-
cuit with the prediction, normalization, phase calculation, and
gauge transformation is illustrated in Fig. 13. The prediction is
a standard simulation of a potential-free Pauli particle, using
only O(n2) basic quantum gates. The normalization is uncon-
ventional in quantum computing. The upper and lower bounds
of operations are O(2n) and O(poly(n)), respectively. The
gauge transformation, currently, can only be realized through
the generic diagonal unitary transformation in Fig. 12, using
O(2n) basic quantum gates.

The complexities of each step and the entire algorithm are
summarized in Table II, and the complexities of the classical
pseudospectral method [126] are also listed for compari-
son. The present quantum algorithm can achieve exponential

speedup in steps 1 and 3, and possible speedup of

S1 = n2n + poly(2n)

poly(n)
(53)

overall. The bottlenecks for the computational efficiency in
steps 2 and 4 need to be tackled in the future work.

Besides the spatial complexity, the temporal and spatial
steps are related by the Courant-Friedrichs-Lewy (CFL) con-
dition in both the quantum and classical implementations.
This implies that the number of time iterations is Nt = O(N ),
where N = 2n is the total number of grid points. Thus, the
numerical error ε decreases polynomially with the number of
grid points. Assuming that the unitary operators are smooth
enough and the norm of the exponential operators are bounded
by one [127,128], the error after Nt iterations scales as ε ∼
Nt�t2 ∼ N−1 for the second-order Trotter decomposition.
Given an error tolerance, the upper and lower bounds of
the number of gates scale as Ngate ∼ ε−1poly(log2 ε−1) and
Ngate ∼ ε−2, respectively, for a quantum algorithm. In the
classical algorithm, the number of operations scales as Nop ∼
ε−1[ε−1 log2 ε−1 + poly(ε−1)]. Therefore, even if the CFL
condition constrains the time stepping, the quantum algorithm
has a possible exponential speedup

S2 = ε−1[ε−1 log2 ε−1 + poly(ε−1)]

ε−1poly(log2 ε−1)

= ε−1 log2 ε−1 + poly(ε−1)

poly(log2 ε−1)
. (54)

Note that the present study does not consider the com-
plexity of state preparation and measurement, which can be
bottlenecks for an efficient quantum algorithm. Currently
the entire wave function needs to be tomographically recon-
structed and then post-processed. It can be useful to find a
suitable basis to read out expectation values for a certain
quantity of interest in the future work.

D. Qiskit implementation

We provide a simple 1D example to go through the entire
algorithm, which is implemented on a quantum computer with

|s〉

|jn−1〉

|jn−2〉
...

|j1〉

|j0〉

|0〉

̂P(VF Δt) Q̂FT
̂P(k2Δt)

Q̂FT
†

̂UN
̂P(q)

Step 1 Step 2 Steps 3 & 4

FIG. 13. Overall quantum circuit for solving the IHSE, from time t to t + �t . The bottom qubit is an auxiliary one for implementing the
momentum operator.
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TABLE II. Breakdown of algorithm complexities of the present quantum algorithm and the classical pseudospectral algorithm.

Step 1 Step 2 Step 3 Step 4 Total

Quantum O(n2) O(poly(n))–O(2n) O(poly(n)) O(poly(n))–O(2n) O(poly(n))–O(2n)
Classical O(n2n) O(2n) O(poly(2n)) O(2n) O(n2n + poly(2n))

exponential speedup. The initial wave function is

ψ(x, t = 0) =
√

2

2

(
cos

x

h̄
+ sin

x

h̄
i + cos

x

h̄
j + sin

x

h̄
k
)
,

(55)

and the corresponding spin vector is s(x, 0) = (0, 0, 1). The
solution of this steady ISF satisfies a Helmholtz equation

∂2
x ψ −

(
2

h̄2 p − 1

4
|∂xs|2

)
ψ = 0. (56)

This simplified IHSE with VF = 0 with the initial condition
in Eq. (55) has a steady solution u = 1, where the nonlinear
potential in Eq. (31) is simplified to p = −1/2. Thus, we only
need to perform steps 1 and 4 as

|ψ (t + �t )〉 =
[

I2 ⊗ P̂
(

− �t

2

)]
(I2 ⊗ Q̂FT

†
)

× [I2 ⊗ P̂ (k2�t )](I2 ⊗ Q̂FT)|ψ (t )〉. (57)

The complexity for calculating a time step of Eq. (57) is
O(n2). Compared to O(poly(2nn)) for the classical algorithm,
the exponential quantum speedup is achieved.

We validate the algorithm in Eq. (57) using IBM’s Qiskit
[71]. The Qiskit is an open-source software development kit
for quantum computers at the level of pulses, circuits, and
application modules. We used a simulator with the quantum
assembly language (QASM) on a classical computer, which

mimics a quantum computer by adding small noises to the
result [129]. The QASM also operates by running the quantum
circuit multiple times and storing the number of times when
an outcome occurs, similar to the procedure on a practical
quantum computer.

The reconstruction of the probability distribution |ψ(x, t )|2
with a small statistical error needs to repeat the quantum
simulation a large number of times. After an outcome x j of the
particle position is obtained Mj times in M runs, |ψ(x j, t )|2 ≈
N 2Mj/M is estimated, with a normalization factor N in
Eq. (37). Moreover, it is also possible to reconstruct the entire
ψ(x j, t ) using a Ramsey-type quantum interferometry method
[114,130], the quantum-state tomography [131–133], or the
direct weak tomography [134].

In Fig. 14(a), the result of the simple example de-
scribed in Eq. (57) from the Qiskit simulation with M = 106

runs agrees with the theoretical distribution Re[ψ0(x j, t )]2 =
cos2(x j/h̄)/2. Figures 14(b) and 14(c) show that the recon-
structed mass density and velocity have slight deviations from
the theoretical values ρ = 1 and u = 1 due to the statistical
errors and the noises introduced by the QASM simulator.

Moreover, we performed a hybrid quantum-classical simu-
lation of a 2D unsteady TG ISF in Appendix D to demonstrate
the capability of simulating high-dimensional ISFs illustrated
in Sec. III. The obstacles (steps 2–4) in the quantum algorithm
were tentatively treated on the classical computer.

(a) (b) (c)2Re [ψ0]
2 ρ u

π

0

−π

x

0 0.5 1
t

0 0.5 1
t

0 0.5 1
t

1

0.75

0.5

0.25

0

1.2

1.1

1

0.9

0.8

1.2

1.1

1

0.9

0.8

FIG. 14. Contours of (a) 2Re[ψ0(x, t )]2, (b) ρ(x, t ) = |ψ(x, t )|2, and (c) u(x, t ) = h̄(∂xψiψ − ψi∂xψ)/2 with n = 6 qubits after M = 106

runs. The t axis is divided into 10 time steps within 0 � t � 1, and the x axis is discretized into 2n = 64 grid points within −π � x � π .
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V. CONCLUSIONS

We develop a framework for the quantum computing
of fluid dynamics based on the HSE with a generalized
Madelung transform. The SF, a flow with finite vorticity and
dissipation, is governed by the HSE in Eq. (16) of a two-
component wave function or by the continuity and momentum
equations in Eqs. (11) and (12). Since the Hamiltonian of the
SF is Hermitian, we are able to obtain ψ(x, t ) from an initial
wave function in the quantum computing of the HSE (see
Fig. 1).

In particular, we develop a prediction-correction quantum
algorithm for the ISF, a constant-density incompressible SF
governed by the IHSE (31). This algorithm can be executed on
a quantum processor with measurements only at the end of the
simulation (see Fig. 7). Thus, it does not involve frequent in-
formation exchanges as in existing hybrid quantum-classical
methods, which brings a significant advantage in the compu-
tational speedup over classical methods and in the reduction
of noises introduced by measurements.

We estimate the complexity of the quantum algorithm for
solving the IHSE. The overall quantum circuit contains four
steps of the prediction, normalization, phase calculation, and
gauge transformation in the algorithm (see Fig. 13). The
breakdown of the algorithm complexities is summarized in
Table II. The present quantum algorithm can achieve partial
exponential speedup in the steps of prediction and phase cal-
culation, and possible O((n2n + poly(2n))/poly(n)) speedup
overall.

The quantum algorithm is implemented using IBM’s Qiskit
for a simple 1D flow. The result agrees with the theoretical
solution with finite noises, and demonstrates an exponential
speedup on a quantum computer.

Note that the HSE without a viscous term and with an
external LLF term is different from the NSE, but the SF
resembles the viscous flow in terms of the similar flow statis-
tics and structures. We use the TG vortex and decaying HIT to
demonstrate the similarities between the ISF and the viscous
flow. The role of the parameter h̄ in the HSE is similar to the
kinetic viscosity. The flow stability depends on the value of h̄
in the TG vortex, and the inertial range with the −5/3 scaling
broadens with decreasing h̄ in the HIT. The tangle of vortex
tubes and sheets is observed in the turbulent ISF as in the
classical turbulent flow.

With the development of hardware and algorithms for
quantum computing, the HSE framework, involving the quan-
tum unitary evolution and characterizing 3D turbulent statis-
tics and structures, can be promising in CFD applications.
In the future work, the bottlenecks for the efficient quan-
tum algorithm will be tackled in the steps of normalization
and gauge transformation. Error correction capabilities are
required to ensure that the outcomes of deep quantum circuits
are still reliable. Moreover, the difference between the SF
and real viscous flows can be reduced by introducing further
modifications and models in the HSE.

ACKNOWLEDGMENTS

The authors thank S. Xiong, Y. Shi, C. Yang, X. Qiang, and
C. Song for helpful discussions. Numerical simulations and

visualizations were carried out on the TH-2A supercomputer
in Guangzhou, China. This work has been supported in part
by the National Natural Science Foundation of China (Grants
No. 11925201 and No. 11988102), the National Key R&D
Program of China (No. 2020YFE0204200), and the Xplore
Prize.

APPENDIX A: MOMENTUM EQUATION FOR THE SF

We derive the momentum equation for the SF. With

Du
Dt

= 1

ρ

DJ
Dt

+ (∇ · u)u (A1)

and J = h̄Re[(∇ψ)iψ], we have

DJ
Dt

= h̄Re

[
D∇ψ

Dt
iψ + ∇ψi

Dψ

Dt

]
. (A2)

Substituting the vector identity

D∇ψ

Dt
= ∇ Dψ

Dt
− ∇u · ∇ψ (A3)

into Eq. (A2) yields

DJ
Dt

= h̄Re

[
∇ Dψ

Dt
iψ + ∇ψi

Dψ

Dt

]
− ρ∇ |u|2

2
. (A4)

Next, we derive Dψ/Dt . The spin vector in Eq. (15) can be
expanded as

s = (a2 + b2 − c2 − d2)i + 2(bc − ad ) j + 2(ac + bd )k,

(A5)
which is a pure quaternion and has

∇s = ∇ψiψ + ψi∇ψ. (A6)

Substituting Eq. (A6) into Eq. (7) yields

ψi∇ψ = 1

2
∇s − 1

h̄
J. (A7)

From Eqs. (A7) and (8), we derive

∇2ψ = 2i
h̄

u · ∇ψ + 1

h̄
(∇ · u)iψ + 1

ρ
|∇ψ|2ψ

+ iψ
2ρ2

∇ρ · ∇s − iψ
2ρ

∇2s. (A8)

Then, we obtain the convective term of the wave function

u · ∇ψ = − h̄

2
i∇2ψ − 1

2
(∇ · u)ψ

+ h̄

4ρ

(
2|∇ψ|2iψ − ψ

ρ
∇ρ · ∇s + ψ∇2s

)
. (A9)

Combining Eqs. (10) and (A9), we have

Dψ

Dt
= − 1

2
(∇ · u)ψ

+ h̄

4ρ

(
2|∇ψ|2iψ − ψ

ρ
∇ρ · ∇s + ψ∇2s

)
− V

h̄
iψ.

(A10)
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Substituting Eq. (A10) with its complex conjugate into
Eq. (A4) yields

DJ
Dt

= − ρ(∇ · u)u − h̄∇(σ · s) + h̄∇s · σ − ρ∇V

+ h̄2

2
ρ∇ |∇ψ|2

ρ
− ρ∇ |u|2

2
(A11)

with σ = −h̄∇ · (∇s/ρ)/4. Substituting Eq. (A11) into
Eq. (A1), we obtain

Du
Dt

= ∇
(

h̄2

8ρ2
|∇s|2 − V

)
− h̄

ρ
∇(σ · s) + h̄

ρ
∇s · σ. (A12)

Taking the nonlinear potential in Eq. (14) and the equa-
tion of state in Eq. (13), and substituting them into Eq. (A12),
we obtain the momentum equation (12) for the SF. In addition,
combining Eqs. (15) and (A10) gives the transport equation of
the spin vector

Ds
Dt

= −(∇ · u)s + h̄

2ρ
s × ∇2s. (A13)

APPENDIX B: PHYSICAL MEANING OF THE LLF

We discuss the physical meaning of the LLF

FLL ≡ − h̄2

4ρ2
0

∇s · ∇2s (B1)

in the momentum equation (30) for the ISF. Without loss of
generality, we set ρ0 = 1 here. The transport equation of the
spin vector in Eq. (15) reads

∂s
∂t

= h̄

2
s × ∇2s − h̄s × m, (B2)

where m ≡ ∇ψ · i∇ψ is a pure quaternion and can be ex-
panded as

m = (|∇a|2 + |∇b|2 − |∇c|2 − |∇d|2)i

+ 2(∇b · ∇c − ∇a · ∇d ) j + 2(∇a · ∇c + ∇b · ∇d )k.

(B3)

Note that Eq. (B2) is very similar to the Landau-Lifshitz-
Gilbert equation [135], which is a quasi-linear equation de-
scribing the evolution of the magnetization vector in ferro-
magnetic materials [136].

Then, we analyze the properties of the LLF in Eq. (B1).
Take

ψ = cos θ cos
φ1

h̄
+ i cos θ sin

φ1

h̄
+ j sin θ cos

φ2

h̄

+ k sin θ sin
φ2

h̄
(B4)

with real-valued functions θ = θ (x, y, z) and φα =
φα (x, y, z), α = 1, 2, which satisfies |ψ|2 = 1. The
corresponding velocity and vorticity can be expressed
as

u = cos2 θ∇(�φ) + ∇φ2, ω = 1
2∇(cos 2θ ) × ∇(�φ)

(B5)

with �φ ≡ φ1 − φ2. The spin vector reads

s1 = cos 2θ, s2 = sin 2θ sin
�φ

h̄
, s3 = sin 2θ cos

�φ

h̄
.

(B6)

)b()a(

FIG. 15. Isosurfaces of (a) s1 = −0.9 and (b) s3 = −0.9 in the
TG initial field. Some vortex lines are integrated and plotted on the
isosurfaces.

Moreover, the incompressibility condition imposes a con-
straint

∇(cos2 θ ) · ∇(�φ) + cos2 θ∇2(�φ) + ∇2φ2 = 0. (B7)

From the gradient and Laplacian of Eq. (B6), we obtain

FLL = [
1
2 sin 2θ cos 2θ |∇(�φ)|2 − h̄2∇2θ

]∇θ

− [
sin 2θ cos 2θ∇(�φ) · ∇θ + 1

4 sin2 2θ∇2(�φ)
]

× ∇(�φ) (B8)

after some algebra. We decompose FLL = FE + FD, where

FE ≡ 1
2 sin 2θ cos 2θ |∇(�φ)|2∇θ

− [
sin 2θ cos 2θ∇(�φ) · ∇θ + 1

4 sin2 2θ∇2(�φ)
]

× ∇(�φ), (B9)

independent on h̄, behaves as an external body force to stir the
flow, and

FD ≡ −h̄2∇2θ∇θ (B10)

is similar to a viscous term to dissipate the flow with an
effective viscosity correlated to h̄2.

APPENDIX C: WAVE FUNCTION FOR THE
INITIAL TG FIELD

We convert the TG initial condition [137]

u = (sin x cos y cos z,− cos x sin y cos z, 0) (C1)

into the form of the wave function. For the wave function in
Eq. (B4), we determine the real-valued functions θ and φα for
the TG initial condition. Following the form of the Clebsch
potentials [138] for the TG initial condition [139], we let

θ = 1
2 arccos(cos x |cos z|1/2),

�φ = 4 cos y |cos z|1/2 sgn(cos z). (C2)

Substituting Eqs. (C1) and (C2) into Eq. (B5) yields

φ2 = − cos x cos y cos z − 2 cos y |cos z|1/2 sgn(cos z). (C3)
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FIG. 16. Comparison of the instantaneous contours of the normalized vorticity in the hybrid quantum-classical simulation and classical
simulation of the 2D TG ISF with h̄ = 1 and n = 10 qubits.

Thus, we obtain the wave function

a = cos

[
1

2
arccos

(
cos x |cos z|1/2)] cos

[
cos y [2 |cos z|1/2 sgn(cos z) − cos x cos z]

h̄

]
,

b = cos

[
1

2
arccos

(
cos x |cos z|1/2)] sin

{
cos y [2 |cos z|1/2 sgn(cos z) − cos x cos z]

h̄

}
,

c = sin

[
1

2
arccos

(
cos x |cos z|1/2

)]
cos

{
cos y [2 |cos z|1/2 sgn(cos z) + cos x cos z]

h̄

}
,

d = − sin

[
1

2
arccos

(
cos x |cos z|1/2

)]
sin

{
cos y [2 |cos z|1/2 sgn(cos z) + cos x cos z]

h̄

}
(C4)

and the spin vector

s1 = cos x |cos z|1/2,

s2 = sin
[

arccos
(

cos x |cos z|1/2
)]

sin

[
4 cos y |cos z|1/2 sgn(cos z)

h̄

]
,

s3 = sin
[

arccos
(

cos x |cos z|1/2
)]

cos

[
4 cos y |cos z|1/2 sgn(cos z)

h̄

]
. (C5)

for the TG initial field. Typical vortex surfaces consisting of ringlike vortex lines for the TG initial condition are obtained from
Eq. (C5) and plotted in Fig. 15.

APPENDIX D: HYBRID SIMULATION OF THE 2D TG ISF

We perform a hybrid quantum-classical simulation of a 2D unsteady TG ISF to demonstrate the capability of solving
the IHSE (31) with the quantum simulator Qiskit [71]. The obstacles (steps 2–4) in the present quantum algorithm are
tentatively treated on the classical computer. According to Appendix C, the wave function for the 2D TG initial condition
u = (sin x cos y,− cos x sin y) is

a = cos [H (x)] cos
cos y(2 − cos x)

h̄
,

b = cos [H (x)] sin
cos y(2 − cos x)

h̄
,

c = sin [H (x)] cos
cos y(2 + cos x)

h̄
,

d = − sin [H (x)] sin
cos y(2 + cos x)

h̄
.

with H (x) =
{

x
2 , 0 � x � π,

π − x
2 , π < x � 2π.

(D1)
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The hybrid quantum-classical simulation is governed by
Eq. (31) with ρ0 = 1. In each time step, we first implement
step 1 in the algorithm in Sec. IV C using n = 10 qubits,
where n depends on the computational resource. We set five
qubits in each of the x and y directions, equivalent to using
25 × 25 = 322 grid points. Then, we measure the state vector
|ψ∗(t )〉 in Eq. (39) to obtain the corresponding a∗, b∗, c∗, and
d∗. Note that the algorithm for the 2D or higher-dimensional
problem is essentially the same as that for the 1D problem in
Sec. IV. Finally, we implement steps 2–4 in Sec. IV C using
322 grid points using the methods for the classical computer,
and then prepare the state vector corresponding to the final
output wave function. The above process is iterated for time
marching. Since step 1 dominates the computational com-
plexity in the classical simulation (see Table II), the hybrid
simulation itself can be a temporal method for simulating 3D
ISFs.

Figure 16 shows evolution of the contour of ω/|ω|max in
the 2D TG ISF with h̄ = 1, where ω denotes the z component
of ω and |ω|max denotes the instantaneous maximum |ω| in the
computational domain. The hybrid simulation result shows a
good agreement with the classical one, and only has slight
oscillations due to the statistical error and noises introduced

0 0.5 1
0

0.05

0.1

E

hybrid, run 1
hybrid, run 2
hybrid, run 3

6%

t

FIG. 17. Discrepancies E (t ) ≡ ‖|ω|hybrid − |ω|classical‖2
2 of three

independent hybrid quantum-classical runs from the classical sim-
ulation result of the 2D TG ISF with h̄ = 1 and n = 10 qubits.

by the QASM simulator. The discrepancy E (t ) ≡ ‖|ω|hybrid −
|ω|classical‖2

2 between the two simulations is smaller than 6%
at t < 1 for three independent runs in Fig. 17. In addition, the
total kinetic energy and enstrophy are almost identical for the
two simulations (not shown).
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