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Composite quantum phases in non-Hermitian systems
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Non-Hermitian systems have attracted considerable interest in recent years owing to their unique topological
properties that are absent in Hermitian systems. While such properties have been thoroughly characterized in
free fermion models, they remain an open question for interacting bosonic systems. In this work, we present a
precise definition of quantum phases for non-Hermitian systems and propose a family of phases referred to as
composite quantum phases. We demonstrate the existence of these phases in a one-dimensional spin-1 system
and show their robustness against perturbations through numerical simulations. Furthermore, we investigate
the phase diagram of our model, indicating the extensive presence of these phases in non-Hermitian systems.
Our work establishes an alternate framework for studying and constructing quantum phases in non-Hermitian
interacting systems, revealing exciting possibilities beyond the single-particle picture.
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I. INTRODUCTION

Non-Hermitian systems [1,2], originally proposed as effec-
tive theories to describe open systems [3–6], have received
significant attention recently due to their unique properties
and phenomena beyond the standard Hermitian formalism
[7–13]. Various studies have focused on the topological
properties in free fermion models [14,15], including the
breakdown of the well-known bulk-edge correspondence [16],
inspiring the revisitation of the relationship between bulk
topological invariants and edge states in non-Hermitian sys-
tems [17–19]. The celebrated Altland-Zirnbauer symmetry
classification [20] has also been extended from ten to 38
classes by considering additional sublattice symmetries and
pseudo-Hermiticity, revealing a much richer phase diagram in
non-Hermitian fermionic systems [21,22].

Topological quantum phases have been extensively inves-
tigated in Hermitian interacting bosonic systems besides free
fermion models, with a focus on their well-organized en-
tanglement structure. This long-range entanglement pattern
is commonly called topological order [23–25]. In addi-
tion, the manifold of symmetric Hamiltonians gives rise
to more nontrivial quantum phases, including symmetry-
breaking phases [26] and symmetry-protected topological
(SPT) phases [27–29].

The intersection between non-Hermitian physics and
many-body physics would be of particular interest. Previous

*These authors contributed equally to this work.
†shuoyang@tsinghua.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

works have made much progress in this direction, including
studies on topological excitations [30] or dynamics [31,32]
in interacting spin models [33] and observation of non-
Hermitian skin effects [34–36] or many-body localization
[37–39] in interacting fermionic systems. However, a compre-
hensive understanding and classification of quantum phases
in non-Hermitian interacting systems, i.e., strongly correlated
phases at zero temperature, has not been well established.

Here we propose a definition of quantum phases in non-
Hermitian systems by starting from the equivalent classes of
Hamiltonians. With this definition, we demonstrate a broad
range of novel non-Hermitian quantum phases without Her-
mitian counterparts, which we denote as composite quantum
phases. As an illustration, we employ the non-Hermitian
parent Hamiltonian method [40] to construct a system be-
longing to this type of phase and numerically confirm its
robustness against perturbations using the multisite infinite
time-evolving block decimation (iTEBD) method [40,41].
Our results suggest that non-Hermitian composite quantum
phases are prevalent, as evidenced by the phase diagram of
our model, indicating the existence of a vast and unexplored
landscape of non-Hermitian topological phases beyond exist-
ing free fermion models.

II. QUANTUM PHASES AND QUANTUM PHASE
TRANSITIONS

A. Three equivalent criteria in Hermitian systems

Quantum phases are defined as the equivalent classes of
Hamiltonians.

Definition 1. Two local and gapped Hamiltonians in Her-
mitian systems H0 and H1 belong to the same phase if and only
if there exists a set of H (g) connecting them, i.e., H (0) = H0

and H (1) = H1, such that the expectation value of any local
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FIG. 1. Relations between the classification of Hamiltonians and the classification of quantum states. In Hermitian systems, they are
equivalent. In non-Hermitian systems, Theorem 1 connects the original definition based on smooth observables to the existence of LU
evolutions on the corresponding left and right ground states.

observable for the ground state 〈O〉 (g) is smooth along the
path g ∈ [0, 1].

This serves as the original definition for quantum phases
and quantum phase transitions. Thanks to the perturbation
theory in Hermitian systems, the existence of an adiabatic path
such that H (g) is gapped automatically ensures that 〈O〉 (g)
is smooth [25], providing another criterion that relates phase
transitions to gap closing.

Nevertheless, whether such an adiabatic path exists is
generally hard to determine, inspiring people to study the
equivalent classes of ground states rather than Hamiltonians.
It is proved by explicit constructions that the above condition
is equivalent to the existence of a local unitary (LU) evolu-
tion connecting the respective ground states. This sufficient
and necessary condition enables the classification of quan-
tum phases by analyzing ground state properties, such as the
entanglement spectrum (ES) [42,43] or topological entangle-
ment entropy [23,24]. The relation between the classification
of Hamiltonians and the classification of states in Hermitian
systems is shown in Fig. 1.

B. Non-Hermitian systems

It is worth noting that in Hermitian systems, (1) the clas-
sification of Hamiltonians and (2) the classification of ground
states are equivalent, greatly facilitating the exploration and
construction of novel quantum phases. In contrast, in the
non-Hermitian regime, the second and third criteria men-
tioned above and thus the duality between quantum states and
Hamiltonians no longer hold. Therefore, recent studies show-
ing that no new topological ground state can be realized in
one-dimensional (1D) interacting non-Hermitian systems [44]
do not preclude the possibility of investigating new phases
of non-Hermitian Hamiltonians, which remains an open
problem.

To classify quantum phases in non-Hermitian systems,
we adopt the original definition in Hermitian systems, i.e.,
quantum phases are defined as the equivalent classes of
Hamiltonians, where a smooth path for all expectation values
is crucial. However, there are different ways to define the den-
sity matrix and evaluate the expectation value of an observable

〈O〉 for a general non-Hermitian system [45–48], each
with a self-consistent physical interpretation. In this work,
we make use of the formalism discussed in Refs. [45,49]
based on the biorthogonal interpretation of non-Hermitian
quantum mechanics, which is to be explained in detail
below.

According to the basic formalism in general quantum
statistics, the natural choice of the density matrix is ρ =
e−βH/Tr[e−βH ]. The expectation value of any observable 〈O〉
can then be obtained by

〈O〉 = Tr[e−βH O]

Tr[e−βH ]
=

∑
n 〈ψn| e− β

2 H Oe− β

2 H |ψn〉
∑

n 〈ψn| e− β

2 H e− β

2 H |ψn〉
. (1)

As the temperature approaches zero, we reach

〈O〉LR = 〈L| O |R〉
〈L|R〉 , (2)

where |R〉 and |L〉 are the ground states of H and H†, respec-
tively, defined as the eigenstates with the lowest real parts
of eigenvalues. As a result, one can also identify the density
matrix for ground states as ρ = |R〉〈L| with proper normaliza-
tion 〈L|R〉 = 1. Notably, such a choice for the density matrix
has a clear geometric interpretation [50] and allows for a
natural generalization of the definition for quantum phases
from Hermitian systems to the non-Hermitian regime as
follows.

Definition 2. Two local, line-gapped [51], non-Hermitian
Hamiltonians H0 and H1 belong to the same quantum phase if
and only if there exists a set of H (g) connecting them, i.e.,
H (0) = H0 and H (1) = H1, such that all local observables
for the ground states Tr[ρ(g)O], where ρ(g) = |R(g)〉〈L(g)|
is the density matrix for ground states after normalization
Tr[ρ(g)] = 1, are smooth along the path g ∈ [0, 1].

The first issue we encounter is whether our generalized
definition is consistent with the conventional definition of
quantum phases for Hermitian Hamiltonians. From the most
basic topological point of view, two regions that are not
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FIG. 2. Schematic diagram of composite quantum phases in non-
Hermitian systems. In this case, the left and right ground states can
belong to different phases (e.g., |L〉 ∈ phase A while |R〉 ∈ phase B),
resulting in composite quantum phases [e.g., the cloud labeled as
(A, B)].

originally connected may be connected on an extended mani-
fold. Therefore, we need to answer the following question. For
two Hermitian Hamiltonians H0 and H1 belonging to different
quantum phases defined conventionally, can we connect them
without phase transitions in the extended manifold of non-
Hermitian Hamiltonians? We will show that if restricted to
a special class of systems whose ground states are guaranteed
to be short-range correlated and satisfy the entanglement area
law, we would not encounter conflicts. It is noteworthy that
it is a condition automatically satisfied in Hermitian systems,
but not necessarily in a general non-Hermitian system even
with a line gap.

In addition, due to the breakdown of the Lieb-Robinson
bound, quantum phase transitions can occur without gap clos-
ing in non-Hermitian systems [12]. In other words, a finite gap
along the path can no longer guarantee that two Hamiltonians
belong to the same phase, hindering us from constructing
LU evolution on corresponding ground states and deriving
an equivalent criterion as in Hermitian systems. Therefore,
we need to consider how to provide a classification of non-
Hermitian quantum phases via another easily implemented
criterion.

The following theorem can answer the above two ques-
tions.

Theorem 1. For two local, line-gapped, non-Hermitian
Hamiltonians H0 and H1 whose ground states are short-range
correlated and satisfy the entanglement area law, if they be-
long to the same quantum phase, their left and right ground
states can be connected with LU evolutions, respectively, i.e.,

|L0〉LUl↔|L1〉 and |R0〉LUr↔|R1〉.
Proof. Consider the adiabatic path H (g) connecting these

two Hamiltonians, i.e., H (0) = H0 and H (1) = H1, where
the smoothness of Tr[|R(g)〉〈L(g)| O] for any local operator
requires all the local reduced density matrices of |R(g)〉〈L(g)|
be smooth, which further means that those of |L(g)〉 and
|R(g)〉 are also smooth. For each g, we can construct the
Hermitian parent Hamiltonians HL(g) and HR(g) for |L(g)〉
and |R(g)〉, respectively, which are local and gapped since
both |L(g)〉 and |R(g)〉 are short-range correlated and satisfy
the entanglement area law [52,53]. In addition, each term
of HL(g) [HR(g)], constructed from the local reduced den-
sity matrix of |L(g)〉 (|R(g)〉), has a smooth dependence on
g since the dimension of the local support space does not
change. Therefore, we obtain two adiabatic paths in the Her-
mitian Hamiltonian manifold connecting |L(0)〉 to |L(1)〉 and
|R(0)〉 to |R(1)〉, respectively. Consequently, |L(0)〉 and |L(1)〉

(|R(0)〉 and |R(1)〉) can be connected with LU evolutions
following the construction in Ref. [25]. �

The key step in this proof is to derive an LU evolution
for each side by constructing accompanying Hermitian par-
ent Hamiltonians. From the contraposition of Theorem 1,
it follows directly that for two Hamiltonians H0 and H1,
once one side of their ground states cannot be connected
by LU evolutions, they belong to different non-Hermitian
phases. Therefore, the classification of non-Hermitian quan-
tum phases is given by the direct product of the equivalent
classes of the left and right ground states. The alternative
relation in non-Hermitian systems is also shown in Fig. 1.

III. ALTERNATIVE PHASES IN NON-HERMITIAN
SYSTEMS

Following the definition in the previous section, we can
propose alternative quantum phases in non-Hermitian sys-
tems. Intuitively, if a Hermitian system has n different phases,
then a non-Hermitian system can potentially exhibit n × n
different phases. In this case, the n “diagonal” phases have
Hermitian counterparts, while the “off-diagonal” phases are
quantum phases arising only in non-Hermitian systems, where
the left and right ground states |L〉 and |R〉 cannot be con-
nected by LU evolutions. Hamiltonians in these alternative
phases, which we denote as composite quantum phases, can-
not be adiabatically connected to any conventional Hermitian
Hamiltonian. The schematic diagram of the composite quan-
tum phases is shown in Fig. 2.

In addition, when considering symmetric LU evolution,
quantum states with different nontrivial SPT orders can-
not be transformed into each other [27,28]. Therefore, we
can extend the above definition to define and study com-
posite symmetry-protected topological (CSPT) orders in
non-Hermitian systems. For instance, in the presence of
on-site unitary symmetry defined by a finite group G, the clas-
sification of SPT phases in d-dimensional Hermitian systems
can be represented as ω ∈ Hd+1(G,C) [28,29]. Consequently,
we can use

ωL × ωR ∈ Hd+1(G,C) × Hd+1(G,C) (3)

to label possible CSPT phases in non-Hermitian systems
where on-site unitary symmetry G is imposed. In the pres-
ence of symmetries besides on-site unitary ones, such as time
reversal (TR) or translational invariance (TI), we can further
construct additional CSPT phases from states with SPT order
that are protected by these joint symmetries [54,55].

A significant problem lies in the existence of such com-
posite phases in the real world, i.e., whether we can construct
a non-Hermitian parent Hamiltonian from given left and
right ground states with different orders such that it remains
gapped in the thermodynamic limit. In Hermitian systems,
the existence is guaranteed by the parent Hamiltonian method
[52,53]. In the following, we adopt the recently proposed
non-Hermitian parent Hamiltonian (nH-PH) approach [40]
to construct and study composite phases in one dimension.
In this method, one starts from two different matrix product
states (MPS) [52] and constructs a local Hamiltonian such
that they serve as the zero-energy mode on each side (see
Appendix). Since there is no intrinsic topological order for
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(a) (b)

FIG. 3. Transformation of the local tensor A of a symmetric MPS under (a) on-site symmetry g ∈ G and (b) time-reversal symmetry
T = uK .

any injective MPS [25], we will focus on two MPS with
different SPT orders.

IV. CSPT WITH D2h SYMMETRY

We start from 1D quantum states with different SPT orders
protected by the D2h symmetry group, which is a joint sym-
metry group composed of the dihedral group D2 and the TR
transformation T [54]. Different SPT orders are labeled by
several indices ω, β(T ), γ (g) as defined below.

A. SPT phases with combined symmetry

Here we briefly review the definition and indices for differ-
ent SPT orders in 1D Hermitian systems [28,54–56]. Without
loss of generality, we consider an MPS with TI, but we do not
always impose TI for the LU evolution. In this case, on-site
unitary symmetry must act linearly, not projectively [28]. For
an on-site unitary symmetry group G, we have

∑

j

u(g)i jA
[ j] = α(g)R−1(g)A[i]R(g), g ∈ G (4)

as shown in Fig. 3(a), where u(g), α(g), and R(g) are a linear
representation, a 1D representation, and a projective repre-
sentation of G, respectively. If only on-site symmetries are
imposed, different SPT phases are labeled by ω ∈ H2(G,C),
defined as

R(gz )−1R(gx )R(gz ) = ωR(gx ). (5)

Then we turn to the on-site antiunitary symmetry, e.g.,
the TR symmetry T = uK satisfying T 2 = uu = ±1, where
K refers to the complex conjugate. The local tensor is now
transformed as

∑

j

ui jA[ j] = αM−1A[i]M, (6)

as shown in Fig. 3(b), where MM = ±1. Therefore, different
quantum phases can be labeled by MM = ±1 ≡ β(T ).

Now we consider the combination of on-site unitary sym-
metry group G and time reversal symmetry T . In addition
to the indices given by these two components respectively,
i.e., β(T ) = ±1 and projective representation ω ∈ H2(G,C),
we need to consider the “projective” commutation relation
between G and T . Suppose all elements in G commute with T
(and thus the joint symmetry group is Abelian), one can derive
the following relation:

M−1R(g)M = γ (g)R(g), (7)

where γ (g) is a 1D representation of G. Moreover, two γ (g)
are equivalent if they differ only by the square of a 1D

representation of G. This means that different SPT phases
are further distinguished by γ (g) ∈ G/G2, where G is the
group of 1D representation of G, and G2 is the group of 1D
representation squared of G [55].

B. SPT phases with D2h symmetry in spin-1 systems

As an example, we consider a spin-1 chain with D2 symme-
try, whose group elements are {e, gx, gz, gy = gxgz = gzgx}.
The linear representation of this group applied to the phys-
ical bond is u(g) = e−iπs(g), where s(gi) ≡ si for i = x, y, z,
referring to conventional spin operators. There is a nontrivial
projective representation of D2, labeled as ω = −1, corre-
sponding to the well-known Haldane phase. A realization for
this phase is the AKLT state, which can be represented by
an MPS with bond dimension D = 2. The local tensors are
A[x] = X , A[y] = Y , and A[z] = Z , where X,Y, Z are the Pauli
matrices [57].

As for the joint group of D2 × T = D2h, one can realize
four distinct SPT phases in spin-1 systems, whose MPS con-
structions with D = 2 and all associated indices are shown as
follows [all these four states have R(gx ) = X , R(gz ) = Z , and
thus ω = −1] [54]:

A[x] A[y] A[z] M ω β γ (gx ) γ (gz )

|ψ0〉 X Y Z Y −1 −1 −1 −1
|ψx〉 iX Y Z Z −1 +1 −1 +1
|ψy〉 X iY Z I −1 +1 +1 +1
|ψz〉 X Y iZ X −1 +1 +1 −1

where we adopt T = e−iπsy K , following the conventional
choice for spin systems. It should be noted that these four
states all belong to the Haldane phase if D2 symmetry is the
only constraint, where ω = ±1 enables us to distinguish the
Haldane phase from the trivial phase, while they can be fur-
ther distinguished by different commutation relations between
g ∈ D2 and T [labeled γ (g)].

C. CSPT phases with D2h symmetry in spin-1 systems

We proceed to establish CSPT phases in non-Hermitian
systems based on these states in the following. We construct a
Hermitian parent Hamiltonian H00 to describe the ground state
|ψ0〉〈ψ0| and a non-Hermitian parent Hamiltonian Hx0 from
|ψ0〉〈ψx| [40]. We choose k = 4 in each construction, i.e.,
both H00 and Hx0 involve four-site interaction. Furthermore,
both Hamiltonians preserve the D2h symmetry inherited from
|ψ0〉 and 〈ψx|. Thus, H00 and Hx0 are expected to belong to
different non-Hermitian phases. To investigate the quantum
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1×10−3

FIG. 4. iTEBD calculation for |L〉 and |R〉 of H0(λ) with D = 32.
(a and b) Entanglement spectrum of |L〉 and |R〉, respectively. (c) The
ground state energy per site E0/N of H0(λ), compared with the
results calculated from ED with N = 10 and PBC. (d) Index γ (gz )
to describe the SPT order protected by D2h of |L〉 and |R〉.

phase transition between H00 and Hx0, we consider the path
of Hamiltonians given by H0(λ) = (1 − λ)H00 + λHx0 for λ ∈
[0, 1]. We note that |ψ0〉 is always a zero-energy eigenstate of
H0(λ) for all λ since it is a co-eigenstate of both H00 and Hx0

with energy E = 0.
To compute the left and right ground states 〈L| and |R〉

of H0(λ), we employ the multisite iTEBD method [40] with
bond dimension D = 32 and unit cell length k = 4. We set
the time step as 
τ = 1 × 10−2, and adopt the convergence
criterion e = 1 × 10−12, defined as e = ∑k

i=1

∑D
j=1[si j (τ +

δτ ) − si j (τ )]2, where si j denotes the jth Schmidt weight for
site i in the unit cell. The resulting entanglement spectra (ES)
of |L〉 and |R〉 are shown in Figs. 4(a) and 4(b).

Firstly, it is observed that the ES of |R〉 undergoes an abrupt
change when the parameter λ approaches the critical value
∼0.6. For λ � 0.6, the ES of |R〉 coincides with that of |ψ0〉.
Consequently, |ψ0〉 is deemed to be a zero mode as well as
the true ground state of the Hamiltonian H with associated
energy E0 = 0. However, when λ surpasses 0.6, the ES of
|R〉 retains its twofold degeneracy while exhibiting additional
smaller Schmidt weights. This result indicates that |R〉 also
possesses nontrivial SPT order [43] despite the fact that |ψ0〉
is no longer the ground state. Combined with the ground state
energy per site E0/N calculated by exact diagonalization (ED)
for finite systems with N = 10 under periodic boundary con-
ditions (PBC) and by iTEBD for infinite systems, which are
real in the entire region as illustrated in Fig. 4(c), we observe
a first-order phase transition occurring at λc1 ≈ 0.608, where
the ground state and the first excited state undergo a level
crossing. The origin of this phase transition can be attributed
to the breakdown of the variational principle in non-Hermitian
systems, whereby the summation of ground state energy of
each term in the Hamiltonian (which equals zero in this sce-
nario) cannot be utilized to provide a lower bound for the
spectrum of the entire Hamiltonian.

Figures 4(a) and 4(b) demonstrate that both |L〉 and |R〉
exhibit nontrivial SPT order throughout the path λ ∈ [0, 1].

FIG. 5. Phase diagram of H (λ,U ). (a) RGB values assigned as
[γ (gz )|L〉, γ (gz )|R〉, ω]/5 + 0.6, respectively. (b) Residual error after
50 000 steps of iteration in the iTEBD method.

To identify the specific SPT phases to which they belong, and
to further classify the non-Hermitian phase diagram of H0(λ),
we calculate the index γ (gz ) for |L〉 and |R〉 along the path. It
should be noted that the index differs for |ψ0〉 [γ (gz ) = −1]
and |ψx〉 [γ (gz ) = 1]. Details on the calculation method for
this index can be found in the Appendix, while the results are
presented in Fig. 4(d).

Our analysis shows that γ (gz ) = −1 for |R〉 throughout the
path λ ∈ [0, 1], which is the same as that of |ψ0〉. On the other
hand, γ (gz ) of |L〉 transitions from −1 to +1 (the same as that
of |ψx〉) at λc2 ≈ 0.973, describing a phase transition of |L〉
between different SPT phases. As a result, H0(λ) for λ > λc2

exhibits a nontrivial CSPT order, where |L〉 and |R〉 belong
to different SPT phases protected by D2h. In other words, the
topological property of the ground state undergoes a qualita-
tive change at λc2, suggesting a phase transition between the
conventional Haldane phase and the newly discovered CSPT
phase without gap closing. This phase transition originates
from the breakdown of the well-known Lieb-Robinson bound
in non-Hermitian systems [12], where the Hermitian pertur-
bation theory is not directly applicable.

D. CSPT under perturbation and the phase diagram

The robustness of the CSPT phase constructed in the previ-
ous section against perturbations that preserve D2h symmetry
is demonstrated in this section. Specifically, we introduce
an on-site potential energy term USz2 to the Hamiltonian
previously considered, i.e., H (λ,U ) = H0(λ) + ∑

i USz
i

2. We
begin with the case where U 	 1, and we fix λ = 1 while
gradually increasing U . Our numerical simulations indicate
that the constructed CSPT phase, identified by different γ (gz )
values for |L〉 and |R〉, is robust with the appearance of U up
to 0.1. This is shown in the rightmost column of the phase
diagram depicted in Fig. 5(a), which will be discussed later.

Another extreme limit is the on-site potential term dom-
inating the Hamiltonian, i.e., U 
 1, where both |L〉 and
|R〉 can be adiabatically connected to product states. This
indicates that the Hamiltonian H (λ,U ) belongs to a trivial
symmetric phase for large values of U . To visually represent
these three quantum phases in a phase diagram, we also con-
sider the conventional index ω that distinguishes the Haldane
phase from the trivial symmetric phase. The trivial symmetric
state corresponds to ω = 1, while all four SPT phases pro-
tected by D2h have ω = −1. Therefore, we can use ω, γ (gz )|L〉,
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γ (gz )|R〉 as the joint indicator to identify the three phases as
listed below.

Index of |L〉 Index of |R〉
Phase of H (λ,U ) ω γ (gz ) γ (gx ) ω γ (gz ) γ (gx )

Trivial +1 +1 +1 +1 +1 +1
Haldane −1 −1 −1 −1 −1 −1
CSPT −1 +1 −1 −1 −1 −1

In Fig. 5(a), we use three channels of RGB to demonstrate
three indices to be considered, where the values of indices
are rescaled from [−1,+1] to [0.4, 0.8] as RGB values,
i.e., [R, G, B] = [γ (gz )|L〉, γ (gz )|R〉, ω]/5 + 0.6. Meanwhile,
the residual error e of iTEBD after 50 000 steps of iteration
is shown in Fig. 5(b). Only gapped quantum phases with con-
vergent ES were considered, while the nonconvergent region
was attributed to the gapless nature of the systems. The phase
diagram clearly demonstrates the existence of three gapped
quantum phases of H (λ,U ) discussed above. Notably, the
range of λ for the existence of CSPT is observed to increase
with enhancing U , indicating that the newly established com-
posite quantum phases can exist extensively in non-Hermitian
systems. Another noteworthy observation in the phase dia-
gram is the absence of a direct phase transition between the
trivial symmetric phase and the CSPT phase. Further investi-
gation is required to determine whether such a phase transition
can exist and the underlying reasons.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we clarify the definition of quantum phases
and quantum phase transitions in non-Hermitian systems.
Specifically, we prove that if two local, line-gapped, non-
Hermitian Hamiltonians belong to the same quantum phase,
their left and right ground states can be adiabatically con-
nected, respectively. This holds true provided that the ground
state manifold is short-range correlated and satisfies the en-
tanglement area law.

Based on this definition, we propose a class of quantum
phases in non-Hermitian systems, denoted as composite quan-
tum phases, whose left and right ground states belong to
different phases. Furthermore, this definition can be extended
to define the CSPT order subject to an additional symmetry
restriction.

The recently proposed parent Hamiltonian method for non-
Hermitian systems has enabled us to construct a system that
can realize CSPT phases protected by the D2h symmetry
group. Through numerical verification using the iTEBD al-
gorithm, we demonstrate the existence of this type of phase
and investigate the phase diagram after introducing an on-site
potential term that preserves symmetry. Our results show that
the CSPT phase is not only robust against symmetric pertur-
bations but also has a substantial region of existence in our
phase diagram.

This study provides an alternative perspective for the
systematic understanding, classification, and construction
of quantum phases in non-Hermitian systems. Moreover,
these composite quantum phases lack Hermitian counterparts,

suggesting a vast field for exploration in non-Hermitian many-
body physics.
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APPENDIX

1. Density matrix and expectation values for ground states

In this work, the expectation value for a general non-
Hermitian system at zero temperature is calculated as

〈O〉LR = 〈L| O |R〉
〈L|R〉 , (A1)

where |R〉 and |L〉 are the ground states of H and H†, respec-
tively, defined as the eigenstates with the lowest real parts
of eigenvalues. It also leads to the density matrix for ground
states as ρ = |R〉〈L| with proper normalization 〈L|R〉 = 1.

The expectation value 〈O〉LR in the above formalism
may generally be complex. However, some previous studies
adopted a similar formalism to calculate expectation values,
where all their considered expectations were real and thus
physically detectable and meaningful, including chiral or-
der and string order [40] or the particle density [46]. Chen
et al. [30] proposed a method to calculate the general spec-
tral functions for non-Hermitian systems defined in the same
formalism. At the same time, the physical interpretation of
〈O〉LR for a generic operator O was also been addressed [45].
In addition, probing complex energy was reported in ion trap
systems recently [58], making the detection of other complex
expectations also possible in experiments and providing them
with real physical meanings.

2. Non-Hermitian parent Hamiltonian

In this section, we briefly introduce the non-Hermitian
parent Hamiltonian (nH-PH) method proposed by Shen et al.
[40]. In this method, one starts from two MPS 〈L| and |R〉 with

(a)

(c)

(b)

(d)

FIG. 6. Schematic diagram of non-Hermitian parent Hamilto-
nian for k = 2. (a and b) Local tensors T̂R and T̂ †

L . (c) The metric
operator Ĝ = T̂ †

L T̂R. (d) The local projector ̂ = Î − T̂RĈT̂ †
L = Î −

T̂RĜ−1T̂ †
L .
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translational invariance (TI), given by

|R(L)〉 =
∑

i1,...,iN

Tr
[
A[i1]

R(L) . . . A[iN ]
R(L)

] |i1, . . . , iN 〉 . (A2)

After grouping k adjacent tensors as shown in Figs. 6(a) and
6(b), we need to construct a local projector onto the local
support space of each side, i.e.,

P̂T̂R = T̂R, T̂ †
L P̂ = T̂ †

L . (A3)

It is proved that the only solution is

P̂ = T̂RĈT̂ †
L , Ĉ = Ĝ−1, (A4)

where Ĝ ≡ T̂ †
L T̂R is the metric operator shown in Fig. S1(c).

Therefore, once Ĝ is invertible, one can define the k-local
Hamiltonian Ĥ = ∑

i ̂i = ∑
i(Î − P̂i ) shown in Fig. S1(d)

such that 〈L| and |R〉 serve as the zero-energy modes for each
local term, and thus for the entire Hamiltonian.

3. Calculation of the indices for SPT phases
with combined symmetry

Formally, the indices to identify different SPT phases can
be evaluated as

ω = R(gx )−1R(gz )−1R(gx )R(gz ) (A5)

β = MM (A6)

γ (g) = R(g)
−1

M−1R(g)M, g ∈ D2, (A7)

where the calculation of α(g), R(g), and M is fully discussed
by Pollmann and Turner [56]. However, there are still random
global phases in the definition of M and each R(g), which do
not affect ω and β since they will be eliminated in Eqs. (A5)
and (A6) but must be taken into consideration when calculat-
ing γ as Eq. (A7) involves a complex conjugate. To determine
this phase factor, we choose the same phase structure as that of
the AKLT state, i.e., R(g)2 = I for g ∈ D2, which is consistent
with all four states |ψ0〉, |ψx〉, |ψy〉, |ψz〉 discussed in the main
text.
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