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Statistical temporal pattern extraction by neuronal architecture
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Neuronal systems need to process temporal signals. Here, we show how higher-order temporal (co)fluctuations
can be employed to represent and process information. Concretely, we demonstrate that a simple biologically
inspired feedforward neuronal model can extract information from up to the third-order cumulant to perform
time series classification. This model relies on a weighted linear summation of synaptic inputs followed by
a nonlinear gain function. Training both the synaptic weights and the nonlinear gain function exposes how the
nonlinearity allows for the transfer of higher-order correlations to the mean, which in turn enables the synergistic
use of information encoded in multiple cumulants to maximize the classification accuracy. The approach is
demonstrated both on synthetic and real-world datasets of multivariate time series. Moreover, we show that
the biologically inspired architecture makes better use of the number of trainable parameters than a classical
machine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired with
dedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulants
of temporal (co)fluctuations.
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I. INTRODUCTION

It has long been hypothesized that information about the
environment and internal states of humans and animals is rep-
resented in the correlated neuronal activity. The most apparent
examples include spike patterns that are related to organi-
zation of cognitive motor processes and visual perception
[1–4]. Such patterns are also quantified indirectly via neu-
ronal rhythms [5–8]. Furthermore, the variability of network
responses across trials when presenting the same stimulus [9]
has been shown to limit encoding robustness but was later
found to serve a functional role in a Bayesian context to
represent (un)certainty about the presented stimulus [10,11].

Structured variability is likely to play an important role in
learning by interacting with synaptic plasticity, particularly
for models like spike-timing-dependent plasticity (STDP) that
are sensitive to high-order statistics [12–15]. STDP imple-
ments an unsupervised learning rule like classical Hebbian
learning based on firing rates [16,17] and the Bienenstock-
Cooper-Munro learning rule [18–20]. A counterpart for
supervised learning has recently been proposed as a basis
for neuronal representations, which reconciles the apparent
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contradiction between robust encoding by seemingly noisy
signals [21]. This can be achieved by detecting and selecting
correlated patterns thanks to an adequate learning rule to
update the synaptic weights between neurons, thereby im-
plementing a form of statistical processing. The focus on
second-order statistics as a measure for spike trains comple-
ments recent supervised learning schemes which either shape
the detailed spiking time generated by neurons or control their
time-varying firing rates [22–24].

An adjoint viewpoint to this biologically inspired learning
is taken up by machine learning (ML). Though constructed
from similar building blocks (so-called artificial neurons), the
focus here lies in finding optimal and efficient (re)encoding
to process large amounts of data, the most widespread appli-
cation being classification. This field has produced artificial
neuronal architectures with impressive performance, even bet-
ter than human performance in the case of image recognition
(see Refs. [25,26] for reviews). However, time series, which
are naturally processed by biological neuronal systems, can
be challenging for these systems. For example, they are often
designed to operate on a feature space with fixed dimen-
sionality (including duration) as opposed to the learning of
ongoing signals that may have variable lengths. In this setting,
artificial neural networks are designed to account for different
input durations across samples. Recurrent neural networks,
with their time-dependent network states, handle these inputs
by construction. Reservoir computing [27,28], which has re-
cently been employed to capture statistical differences in the
input cumulants [29], forms a straightforward implementation
of a trainable recurrent neural network. Also long short-term
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FIG. 1. Biological interpretation of an order-selective percep-
tron. The input time series xt is linearly combined by the connectivity
matrix B to form the intermediate variable yt = Bxt . The latter is
then passed on through a nonlinear gain function φ to obtain the
output zt . The classification decision is made with respect to the
temporal average of zt , which has the dimensionality of the number
of classes to predict, in a winner-takes-all fashion. The gain function
φ is implemented by a third-order polynomial with coefficients α1,
α2, and α3. The contributions for orders two and three are the Taylor
coefficients of φ evaluated at the temporal mean of 〈yt 〉t over the
duration of the input. In contrast, the linear contribution directly acts
on zt . In this figure, we consider five input signals and three output
neurons, one of which is shown upfront.

memory (LSTM) units [30] or the more recent gated recurrent
units [31] employ feedback connections to process time series.

Time series processing has increasingly raised interest at
the intersection of biological learning and ML, based on a
diversity of network architectures and approaches [32,33].
Many studies rely on feedforward networks that have proven
to be efficient [34,35]; recurrent networks, in contrast, are no-
toriously harder to train [36,37], despite progress for specific
applications like time series completion [38,39]. Reservoir
computing consists of an intermediate approach, where a large
(usually untrained) recurrent network is combined with an
easily trainable feedforward readout. Its processing capabili-
ties come from the combination of recurrent connectivity with
nonlinear units that performs complex operations on the input
signals, to be then selected by the readout to form the desired
output. The training of such feedforward readouts to capture
structured variability in a time series is our motivation and
focus, leaving out the reservoir here.

In this paper, we consider statistical processing for the
classification of temporal signals by a feedforward neuronal
system, aiming to capture structured variability embedded in
time series. The goal is to automatically select the relevant
statistical orders, possibly combining them to shape the output
signal. We focus in this paper on classification that relies on
the temporal mean of the output, which implies that input
cumulants at various orders need to be mapped to the first
order in output. The main inspiration is to design a biological
setup consisting of neurons that linearly sum input signals
weighted by their afferent connectivity weights, before pass-
ing the resulting signal to a nonlinear gain function. We also
compare this biologically inspired architecture with a ML
approach, in terms of classification accuracy and trainable
weights (resources). Figure 1 displays a concise summary of
the setup.

The remainder of this paper is structured as follows. We
first present the models of neuronal classifiers with two flavors

(Sec. II A): a biological architecture and a ML architecture.
We show how they differ by the number of trainable weights
(akin to resources) and in their optimization. Then we de-
scribe the input time series used to validate and compare
these classifiers (Sec. II B). We rely on both synthetic data
with controlled structures and contrast between the classes as
well as on real-world signals coming from Chen et al. [40].
Our results start with the synthetic datasets (Sec. III A), to
test whether the classifiers can extract statistics embedded in
time series that are relevant for the classification. We examine
whether the combination of different orders leads to syner-
gistic behavior, namely, whether it increases the classification
accuracy (Sec. III B). Finally, we verify the practical appli-
cability of our framework to real-world datasets, comparing
the performances of both architectures to the state of the art
(Sec. III C).

II. METHODS

A. Neuronal classifiers

We consider classification of multivariate time series by
a biologically inspired neuronal architecture illustrated in
Fig. 1 that we term an order -selective perceptron (OSP). The
multivariate input time series xt

i with 1 � i � N is linearly
combined via the trainable connectivity matrix Bji ∈ RM×N to
form the intermediate time-dependent variable yt

j = ∑
i B jixt

i .
Here, 1 � j � M, where M is the number of classes to be dis-
tinguished. Then a nonlinear gain function φ is applied on yt

j ,
taken as a univariate signal, to obtain the output zt

j = φ(yt
j ).

Classification is performed based on the temporal mean (first-
order statistics) Zj = 〈zt

j〉. This gain function φ is shaped to
combine the cumulants of the intermediate variable yt

j , where
the nth statistical cumulant (evaluated over time) of yt

j is de-
noted as 〈〈(yt

j )
n〉〉t = Y n

j , resulting in Zj = ∑
n αn〈〈(yt

j )
n〉〉t =∑

n αnY n
j . The nth cumulant Y n

j reflects the corresponding
cumulants at the same order for the multivariate inputs xt

i as

Y n
j = 〈〈(

yt
j

)n〉〉
t
=

N∑
i1,...,in=1

Bji1 · · · Bjin

〈〈
xt

i1 · · · xt
in

〉〉
t
. (1)

Thus, a general gain function combines several statistical
orders of the input to generate the mean Zj of the output
activity. For practical reasons, here, we aim to perform the
classification based on the first three cumulants. The gain
function is therefore implemented as a trainable third-order
polynomial of the intermediate variable yt

j , see the inset panel
in Fig. 1. In principle, the OSP can be created with contribu-
tions that filter for arbitrary orders of cumulants. Computing
the higher-order polynomials to achieve this is as straight-
forward as is computing the cumulants. We stopped here at
n = 3 for practical reasons: It is powerful enough to detect
information beyond the Gaussian statistics and is still easily
testable. While the data generation algorithm (Sec. II B) can
be extended to higher-order cumulants, the amount of data
required to detect differences in higher-order cumulants in-
creases. Although this would still be feasible, here, we aimed
for the minimal, nontrivial extension beyond the Gaussian cu-
mulants to showcase the systematics which becomes apparent
already on the example of the first three orders. Moreover, we
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(a)

(b)

(c)

FIG. 2. Extraction of cumulants from a time series. (a) Covariance perceptron. The classification of the centered time series xt is based
on its covariance structure. The output Z = (Z1, . . . , ZM ) has dimension equal to the number of classes M. For each class j (1 � j � M ),
the covariance perceptron calculates an intermediate variable yt

j = ∑
i B jixt

i that is then passed though a quadratic function zt
j = (yt

j )
2. The

temporal mean Zj = 〈zt
j〉 = 〈〈(yt

j )
2〉〉t , which therefore equals the variance of yt is used for classification in a winner-takes-all manner. This is

equivalent to retaining the diagonal of the covariance matrix of yt
1� j�M . (b) Statistical processing for order-selective perceptron (OSP) model.

Like (a), the effect of the gain function φ in Fig. 1 can be represented by an individual path for each cumulant 〈〈(yt
j )

n〉〉t of yt
j = ∑

i B jixt
i . The

cumulants of yt are thus given by the cumulants of the inputs xt of the same order n [Eq. (1)]. The cumulant of order n can be seen as an outer
product with dimensionality Mn: The mean is represented by a line (vector), the covariance by a square [matrix; as in (a)], and the third-order
cumulant by a cube (third-order tensor). The effect of applying the polynomial φ(y) = α1y + α2ỹ2 + α3ỹ3 with ỹt = yt − 〈yt 〉t and then taking
the mean to obtain Z is to combine these contributions linearly with a weight vector α = (α1, α2, α3) . (c) Machine-learning (ML) model.
Statistical processing can alternatively be implemented by a network that is fed by the input cumulants directly. For each order, a linear layer
is set up with the corresponding dimensionality: the total size of the input cumulant multiplied by the number of outputs (i.e., of classes). In a
second layer, a linear combination of the outputs for the individual orders is trained.

will show that the third order already leads to a considerable
improvement in accuracy in several real-world tasks.

1. Link to covariance perceptron

Before explaining the OSP in more detail, we briefly
present its operational link with the covariance perceptron
[21,41]. The goal of the latter is to operate on the second-order
statistics embedded in the time series, instead of the first-order
statistics that is equivalent to the classical perceptron applied
to mean activity [42–44]. It can be formalized as in Fig. 2(a),
where the linear mixing is based on the weight matrix BP

ji

applied to the N-dimensional time-dependent inputs xt
i (after

demeaning) and gives the M-dimensional intermediate vari-
able yt

j for each of the 1 � j � M classes of the dataset:

yt
j =

∑
i

BP
ji

(
xt

i − 〈
xt

i

〉
t

)
. (2)

From the outer product of yt
j that forms the covariance ma-

trix, the classification only considers the variances (diagonal
matrix elements) defined as

Zj = 〈〈(
yt

j

)2〉〉
t = [diag(BP�BP T)] j . (3)

Thanks to the quadratic operation, the mean value of Zj de-
pends on the input covariances �ii′ = 〈〈xt

i x
t
i′ 〉〉t for all possible

indices i and i′. In this scheme, there are only MN weights
in matrix BP that can be trained. Thus, the number of pa-
rameters can be compared with a ML approach that applies
a linear perceptron to the entries of the covariance matrix

Z ′
j = ∑

ii′ BML
jii′ �ii′ , which involves MN2 trainable parameters

of the tensor BML.

2. OSP

Now we consider the OSP, a feedforward network that
extends the covariance perceptron to combine the first three
statistical orders of the input time series xt via the calculation
of the output time series zt , illustrated in Fig. 1, as

yt
j =

∑
i

B jix
t
i , (4)

zt = φ(yt ) = α1y + α2ỹ2 + α3ỹ3. (5)

Here, the linear weights Bji ∈ RM×N are trainable, as well
as the coefficients α1�i�3 of the (nonlinear) polynomial gain
function φ for the three different cumulants that are consid-
ered. Note that ỹt = yt − 〈yt 〉t is the demeaned version of time
series yt .

The key of the statistical processing is the following: the
cumulants at orders 1–3 can be calculated using the polyno-
mial of order three applied to the intermediate variable yt

j ,
as the second and third cumulants are the central moments
(including the demeaning). An abstract representation of the
resulting computation is illustrated in Fig. 2(b). Each path of
the network corresponds to a specific cumulant of order n of
the intermediate variable yt . The OSP computation can thus
be understood via the cumulants of order n ∈ {1, 2, 3} of yt

j ,
as illustrated in Fig. 2(b):

Y (n)
j = 〈〈(

yt
j

)n〉〉
t , (6)
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where the symbol 〈〈(yt
j )

n〉〉t stands for the mean over time 〈yt
j〉t

for n = 1, and the nth power of the demeaned variable 〈(yt
j −

〈yt
j〉t )n〉t = 〈(ỹt )n〉t for n ∈ {2, 3}; they correspond to the red

diagonal matrix or tensor elements in Fig. 2(b). Importantly,
each cumulant Y (n)

j for order n depends on the nth statistical
order of x [see also Eq. (1)].

Note that it is straightforward to generalize this scheme to
arbitrary cumulant orders, beyond the first three orders consid-
ered here, because a cumulant of any order n can be expressed
as a linear combination of moments of orders 1, . . . , n; be-
yond third order, however, they cease to be identical to the nth
centered moments [45]. The resulting computation of the OSP
is thus the combination in the output mean Zj = 〈zt

j〉t of the
different cumulant orders n:

Zj =
∑

n

αnY
(n)
j , (7)

which is the basis for the classification via

arg max(Zj − θ j ), (8)

with some trainable thresholds θ j . The key point here is that
the selection of the informative cumulant orders for the clas-
sification is managed by tuning the parameters αn.

We now want to evaluate how the OSP combines different
cumulant orders to perform classification. From the network
after training, which we refer to as the full model with all
coefficients αn, we can ignore contributions from given cumu-
lant orders by setting the corresponding parameter αn to zero.
In this way, we create a single-order OSP for order n with
αn′ = 0 ∀n′ �= n. This network is then classifying based on
the nth cumulant only with the corresponding learned param-
eter αn. With this approach, we quantify the contribution of an
individual statistical order n to classification in the full model.

3. ML classifier

For comparison, we consider a ML architecture: a network
that is fed by the input cumulants directly. This approach
can be thought of as first performing a mapping into a
feature space that is spanned by the first three cumulants
{〈〈xt

i1〉〉1
t , 〈〈xt

i1 xt
i2〉〉2

t , 〈〈xt
i1 xt

i2 xt
i3〉〉3

t } of the data and then training

a linear readout vector BML(n)
j{i1...in} on this feature space. The

operational difference to the OSP is hence that the weights
BML(n)

j{i1...in} directly map from all entries of the cumulants to the
next layer, as displayed in Fig. 2(c):

Y ML(n)
j =

∑
i1...in

BML(n)
ji1...in

〈〈
xt

i1 · · · xt
in

〉〉n
t , (9)

yielding a number of trainable parameters equal to MNn for
order n. As before, the different orders are combined and
selected using Eq. (7). Note that the ML architecture differs
from the OSP in that it outputs scalar values, not a time series.
To be able to further compare this ML architecture to the OSP,
we randomly select MN trainable weights from the whole
MNn entries of BML (the other weights being fixed to random
values) to build the constrained ML architecture which has the
same number of trainable parameters as the OSP. This way,
the complexity of the two systems is comparable.

4. Training process

Training of both network types is conducted via a stochas-
tic gradient descent using a scaled squared error loss ε for each
data sample ν of the form:

ε(xν ) ∼ 1

2

M∑
j=1

[
Z̄c(ν)

j − (
Zν

j − θ j
)]2

, (10)

where Z̄c(ν)
j = δ j,c(ν) is the one-hot encoded target for the

mean, with c(ν) ∈ {1, . . . , M} the ground truth of the class
of data sample ν, and θ j is a trainable bias. In the binary clas-
sification problem, the one-hot encoded network output has
dimension M = 2. In addition, we add an L2 regularization
term μ ‖α‖2 to the loss with a fixed, small μ to decrease the
entries of the order selection parameter α. This ensures that
uninformative layers lead to a vanishing contribution to α but
also implements a winner-takes-all mechanism when there is
a strong imbalance between the difficulty of classification for
each individual order. Nonvanishing entries in α hence indi-
cate the contribution of the corresponding statistical order to
the classification decision. We therefore quantify the synergy
of the OSP by the difference in performance of the full OSP
model with models that were pruned after training such that
they only use a single order n at a time. This is achieved
by setting the parameters αn′ �=n = 0 for the other orders. The
participation ratio ρ,

ρ(α) =
∑

n |αn|(∑
n |αn|2

)1/2 , (11)

can be used as a measure of sparsity to relate the synergy to
how many relevant statistical orders the network found in the
data. It is minimal when there is only a single nonzero αn and
maximal when all αn are equal. Thus, it increases when more
different orders n are combined.

B. Synthetic datasets with controlled cumulant structure

We design synthetic datasets to assess the ability of the
proposed networks to capture specific statistical orders in the
input signals. To that end, we generate two groups of multi-
variate time series with desired statistics up to the third order.
We control how the two groups differ with regard to the first
three cumulants. Concretely, the time series are generated by
simulating in discrete time a process defined by a stochastic
differential equation (SDE), whose samples in the infinite time
limit follow a Boltzmann probability distribution:

p(x) ∼ exp (−βL[x]). (12)

Samples x(t ) = {xi(t )} are produced by the following process
defined with L[x] as Lagrangian:

∂xi(t )

∂t
= −�

∂L[x]

∂xi
(t ) + ξi(t ). (13)

Here, ξ is the stochastic Gaussian increment (or Wiener pro-
cess or more colloquially white noise) that obeys 〈ξ 〉 = 0,
〈〈ξi(t ), ξ j (t ′)〉〉 = Dδi jδ(t − t ′), and � is a constant parameter.
Using a fluctuation-dissipation theorem [46], one finds that
β = 2 �

D for x to follow the distribution in Eq. (12) shaped by
the choice of L[x].
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The particular case of a Gaussian distribution corresponds
to a quadratic Lagrangian:

L[x] = mT x + 1

2
xT Jx, (14)

where J = JT is a symmetric matrix, such that the mean μ =
〈x〉 and covariance �i j = 〈〈xix j〉〉 of the distribution read

μ = −J−1m, (15)

� = (βJ )−1, (16)

while the third order, Si jk = 〈〈xix jxk〉〉, vanishes. The more
general case with the additional third-order statistics can then
be developed in the spirit of field theory with a small perturba-
tion (or correction) on the Gaussian case. The corresponding
Lagrangian reads

L[x] = mT x + 1

2
xT Jx + 1

3!

∑
i jk

Ki jkxix jxk . (17)

For a sufficiently small tensor K , the first three cumulants can
be approximated as (see Appendix A)

μi ≈ −
∑

j

(J−1)i jm j − 1

2β

∑
jkl

(J−1)i jKjkl (J
−1)kl , (18)

�i j ≈ 1

β
(J−1)i j, (19)

Si jk ≈ − 1

β2

∑
i′ j′k′

Ki′ j′k′ (J−1)ii′ (J
−1) j j′ (J

−1)kk′ . (20)

This approximation only holds for a small deviation from the
Gaussian case, which limits the amplitude of the third-order
statistics. Concretely, we introduce a safety parameter s to
ensure that a local minimum of the potential L[x] exists and
that the distance between the local minimum and the next
maximum is large enough to fit s standard deviations of x
in any direction. When integrating the SDE, large s ensures
a low probability for a sample initialized in that local mini-
mum to evolve further than the adjacent local maximum and
prevents it from falling into the unstable region (we compute
the scaling of the escape probability with s in Appendix C).
In this case, the ratio of third- to second-order cumulants of x,
projected to any eigendirection e(v) of J , is maximally allowed
to be ∣∣∣∣∣∣

∑
i jk Si jke(v)

i e(v)
j e(v)

k[∑
i j �i je

(v)
i e(v)

j

]3/2

∣∣∣∣∣∣ = 1

s
. (21)

In Appendix B, we show how to compute a suitable tensor
K under this constraint. Additionally, we redraw samples that
deviate too strongly from the local minimum of L[x], which
corresponds to introducing an infinite potential wall where
L[x] negatively exceeds the local minimum. Due to the low
probability mass in that area for sufficient safety s, we do not
need to account for this potential wall in the cumulant esti-
mates. This way, we avoid issues with the probability density
Eq. (12) not being normalizable. Alternatively, it would also
be possible to include a positive definite fourth-order term in
the Lagrangian and account for this in the calculation of the
arising data statistics; however, the more simple third order

with redrawing and a safety parameter s = 5 proved to work
satisfactorily for the purposes of this work.

We create datasets where the classification difficulty is
controlled for each statistical order. To do so, we generate time
series grouped in two equally sized classes, whose cumulants
differ by a scaling factor that serves as contrast. For exam-
ple, we draw a reference class with some randomly drawn
cumulants. A class contrast of 1.5 in the mean and 1 otherwise
then corresponds to the second class having 1.5 times larger
mean and all other cumulants exactly the same. Due to the
stability constraint, the third-order cumulant may not become
arbitrarily large. Practically, we use the class with the larger
third order as the fixed cumulant and generate the second class
from the first using the reciprocal contrast. This way, in any
order, the larger cumulant is the contrast times the smaller
cumulant.

C. Real datasets

We test the ability of our model to classify on a selection
of time-series-classification datasets that have previously been
used as benchmarks [40]. We select a subset of 18 multivariate
time series datasets of which the data dimensionality allows
us to compute the cumulants of the classes directly on the
input. Before training, we shift and rescale the data to cen-
tralize them around zero and obtain unit variance over all data
points. This is required because of the unboundedness of the
gain function, which is a third-order polynomial, as well as
numerical stability when computing the cumulants on the data
directly.

III. RESULTS

We first benchmark the models proposed in Sec. II A with
synthetic data generated with controlled statistical patterns
(see Sec. II B). We show how the trained parameters can be
analyzed to infer what statistical orders are relevant for the
classification. The trained network parameters α1�l�3 particu-
larly allow us to determine the optimal gain function for each
dataset. Subsequently, we study classification of real multi-
variate time series. We find that the OSP classifies efficiently
compared with the ML model, and we observe that the various
datasets combine the statistical orders in a different way. The
optimal network typically operates with a synergy of different
orders.

A. Benchmarking with synthetic data

Classification may be performed based on one or several
statistical orders measured on each sample time series. Each
order thus defines a contrast between the two classes, which
corresponds to a baseline classification accuracy when using
the corresponding statistical order alone to perform the clas-
sification. This contrast is controlled by the coefficients of the
two classes in the generative model, as explained in Eqs. (13)
and (17).

We also compare the respective classification accuracy of
the biological and ML architectures while varying the class
contrasts to see how they are combined. Note that cumulants
of orders higher than three are nonvanishing and may also
hold information on the classes, but the neuronal networks by
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 3. Classification accuracies for varying task difficulties. Datasets with two equal-sized classes that differ in two statistical orders are
classified using the order-selective perceptron (OSP). Along the axes of each diagram, the contrast between the two classes is varied between
one (no class difference) to an arbitrarily chosen upper scale. (a), (f), and (k) Test set accuracy of the full model. (b), (g), and (l) Accuracy
obtained by the OSP when pruning all αn except α1 after training. (c), (d), (h), (i), (m), and (n) Analogous to (b) for α2, α3, respectively. (e),
(j), and (o) Synergy, which is the difference in accuracy between the full model and the best single order. Here, the synergy is always vanishing
or positive, and the color scale is chosen to be consistent with the analogous model comparison in Fig. 4. In (a)–(e), classes are separated by a
difference in the mean and covariance. In (f)–(j), classes are separated by a difference in the mean and third-order cumulant. In (k)–(o), classes
are separated by a difference in the covariance and third-order cumulant.

construction neglect them. Each of the two classes comprises
100 samples, which have dimensionality N = 5 and T = 100
time steps per sample. We repeat the classification 25 times.
For each binary classification, two of the three contrasts are
chosen to be different from one, thus contain the information
about the class, while the third contrast is the same for both
classes, having contrast of unity.

We start with testing whether the OSP can be efficiently
trained to perform classification. Figure 3 shows the training
accuracy for (Gaussian) inputs, where the contrasts of orders
one and two are varied, while the third cumulant is zero.
Accuracy ranges from chance level (50% for the considered
case of two balanced classes, in yellow) to perfect discrim-
ination corresponding to 100% (in orange). Here, successful
training means that the OSP captures the most relevant class
contrast(s) among the three cumulant orders. As expected, the
accuracy of the full model increases when either contrast of
order one or two increases [see Fig. 3(a)].

Investigating the contribution of individual orders in isola-
tion, the accuracy increases with the corresponding contrast
between the classes, as shown when varying either order
one or two in Figs. 3(b) and 3(c). The contribution of the
uninformative third order stays chance level, Fig. 3(d). In
Figs. 3(f)–3(o), the same qualitative behavior is observed for
all different combinations of informative and uninformative
orders. This shows that the OSP successfully manages to
capture the relevant orders for classification, leading to the

question of their combination when two or more orders are
relevant.

1. Synergy between relevant cumulant orders

The accuracy of the full model [Fig. 3(a)] is larger than the
accuracy obtained when single orders are taken individually
[Figs. 3(b)–3(d)]. The difference between the accuracy for
full training and the maximum of single-order accuracies,
shown in Fig. 3(e), can be used as a measure of synergy: It
indicates how the OSP makes use of the combination of the
different statistical orders, specifically in the border between
the regions of high single-order accuracy. Thus, the OSP (full
model) combines the different orders relevant for the classifi-
cation, beyond simply selecting the most informative order.

We observe a bias between the accuracies for single-order
models. Although the synthetic data were generated to have
comparable contrasts across the orders, we see that the bor-
der where the OSP (full model) switches from one order
to another does not follow a diagonal with equal contrast.
This indicates a bias favoring lower statistical orders over
higher ones. This may partly come from the fact that higher
statistical orders are noisier because they require more time
points for estimation. The estimation error causes fluctuations
which may affect the training by the parameter updates. In
addition to this implicit bias toward extraction of informa-
tion from lower orders, the normalization imposed on the αn
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Comparison of the order-selective perceptron (OSP) and
the machine-learning (ML) model. Difference in accuracy between
the OSP and the ML model for the datasets in Fig. 3. (a)–(c) Ac-
curacy comparison between the OSP and the ML model. (d)–(f)
Accuracy comparison between the OSP and the constrained ML
model. The color code shows the difference in accuracy between the
OSP and the respective ML model, green indicating that the OSP
outperforms the ML model.

during training (see Sec. II A 4 for details) implements a soft
winner-takes-all mechanism that likely reinforces the bias(es).
In Appendix D, we discuss the accuracy gain of the OSP
compared with a restricted OSP, as opposed to the pruned
OSP, which can be seen as an alternative way to quantify
synergy.

2. Comparison with ML architecture

Last, we compare the OSP with the ML model that has
more trainable weights (or resources). As shown in Ap-
pendix E, the ML network performs well and can discriminate
between informative orders. From Figs. 4(a)–4(c), we find
that the accuracy for the OSP is like that of the ML, al-
though mostly a bit lower presumably due to its lower number
of trainable parameters [weights B, compare Figs. 2(b) and
2(c)]. Nevertheless, it can efficiently combine information
distributed across statistical orders to perform the classifica-
tion and slightly outperform the ML model on mean-based
classification.

Presumably, this is due to the difference in the number of
trainable weights. To test this, we define a constrained ML
network where we subsample NM weights to be trainable and
make sure those are distributed approximately uniformly over
the entries of B(n) for the different orders n. The remaining
weights stay fixed at their values at initialization. The OSP
model exhibits a significant performance increase compared
with this constrained ML model, which has the same number
of trainable parameters as the OSP [see Figs. 4(d)–4(f)].

B. Identification of relevant orders from trained parameters

In the trained OSP, the α values describe how the different
input cumulants are combined in the readout to achieve clas-
sification; see Methods for details, Fig. 2(b). All parameters
prior to the application of the nonlinear gain function are the
same for each statistical order. One may therefore interpret
the absolute value of each component |αn| as a measure of

the contribution of order n to the classification. In Fig. 5, each
order n is color-coded in red (mean), green (covariance), and
blue (third order), and the color value is proportional to |αn|,
scaled by the reciprocal of the largest |αn| of all datasets.

As expected, the values |αn| increase depending on the
input contrasts corresponding to cumulant order n. Again,
we find suppression in α due to the competition between the
orders when the contrast in one of the informative orders
dominates over the other. Unlike the single-order accuracy,
however, here, we find overlapping regions of nonvanishing
αn corresponding to the individual informative orders n. These
are necessary to form the synergy regions found in Fig. 3.
Thus, both informative orders are detected in this region. We
find again in Fig. 5 the effect of the bias in Sec. III A that
favors lower cumulant orders over higher ones in the training,
which is further amplified by the normalization imposed on
the ‖α‖.

In Fig. 3, we observed a synergy effect in the performance
along the boundary between regions where individual cumu-
lant orders dominate the classification. These regions coincide
with the regions where only one individual αn is nonvanishing.
On the boundary between two such regions, both correspond-
ing α’s are nonvanishing. To confirm that the synergy is indeed
linked to this boundary, we display the synergy found in Fig. 3
to the participation ratio of α [Eq. (11)], which we use as a
measure of sparsity here. Indeed, the measures are correlated,
although the participation ratio does not account for the fact
that αn scales up to different maxima for each order n.

We next investigate the corresponding nonlinear gain func-
tion φ shaped by the trained α. Noticeably, higher-order
components contribute significantly despite their lower com-
bination parameter αn. We display the gain functions after
training for three contrast combinations per synthetic dataset,
see insets (i)–(iii) in Fig. 5. The regions are dominated by
a single order, so the gain functions are nearly ideal linear,
quadratic, or cubic functions, as expected. In the synergy
regions, more complex gain functions arise.

We would like to highlight that the identification of the
optimal gain function is specific to the network architec-
ture of the OSP. Although in the ML network, efforts can
be made to make α scale similarly to the OSP by rescaling the
weights of each order BML(n) appropriately; the resulting order
combination weights α do not correspond to a gain function.
This would require joint intermediate variables yt that would
be the same for each order as they naturally appear in the OSP
due to the shared weights. In the Appendix F, we furthermore
show that the OSP is not limited to the first learned statistics
but adapts quickly to changes.

To summarize, the parameters α can be used to read out
which statistical order is dominant to distinguish between the
classes. When several αi’s are nonzero, a synergy from com-
bining cumulants of different orders can be expected, and the
optimal gain function after training differs from pure linear,
quadratic, or cubic functions.

C. Extraction of statistical patterns from real datasets

As a next step, we train and benchmark the OSP on 18
datasets previously used for benchmarking of time series clas-
sification [40]. They consist of multivariate time series with
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 5. Readout parameters for varying task difficulties. Datasets with two equal-sized classes which differ in two of their first three
cumulants (rows) are classified using the order-selective perceptron (OSP). The weight vector α = (α1, α2, α3) controlling the combination of
orders one, two, and three is displayed for the full model (left column) in color code, where the value αn for each order n is displayed by its
corresponding rgb value: first-order α1 (red), second-order α2 (green), and third-order α3 (blue). Insets show the corresponding gain function
at different points of the parameter regime for the OSP. The second to fourth columns, respectively, show the individual values of each α1�i�3.
The synergy is displayed over the participation ratio of α (right column). On the axes of each plot, the contrast between the classes is varied,
starting from one (no class difference) to an arbitrarily chosen upper scale. Above each panel, the Spearman rank correlation between the
synergy and participation ratio is given.

a diversity of input dimensionalities, durations, and sample
sizes, as well as number of classes. Figure 6 displays the
classification results of the OSP for selected datasets that have
different statistical structures. For the example in Figs. 6(g)–
6(i), a large synergy from combining mostly the first and third
orders evolves in the first few epochs. Decoding on individual
statistical orders, an accuracy of 53% is achieved for the mean,
32% for the covariance, and 42% for the third order. The total
classification accuracy combining all orders reaches 75%. As
we quantify synergy by the difference between the final accu-
racy and the largest single-order accuracy, this corresponds to
a synergy of +22%.

The optimal gain function corresponding to this statisti-
cal structure is consequently nearly point symmetric. The
fluctuations of the samples mostly pass through the region
close to the origin. Only some classes operate in the regime
of strong nonlinearity. Figures 6(a)–6(c) and Figs. 6(d)–6(f)
show similar results for the Epilepsy and JapaneseVowels
datasets, respectively. Here, the optimal gain functions are
mostly quadratic or linear, respectively.

In Fig. 7(a), we compare the performance of the benchmark
datasets of the OSP to the ML model. Our goal is less to
compare with the state of the art with a perceptronlike model
(see Ref. [32] for recent results)and more to showcase how
appropriate processing of statistical information can improve
network capabilities. Nevertheless, the performance of the
OSP often approaches that of the corresponding ML model.

In most of the cases, both OSP and ML perform above chance
level, which we empirically evaluate using similar architec-
tures with untrained parameters. Accuracy remains at chance
level only for two datasets: HeadMovementDirection and Sel-
fRegulationSCP2.

For synthetic data (Fig. 4), the OSP yielded mostly lower
classification accuracy compared with the ML approach but
outperformed a constrained ML model in which the number
of trainable parameters equals those of the OSP. We observe
the same for the benchmark datasets in Fig. 7: In comparison
with the constrained ML model, we typically find a significant
performance increase [see Fig. 7(b)], whereas the ML model
that trains directly on the full input cumulants exhibits even
higher performance [see Fig. 7(a)].

We furthermore extract the relevant statistical orders in the
data by inspecting the trained values of α. With the coloring
of each dataset according to its cumulant combination weights
α = (α1, α2, α3) = (red, green, blue), the broad color spec-
trum displayed in Fig. 7 shows a wide variety for the relevant
statistical orders in the different datasets.

In Fig. 7(c), we display the accuracy increase with respect
to the best single order for the different datasets. While the
color indicates the dataset, both size and transparency en-
code the training performance of the OSP in relation to the
pretraining accuracy. Datasets that are less well classified by
the OSP are thus displayed smaller and more transparent.
Based on the synthetic data, we expect larger synergy where
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. Training on a few example benchmark datasets. (a)–
(c) Training progress and final gain function in the order-selective
perceptron (OSP) for Epilepsy, (d)–(f) JapaneseVowels, and (g)–(i)
NATOPS datasets, respectively. Accuracy of the full network (blue
curve) and single-order accuracy at the end of training for orders one
(red), two (green), and three (blue) and at the beginning of training
(black) as horizontal lines (left). Evolution of cumulant combination
weights α (middle). Gain function φ(y) resulting from final α, in-
cluding the density of samples in the domain (right).

different orders are combined more strongly. In Fig. 7(c),
we therefore relate synergy to the participation ratio ρ (see
Sec. II A 4). Although the results on synthetic data suggest
a nonuniform weighting between the different orders n, we
observe synergy effects also in complex datasets, specifically
from combining more than one statistical order. In this fig-
ure, we observe a correlation between the participation ratio
and the observed synergy in the different datasets. Details
about the dataset and network parameters can be found in
Appendix G.

IV. DISCUSSION

In this paper, we analyzed statistical processing for time
series by a perceptronlike model with a tuneable nonlinearity.
We showed that the form of the nonlinearity determines which
statistical patterns, quantified via cumulants up to the third
order, are transformed to shape the network output and how
the different orders jointly contribute to the output to solve the

task. The gain function that is optimal for the time series clas-
sification tasks depends sensitively on the relative importance
of class-specific differences (or contrasts) in each cumulant.
With the OSP, informative statistical properties of the data can
be revealed with minimal model complexity.

This minimal complexity is achieved by avoiding the ex-
plicit computation of cumulants at several orders. Instead, the
selection of the relevant cumulants of the input xt , via those
of the intermediate variable yt , results from the combination
of learning rules for the input weights and the nonlinearity.
While the input cumulants, particularly the higher orders, re-
quire huge tensors for N-dimensional multivariate time series
with large N , the cumulants of yt scale polynomially with M,
the number of classes, which is already often lower. Since
additionally, only the diagonal of the network state cumulant
is computed, the computational cost reduces further to only
M entries per order. Furthermore, the number of trainable
parameters reduces from K + M(N + N2 + . . . + NK ) for the
ML network to K + MN for the OSP (with K the maximum
cumulant order).

Naturally, this reduced model complexity comes at lower
performance of the OSP than the explicit computation of all
cumulant orders in the ML model. However, the network layer
B practically accumulates as much “information” as possible
from the input cumulants in the intermediate variables for
classification: We have shown that the OSP performs in be-
tween the ML model acting on the same cumulants as the OSP
and the constrained ML network, which trains only a reduced
set of weights of the original ML architecture (to match the
number of trained parameters to those of the OSP). The origi-
nal ML network thereby acts as a theoretical upper bound for
the OSP, as it can freely combine all of the input cumulants.
The fact that the OSP outperforms the constrained ML model
shows the efficient computation in the OSP despite the compe-
tition between the different orders. For neural classifiers that
perform at the current state of the art, this may suggest as a
metric their flexibility with regard to the adaptive propagation
of cumulants. For example, in the spirit of Ref. [47], in which
the authors have shown superior performance of covariance
encoding in reservoir computing compared with linear encod-
ing, an OSP could be combined with a recurrent reservoir
to combine the benefits of both. A thorough study of more
sophisticated, large-scale architectures that utilize high-order
cumulants in this regard remains for future work.

The regularization-induced competition between the orders
in fact strongly affects how the OSP combines cumulants for
classification. We created synthetic data with tuneable cumu-
lant structure to investigate this dependence in detail. Our
SDE-based algorithm generates data with known cumulants
up to the third order. Field theory can be used to obtain both
estimates of the higher-order structures and more accurate
estimates of the cumulants, which are given by a series of
coefficients with decreasing weights. It is, however, limited to
statistics that does not deviate too strongly from the exactly
solveable Gaussian theory. To the best of our knowledge,
algorithms that would provide the desired controlled data for
multivariate time series are lacking. It is noteworthy, though,
that the CuBIC technique exists [48,49], which creates spike
trains with a given desired cumulant structure. The algorithm
presented here can also be used to create static stimuli.
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(a) (b) (c)

FIG. 7. Classification results on empirical datasets. (a) Comparison of the accuracy achieved in the machine-learning (ML) and order-
selective perceptron (OSP) models. Colors indicate the datasets as listed on the side. (b) Analogous to (a) with a constrained ML model with as
many trainable parameters as the OSP. (c) Synergy (see Sec. II A 4) of the OSP for different datasets. Size and opacity indicate the improvement
in classification accuracy as compared with the pretraining accuracy (larger size and more contrast for larger improvement).

Using such synthetic data with known underlying statisti-
cal structure, we found that the OSP preferentially classifies
using only a single order, relying on only one cumulant,
if the difference between the classes is more expressed in
this cumulant than in the others. This is reinforced by the
regularization of the cumulant combining layer, although the
same behavior qualitatively also occurs for unconstrained α.
In that case, however, the network is classifying a bit less well
overall. Likewise, it is possible to rescale the layers B and α

of the OSP without changing the network output. However,
because this rescales both the gain function and the inputs it
receives, such a rescaling is ultimately inconsequential and
therefore neglected. On the boundary between two different
preferred orders, we observe synergy effects from combining
cumulants through different paths. The class contrast where
this boundary occurs appears, however, nontrivial. From both
the position of the boundary and the amplitudes of the order
selection parameter α in the regions next to the boundary, we
conclude that the network tends to prefer lower-order cumu-
lants over higher ones and selects the preferred order using
this hierarchy. Applied to real-world applications that serve
as benchmark datasets, often several orders are combined,
and we regularly observe synergistic effects. Combination
of statistical information appears all the more important for
complicated data structures. For any combination of orders,
there is a dataset found among them whose order selection
parameters filter for just this combination. The gain functions
that the order combination parameters translate to are conse-
quently uniquely shaped.

Neuronal network architectures like the OSP have been
widely used for different purposes in the context of ML
[50] and computational neuroscience [51–53], with nonlin-
ear neurons governed by bounded sigmoidlike profiles like
in the Wilson-Cowan model [54,55] or rectified linear units
[56]. In Ref. [57], the authors give a thorough review of
different gain functions and their influence on computational
performance. We stress that this paper differs from the use of
fixed (nontrainable) gain functions that are typically used. The
choice of the gain function, however, matters for the statisti-
cal processing performed by the network. The purely linear
gain function corresponds to the original perceptron [42–44]
where each input cumulant is mapped to its counterpart at the
same order in the output. In contrast, a nonlinear readout can
perform crosstalk between input cumulants of several orders,
combining them into, e.g., the output mean. On the other hand,

correlation patterns have recently been proposed as the basis
of “information” embedded in time series that can be pro-
cessed for, e.g., classification [21]. This so-called covariance
(de)coding has been shown to yield larger pattern capacity
than the classical perceptron that relies on mean patterns when
applied to time series [41].

In conclusion, the choice of the gain function at the same
time is a choice of what statistical information the network
should be sensitive to. Gain functions that are more complex
than simple polynomials thus combine many if not all orders
of cumulants. We chose a polynomial here for interpretability;
in practice, high performance could be achieved by other
choices of tuneable nonlinearities. However, a fixed gain func-
tion also means that there is a fixed relation between the
different statistical contributions of the underlying probability
density. Translating a given gain function into a Taylor series
around a working point can give insight into what cumu-
lants a network may be particularly sensitive to, although this
does not yield a one-to-one translation to our adaptive gain
function. The demeaning of the time series employed here
translates to a different weighting of cumulants depending on
the mean of the sample; it still holds that this form of input
processing is fixed and predefined. In biological data, adaptive
gain has been observed [58,59], although not identical to the
simple mechanism presented here.

We therefore suggest making the choice of gain function
with care. There have been, in fact, works on comparing how
well different prominent gain functions work in ML contexts
[60,61], and some commonly used gain functions include
trainable parameters [62]. A fully trainable gain function is
presented in Ref. [63], which is of a similar polynomial type
as that presented here. The aim of these works is to provide
optimal performance for sophisticated networks on compli-
cated tasks. We offer interpretability of the gain function in
terms of statistical processing and provide a link to biological
neural networks.

The gain variability found for example in Refs. [58,59]
shows that neurons may be sensitive to the statistical features
of their inputs, and the variability of activity also appears to be
linked to behavior [1–3] and energy consumption [64]. It may
also play a role in representing uncertainty in terms of prob-
abilistic inference [10,11,65,66]. Structured variability thus
seems to play an integral role in biological neural networks.
As far as information encoding through neural correlations
is superior to mean-based representations, this may help us
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understand why such sensitivity has emerged in neuronal
circuits. This reasoning has already inspired the covariance
perceptron [21,41].

Of course, just like the covariance perceptron, the OSP is
not a biologically detailed network model. It is built upon
the most fundamental building block, a feedforward layer of
neurons, followed by a gain function. Instead of the spiking
activity of individual neurons, it treats populations of neurons
as a unit with an activity that resembles the average firing rate.
The linear summation of inputs closely resembles the neuron
dynamics typically assumed for cortical models [53,67–70]
but also in ML, including the perceptron [42–44]. The main
difference to previously presented methods is the assumption
of information being hidden in the higher-order statistics of
the network activity. While the propagation of stimuli through
neural networks is widely accepted to be modeled suitably
by linear summation of inputs and application of subsequent
transfer functions, this point of view draws more toward un-
derstanding the computation based on the inputs.

Regarding both computational capacity and biological re-
alism, it would be interesting to also study a multilayer or
a recurrently connected version of the OSP, which extends
outside the scope of this paper. It is of particular relevance
to study the performance gain from time-lagged cumulants.
Further, the cross-correlations of the intermediate network
state, which are currently not influencing the classification,
may be useful in future work.
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APPENDIX A: COMPUTATION OF CUMULANTS FOR
THE ARTIFICIAL DATA MODEL

The cumulants of the probability density p(x) ∼
exp[−β(mT x + 1

2 xT Jx + 1
3!

∑
i jk Ki jkxix jxk )] (with a poten-

tial barrier) can be derived using field theory [71]. To this end,
the Gaussian model with p(x) ∼ exp[−β(mT x + 1

2 xT Jx)]
acts as a baseline, and the cubic part forms a small correction
for states near those expected from the Gaussian distribution.
From the Gaussian baseline follows that the propagator of the
system is its covariance:

�i j = 1

β
(J−1)i j . (A1)

With m acting as a source term, the mean follows as

μi = −
∑

j

(J−1)i jm j . (A2)

The cubic correction leads to a three-point vertex, which has
the value − β

3! K . In first-order corrections to the Gaussian
theory, therefore, diagrams with a single vertex need to be
computed. For the mean, this leads to a tadpole diagram,
where two of the three legs of a vertex are connected by the
propagator and a single external leg. There are three different
such diagrams from the three possible choices of the external
legs, leading to the corrected mean:

μi = −
∑

j

(J−1)i jm j − 1

2β

∑
jkl

(J−1)i jKjkl (J
−1)kl . (A3)

This mean may not deviate too strongly from the Gaussian
one. There are no diagrams with a single three-point vertex
and two external legs, so up to first order, the covariance stays
as in the Gaussian case. The third-order cumulant is simply a
vertex with a propagator on each of its legs. A prefactor of 3!
needs to be included for those. To summarize, this leads to the
cumulants:

μi ≈ −
∑

j

(J−1)i jm j − 1

2β

∑
jkl

(J−1)i jKjkl (J
−1)kl , (A4)

�i j ≈ 1

β
(J−1)i j, (A5)

Si jk ≈ − 1

β2

∑
i′ j′k′

Ki′ j′k′ (J−1)ii′ (J
−1) j j′ (J

−1)kk′ . (A6)

APPENDIX B: HOW TO CHOOSE SUITABLE
PARAMETERS

To obtain reasonable results, the parameters need to be
chosen with care. The cubic part K may not be too large, to
ensure the system is both not too unstable and close enough to
the Gaussian case that we can use field theory to approximate
the cumulant statistics, however large enough that substantial
third-order statistics arises for our desired dataset. To this end,
we compare the expected fluctuations of states with the width
of the safe part of the potential, the region between the local
minimum and the local maximum.

For this comparison to be useful, however, we first need to
ensure that, during all times of the evolution of the SDE, the
data stay close to the Gaussian theory. Therefore, we simulate
the SDE with random initial conditions drawn from a Gaus-
sian distribution with mean and covariance identical to those
expected according to Appendix A. Furthermore, we set the
source m = 0 to simplify calculations. The mean of the data
can be adjusted by a constant shift b of all data points after
simulating the SDE. The quadratic part J needs to be chosen
as a positive definite matrix that fits the desired covariance.

The remaining parameter to determine is therefore only
K . It has to be chosen such that, for m = 0 and a given J ,
there is no direction of the potential where the Lagrangian
L[x] = 1

2 xT Jx + 1
3!

∑
i jk Ki jkxix jxk rises monotonically. For a

start, we assume that the cubic part will be of rank one, in the
sense that there is a single direction in state space where the
Lagrangian is cubic, and in all directions orthogonal to this
one, the potential remains quadratic. We can then compose
stronger cubic potentials.

With x′ in the direction of nonvanishing cubic interactions,
this means that there must be real solutions to the necessary
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 8. Performance comparison of the order-selective perceptron (OSP) and a constrained OSP. (a) Accuracy of the OSP as in Fig. 3.
(b) Accuracy of a constrained OSP with trainable α1 and α2,3 = 0. (c) and (d) Analogous to (b) with α2,3 trainable, respectively. (e) Accuracy
gain of the OSP over the constrained OSP. In (a)–(e), classes are separated by a difference in the mean and covariance. In (f)–(j), classes
are separated by a difference in the mean and third-order cumulant. In (k)–(o), classes are separated by a difference in the covariance and
third-order cumulant.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 9. Readout parameters for the machine-learning (ML) network with varying task difficulties. Datasets with two equal-sized classes
which differ in two of their first three cumulants (rows) are classified using the ML network. The cumulant combination weight α is displayed
for the full model (left) in color code, for the first (red), second (green), and third order (blue). Insets show the corresponding gain function
at different points of the parameter regime for the order-selective perceptron (OSP). Consecutively, starting from the second from left, αi for
each individual order i from one (mean) to three (third-order cumulant) is showed. The axes of each diagram display the contrast between the
classes underlying the datasets, starting from one (no class difference) to an arbitrarily chosen upper scale. In (a)–(e), classes are separated
by a difference in the mean and covariance. In ((f)–(j), classes are separated by a difference in the mean and third-order cumulant. In (k)–(o),
classes are separated by a difference in the covariance and third-order cumulant.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 10. Readout parameters for the constrained machine-learning (ML) model with varying task difficulties. Datasets with two equal-sized
classes which differ in two of their first three cumulants (rows) are classified using the constrained ML network. The cumulant combination
weight α is displayed for the full model (left) in color code, for the first (red), second (green), and third order (blue). Insets show the
corresponding gain function at different points of the parameter regime for the order-selective perceptron (OSP). Consecutively, starting from
the second from the left, αi for each individual order i from one (mean) to three (third-order cumulant) is shown. The axes of each diagram
display the contrast between the classes underlying the datasets, starting from one (no class difference) to an arbitrarily chosen upper scale.
In (a)–(e), classes are separated by a difference in the mean and covariance. In (f)–(j), classes are separated by a difference in the mean and
third-order cumulant. In (k)–(o), classes are separated by a difference in the covariance and third-order cumulant.

conditions for local minima or maxima:
∑

j

Ji jx
′
j + 1

2

∑
jk

Ki jkx′
jx

′
k = 0. (B1)

Only then will a stable region exist for the data to evolve
around. With K being rank one, it can be composed as an outer
product of vectors v as

Ki jk = viv jvk . (B2)

The condition for local extrema becomes

Jx′ + 1

2
v(vT x′)2 = 0. (B3)

As desired, in any direction orthogonal to v (i.e., where
vT x′ = 0), the potential is quadratic and thereby stable. It
therefore suffices to look at x′ ‖ v. In that case, when x′ =
‖x‖e(v),

Jx′ + 1

2
v(vT x′)2 = ‖x‖Je(v) + 1

2
‖x‖2 ‖v‖3 e(v) = 0, (B4)

where e(v) denotes the unit vector in direction of v. If e(v)

is an eigendirection of J with eigenvalue λ(v), this simplifies
further. Then one can solve for ‖v‖ to obtain v = ‖v‖ e(v) =
−21/3‖x‖−1/3λ

1/3
(v) e(v). Now the extrema of the potential lie on

a line in direction e(v), at x′ = 0 and x′ = ‖x‖e(v). The distance
between the minimum and maximum therefore is ‖x‖ and can
be chosen to determine the cubic part of the Lagrangian. Here,

we can choose to set

‖x‖2 = s2e(v)T�e(v) (B5)

such that we expect s standard deviations to fit in this stable
part of the potential (see Appendix A).

We can lastly compare the third-order cumulant to the
second to find values of s for the third-order statistics to be
strong enough compared with the fluctuations. To this end,
we can map the second- and third-order statistics in some
eigendirection e(v′ ) of J [which is also an eigendirection of
� with eigenvalue (βλv′ )−1] to find

[e(v′ )T�e(v′ )]3/2 = [βλ(v′ )]
−3/2 (B6)

and

∑
i jk

Si jke(v′ )
i e(v′ )

j e(v′ )
k = − 1

β2
[e(v′ )TJ−1v]3 = − 1

β2

[
e(v′ )λ−1

(v)v
]3

= − ‖v‖3

β2λ3
(v)

δvv′ = 1

‖x‖β2λ2
(v)

δvv′

= 1

s[e(v)T�e(v)]1/2β2λ2
(v)

δvv′

= 1

s
[βλ(v)]

−3/2δvv′ . (B7)
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(a)

(b)

FIG. 11. Accuracy of the order-selective perceptron (OSP) for
switching between datasets. The OSP is trained sequentially on two
datasets with different contrasts, switched after 200 epochs. The
panels show the accuracy of the OSP on both datasets during training,
while adapting its parameters only to one. Colors indicate the most
prominent contrast in the dataset for the mean (red), covariance
(green), and third order (blue). (a) Switching from a covariance-
dominated dataset [same datasets as in Fig. 5(a), annotated as (ii)]
with weak difference in the mean to a mean-dominated dataset [same
dataset as in Fig. 5(a), annotated as (i)] with weak difference in
the covariance. (b) Switching from a covariance-dominated dataset
[same dataset as in Fig. 5(k), annotated as (ii)] with weak difference
in the third order to a third-order-dominated dataset [same dataset as
in Fig. 5(k), annotated as (i)] with weak difference in the covariance.

From this follows

∣∣∣∣∣∣
∑

i jk Si jke(v)
i e(v)

j e(v)
k[∑

i j �i je
(v)
i e(v)

j

]3/2

∣∣∣∣∣∣ = 1

s
, (B8)

for e(v) in the direction of the cubic perturbation.

It is straightforward to then construct a Lagrangian with
a safe cubic potential in any direction by summing over all
eigendirections of J:

Ki jk =
∑
(v)

v
(v)
i v

(v)
j v

(v)
k , (B9)

v(v) = −s−1/3
(v) [e(v)T �e(v)]−1/6λ

1/3
(v) e(v), (B10)

where s(v) controls the strength of the cubic potential in each
eigendirection of J . For our purposes, s = s(v) = 5 was used
in all directions.

APPENDIX C: ESCAPE RATE OF THE ARTIFICIAL
DATA MODEL

Without the resetting mechanism, the states would eventu-
ally escape the SDE, Eq. (13), with the Lagrangian of Eq. (17).
One can ask how likely such an escape is. Altland and Si-
mons [72] address this problem by reformulating the SDE
in terms of the Martin–Siggia–Rose–de Dominicis–Janssen
(MSRDJ) formalism. The escape probability on an exponen-
tial scale can be computed by considering the most likely
escape path in phase space and the action accumulated along
it. As a result, the escape probability is the Arrhenius factor.
In our framework, this means that the escape probability is
given by

p ∼ exp

(
−�L

D

)
,

where �L is the height of the potential barrier and D the
variance of the driving noise. Within the MSRDJ framework,
these results can be refined by considering algebraic (nonex-
ponential) corrections due to fluctuations.

The extrema of L[x] have been calculated in Appendix B.
They lie in the origin with L[x = 0] = 0 and, for Ki jk = viv jvk

which has been constructed as a rank-one tensor from an
eigenvector v to eigenvalue λ(v) of J , at

x = −2λ(v)

‖v‖3
e(v).

Here, e(v) = v
‖v‖ is the unit vector in the direction of v of

which the norm ‖v‖ is chosen to adjust the width of the local
minimum. The potential at the local maximum:

L[x] = 1

2
xT Jx + 1

3!

∑
i jk

Ki jkxix jxk = 2

3

λ3
(v)

‖v‖6
,

then depends on λ(v) and ‖v‖, which display the strength of
the second- to third-order contributions. With v chosen such
that the extrema of L[x] are s standard deviations of x apart
[c.f. Eq. (B5)], this relation is determined by

‖v‖6 = 4βλ3
(v)

s2
.

This yields the scaling of the escape probability with the
safety parameter s as

p ∼ exp

(
− s2

6βD

)
= exp

(
− s2

12�

)
.
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TABLE I. Parameters of the real-world datasets. Listed for each of the benchmark datasets are the number of input variables N and output
dimensionality M. The numbers of trainable parameters for the OSP and ML models are then computed for K = 3 cumulants considered.

Dataset Classes Input variables OSP parameters ML parameters

Articulary Word Recognition 25 9 228 20478
Basic Motions 4 6 27 1035
Character Trajectories 20 3 63 783
Cricket 12 6 75 3099
Epilepsy 4 3 15 159
Ethanol Concentration 4 3 15 159
ERing 6 4 27 507
Finger Movements 2 28 59 45531
Hand Movement Direction 4 10 43 4443
Japanese Vowels 9 12 111 16959
Libras 15 2 33 213
NATOPS 6 24 147 86547
Pen Digits 10 2 23 143
Racket Sports 4 6 27 1035
Self Regulation SCP1 2 6 15 519
Self Regulation SCP2 2 7 17 801
Spoken Arabic Digits 10 13 133 23793
UWave Gesture Library 8 3 27 315

For K , which are constructed from a sum of rank-one con-
tributions composed of eigenvectors of J , as done throughout
this paper, this calculation becomes more involved. The case
of general K can be best solved numerically.

APPENDIX D: COMPARISON WITH CONSTRAINED
ORDER PERCEPTRON MODELS

We defined synergy as the performance gain of the OSP
compared with a pruned OSP, where all except a single entry
of α are set to zero. This is motivated by the ability of α to
indicate the contribution of corresponding statistical orders to
the classification decision, as deduced from the competition
between its entries. A different angle to the question of how
much the OSP gains can be whether and when the OSP out-
performs a constrained OSP, in which entries of α are set to
zero throughout training.

Figure 8 shows a comparison of the performance of these
models. Constrained OSPs ignore the contrasts in cumulants
that they are not sensitive to and perform well above a mini-
mum contrast in their corresponding cumulant order. Without
the competition imposed on the unconstrained OSP, the per-
formance is typically higher than the single-order accuracy
given by the pruned networks in Fig. 3. Consequently, the dif-
ference of accuracy between these models is lower. However,
we still observe a tendency toward an accuracy gain along an
area in the space of contrasts. Noticeably, it coincides mostly
with the border between areas in which individual orders
dominate the unconstrained OSP (see Fig. 3). The OSP there-
fore actively benefits from combining different cumulants for
classification.

APPENDIX E: SYNTHETIC DATA, ML MODEL

Training of the ML network on the synthetic data is dis-
played in Fig. 9. In Fig. 10, the training is repeated with an

ML model, of which only MN weights are randomly selected
to be trainable.

APPENDIX F: ADAPTATION TO CHANGES IN INPUT
STATISTICS

For batch-wise training of the OSP on finite data, the
network will be confronted with estimates of the cumulants
in the process of training that deviate from the ground truth.
Higher-order cumulants particularly require large datasets to
yield an accurate estimate. A natural question therefore is
whether the OSP can learn to adapt its weights after training
when the input statistics change. To show this, we train se-
quentially on two different datasets with different contrasts.
In Fig. 11(a), we switch between a dataset with dominant
contrast between the second cumulants to a dataset with
dominant contrast in the mean. In Fig. 11(b) the switch is
from a dataset with dominant contrast in the second cumu-
lant to one with dominant contrast in the third. The accuracy
reached by classifying on one of the datasets quickly switches
when training to classify the second dataset. The transition
time is comparable with the time it takes for the training
from random initialization. The different maximum accu-
racies for the individual datasets match those reported in
Fig. 3.

APPENDIX G: DATASET AND NETWORK PARAMETERS

Table I shows the number of classes M and number of
variables N for the datasets presented in Sec. III C as well
as the resulting number of trainable parameters for the OSP
and ML models. The constrained ML model selects as many
parameters from those listed for the ML model to be trainable
as are given in the column of the OSP model.
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