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We introduce a simple framework for estimating lower bounds on the runtime of a broad class of adiabatic
quantum algorithms. The central formula consists of calculating the variance of the final Hamiltonian with
respect to the initial state. After examining adiabatic versions of certain keystone circuit-based quantum
algorithms, this technique is applied to adiabatic quantum algorithms with undetermined speedup. In particular,
we analytically obtain lower bounds on adiabatic algorithms for finding k-clique in random graphs. Additionally,
for a particular class of Hamiltonian, it is straightforward to prove the equivalence between our framework and

the conventional approach based on spectral gap analysis.
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I. INTRODUCTION

Adiabatic approximation in quantum mechanics has found
applications in many fields since it was initially developed
in the 1920s [1,2]. Nonetheless, the idea that adiabatic ap-
proximation may serve as a basis for quantum computing did
not arise until the last two decades [3,4]. It has been proved
[5,6] that adiabatic quantum computation is computationally
equivalent to the standard circuit-based quantum computation
[7.8].

An adiabatic quantum algorithm (AQA) consists of three
components [9,10]: (i) a problem (or final) Hamiltonian H;
whose ground state encodes solutions to the problem; (ii) a
driver (or initial) Hamiltonian Hy who does not commute with
the final Hamiltonian H; and whose ground state is known;
and (iii) a timing schedule \(t) € [0, 1], a time-dependent
strictly increasing function that interpolates between the
initial Hamiltonian and the final Hamiltonian. The full time-
dependent Hamiltonian H, ,, of an AQA is then defined as

H, =1 —1(1)H, + 1()H,, ()

with boundary conditions A(0) = 0 and A(T) = 1, where T is
the runtime of the algorithm.

An AQA is executed by preparing a quantum system at the
ground state of the initial Hamiltonian H,, and then letting it
evolve. The adiabatic theorem [1,2,11,12] guarantees that the
final state of time evolution remains close to the instantaneous
ground state of the problem Hamiltonian H,, provided that
the system evolves slowly enough, or, equivalently, the run-
time must be long enough. A typical sufficient condition for
the runtime 7 is that it must scale polynomially with an in-
verse of the minimum spectral gap (the difference between the
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two smallest energy eigenvalues) of the full Hamiltonian H,
[10,12,13]. Nevertheless, analytical calculation of spectral gap
is possible only for relatively simple Hamiltonians, whereas
performing numerical calculations is limited to small system
size.

The main contribution of this work is to present a more
elementary, alternative method to the conventional spectral
gap analysis for estimating the runtime of adiabatic quan-
tum algorithms. In contrast to the well-known gap conditions
[10,12,13], which provide sufficient conditions for runtime,
our formula provides a lower bound (or necessary condi-
tion). More significantly, our technique can be exploited to
analytically obtain a lower bound on runtime for an adia-
batic quantum algorithm with undetermined speedup, i.e., the
adiabatic algorithm of Childs er al. [14] for finding k-clique
in random graphs, where the conventional method based on
spectral gap is unable to do so.

This paper is organized as follows. In Sec. II, we derive
the main formula for estimating a necessary runtime using
the quantum uncertainty of the final Hamiltonian with respect
to the initial state. We shall clarify the condition for which
the obtained necessary runtime can be interpreted as a lower
bound (in the sense of computational complexity) on the run-
time of AQAs. After examining our formula with adiabatic
versions [4,15-18] of certain keystone quantum algorithms
[19-23] in Sec. III and Sec. IV, our technique is applied
in Sec. V to analytically obtain lower bounds for adiabatic
algorithms of finding k-clique in random graphs. Section VI
compares our approach to conventional spectral gap analysis
and relevant prior works. Finally, conclusions are presented in
Sec. VIL

II. FORMALISM

Consider a quantum system characterized by a time-
dependent Hamiltonian H, with A = A(¢) being a function
of time ¢. For each A, the instantaneous ground state |®,) is
the solution to the eigenvalue problem H, |®,) = Egg; [P, ),
where Ejq ; is the ground state energy. On the other hand, the
actual dynamics of the quantum system is described by the
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physical (or time-evolved) state |V, ), which is the solution to
the scaled time-dependent Schrodinger equation iI'9, |V, ) =
H, |V, ) with initial condition |¥,) = |®,), where I' := 9,A(t)
is the driving rate. Mathematically, adiabaticity can be quan-
tified by the fidelity between the physical state |, ) and the
instantaneous ground state |®, ), namely, the adiabatic fidelity
F)=1[(D,|¥,) . In essence, the quantum adiabatic theo-
rem [1,2,11,12] ensures the following condition

1 —F(@A)<e, (2)

provided that the driving rate I is small enough for any given
allowance € € [0, 1].

Building upon the seminal work of Ref. [24], one of the
main results of Ref. [25] is the following inequality that
ties the adiabatic fidelity (1), the overlap of instantaneous
ground states C(A):= |(<I>A|<I>0)|2, and the Bures angle for
physical states (1) == arccos(|{V, |¥,)|) through

IF() — C)| < sinf(X) < sinR(L), 3)
where R(1) = min(R(1), ),
R() = / ' d—N/aEO(A’), (4)
o ICQ)
SEy(A) = \/(H?), — (H,)3. (4b)

Here, (- -+ )= (Y| - - - |¥,). The second inequality in Eq. (3),
ie,0(h) < ﬁ(k), sets an upper bound on the Bures angle of
physical states and is dubbed as quantum speed limit [26-32].
This name is suggested by the fact that since the Bures angle
(A1) € [0, /2] is a measure of distance, the quantum uncer-
tainty §E,(A) signifies speed.

In this work, we explore a union of the adiabatic condition
[Eqg. (2)] and the inequality of adiabatic fidelity [Eq. (3)] at
the end of the time evolution of AQAs, t = T [i.e., when
A(t = T) = 1]. Combining Eq. (2) with Eq. (3) leads to the
following inequality that must be satisfied by the runtime 7':

S arcsin (max (1 — e — C(1), 0))
g R(/T '

&)

This inequality may be interpreted as a necessary condition
obeyed by the runtime 7 of adiabatic quantum evolution.

Proof. We begin with rewriting the inequality [Eq. (3)] into
the following form:

CA) —sinR(L) < F(L) <CO) +sinR(A).  (6)

This together with Eq. (2) yields 1 —e < F(A) < C(A) +
sin R(X), which can be expressed as

max (1 — e — C(1), 0) < sin R(A), @)

since sin ﬁ(k) > 0 by definition. Now, because sinx is a
monotonically increasing function for x € [0, /2], the in-
equality above can be inverted to obtain

arcsin (max (1 — e — C(1), 0)) < 72’:()») <RMR), (B

where we have used ﬁ(k) < R(A) to obtain the last in-
equality. Upon taking A(r = T) = 1, the proof of Eq. (5) is
therefore complete. |

Notice that inequality Eq. (5) is applicable to Hamiltonians
of any given form. Next, we shall specifically utilize inequal-
ity Eq. (5) for AQAs having a full Hamiltonian #, ,, defined in
Eq. (1). If so, the function R(A(¢)) per Egs. (4) and (1) reads

R((1)) = 12() 8V, (9a)
8V, = /(H}), — (H)}. (9b)

Here, 6V, is the quantum uncertainty of the final Hamilto-
nian H, with respect to the initial ground state |®), and
A) =171 fOt dt’A(t') is the time average of the schedule
function A(#). The subscript n emphasizes that the quantum
uncertainty 8V, often varies with the problem size (or number
of qubits) n. Hence, with the help of Eq. (9), inequality Eq. (5)
can be written as

S arcsin (max (1 — e — C(1),0))

v,

(10)

Now, since the numerator arcsin(max(l —e — C(1),0)) is
O(1)," and because 0 < A(T) < 1 (as a consequence of
A(t) € [0, 1] by definition), we shall just concentrate on the
asymptotic behavior of §V, [Eq. (9b)] for the purpose of
performing asymptotic analysis using Eq. (10):

T>T, Ty=001/5V,). (11)

Observe that estimating a necessary runtime 7, using
Eq. (11) requires only two ingredients, i.e., the initial state
|®,) and the final Hamiltonian H,. Although the schedule
function A(¢) is one of the three ingredients for specifying
an AQA, our formula [Eq. (11)] for determining a necessary
runtime does not depend on any particular form of A(#). This
is unlike the conventional approach of spectral gap analy-
sis [13] where an explicit form of A(f) must be specified;
given an initial Hamiltonian and a final Hamiltonian, dif-
ferent forms of A(z) could result in different estimations of
asymptotic forms of runtime. However, it is not possible for
those runtime estimates using spectral gap analysis to be
smaller than the necessary runtime determined by Eq. (11).
In other words, for an AQA specified by an initial state and
a final Hamiltonian, one can use Eq. (11) to obtain a neces-
sary runtime. This necessary runtime might be saturated by
choosing a particular schedule function or a different initial
Hamiltonian.

Although the inequality Eq. (11) is estab-
lished as a wuniversal necessary condition for
the runtime of any AQA, interpreting the necessary runtime
T, [Eq. (11)] as a lower bound on time complexity only
applies to those AQAs whose quantum uncertainty 6V, does
not diverge when n goes to infinity, namely, if

lim 1/8V, % 0. (12)

n— o0

Otherwise, one would incorrectly deduce that the required
runtime decreases as the input size n increases. The asymp-
totic property [Eq. (12)] can be fulfilled by a wide class of

'Throughout this paper, we use O(-) to indicate “order of.”
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final Hamiltonians H, that meets the following condition® (up
to a redefinition® of H,):

(H?), = (H,),. (13)

To see this, imposing the moments condition [Eq. (13)] on
the definition of quantum uncertainty 8V, [Eq. (9b)] yields
8V, = /(H,),(1 — (H,),). This quantum uncertainty satisfies
the desired asymptotic property [Eq. (12)] since the expec-
tation value (H,), is bounded, 0 < (H;), < 1, which is a
consequence of the moments condition [Eq. (13)] together
with the Cauchy-Schwarz inequality. If the moments con-
dition [Eq. (13)] holds, the corresponding lower bound on
runtime [Eq. (11)] reads

Top = O(1/8V,), 8V, = (H ) (1 = (Hy)g). (14

A stronger condition than the moments condition [Eq. (13)]

is when the final Hamiltonian is a projector, namely, if H, 12 <
H,. As we shall see shortly, the adiabatic version of Deutsch-
Jozsa algorithm [15,16], Bernstein-Vazirani algorithm [17],
and Grover search [4,18] all can be implemented using a pro-
jector final Hamiltonian. A representative final Hamiltonian
that does not satisfy the asymptotic property [Eq. (12)] is the
one containing Ising terms, whose quantum uncertainty scales
as 8V, o« 4/n (see Appendix A).

In what follows, we shall focus on AQAs that satisfy the
moments condition [Eq. (13)], and apply formula Eq. (14) to
obtain a lower bound on runtime. For this purpose, we need to
specify what kind of initial state |®,) and final Hamiltonian
H, we wish to use. For an AQA consisting of n qubits, the
initial state |®,) can often be chosen as the uniform superpo-
sition of all basis states of the 2"-dimensional Hilbert space in
the computational basis

5)

Here, |2) =1z)) ® |z}) ® - - ® |z,_;) with each z; € {0, 1},
{0, 1}" is the set of 2" possible n-bit binary strings, and
|£) = (|0) £ |1))/ﬁ. As for the final Hamiltonian H |, the
following two types of final Hamiltonian satisfying Eq. (13)
will be discussed in detail:

(i) Final Hamiltonian with orthogonal projection.

(ii) A special class of optimization problems.

III. FINAL HAMILTONIAN OF TYPE-I

Let l'[q,] be an projector that projects onto the eigenspace of
the final state |®@,). In certain AQAsS, their final Hamiltonian
H| can be implemented by a complementary projector of I1 ®,

Hy=1-Tl,, (16)

where [ is an identity operator. Adiabatic Deutsch-Jozsa algo-
rithm [15,16] and adiabatic Bernstein-Vazirani algorithm [17]

1
“_

2Throughout this paper, the notation is used to indicate the
case where both sides of an equation are posned to be equal.

3For instance, if H? = —H,, one can define a new Hamiltonian
H{ =1+ H, so that H*> = H| holds.

are two examples of AQAs whose final Hamiltonian has the
form shown in Eq. (16).

A. Example: Adiabatic Deutsch-Jozsa algorithm

Recall that in the problem of Deutsch-Jozsa [19], we are
given a Boolean function f : {0, 1}" — {0, 1}. The task is
to determine whether f is constant or balanced (i.e., equal
number of output of 0’s and 1’s). In the AQA proposed by
Ref. [15], the final state is chosen as (here, N = 2")

MZ| (17)

where p; = N7 216{0,1}n(_1)f(Z)|~ If f is constant (respec-
tively, balanced), then u; =1 (respectively, w; = 0). The
corresponding final Hamiltonian can be constructed as a pro-
jector shown in Eq. (16) with chl = |®,)(P,|. The initial
state is chosen as an equal weight superposition of all basis
states [Eq. (15)]. In Ref. [15], using conventional spectral gap
analysis yields the scaling of runtime 7 ~ O(N) for A(¢) = %
and T ~ O(+/N) for a local adiabatic evolution. These results
do not reach the well-known [19] optimal runtime, i.e., O(1).
Nevertheless, we shall demonstrate that using the formula
Eq. (14) enables us to obtain the lowest runtime found in
Ref. [15]. We compute the overlap [(®,| D) | using Egs. (15)
and (17) as

|®y) = 1¢[0) +

(@190)P = (g + (1= N =P, (18)
and apply it to Eq. (14) to obtain T, ; = O(+/N), which is
consistent with the result obtained by Ref. [15] as mentioned
above.

From the general expression of T, ; [Eq. (14)], it is clear
that in order to reproduce the correct optimal runtime of the
Deutsch-Jozsa algorithm, the overlap |(CI>1|d>0)|2 should be
independent of N. In light of this, the final state [Eq. (17)]
should be modified. Exactly this modification has been carried
out in Ref. [16] by replacing the final state of Eq. (17) with the
one which is more symmetric in amplitudes:

N/2—1
|1_WZ|

Upon using Egs. (15) and (19), the overlap |(®, |q>0>|2 reads

N/2—1

19)

N

N\> 1
—+(1- )2> =—. (20)

[CAENE >

1

NN /2 (
This result should be compared with that of Eq. (18). Bringing
Eq. (20) to Eq. (14) yields T;,; = O(1). Therefore, the optimal
runtime for the Deutsch-Jozsa problem is attained. In contrast
to the usual approach of estimating runtime via spectral gap
as done in Refs. [15,16], our formalism clearly illustrates why
the algorithm of Ref. [16] is superior to that of Ref. [15].

B. Example: Adiabatic Bernstein-Vazirani algorithm

As the second example for the final Hamiltonian of
Type-I [Eq. (16)], we consider an adiabatic algorithm solv-
ing the Bernstein-Vazirani problem. Recall that in the
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Bernstein-Vazirani problem [20,21], one is given an oracle
that evaluates the function f, : {0, 1}" + {0, 1} with f; (z) =
Zi:O z;8; mod 2. The task is to find the unknown n-bit binary
string s € {0, 1}" using as few queries of the function f; as
possible. The adiabatic algorithm proposed by Ref. [17] is
the following. First, notice that the oracle function f, can be
encoded in a projector final Hamiltonian as shown in Eq. (16)
and acting on two subsystems, A and B, comprising n qubits
and 1 qubit, respectively,

H=I,®Iy— I,

M, =

1

Y Rl ® 1A @)s (G- @1

ze{0,1}"

The ground state of H, is |®,) = «/Lz’ Zze{O,l}“ 1z) 4 ®
|f, (2))g with eigenvalue 0. The initial state is again the uni-
form superposition state [Eq. (15)] |®,,) = |+)§” ® |+)g. We
refer to Refs. [10,17] for further details on the mechanism
behind this adiabatic algorithm. For our purpose, we proceed
to use the formula Eq. (14) to obtain a lower bound on the
runtime. We first note that H; defined in Eq. (21) is appar-
ently a projector, H? = H,. The remaining task is to compute
(Do H|Dy):

1 2
(@glHy @) = 1= D I+, )]
ze{0,1}"
*) 1 3 1\ 1
21— — (-) ==, (2
2" ze{0,1}" ﬁ 2

where in (x) we have used the following identity | f; (z))g =
%(H—) + (—1)fk(z)|—) ). Finally, it follows from Eq. (14)
that T, = O(1) as expected.

IV. FINAL HAMILTONIAN OF TYPE-II

For optimization problems with a cost function
h:{0,1}" - R, we seek a minimum of 4. In the framework
of adiabatic quantum computation [3,4], a final Hamiltonian
can be defined to be diagonal in the computational basis, with
cost function / being the diagonal element

= Y h@l)z (23)

z€{0,1}"
If the uniform superposition of all basis states [Eq. (15)] is
chosen as the initial state, the quantum uncertainty [Eq. (9b)]
reads 8V, = (h? — Ez)l/ 2 with the arithmetic average
h=2"" > .h(z) and h2=2"" > h*(z). Furthermore, if
we impose the moments condition [Eq. (13)], which amounts
to requiring

2 =h, (24)
then the lower bound T, ; [Eq. (14)]

T, =00/8V,) with 8V, =+/h(1—h) (25)

is completely determined by the arithmetic average of
the cost function, i.e., 4. Note that 0 </ < 1 as a result
of Cauchy-Schwarz together with the moments condition

[Eq. (24)]. Note also that the moments condition [Eq. (24)]
can be expressed using matrix analysis terminology [33,34]
as ||H, ||12: < trH,, where | - ||z denotes the Frobenius norm (or
Hilbert-Schmidt norm). If it is further assumed that the cost
function / is non-negative, the moments condition [Eq. (24)]
can alternatively be written as ||H, ||12: = |H,ll, where || -
represents the trace norm (or nuclear norm).

”tr

Example: Adiabatic Grover search

Taking the unstructured search problem of Grover [22,23]
as an example, it can be formulated as a combinatorial op-
timization problem with the following cost function [4,35]:
h(z) =0 for M marked items and h(z) = 1 otherwise. For
this case, one immediately finds h% = h=1 — M/N (here,
N = 2"). It then follows from Eq. (25) that a lower bound
L., = O(J/N/M), as expected [18,36,37]. We note that the
final Hamiltonian of adiabatic Grover search can be equiv-
alently written as H, =1 — ) _,,|z)(z|, where M is the
space of solution (of size M). Hence, this final Hamiltonian
also belongs to the type-I final Hamiltonian [see Eq. (16)].
It is with this expression of projector final Hamiltonian that
Ref. [38] used a formula similar to Eq. (10) to obtain the
optimal runtime for adiabatic Grover search. For complete-
ness, we present a similar calculation using our formula in
Appendix B.

Thus far, three adiabatic versions of keystone quantum
algorithms have been examined. We shall now apply our tech-
nique to the adiabatic algorithm proposed by Childs ez al. [14]
for finding k-clique in random graphs.

V. ADIABATIC ALGORITHM FOR FINDING K-CLIQUE

Consider a random graph G where every pair of vertices
is connected or disconnected with a probability of 1/2. A
clique is a subgraph of G in which every pair of vertices is
connected by an edge. The problem of finding cliques of k
vertices (called k-clique) in a random graph of n vertices is
an NP-complete problem if both n and k are treated as inputs
[39.40].

In the algorithm proposed by Ref. [14], each vertex is
associated with a qubit. Hence, there are n qubits for a graph
of n vertices. As before, each qubit state is represented by |z;)
with z; € {0, 1} for i € {0, --- , n — 1}. A vertex i is included
into a subgraph of k vertices only if z; = 1.

Although the full Hilbert space is 2"-dimensional, we can
focus only on the subspace spanned by quantum states with
Hamming weight k since we are only interested in those
quantum states that represent cliques of k vertices. For no-
tational convenience, we denote the set of n-bit binary strings
of Hamming weight k as S, :=={z € {0, 1}" : |z| = k}, where
Iz] = 2"701 z; is the Hamming weight of the n-bit binary string
z. The size of S, is ( ) C(n, k). In the subspace generated
by binary strings from S,, the initial state can be chosen as a
Dicke state [41-43]

|Dg) = «/C(—k ZGXS: |2). (26)
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In Ref. [14], the final Hamiltonian is of the form shown in
Eq. (23) with the cost function

n—1

he@= Y (1=G;)zz; 7

i, j=0:i>j

where Gij with i, j € {0,--- ,n — 1} is the matrix element
of the adjacency matrix for a graph G. As usual, G;; =1
if the vertices i and j are connected by an edge; otherwise,
G;; = 0. Observe that the cost function hc(z) takes values
in {0, 1,---,L,}, where L, :==C(k, 2) is the total number of
edges for a graph of k vertices.

We proceed to obtain a lower bound on runtime using
Eq. (11) for the algorithm defined above. Since each G;; €
{0, 1} is a random variable, an exact computation for the

arithmetic average E and /. is not possible without knowing
an explicit instance of G;;. We attempt to consider a “mean-
field” (or “randomized”) approach by replacing G;; with its
(classical) expectation value E[G;, 1=1/2, and obtain (see

Appendix C) ]E[E] =L/2 andIE[h(Z:] = (L, + 1)L, /4. Itfol-
lows from Eq. (11) that a lower bound on runtime 7., ;.
reads T, 4 :or = O(/1/L;), which is independent of n. It is
likely that this n-independent lower bound is considerably
lower than the sufficient runtime obtained using the spectral
gap analysis (though it is not available). We also notice that
the moments condition [Eq. (24)] is not met for the cost
function defined in Eq. (27). Nevertheless, we note that the
k dependence in T, .. seems consistent with the numeri-
cal data found in Ref. [14], saying that the median runtime
for finding cliques of k =5 is longer than that for find-
ing cliques of k = 6. Specifically, T, .,(k = 5)/T, .4(k = 6) =
30.87/18.56 ~ 1.66 found in Ref. [14], whereas our result
indicates T, inr(k = 5)/ T4 ine (k = 6) = /15/10 ~ 1.22.

To make better use of our formula Eq. (25), we propose the
following deformed cost function

h(z)= %(1 + he(z) — 11 = he(2))). (28)

This amounts to introduce 4(z) = min(h:(z), 1), where A (z)
is defined in Eq. (27). In other words, those h-(z) > 1 are
mapped to i(z) = 1. Therefore, the deformed cost function is
Boolean-valued A(z) € {0, 1}. This deformed cost function is
similar to that of adiabatic Grover search discussed previously.
One finds that the cost function defined in Eq. (28) along
with the initial state defined in Eq. (26) satisfies the moments
condition [Eq. (24)]. Explicitly, h=h=(1—-M/Cn,k)),
which renders a lower bound from Eq. (25)

T = O(/Cn, k)/M), (29)

where M is the number of cliques of k vertices. The result
[Eqg. (29)] is consistent with that of a circuit-based algorithm
of Ref. [44] in which the time complexity is related to the
number of Grover iterations. For the special case of n > k,
Eq. (29) simplifies T, ; = O(n*/?) for n > k. A well-studied
case is k = 3, i.e., the so-called 3-clique problem (or triangle-
finding problem); the resulting lower bound is 7}, ; = ow?).
The exponent, 3/2, agrees with that found in a quantum al-
gorithm [45] for the triangle-finding problem using a plain
Grover search.

VI. DISCUSSIONS

A. Connection to spectral gap analysis

We shall now attempt to connect our approach with con-
ventional spectral gap analysis. An equivalence between the
two approaches can be directly shown for a particular class
of Hamiltonians where both the initial and final Hamiltoni-
ans are of the projector form Hy, =1 — |®,)(®,| and H, =
I — |®,)(®P,|. It was then proved in Ref. [46] that the spectral
gap of the full Hamiltonian H, [Eq. (1)], denoted as g(H,),
is bounded from below: g(H,) = [(®,|®,)| = g,,,» Where
&min = Min, (o1 &(H,) is the minimal spectral gap. If the
schedule function A(¢) is chosen simply as A(¢) = ¢/T, spec-
tral gap analysis [13,18] yields the scaling of runtime 7, ~
O(1/g%;,)- Furthermore, it is possible to improve [13,18] the
error dependence on the minimal gap by adopting a nonlinear
schedule function; if so, one obtains 7y,, ~ O(1/g,,,). On the
other hand, using our formalism, we directly obtain (H,), =
(H})y =1—[{(®,|®y)|* =1 — g%,,- Consequently, a lower
bound on runtime follows from Eq. (14): T;.; = O(1/gi,)-

If the minimal gap g, = [{(®,;|®,)| is independent of
n, then the two estimates T, and T, are equal: T, =
T = O(1). This is the case for the adiabatic Deutsch-Jozsa
algorithm and the adiabatic Bernstein-Vazirani algorithm dis-
cussed previously. For the case of adiabatic Grover search,
the optimal runtime obtained from the spectral gap analysis
along with a nonlinear schedule function yields [18] Tg/ap =
O(1/8,.in)> Which again agrees with our lower bound T, ; = O

(1/&min)-

B. Comparison with prior works

The performance of adiabatic quantum algorithms has
been extensively investigated in a variety of settings. Among
the existing research on this topic, three groups of studies
that utilize quantum speed limits are particularly relevant to
our current work. (i) A new class of quantum speed lim-
its is presented in Refs. [47,48] and applied to adiabatic
searches. A lower bound on runtime is defined there as
the minimum time it takes for the physical state to be or-
thogonal to the initial state. This definition is, however, too
restrictive.* Additionally, it is unclear whether the results
obtained in Refs. [47,48] are applicable beyond adiabatic
searches.

(i) While the main result of Ref. [38] is an inequality
similar to Eq. (10), the present work makes several signif-
icant advances. Our method for estimating lower bounds is
more systematic and rigorous, and we carefully clarified the
applicability of Eq. (10). In particular, we highlighted the
importance of the asymptotic property [Eq. (12)] and the
irrelevance of the schedule function A(#) in asymptotic anal-
ysis. Furthermore, we explored a wider range of adiabatic
quantum algorithms, including the adiabatic Grover algorithm
examined in Ref. [38] as well as several additional adiabatic
algorithms. Notably, we obtained an analytical result on lower

*Indeed, the final state of most adiabatic quantum algorithms is
never orthogonal to the initial state, even though the overlap between
the two is typically very small.
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bounds for the adiabatic algorithm of Childs et al. [14] for
finding k-clique in random graphs, which is an algorithm with
undetermined quantum speedup.

(iii) It is also worth noting that quantum speed limits and
the formalism of shortcuts to adiabaticity [49-56] are com-
bined in Ref. [57] to investigate the performance of adiabatic
quantum computation. However, the purpose and scope of
Ref. [57] is significantly different from ours.

VII. CONCLUDING REMARKS

We have shown that for a wide class of adiabatic quan-
tum algorithms (AQAs) in which the asymptotic property
presented in Eq. (12) holds, nontrivial lower bounds on the
runtime of adiabatic algorithms can be estimated by calcu-
lating the quantum uncertainty of the final Hamiltonian with
respect to the initial state [see Eq. (11)]. A runtime estimation
obtained by conventional spectral gap analysis is by no means
smaller than the necessary runtime derived using our method.
The reason is that our formula provides a necessary condition
that must be obeyed by the runtime of adiabatic quantum
evolution. Choosing a specific schedule function or initial
Hamiltonian may cause the necessary runtime to be saturated.

Our findings may shed new light on the design of new
adiabatic quantum algorithms. For instance, if a potential
quantum speedup of an adiabatic quantum algorithm is
undetermined, one may attempt a deformation of the original
adiabatic algorithm to fulfill the moments condition [Eq. (13)]
and then apply Eq. (14) to obtain a lower bound on runtime.

J

n—1

Z ZzZl-H H_

|®) = H,| D)
We then find

(o |H, | D) = (D] D) = +W<Zm

(Dy|HT| D)

Z(—l@

i,j=0

It then follows from Eq. (9b) that the quantum uncertainty
reads 8V, = /n.

APPENDIX B: DETAIL CALCULATION FOR
ADIABATIC GROVER SEARCH

Consider a set of N items among which M < N items are
marked, the goal being to find marked items in minimum
time. We use n qubits to encode the N items. Hence, the
Hilbert space is of dimension N = 2". In this space, the
basis states can be written as |i) with i € {0,--- ,N — 1}.
The desired final state is |®,) = \/;M Y menr Im), and
the corresponding final Hamiltonian can be chosen
as a projector H =1-3 . |m)(m|, where M is
the space of solution (of size M). One can easily see

i1 ® (H1®72)(-); ®

The runtime of the deformed algorithm thus obtained
may be utilized to estimate the spectral gap (and hence, a
sufficient runtime) of the original algorithm by means of
matrix inequalities such as Weyl’s inequalities [33,34]. For
optimization problems, it is important to emphasize that
the lower bound formula [Eq. (25)] is not valid for every
optimization problem but only for those in which the cost
function meets the moments condition [Eq. (24)]. Therefore,
it would be interesting to investigate further the implications
of the moments condition on general Boolean functions using
techniques from Boolean function analysis [58]. Another
future direction would be to derive bounds on the runtime of
adiabatic quantum algorithms in open quantum systems.
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APPENDIX A: QUANTUM UNCERTAINTY
OF ISING TERMS

Consider a final Hamiltonian H, that consists of Ising terms

H=-", | Z,Z, |, where Z, is the third Pauli matrix acting
on the ith qublt Recall that Z|+) = |—) and Z|—) = |+).
Choosing the initial state |®,) as the uniform superposition

state [Eq. (15)]. We first compute

)i @ ). (Al)

Zw

1+l ® |+>®n 2)) =

n—1

=) @)= 8, =n

i, j=0

(A2)

(

that the ground state of H,
zero.

The remaining task is to calculate the quantum un-
certainty 8V, [Eq. (9b)] with |®;) given by the uniform
superposition state [Eq. (15)]. First, we calculate the

overlap [(®,|P,)|*:
s 2
(m| || —= |i>>

(@ [Py) ‘(
2

is |®,) with eigenenergy

N-1 M
=— > mli)| =—. (B1)
MN meM i=0 N
We then obtain (g|H,|®g) =1 —[(®|Pg)]> =1— %,

Bringing this result to Eq. (14) yields T;,; = O(J/N/M).
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APPENDIX C: DETAIL CALCULATION FOR ADIABATIC
ALGORITHM OF FINDING k-CLIQUE
IN RANDOM GRAPHS
We want to calculate (P,|H,|D,) :-.% and (<I>0|H]2|<DO)
=:hZ, where

— 1
he = con k) Z he(2),
€0, 1):|z|=k
— 1
hg = Y R@, (C1)
Cn. k) ze{0,1}:|z]=k

with the cost function hq(z) = Zi>j(1 —G;j)zz; as defined
in Eq. (27). To conduct the calculation, one encounters terms
like Zl> G,;, which cannot be done generically without
knowing the explicit form of G;;. We attempt a “mean-field”
approach by considering the “average property” of G;; since
each pair of vertices has probability p to be connected and
probability (1 — p) otherwise. Note that the value of p is 1/2
in the main text.

1. Mean-field approach

We now compute E (C1):

- 1
he = 1-G,)zoz:
€7 Cn. ko Zemzmzk; )22,
~ Elhc]
1
- Con k), X:I\ k;(l ElGy; Dz (C3)

There are C(n, k) states |z) satisfy |z| = k that we have to
consider. For each such state, there are k’s z; for which z; = 1.
Therefore, the first term in the parenthesis of Eq. (C3) is
simply

Z ZZ:ZJ Z
ze{0,1)":|z|=k i>j z€{0,1}":|z]=k

= C(n, k)C(k,2) =

C(k,2)

Cn,k)L,. (C4)

Here, for notational convenience, we define L, = C(k, 2). The
second term in the parenthesis of Eq. (C3) can be calculated
with the help of Eq. (C2)

Z > _ElG;laz; = pCn. kL. (C5)

We shall approximate G;; by its expected value, E[G;;]. ze{0,1}m|z|=k i>j
Specifically, since each G;; = 1 with probability p and G;; = Bringing Eqgs. (C4) and (C5) back to Eq. (C3) yields
0 with probability 1 — p, We obtain ]E[E] - .
E[G;;] = p. (C2) Next, we Compute% Cl):
J
— 1
e = > YD (-26, 46,650z
C(n, k)
{0, 1}:|z|=k i'>j i>j
~E[r]
1
C(n k) Z Z Z(l - Q’E[GU + E[G”,G ])Z ZjZig;- (C7

€{0,1}:)z|=k i">j" i>]

There are three terms in the parenthesis of Eq. (C7). The first term is deterministic,

Yo 3D azan= > D wn [ D= ). Lik=CcmbLi. (C8)
2€{0,1):|z|=k i'> ' i> ze(0,1):lzl=k \i'>J" i>j 2€{0,1}7:[z] =k
The second term in the parenthesis of Eq. (C7) reads
Z Z Z( 2E[G;;Dzyzpziz; = —2 ZZ,"ZJ-/ ZE[GU]Z;'Z]‘
(0. 1}fzl=k i'> )’ i>] ze{0,1)m:lzl=k \i'> )’ i>j
(€2)
= -2 > zz [ paz; | = —2pC. L. (C9)
ze(0,1)7:]zl=k \i'>J’ i>j

Before proceeding to calculate the third term in the parenthesis of Eq. (C7), we notice the following decomposition property

> Y EIG,;G,) =Y EIG,G,]1+ >

i'>j i>j i>j i'>j'i>ju#l j#EJ
=2 r+ )
i>j i'>ji> il j#E )

E[G,;G;1=Y E[G 1+ Y.

P —Lkp+(L _Lk)

E[G, ;|E[G;;]

i>j i'>ji> ju#i, j#j

(C10)
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Finally, the third term in the parenthesis of Eq. (C7) is

Z Z Z ElG;;Gijlzizj 22

20,1} lzl=k \i'>j i>j

1—
L pen oL} (p TR )>. (11
Ly
Upon using the above results, Eq. (C7) reads
72 l—p 2
E[Rg]=(1-2p+p(p+—F7) )L
k
= (1 —p’L} + p(1 — p)L;. (C12)
Hence, the quantum uncertainty reads §V, = \/p(1 — p)L,. It
then follows from Eq. (11) a lower bound on runtime
T = OG/T/L). (C13)

which is independent of n. Note that if the cost function
ho(z) is rescaled as h(z) — hc(z)/L,, one should find T, ; =

OWL.

2. Combinatorial approach

In this section, we use an explicit combinatorial method
to reproduce the same result as we found in Eq. (C13).
The following observation is crucial: If a binary string z
of Hamming weight k represents a graph that is a k-clique
after adding « connected edges, then h-(z) = «, where o €
{0,1,---,C(k, 2)}.

To simplify the notation, let us define L, = C(k,2) for
convenience. Now the question is what is the multiplicity m,

for each possible value of cost function 4 (z) = a. Since each
of the L, edges has probability p to be present when random
graphs are generated uniformly, we expect

my = p(1 = p)*C(Ly, @) C(n. k),

o

(C14)

fora € {0,1,---,L,}. One verifies that the sum of all mul-
tiplicity equals C(n, k), i.e., the number of binary strings of
Hamming weight &

L, L,
> my=C. )Y P~ pYCLy, @)
a=0 a=0
=(p+1-p)
= C(n, k). (C15)
We proceed to compute IE[E]:
) L, L,
— B .
E[hc] = o b gmaa = gp U1 = p)C(Ly, )
= - p)L,, (C16)

which is the same as Eq. (C6). We then compute IE[%]:

L L

1 'k
meol2 = Zka_“(l - p)*C(L,, o)a’
a=0

’ a=0

= (1 - p)’Li + p(1 — p)L,

which is identical to Eq. (C12).

(C17)
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