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Quantum entanglement phase transitions have provided new insights into quantum many-body dynamics. Both
disorders and measurements are found to induce similar entanglement transitions. Here, we provide a theoretical
framework that unifies these two seemingly disparate concepts and discloses their internal connections. Specifi-
cally, we analytically analyze a d-dimensional free-fermion gas subject to continuous projective measurements.
By mapping the Lindblad master equation to the functional Keldysh field theory, we develop an effective theory
termed as the time-local Keldysh nonlinear sigma model, which enables us to analytically describe the physics
of the monitored system. Our effective theory resembles that used to describe the disordered fermionic systems.
As an application of the effective theory, we study the transport property and obtain a Drude-form conductivity
where the elastic scattering time is replaced by the inverse measurement strength. According to these similarities,
two different concepts, measurements and disorders, are unified in the same theoretical framework. A numerical
verification of our theory and predictions is also provided.
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I. INTRODUCTION

The entanglement entropy, as a characteristic measure of
quantum correlations, has been intensively studied in many
fields of physics [1–4]. Subsystem entanglement entropies
follow distinct scaling laws for different dynamical phenom-
ena in quantum many-body systems. By adjusting the system
parameters, different scaling laws can be mutually converted.
One typical example is the transition between the phase
obeying the eigenstate thermalization hypothesis (ETH) [5,6]
and the many-body localized (MBL) phase [7–12]. When
quantum many-body systems obey the ETH, the entangle-
ment entropy of subsystems presents a volume-law scaling.
By increasing the disorder strength, the systems will enter
the MBL phase where the subsystem entanglement entropy
obeys the area law instead [13–18]. An alternative way to
obtain the entanglement transition has been proposed by using
projective measurements [19,20]. Intuitively, one can imag-
ine that local projective measurements will collapse a highly
entangled many-body state, thus enough measurements will
convert the volume-law entangled state to an area-law one.
This phenomenon has been studied in a wide variety of
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models [19–34], and knowing the entanglement transition
makes us relate the monitored systems with quantum error
correction [25].

Based on observations from the entanglement transition,
one may wonder whether there are internal connections
between these two different concepts—measurements and
disorders. In addition, the comprehensive knowledge of mon-
itored systems and identification of potential applications
thereof are contingent upon the disclosure of other prop-
erties that are currently unexplored. For example, in the
disorder-induced entanglement transition case, we also know
the transport property of corresponding systems. In the MBL
phase, degrees of freedom are indeed being localized, which is
a manifestation of the area-law entanglement, and in turn, this
results in a zero dc conductivity [9,35–38]. This property sig-
nifies that the system has the capability to maintain its primary
information, thereby rendering it a noteworthy strategy for im-
proving quantum memory. Since in the measurement-induced
transition counterpart, the dynamics will also be hindered by
continuous measurements and the subsystem entanglement
entropy also has an area-law scaling, it is natural to ask
whether an analogous localization effect exists and what is
the behavior of the conductivity.

In this work, we develop an effective theory to analyt-
ically study the properties of a d-dimensional free-fermion
gas under continuous projective measurements, and focus on
the underlying connection between projective measurements
and disorders. In order to reveal the entanglement transition,
previous studies [19–34] mostly focus on quantum trajectory
dynamics conditioned on measurement outcomes [30,39,40].
In contrast to their calculations, our theoretical scheme
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FIG. 1. Comparisons between the disordered system and the monitored system in the unconditional case. One finds that the connection
between measurements and disorders is not obvious in the master equation formalism, and can only be found when one resorts to the Keldysh
path integral formalism. KNSM is the abbreviation of Keldysh nonlinear sigma model and TRS is that of time-reversal symmetry.

directly captures the unconditional dynamics generated by
the full Lindblad master equation [40,41]. Note that if the
quantity is a linear function of the system’s state described by
the density matrix, the conditional and the unconditional ap-
proaches will give the same result. Many physical observables
including the conductivity are linear functions of states. We
then modify the Keldysh field theory mapping [42] to capture
the Lindblad master equation for open fermionic systems.
Very surprisingly, the Keldysh-Lindblad partition function for
the monitored case resembles the partition function in the dis-
ordered fermionic case [43–46], although measurements and
disorders look quite different in the master equation formal-
ism (see Fig. 1 for comparison). Inspired by this observation,
we develop an effective theory termed as the time-local
Keldysh nonlinear sigma model (KNSM), to describe the
physics of the monitored free-fermion gas. As an application
of our effective theory, we study the transport property and
obtain a Drude-form conductivity where the inverse measure-
ment strength plays the role of the elastic scattering time. This
result shows a slowdown effect or diffusive behavior [47–51]
due to measurements.

Section II sets the model under our consideration. The
Keldysh-Lindblad partition function of the model is given
in Sec. III. The effective KNSM and the time-local diffu-
son are obtained in Secs. IV and Sec. V, respectively. In
Sec. VI, dc conductivity is derived from the KNSM, and in
Sec. VII, we perform a numerical verification for our theory.
Appendixes A–C give detailed derivations of some formulas
in the main text.

II. MODEL

We consider a d-dimensional spinless free-fermion gas,
whose Hamiltonian reads

H =
∫

dx c†(x)

(
− 1

2m
∇2 − εF

)
c(x), (1)

where c (c†) is the annihilation (creation) operator of
fermions, m is the mass of fermions, and εF is the Fermi
energy which equals to the chemical potential. This free-
fermion gas is subject to continuous projective measurements,
in which the projective operations can be represented by the
fermion density operator n(x) = c†(x)c(x). Note that n(x)
satisfies n(x)(a|0x〉 + b|1x〉) ∝ |1x〉 and n2(x) = n(x). For an
unconditional continuous measurement process, it can be de-
scribed by the Lindblad master equation [29,39]. Thus, for
our case, the quantum jump operator in the Lindblad master
equation is the density operator n(x), and we have

∂tρ = −i[H, ρ] + γ

∫
dx
[

n(x) ρ n(x) − 1

2
{n(x), ρ}

]
, (2)

where ρ is the density matrix of the free-fermion system,
and γ is the measurement strength, which has the energy
dimension and is assumed to be uniform over the space. In-
tuitively, the measurement strength γ can be regarded as the
number of measurement events in a unit time interval. For
convenience of following treatments, the initial state is chosen
to be the thermal state ρ0 = exp[−β

∑
k c†

k(εk − εF )ck] with
β being the inverse temperature. Note that the Lindblad master

033174-2



KELDYSH NONLINEAR SIGMA MODEL FOR A … PHYSICAL REVIEW RESEARCH 5, 033174 (2023)

equation for the unconditional measurement process also de-
scribes the effect of dephasing noise, thus our following
results also have insights for open quantum systems.

III. KELDYSH-LINDBLAD PARTITION FUNCTION

In order to do analytical analyses, instead of focusing on
the master equation formalism, we resort to the functional
Keldysh field theory [42,43]. Following the procedures pro-
vided in Ref. [42], one can transform the fermionic Lindblad
master equation, Eq. (2), to a Keldysh-Lindblad partition
function, which reads (see Appendix A for more details and
differences compared with Ref. [42])

Z =
∫
D[ψ] exp

{
iS0 − γ

2

∫
dx[ψ̄a(x)ψa(x)ψ̄b(x)ψb(x)

− ψ̄a(x)τ̂ ab
1 ψb(x)]

}
, (3)

where S0 is the free-fermion action in the 2 × 2 Keldysh
space, x = (x, t ) throughout the paper, a, b ∈ {1, 2} are the
Keldysh indices, and the repeated indices imply the sum-
mation over all possible values throughout the paper. Here,
D[ψ] ≡ D[ψ̄1, ψ1, ψ̄2, ψ2] where ψa (ψ̄a) are Grassmann
numbers after the Keldysh-Lakin-Ovchinnikov transforma-
tion [43], and τ̂μ with μ = 0, 1, 2, 3 are the identity and three
Pauli matrices in the Keldysh space. Since Z ≡ tr(ρ f ), where
ρ f is the density matrix of the final state, the normalization
condition Z = 1 is self-evident in the Keldysh formalism.
In the following treatment, the time contour is chosen to be
(−∞,+∞), such that all information of the system’s evo-
lution is imprinted in the partition function. To check the
normalization condition for Eq. (3), one can expand the par-
tition function in powers of the measurement strength γ , and
treat each order with the help of Wick’s theorem. By doing
so, one will find that in order to preserve the normalization
condition, at least in the first order, the bare Green’s function
of free fermions should be in its full form, that is,

Ĝ(k; t, t ′) =
[

GR
0 (k; t, t ′) GK

0 (k; t, t ′)
0 GA

0 (k; t, t ′)

]
− i

2

[
0 1
1 0

]
δt,t ′ ,

(4)
where GR/A/K

0 are three typical bare Green’s functions used
in the standard Keldysh field theory [43,52], and δt,t ′ is
the Kronecker delta symbol, which comes from the discrete
time version δ j, j′ with j, j′ standing for the jth time slice
and the j′th time slice. Note that in the traditional Keldysh
partition function derived from the Hamiltonian of a closed
system [43,52], the extra term ∝δt,t ′ also exists. However, one
usually omits it. One argument is, the t = t ′ line is a manifold
of measure zero and omitting it is inconsequential for most
purposes [43]. In our case, we emphasize that this δt,t ′ term
cannot be directly omitted due to the normalization condition
mentioned above.

In the Keldysh-Lindblad partition function, Eq. (3), we
add two extra terms ψ̄a(x)ψa(x)ψ̄b(x)ψb(x) with a = b,
which are null due to the property of Grassmann numbers—
ψ̄2

a = ψ2
a = 0. After adding these two terms, one finds that

the four-fermion term in the partition function is similar
to the four-fermion term after performing a disorder aver-
age in the Keldysh treatment of the disordered fermionic

problem [43–46] (see also Appendix B for a brief introduc-
tion). We emphasize that such a similarity is not obvious in
the master equation formalism, and can only be found when
one resorts to the Keldysh path integral formalism (see Fig. 1).
However, there are also some differences between these two
problems. For example, the four-fermion term in Eq. (3)
only depends on one time variable, while in the disordered
fermionic problem, the four-fermion term depends on two
time variables. In addition, there is no time-reversal symmetry
in our case due to the nature of open quantum systems, while
the time-reversal symmetry is present in the free-fermion gas
with disorders (see Appendix B for detailed discussions).

IV. TIME-LOCAL KELDYSH NONLINEAR SIGMA MODEL

We then try to derive an effective theory to capture
and analyze the monitored system. To this end, we employ
the Hubbard-Stratonovich (HS) transformation [43,52,53] by
introducing a time-local bosonic field Q̂ to decouple the four-
fermion term, where Q̂ is defined as

Q̂ =
∫

dx

[
Q11(x) Q12(x)
Q21(x) Q22(x)

]
|x〉〈x|,

and it is Hermitian in the Keldysh space, i.e., Qab(x) =
[Qba(x)]∗. Note that due to the fact that the four-fermion term
depends on two time variables in the disordered fermionic
case, the matrix HS field there is not diagonal in the time basis
(time nonlocal). The HS transformation and Gaussian integral
lead the partition function, Eq. (3), to an effective bosonic
theory (see Appendix C for details):

Z =
∫

D[Q̂] exp

{
−γ

2
(πν)2tr

[
Q̂2 +

(
1

2πν
τ̂1

)2
]

+ tr ln
(−iĜ−1

0 + γπνQ̂
)}

, (5)

where tr stands for the trace over the Keldysh space as well
as time and spatial integrations, ν is the density of states in
the vicinity of the Fermi surface, and Ĝ−1

0 is the inverse of
Ĝ + (i/2)δt,t ′ τ̂1 [see Eq. (4)]. In the procedure of replacing
Ĝ−1 with Ĝ−1

0 , we have employed the argument that the t = t ′
line is a manifold of measure zero to higher-order (�2) terms
of γ . As mentioned previously, the time-reversal symmetry
is absent in our case, thus we just decouple the four-fermion
term in the density channel. In contrast, in the disordered
fermionic case, one can also decouple the four-fermion term
in the Cooper channel, and this procedure results in Cooper-
ons, which accounts for the weak localization effect in the
one-loop level of the KNSM [43–45,54,55] (see Appendix B
for discussions about the absence of weak localization in the
measurement case).

To proceed, we need to find the saddle-point configuration
of the action in Eq. (5), which contributes most to the func-
tional integral. Taking the variation over Q̂(x), one gets the
saddle-point equation

γπ2ν2Q̂(x) = γπν
(−iĜ−1

0 + γπνQ̂
)−1

(x, x). (6)

One can check that the constant configuration �̂ = 1
2πν

τ̂3,
satisfies the saddle-point equation when γ satisfies γ � εF .
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Note that this condition also validates the procedure of re-
placing Ĝ−1 with Ĝ−1

0 in Eq. (5). Fluctuations around the
saddle point can be classified into two classes: the massive
and the massless modes. For large-scale physics, the dynamics
is mostly contributed by the massless modes. Thus, we here
focus on fluctuations of the Q̂ matrix along the massless
“direction,” and they can be generated through the similar-
ity transformation: Q̂ = R̂−1�̂R̂. In the space-time basis,
Q̂(x) = R̂−1(x) �̂ R̂(x), and Q̂(x) satisfies the nonlinear con-
straint: Q̂2(x) = ( 1

2πν
)2τ̂0.

In order to derive an effective theory for the massless
modes, one can further employ the gradient expansion, that
is, we expand the tr ln term in Eq. (5) in powers of ∂tR̂−1 and
∇R̂−1. Keeping terms up to the first order of ∂tR̂−1 and the
second order of ∇R̂−1, one arrives at the time-local Keldysh
nonlinear sigma model (see Appendix C for details):

iS[Q̂] = πνtr[∂t Q̂] − 1
4πνDtr[(∇Q̂)2], (7)

where we just keep those nonconstant terms in the action.
Here, Q̂ is redefined as Q̂ = Û−1R̂−1τ̂3R̂Û , where Û encodes
the statistical information and is defined as

Û−1 = Û =
∑

ε

[
1 Fε

0 −1

]
|ε〉〈ε|

with Fε = tanh(βε/2) relating to the Fermi-Dirac distribution.
The statistical distribution comes from the initial condition ρ0.
In Eq. (7), the constant D is defined as D = v2

F /(γ d ) with
vF being the Fermi velocity, and is named as the modified
diffusive constant. Comparing with the traditional diffusive
constant in the disordered fermionic systems, one finds that
the inverse measurement strength 1/γ plays the role of the
elastic scattering time (see Fig. 1). Intuitively, this makes
sense, as the elastic scattering time represents the mean time
within which a fermion hits the disorder, or in other words,
is measured by the disorder. Associating with the fact that
the disordered fermionic system is also described by a sim-
ilar nonlinear sigma model, we know that the effect of the
projective measurements has some similarities with that of
disorders. Indeed, in the following, we will show that up to
the one-loop level of the time-local KNSM, the conductivity
is presented in the familiar Drude form [43,52]. Note that
in Refs. [50,51], the authors consider a relevant problem in
one dimension and ladder systems. They use the perturba-
tion theory within the self-consistent Born approximation.
In fact, their treatment is the saddle point of our time-local
KNSM [52], and the similarity between projective measure-
ments and disorders cannot be seen in their treatment.

V. GAUSSIAN FLUCTUATION AND TIME-LOCAL
DIFFUSON

Having derived the saddle point and the effective theory
for our problem, we are now in a position to draw the conse-
quences from our effective theory. To this end, we write the
similarity transformation matrix R̂ through its generator Ŵ
as R̂ = exp(Ŵ/2). In the space-time basis, we have R̂(x) =
exp[Ŵ (x)/2]. To generate a nontrivial transformation for τ̂3,
the generator Ŵ (x) should be an off-diagonal matrix in the

Keldysh space, and can be expressed as

Ŵ (x) =
[

0 d12(x)
d21(x) 0

]
, (8)

where {Ŵ (x), τ̂3} = 0, and d12 and d21 are two independent
fields. Substituting Eq. (8) into the nonlinear sigma model,
Eq. (7), and expanding the action in powers of d12 and d21, up
to the second order, one obtains the Gaussian action

iS[d12, d21] = πν

∫
dx d21(x)

(
∂t − 1

2
D∇2

)
d12(x). (9)

With the help of the Fourier transformation, one finds that
this Gaussian action will generate two types of correlators,
〈d12

k,εd21
−k,−ε〉 and 〈d21

k,εd12
−k,−ε〉, which are defined as

〈
d12

k,εd21
−k,−ε

〉 = − 1

πν

1

D′k2 − iε
,

〈
d21

k,εd12
−k,−ε

〉 = − 1

πν

1

D′k2 + iε
, (10)

where D′ ≡ (1/2)D, and 〈·〉 stands for taking expectation
values with weight exp(iS[d12, d21]). We name these two
correlators in Eq. (10) time-local diffusons, as they are
similar with those diffusons in the disorder fermionic sys-
tems [43–45]. The time-local diffusons play the role of bare
Green’s functions and serve as the starting point to consider
higher-order interaction effects and other phenomena under-
neath [46,56].

VI. LINEAR RESPONSE: DC CONDUCTIVITY

Although the evolution according to the Lindbald master
equation with Hermitian jump operators will result in a fea-
tureless steady state [29,57], due to the projection nature of
the quantum jump operator n(x), one can imagine that contin-
uous projective measurements will have some impacts on the
linear response. Here, we consider the most common linear
response function in the condensed matter theory: the con-
ductivity. For this purpose, we introduce the vector potential
A(x), to which the current couples, through the action SA =
− ∫ dx ψ̄a(x)vF Aα (x)τ̂ ab

α ψb(x) [43–45], where a, b ∈ {1, 2},
α ∈ {0, 1}, and A0 stands for the classical component of the
vector potential while A1 stands for the quantum component
after the Keldysh transformation. Since the vector potential is
classical, the quantum component A1 is actually zero. In the
Keldysh field theory, it is preserved to generate observables by
appropriate variations and is set to zero in the end. Following
the procedures of deriving Eq. (7), one can get the KNSM in
the presence of the vector potential:

iS[Q̂, A] = πνtr[∂t Q̂] − 1
4πνDtr[(∂̂Q̂)2], (11)

where we have assumed that the vector potential is small
enough such that it does not alter the previous saddle
point, ∂̂Q̂ = ∇Q̂ + i[Aατ̂α, Q̂], and Q̂ is also defined as Q̂ =
Û−1R̂−1τ̂3R̂Û .

The longitudinal ac conductivity can be derived through
σ (q, ω) = (−i/ω)KR(q, ω), where KR(q, ω) is the retarded
current-current response function, and is defined as

KR(q, ω) = e2

2i

δ2Z[A]

δA0(q, ω)δA1(−q,−ω)

∣∣∣∣
A=0

(12)
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with e being the electron charge and Z[A] now being Z[A] =∫
D[Q̂] exp{iS[Q̂, A]}. To calculate the retarded current-

current response function, one may expand Z[A] in powers of
A and keep terms up to the second order of A. Then, one finds
that, up to the one-loop level of the nonlinear sigma model
[Eq. (9)], the longitudinal dc conductivity for the spatially
uniform vector potential reads

σ (q → 0, ω → 0) = e2νD. (13)

Thus, we reproduce the conductivity of the Drude form in
a monitored free-fermion gas. Note that for a purely free-
fermion gas, the conductivity is infinite, but in a monitored
free-fermion gas, the conductivity is finite and is inversely
proportional to the measurement strength γ . This Drude-form
conductivity in the monitored free-fermion gas again presents
the similarity with disorders (see Fig. 1).

As mentioned previously, the absence of the weak local-
ization effect in the measurement case results from the lack of
time-reversal symmetry (TRS). According to the Drude-form
conductivity, one can also obtain an intuitive picture of the
lack of weak localization as follows. Even though measure-
ments and disorders will have a similar effect as indicated by
the similar form in the functional Keldysh field theory, the
measurement case will introduce an extra decoherence effect
due to the nature of open systems (and this is the origin of
the lack of TRS). This decoherence effect will turn the quan-
tum system into a classical one, and then analogous exotic
effects, such as weak localization and many-body localiza-
tion, are hidden in the measurement case, as even a classical
system with disorders will not be localized and only Drude
conductivity will be derived. Therefore, in order to reveal
the localization effect produced by measurements, one has to
suppress the decoherence effect by some means. This will be
explored in the following work.

VII. NUMERICAL VERIFICATION

To support the theory and verify our predictions, we pro-
vide a numerical test based on a one-dimensional discrete
free-fermion gas subject to continuous measurements. The
Hamiltonian of the one-dimensional free-fermion gas reads

H =
N−1∑
i=1

t (c†
i+1ci + c†

i ci+1), (14)

where N is the number of sites, and t is the hopping strength,
which sets an energy scale similar to the Fermi energy in the
continuum free-fermion gas model. The value of N does not
change the 1/γ scaling shown in the following, thus we take
N = 6 for simplicity. The evolution is governed by

∂tρ = −i[H, ρ] + γ

N∑
i

[
ni ρ ni − 1

2
{ni, ρ}

]
, (15)

where ni = c†
i ci is the local particle number operator. In the

following, we will let t = 1 for simplicity. Thus, the condition
in our work γ � εF becomes γ � 1 in this discrete model.
In order to calculate the conductivity, we introduce the source
and drain in the dissipator, in analogy to the chemical potential
difference in the electrical transport experiment. Then, the

master equation becomes

∂tρ = −i[H, ρ] + γ

N∑
i

[
ni ρ ni − 1

2
{ni, ρ}

]

+ γs

[
c†

1 ρ c1 − 1

2
{c1c†

1, ρ}
]

+ γd

[
cN ρ c†

N − 1

2
{c†

N cN , ρ}
]
, (16)

where γs and γd are the strengths of pump and loss, re-
spectively. The pump process simulates a source, while the
loss process simulates a drain. In order to study the system
described by Eq. (15), γs and γd should be very small, or
else the property of our considered system will be changed
due to those additional dissipation processes. The current
operator between two neighboring sites is defined as Ji,i+1 =
i(c†

i ci+1 − cic
†
i+1), and the expectation value of Ji,i+1 or the

particle current 〈Ji,i+1〉 at time t can be calculated through
〈Ji,i+1〉(t ) = tr[ρ(t )Ji,i+1], where ρ(t ) is the state of the con-
sidered system at time t .

According to the Fick’s law [48,50], the particle current
can also be calculated through 〈J〉 = −D∇〈n(x)〉, where D is
the diffusion coefficient and ∇〈n(x)〉 is the particle number
gradient. It is similar to the Ohm’s law 〈Je〉 = −σ∇V (x)
with σ being the electrical conductivity and ∇V (x) being
the electrical potential gradient. Once we ignore the electron
charge, the electrical potential gradient ∇V (x) reduces to the
particle number gradient ∇〈n(x)〉, and the electrical current
〈Je〉 becomes the particle current 〈J〉. Therefore, once we
verify the 1/γ scaling of the diffusion coefficient from the
Fick’s law, the 1/γ scaling of the conductivity is also verified.

We numerically solve the Lindblad master equation with
source and drain, and then calculate the particle current 〈Ji,i+1〉
through 〈Ji,i+1〉(t ) = tr[ρ(t )Ji,i+1]. We find that the pump and
loss will produce a nonzero steady particle current through the
free-fermion chain for arbitrary finite measurement strength
γ , and thus 〈Ji,i+1〉 for different i are the same in the steady
state. This indicates that finite measurement strength will not
result in the localization effect. Without loss of generality,
we choose i = 1. Therefore, in the discrete version, after
reaching the steady state, the Fick’s law can be simplified
as 〈J1,2〉 = −D(〈n1〉 − 〈nN 〉)/N . 〈n1〉 and 〈nN 〉 correspond to
the left chemical potential and the right chemical potential,
respectively, in the experiment of measuring dc conductivity.
By numerically calculating 〈J1,2〉, 〈n1〉, and 〈nN 〉 for different
γ , we obtain Fig. 2. The γ � t case (in analogy with γ � εF

in the continuum free-fermion model), where our method
works, along with the γ � t case, are both considered in the
numerics. We find that the diffusion coefficients of two cases
both take on a perfect 1/γ scaling. This not only confirms the
correctness of our theory and the used approximations, but
also implies that our theory may be able to predict qualitative
properties of the considered system in an extended parameter
regime. The 1/γ scaling behavior indicates that for an infinite
measurement strength (γ → ∞), the system will be localized.
This is a manifestation of the quantum Zeno effect [58].

Actually, those data points slightly deviate from the perfect
1/γ curve, but in the log-log plot, this deviation can hardly be
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FIG. 2. Numerically calculating the diffusion coefficient D of a
one-dimensional discrete free-fermion gas. This figure is in the log-
log plot. The red crosses are results from the numerics, and the black
straight line is a fitting curve of those numerical data points. The
fitting function in the log-log plot is a straight line, thus the diffusion
coefficient D has a 1/γ scaling behavior. In addition, according to
the numerical results, the 1/γ scaling holds not only for the small γ

(γ � t) case, but also for the large γ (γ � t) case. In this numeric,
we set t = 1 for simplicity.

seen. Comparing with our result, this deviation should come
from higher order terms and fast varying modes.

VIII. DISCUSSION AND CONCLUSION

In summary, we have derived a time-local KNSM for a
free-fermion gas under continuous projective measurements.
Up to the one-loop level of the effective theory, we obtain a
Drude-form conductivity that is inversely proportional to the
measurement strength γ , and this shows that the projective
measurements cause a slowdown effect on the free-fermion
gas. Interestingly, the projective measurements manifest in
a form that is comparable to that of the disorders in the
framework of the Keldysh field theory. Nevertheless, the orig-
inal Lindblad master equation formalism does not explicitly
show this connection. Thus, in some sense, these two differ-
ent concepts, measurements and disorders, are unified in the
framework of KNSM. Note that in the disordered fermionic
system case, the weak localization effect exists in the one-
loop level due to the time-reversal symmetry [43,45], while
in our case, we do not see the weak localization effect in the
one-loop level. The comparisons are summarized in Fig. 1.

Numerical tests further confirm our theory and predictions.
For a thorough understanding of the monitored system, other
transport properties, hydrodynamics, and quantum chaoticity
also need to be considered. Our theory is a promising method
to analytically study them, and we leave these to further
works.
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APPENDIX A: FROM LINDBLAD MASTER EQUATION
TO KELDYSH FIELD THEORY

In order to introduce the mapping between the Lindblad
master equation and the Keldysh field theory, we consider a
trivial one-site case. The detailed procedure can be found in
Ref. [42], and here we focus mostly on the differences: (1)
We introduce a method to make the continuum limit mathe-
matically rigorous. (2) We show that in order to preserve the
normalization condition, one should retain the t = t ′ contribu-
tion in the bare Green’s function.

The Hamiltonian of the trivial one-site model reads H =
μc†c, where μ is the on-site energy and can be regarded as
the chemical potential. The projective quantum jump operator
is the particle number operator c†c. Thus, the Lindblad master
equation describing the evolution under the Hamiltonian and
the unconditional continuous projective measurements can be
expressed as

∂tρ = −i[H, ρ] + γ
(
c†cρc†c − 1

2 {c†c, ρ}). (A1)

This equation can be formally expressed as ρt f =
limN→∞(1 + δtL)Nρ0, where we have divided the time
interval into N slices, and L is a Liouvillian superoperator,
which is defined as

L(ρ) = −i[H, ρ] + γ
(
c†cρc†c − 1

2 {c†c, ρ(t )}). (A2)

Based on the recursion equation ρn+1 = (1 + δtL)ρn, one can
get the final state ρt f . In order to get the path integral based
on the fermionic coherent state, we should first expand the
density matrix in the fermionic coherent basis. Thus, we have

ρn =
∫

dψ̄+,ndψ+,ndψ̄−,ndψ−,ne−ψ̄+,nψ+,n e−ψ̄−,nψ−,n〈ψ+,n|ρn| − ψ−,n〉|ψ+,n〉〈−ψ−,n|, (A3)

where |ψ〉 is the fermionic coherent state, and ψ, ψ̄ are independent Grassmann numbers. We also have

〈ψ+,n+1|ρn+1|ψ−,n+1〉

=
∫

dψ̄+,ndψ+,ndψ̄−,ndψ−,ne(ψ̄+,n+1−ψ̄+,n)ψ+,n eψ̄−,n(ψ−,n+1−ψ−,n )〈ψ+,n|ρn| − ψ−,n〉

+ δt

∫
dψ̄+,ndψ+,ndψ̄−,ndψ−,ne−ψ̄+,nψ+,n e−ψ̄−,nψ−,n〈ψ+,n+1|L(|ψ+,n〉〈−ψ−,n|)| − ψ−,n+1〉〈ψ+,n|ρn| − ψ−,n〉. (A4)
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Since the Keldysh-Lindblad partition function is defined as Z = tr(ρt f ), we take the trace of ρn+1 in the fermionic coherent basis,
and we have

tr(ρn+1) =
∫ n+1∏

j=n

dψ̄+, jdψ+, jdψ̄−, jdψ−, je
ψ̄−,n+1ψ+,n+1 e−ψ̄+,n+1ψ+,n+1 e−ψ̄−,n+1ψ−,n+1 e(ψ̄+,n+1−ψ̄+,n)ψ+,n eψ̄−,n(ψ−,n+1−ψ−,n )〈ψ+,n|ρn|− ψ−,n〉

+
∫ n+1∏

j=n

dψ̄+, jdψ+, jdψ̄−, jdψ−, je
ψ̄−,n+1ψ+,n+1 e−ψ̄+,n+1ψ+,n+1 e−ψ̄−,n+1ψ−,n+1 e(ψ̄+,n+1−ψ̄+,n)ψ+,n eψ̄−,n(ψ−,n+1−ψ−,n )

× δt

{
−i[H (ψ̄+,n+1, ψ+,n) − H (ψ̄−,n, ψ−,n−1)] + γ ψ̄+,n+1ψ+,nψ̄−,nψ−,n+1−1

2
γ
(
ψ̄+,n+1ψ+,n + ψ̄−,nψ−,n+1

)}

× 〈ψ+,n|ρn| − ψ−,n〉. (A5)

In Ref. [42], in the continuum limit, ψ̄+,n+1ψ+,nψ̄−,nψ−,n+1, ψ̄+,n+1ψ+,n, and ψ̄−,nψ−,n+1 are directly set to
ψ̄+(t )ψ+(t )ψ̄−(t )ψ−(t ), ψ̄+(t )ψ+(t ), and ψ̄−,nψ−,n+1, respectively. Here, in order to make the continuum limit rigorous, we
make those Grassmann numbers of the dissipation part be at the time argument following the procedure:∫

dψ̄+,ndψ+,ndψ̄−,ndψ−,neψ̄−,n(ψ−,n+1−ψ−,n )ψ̄−,nψ−,n+1

=
∫

dψ̄+,ndψ+,ndψ̄−,ndψ−,neψ̄−,n(ψ−,n+1−ψ−,n )ψ̄−,n(ψ−,n+1 − ψ−,n + ψ−,n)

=
∫

dψ̄+,ndψ+,ndψ−,ndψ̄−,n

[
δ

δψ̄−,n
eψ̄−,n(ψ−,n+1−ψ−,n )

]
ψ̄−,n +

∫
dψ̄+,ndψ+,ndψ̄−,ndψ−,neψ̄−,n(ψ−,n+1−ψ−,n )ψ̄−,nψ−,n

=
∫

dψ̄+,ndψ+,ndψ̄−,ndψ−,neψ̄−,n(ψ−,n+1−ψ−,n )(ψ̄−,nψ−,n + 1). (A6)

ψ̄+,n+1ψ+,nψ̄−,nψ−,n+1 and ψ̄+,n+1ψ+,n can be treated in the same way.
Therefore, we have

Z = 1

tr(ρ0)

∫ 1∏
j=0

dψ̄+, jdψ+, jdψ̄−, jdψ−, j exp

⎧⎪⎪⎨
⎪⎪⎩[ψ̄+,0 ψ̄+,1 ψ̄−,1 ψ̄−,0]

⎡
⎢⎢⎣

−1 0 0 −ρ

h− −1 0 0
0 1 −1 0
0 0 h+ −1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ψ+,0

ψ+,1

ψ−,1

ψ−,0

⎤
⎥⎥⎦

+ γ δt

[
ψ̄+,0ψ+,0ψ̄−,0ψ−,0+1

2
(ψ̄+,0ψ+,0 + ψ̄−,0ψ−,0)

]⎫⎪⎪⎬
⎪⎪⎭, (A7)

where we choose N = 1 for simplicity, h∓ = 1 ∓ iμδt , ρ = 〈ψ+,0|ρ0| − ψ−,0〉, and the initial state is chosen to be an exponential
form, such as a thermal state. One finds that after doing the treatment shown in Eq. (A6), the sign before the factor 1/2 in
the dissipation term is changed [see Eqs. (A6) and (A7)]. Note that the dissipation part [the second term of the second line
in Eq. (A7)] depends on the same time argument, thus one can directly take the continuum limit and this procedure is now
mathematically rigorous. The Keldysh-Lakin-Ovchinnikov (KLO) transformation [43] leads Eq. (A7) to

Z = 1

tr(ρ0)

∫ 1∏
j=0

dψ̄1, jdψ1, jdψ̄2, jdψ2, j exp

{
−�̄(−iĜ−1)� + γ δt

[
−ψ̄1,0ψ1,0ψ̄2,0ψ2,0 + 1

2
(ψ̄1,0ψ2,0 + ψ̄2,0ψ1,0)

]}
, (A8)

where �̄ = [ψ̄1,0 ψ̄1,0 ψ̄2,0 ψ̄2,0], � = [ψ1,0 ψ1,0 ψ2,0 ψ2,0]t , ψa, j is the Grassmann number after the KLO trans-
formation with a ∈ {1, 2} being the Keldysh indices and j ∈ {0, 1} being the discrete-time indices, and

−iĜ−1 = −1

2

⎡
⎢⎢⎣

−ρ −h+ h+ −2 + ρ

h− −1 −3 h−
h− −1 1 h−

−2 − ρ h+ −h+ ρ

⎤
⎥⎥⎦. (A9)
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The bare Green’s function in the discrete-time version then
reads

iĜ = (−iĜ−1)−1

=

⎡
⎢⎢⎢⎢⎣

1
2 0 1−ρ

1+ρ
h+ 1−ρ

1+ρ

h− 1
2

1−ρ

1+ρ

1−ρ

1+ρ
h−

0 0 − 1
2 0

0 0 −h+ − 1
2

⎤
⎥⎥⎥⎥⎦+ 1

2

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦.

(A10)

In the continuum limit, Eq. (A8) can be expressed as

iĜ(t, t ′) =
[

iGR
0 (t, t ′) iGK

0 (t, t ′)
0 iGA

0 (t, t ′)

]
+ 1

2

[
0 1
1 0

]
δt,t ′ ,

(A11)
where δt,t ′ should be interpreted as the Kronecker symbol. In
the standard Keldysh field theory [43], people usually omit
the term proportional to δt,t ′ in Eq. (A11), and only keep the
first term of Eq. (A11). In order to check the normalization
condition Z = 1, one can expand Eq. (A8) in powers of γ ,
and treat each order with the help of Wick’s theorem. In our
problem here, one will find that this δt,t ′ term has to be kept
so as to preserve the normalization, as one will encounter the
equal-time correlation, 〈ψ2(t )ψ̄1(t )〉.

Generalizing to the model considered in the main text, one
can obtain the Keldysh-Lindblad partition function, Eq. (3),
of the main text.

APPENDIX B: KELDYSH TREATMENT OF DISORDERED
FERMIONIC SYSTEMS AND COMPARISON

WITH OUR PROBLEM

The Keldysh treatment of the disordered fermionic system
can be found in Refs. [43,45], and here we just quote some
discussions connected with our problem.

In the traditional studying of the disordered fermionic sys-
tem or the weak localization effect, one usually assumes a
static and spatial-dependent disorder potential Vdis(x) through
the disorder action

Sdis[Vdis] =
∫

dx Vdis(x) ψ̄a(x)τ̂ ab
0 ψb(x), (B1)

where the configuration of Vdis(x) satisfies the Gaussian dis-
tribution and thus the disorder averaging takes the form

〈· · · 〉dis =
∫

D[Vdis] exp

{
−πντel

∫
dx V 2

dis(x)

}
· · · , (B2)

where τel is the elastic scattering time. Performing the disor-
der averaging for exp(iSdis), one can get

〈
eiSdis

〉
dis =

∫
D[Vdis] exp

{
−
∫

dx πντelV
2

dis(x) + iVdis(x)
∫

dt ψ̄a(x, t )τ̂ ab
0 ψb(x, t )

}

= exp

{
− 1

4πντel

∫
dx
∫

dt dt ′ψ̄a(x, t )ψa(x, t )ψ̄b(x, t ′)ψb(x, t ′)
}
. (B3)

And then, the partition function after disorder averaging reads

Z =
∫

D[ψ] exp

{
iS0 − 1

4πντel

∫
dx
∫

dt dt ′ψ̄a(x, t )ψa(x, t )ψ̄b(x, t ′)ψb(x, t ′)
}
, (B4)

where S0 is the free-fermion action. Note that the disorder averaging introduces a four-fermion term into the action.
For convenience, we also put the Keldysh-Lindblad partition function of our problem here:

Z =
∫
D[ψ] exp

{
iS0 − γ

2

∫
dx dt[ψ̄a(x, t )ψa(x, t )ψ̄b(x, t )ψb(x, t ) − ψ̄a(x, t )τ̂ ab

1 ψb(x, t )]

}
. (B5)

Comparing these two equations, Eqs. (B4) and (B5), one can
observe that the two four-fermion terms are in a similar form.
Thus, in some sense, these two different problems are unified
in the framework of the functional Keldysh field theory. Here,
we emphasize again that such a similarity is not obvious in the
master equation formalism, and can only be found when one
resorts to the Keldysh path integral formalism (see Fig. 2 in
the main text).

In the disordered fermionic systems, the TRS is present,
thus the remarkable weak localization exists. A rudimentary
conceptual understanding of the weak localization is that
it results from the constructive interference of two time-
reversed paths of an electron [59]. Consider the amplitude of
an electron to return to its starting point. In general, it will
encounter a sequence of scattering sites (see Fig. 3), which are
manifestations of disorders. For each path p, there is a time-
reversed path p̃ when the system is time-reversal symmetric.

Amplitudes of the electron around p and p̃ are the same,
while for other paths, phases should be random. Therefore,
the electron will have a quantum-mechanically enhanced
probability of returning to its starting point due to the time-
reversal symmetry. From this argument, we know that the
time-reversal symmetry is significant to the weak localiza-
tion in the disordered case. Theoretically, the time-reversal
symmetry will result in another set of soft modes, known as
Cooperons [43,45,52], in the effective theory—Keldysh non-
linear sigma model. Those Cooperon modes will provide an
infrared divergent correction to the dc conductivity, and then
imply a localization transition from the metallic phase. If the
system does not have time-reversal symmetry, the construc-
tive interference of two time-reversed paths does not exist,
and thus the weak localization disappears. Theoretically, the
Cooperon modes disappear due to the lack of TRS, and only
diffuson modes contribute to the transport properties. As a
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FIG. 3. Scattering of an electron along two time-reversed paths
in the disordered fermionic systems.

consequence, the dc conductivity will present in the Drude
form without divergent corrections.

In the measurement case or the dephasing system, the
time-reversal symmetry is obviously absent. Thus the soft
modes analogous to Cooperons in the disordered systems do
not exist in the measurement case or the dephasing case.
By this comparison, we know that diffusons are the only
dominant excitations or soft modes in the Keldysh nonlinear
sigma model, and there will not be localization for weak
measurement strength (γ � εF ). In Sec. VII of the main
text, we provide a numerical example to support our theory
and verify our predictions. From the numerics (see Fig. 3),
we find that for all finite measurement strengths, the weak
localization does not exist. And for large γ , the scaling of
the diffusion coefficient (and thus the conductivity) is also
1/γ . The scaling behavior implies that for an infinite mea-
surement strength, the system will be localized. However, this
is a manifestation of the quantum Zeno effect instead of the
weak localization. As the measurement strength γ can be
regarded as the number of measurement events in a unit time

interval (γ ∼ 1/τ with τ being the duration of one-shot mea-
surement), γ → ∞ means that the system is measured all the
time. In this sense, γ → ∞ corresponds to the quantum Zeno
limit.

APPENDIX C: BOSONIC EFFECTIVE THEORY
AND THE KELDYSH NONLINEAR SIGMA MODEL

1. Bosonic effective theory

Following the procedure introduced in Appendix A, one
can get the Keldsyh-Lindblad partition function for our prob-
lem, which is Eq. (3) in the main text. For the four-fermion
term in the dissipation part, we introduce an auxiliary time-
local bosonic field Q̂ to decouple it with the help of the
identity

1̂ =
∫

D[Q̂] exp
[
−γ

2
(πν)2tr(Q̂2)

]
=
∫

D[Q̂] exp

[
−γ

2
(πν)2

∫
dx Q̂ab(x)Q̂ba(x)

]
. (C1)

The definition of Q̂ is similar to the definition of an
operator in quantum mechanics. In quantum mechanics, an
operator Ô in the position basis can be expressed as Ô =∫

dx1dx2Ô(x1, x2)|x1〉〈x2|, and Ô(x1, x2) is the matrix ele-
ment of Ô. If Ô is diagonal in the position basis, then Ô
reduces to Ô = ∫ dx Ô(x)|x〉〈x|. More often, the matrix el-
ement Ô(x1, x2) is just a number. However, one can always
generalize it to the case that the matrix element is also a
matrix. Such a generalization is widely used in quantum field
theories and tensor network methods. In our work, the defini-
tion of Q̂ is exactly such a generalization. The nonzero matrix
element of Q̂ that is diagonal in the position basis, can be
expressed as

Q̂(x) =
[

Q11(x) Q12(x)
Q21(x) Q22(x)

]
. (C2)

After using this definition, the trace over Q̂ becomes the trace
over both the Keldysh space and the space-time basis. For
example, tr(Q̂2) in Eq. (C1) is defined as

tr(Q̂2) = trK

[∫
dx〈x|

∫
dx1dx2Q̂(x1)|x1〉〈x1| · Q̂(x2)|x2〉〈x2|x〉

]

= trK

[∫
dx〈x|

∫
dx1Q̂2(x1)|x1〉〈x1|x〉

]

= trK

[∫
dx Q̂2(x)

]

=
∫

dx Q̂ab(x)Q̂ba(x), (C3)

where trK stands for the trace over the Keldysh space, a, b ∈ {1, 2} are Keldysh indices, and repeated indices imply summation.
After introducing the auxiliary fields Q̂, one arrives at

Z =
∫

D[Q̂]D[ψ] exp

{
iS0 − γ

2
(πν)2tr(Q̂2) − γ

∫
dx

[
πνψ̄a(x)Q̂ab(x)ψb(x) − 1

2
ψ̄a(x)τ̂ ab

1 ψb(x)

]}
. (C4)
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Using the Gaussian integration, one arrives at the effective bosonic theory depending only on Q̂:

Z =
∫

D[Q̂′] exp

{
−γ

2
(πν)2tr

[(
Q̂′ + 1

2πν
τ̂1

)2
]

+ tr ln[−iĜ−1 + γπνQ̂′]

}
, (C5)

where we have let Q̂′ = Q̂ − 1
2πν

τ̂1, and Q̂′ is still Hermitian. In the following, we will relabel Q̂′ as Q̂ again. For higher orders
(�2) of the expansion in powers of γ , we can replace Ĝ with Ĝ0 [the first term in Eq. (A11)] due to the fact that the t = t ′ line is
only a manifold of measure zero [43]. Then, one gets the Keldysh-Lindblad partition function shown in Eq. (5) of the main text:

Z =
∫

D[Q̂] exp

{
−γ

2
(πν)2tr

[
Q̂2 +

(
1

2πν
τ̂1

)2
]

+ tr ln
[−iĜ−1

0 + γπνQ̂
]}

. (C6)

2. Time-local Keldysh nonlinear sigma model

Taking the variation over Q̂(x), one gets the saddle-point
equation of the action in Eq. (C6), and one can check that
the constant configuration �̂ = 1

2πν
τ̂3 satisfies the saddle-

point equation. For large-scale physics, we just focus on
the massless fluctuation, which can be generated by Q̂(x) =
R̂−1(x)�̂R̂(x). Note that now Q̂(x) is constrained by Q̂2(x) =
( 1

2πν
)2τ̂0. And then one finds that only the tr ln term in

Eq. (C6) will contribute to the dynamics, while other terms
only contribute some constants. Thus, in the following, we
can just focus on the tr ln term.

Note that the bare Green’s function Ĝ0 can be expressed as
Ĝ0 = Û−1Ĝ0d Û , where

Û−1 = Û =
∑

ε

[
1 Fε

0 −1

]
|ε〉〈ε|,

Ĝ0d =
∑
k,ε

[
GR

0 (k, ε) 0
0 GA

0 (k, ε)

]
|k, ε〉〈k, ε|, (C7)

and Fε = 1 − 2nF (ε) with nF (ε) being the Fermi-Dirac distri-
bution function. Thus, the statistical information is actually
encoded in the matrix Û . The statistical distribution in Ĝ0

comes from the initial thermal state ρ0 = exp[−β
∑

k c†
k(εk −

εF )ck]. We would like to obtain an effective theory depend-
ing only on Q̂ to describe the physics of our problem. To
this end, we first make a similarity transformation to encode
the statistical information in Q̂ instead. Note that due to the
cyclic property of the trace operation, this similarity does
not change the theory. And then the tr ln term in Eq. (C6)
now becomes tr ln[−iĜ−1

0d + (γ /2)Q̂], where Q̂ is redefined
as Q̂ = Û−1R̂−1τ̂3R̂Û , and in the space-time basis, Ĝ−1

0d =
i∂t + ∇2

2m + εF + i0τ̂3. Therefore, we have

iS[Q̂] = tr ln
[−iĜ−1

0d + (γ /2)Û−1R̂−1�̂R̂Û
]

= tr ln

{[
−iR̂

(
i∂t + ∇2

2m
+ εF

)
R̂−1 − iÛ−1i0τ̂3Û

]

+ γ

2
τ̂3

}

≈ tr ln[Ĝ−1 + iÛ−1R̂(∂tR̂−1)Û

+ iÛ−1R̂(vF · ∇R̂−1)Û ], (C8)

where Ĝ−1 = i∂t + ∇2

2m + εF + i γ

2 Û τ̂3Û , and vF · ∇ comes
from the linearization of the dispersion relation near the
Fermi energy: k2/(2m) − εF ≈ vF · k → −ivF · k [43,45].
Note that the saddle-point configuration ∝ τ̂3 plays the role
of the self-energy. In the energy-momentum basis, we have

Ĝ(k, ε) = Ûε

[
1

ε−ξk+iγ /2 0
0 1

ε−ξk−iγ /2

]
Ûε, (C9)

where ξk = k2/(2m) − εF . Expanding the tr ln term in powers
of ∂tR̂−1 and ∇R̂−1 [similar to the Taylor expansion of the
function ln(1 + x)], one will arrive at the time-local Keldysh
nonlinear sigma model

iS[Q̂] = πνtr[∂t Q̂] − 1
4πνDtr[(∇Q̂)2], (C10)

where ∂t Q̂ ≡ ∂t (ÛR̂−1)τ̂3R̂Û . The linear order of the spatial
gradient is zero due to the angular integration. A similar
calculation can be found in Chapter 11 of Ref. [43]. As our
auxiliary field Q̂ only depends on one time argument, while
in the disordered fermionic case, the auxiliary field depends
on two time variables, here we term our Keldysh nonlinear
sigma model as the time-local KNSM to distinguish from
the KNSM in the disordered fermionic case. The Keldysh
nonlinear sigma model in the presence of the vector potential
can be derived from those similar calculations.
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