
PHYSICAL REVIEW RESEARCH 5, 033173 (2023)

Many-body non-Hermitian skin effect under dynamic gauge coupling
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We study an atom-cavity hybrid system where fermionic atoms in a one-dimensional lattice are subject to a
cavity-induced dynamic gauge potential. The gauge coupling leads to highly degenerate steady states in which
the fermions accumulate to one edge of the lattice under an open boundary condition. Such a phenomenon orig-
inates from the many-body Liouvillian superoperator of the system, which, being intrinsically non-Hermitian, is
unstable against boundary perturbations and manifests the non-Hermitian skin effect. Contrary to the single-body
case, the steady state of a multiatom system is approached much slower under the open boundary condition, as
the long-time damping of the cavity mode exhibits distinct rates at different times. This stagewise slowdown is
attributed to the competition between light-assisted hopping and the dynamic gauge coupling, which significantly
reduces the steady-state degeneracy under the open boundary condition, as distinct hosts of quasisteady states
dominate the dynamics at different timescales.
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I. INTRODUCTION

Gauge fields are a central topic in modern physics—the
elegant formulation of quantum matter interacting with gauge
fields underlies many distinct physical settings, ranging from
high-energy physics [1–4] to strongly correlated quantum ma-
terials [5–7]. The recent implementation of synthetic gauge
potentials in ultracold atomic gases [8–19] sheds new light on
the subject—not only does a rich variety of gauge potentials
become experimentally accessible, its interplay with strong
interaction and dissipation can be investigated in a controlled
manner. Within this context, atom-cavity hybrid systems offer
a particularly intriguing avenue [20–25]. The cavity mode,
by inducing a dynamic gauge potential, gives rise to long-
range interatomic interactions [26], which, combined with the
back action of cavity dissipation, can lead to exotic far-from-
equilibrium dynamics and many-body steady states [27–37].

For cold atoms coupled to a lossy cavity, the dynam-
ics is driven by the Liouvillian superoperator [38–41]. Its
intrinsic non-Hermiticity suggests that unique features of non-
Hermitian Hamiltonians, such as the parity-time symmetry
[42,43], criticality, and topology associated with the excep-
tional points [44–46], and the non-Hermitian skin effects
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(NHSE) [47–61], can impact the open-system dynamics. Of
particular interest here is the NHSE, which originates from the
instability of non-Hermitian matrices to boundary perturba-
tions, and manifests in the accumulation of eigenstates toward
the boundary under the open boundary condition (OBC). The
NHSE is found to have a dramatic influence on the system’s
band and spectral topology [57–59], as well as the spectral
symmetry [62–64] and dynamics [53–55,65–67]. Some of
these influences carry over to non-Hermitian models within
the many-body context, as the interplay of the NHSE and
many-body interaction can have an impact on the system’s
topology [68–71] and localization [72,73]. However, the man-
ifestations of NHSE in many-body quantum open systems,
particularly in the experimentally relevant hybrid atom-cavity
configurations, remain relatively unexplored.

In this work, we study the emergence and consequence of
NHSE in fermionic atoms under a cavity-induced dynamic
gauge potential. The Liouvillian spectra of this many-body
open system, while sensitive to boundary conditions, exhibit
rich structures that are distinct from the single-particle case,
leading to boundary-dependent damping dynamics. Under the
OBC, for instance, the steady-state population accumulates
toward the boundary. The steady-state degeneracy can be
significantly reduced compared to that under the periodic
boundary condition (PBC), as hosts of quasisteady eigen-
modes emerge in the Liouvillian spectrum. The Liouvillian
eigenvalues of these quasisteady modes have power-law scal-
ings with respect to the system parameters, giving rise to
a significant slowdown of the steady-state-approaching dy-
namics. Intriguingly, the power-law scaling of the Liouvillian
eigenvalues is determined by the localization properties of
the corresponding eigenmodes, such that the system becomes
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FIG. 1. Schematic of the setup and single-particle NHSE.
(a) Spinless fermions are subject to Raman-assisted hoppings along a
one-dimensional lattice. One of the Raman processes consists of the
cavity mode (red dashed arrow, with a frequency ωc) and the cavity
pump laser (green solid arrow, with a frequency ωp = ωc + δ), with a
two-photon detuning of �e. The other Raman process is generated by
the pump and an additional Raman laser (brown solid arrows). The
lattice is tilted with an on-site detuning δ to switch off direct hopping.
A large cavity loss rate κ is assumed. (b) Spatial distribution of the
single-particle steady states for s = 0 (red) and s/γ = 0.5 (green)
under OBC. (c) Single-particle Liouvillian spectrum on the com-
plex plane for s = 0 under PBC (blue) and OBC (red), respectively.
(d) Single-particle Liouvillian spectrum for s/γ = 0.5, under PBC
(blue) and OBC (red), respectively. For calculations in (b)–(d), we
take L = 50 and N = 1.

more and more localized as different groups of quasisteady
modes take turns to dominate the long-time dynamics. Our
results reveal the nontrivial effects of NHSE in a many-body
quantum open system and highlight the atom-cavity hybrid
system as an experimentally accessible setup where non-
Hermitian physics can be investigated.

The work is organized as follows. In Sec. II, we present
the setup of the atom-cavity hybrid system and reveal the
NHSE on the single-body level. We proceed in Sec. III by
considering the cases with more than one atom and discuss the
distinct features of the NHSE beyond the single-body level.
The impacts of the many-body NHSE on the steady-state de-
generacy and long-time dynamics are then discussed in detail
in Secs. IV and V, respectively. We summarize in Sec. VI.

II. MODEL AND SINGLE-BODY NHSE

We consider spinless fermions in a quasi-one-dimensional
lattice with cavity-assisted hopping [see Fig. 1(a)]. The lattice
potential is along the x direction and tightly confined in the
other directions. It is further tilted by a magnetic gradient,
so that the detuning δ between neighboring sites suppresses
direct intersite hopping. Two Raman-assisted-hopping pro-
cesses are introduced. One is mediated by the cavity pump

[green solid line in Fig. 1(a)] and the cavity mode [red dashed
line in Fig. 1(a)], where the two-photon detuning �e � δ.
The other is generated by the pump beam and an additional
Raman laser [brown solid arrow in Fig. 1(a)]. Given a lossy
cavity, the dynamics of the fermions adiabatically follows that
of the cavity field, and the fermions are effectively subject to
a cavity-dependent dynamic gauge potential. In the following,
to differentiate the two processes, we address them as the
dynamic gauge coupling and the Raman-assisted hopping,
respectively.

Eliminating the cavity mode and taking the tight-binding
approximation [29,31,74], the atomic density matrix ρ is gov-
erned by the Lindblad master equation (we take h̄ = 1),

dρ

dt
= L[ρ] = −i[Ĥ, ρ] + γ (2K̂ρK̂† − {K̂†K̂, ρ}), (1)

where L is the Liouvillian superoperator and

Ĥ = −�c

κ
γ K̂†K̂ + s(K̂ + K̂†), (2)

with γ = κλ2/(�2
c + κ2). Throughout the work, we take

�c/κ = 1 for numerical calculations. The jump operator K̂ =∑L−1
j ĉ†

j+1ĉ j , s is the amplitude of the Raman-assisted hop-

ping, where ĉ j (ĉ†
j ) annihilates (creates) a fermion on site

j, and L is the total number of sites. Notably, the dynamic
gauge coupling gives rise to cavity-mediated long-range in-
teractions, captured by the first term in Eq. (2).

Insights on the long-time dynamics can be gained from
the Liouvillian spectrum λ, which satisfies the eigenequa-
tion L[ρ] = λρ, with Reλ � 0 for the purely dissipative
system considered here. The steady states correspond to
eigenstates with λ = 0, while Reλ of the other eigenmodes
contribute to the system’s relaxation toward the steady
states.

An outstanding feature of the hybrid system is the sensitive
dependence of the steady states on the boundary condition. In
the simplest case where a single atom is coupled to the cavity
under PBC and with s = 0, the steady state exhibits a uniform
density distribution but a directional bulk current. Under the
OBC, however, the bulk current vanishes and the steady state
corresponds to a fully localized atom on the leftmost site [red
in Fig. 1(b)]. When the Raman-assisted hopping is switched
on with s �= 0, it competes with the localizing effect of the dy-
namic gauge coupling, leading to a partially localized steady
state [green in Fig. 1(b)]. While configurations with s = 0
were previously investigated in the context of nonequilibrium
dynamics [31], these properties are reminiscent of the chiral
current (under PBC) [53,54,65,67] and boundary localization
(under OBC) [47] of the recently discovered NHSE.

The presence of NHSE is more transparent from the Li-
ouvillian spectra [see Figs. 1(c) and 1(d)]. Under PBC, the
spectra form looped structures on the complex plane [blue
in Figs. 1(c) and 1(d)], consistent with the well-known spec-
tral topology of the NHSE [57,58]. By contrast, the spectra
collapse under OBC, yielding a larger Liouvillian gap. Here
the Liouvillian gap is defined as the minimum |Reλ| other
than 0. Consequently, the steady states are approached much
faster under OBC, than in the case of PBC. The NHSE here
derives from the sensitivity of the Liouvillian eigenmodes and
eigenspectrum to boundary conditions, which is reflected in
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FIG. 2. NHSE with more than one fermion. (a)–(d) Liouvillian spectra for a fixed lattice length L = 10 with (a),(b) N = 2 and (c),(d) N = 3
fermions. The blue (red) spectra are calculated under the PBC (OBC). (e)–(h) Spatial density distribution of typical steady states under OBC,
for (e),(f) N = 2 and (g),(h) N = 3 fermions. We take (a),(c),(e),(g) s = 0 and (b),(d),(f),(h) s/γ = 0.5.

the relations [K̂, K̂†] = 0 under PBC and [K̂, K̂†] �= 0 under
OBC. Since these relations also hold in the many-body case,
one expects the NHSE should persist when multiple fermions
are coupled to the cavity.

III. MANY-BODY NHSE

As shown in Figs. 2(a)–2(d), in the multiple-fermion
case, the Liouvillian spectra differ dramatically under dif-
ferent boundary conditions, while the steady states of the
system become localized toward a boundary under OBC
[see Figs. 2(e)–2(h)]. However, compared to the single-body
case, there are important differences. First, the loop structure
of the spectrum under PBC disappears under finite s, sug-
gesting the lack of spectral topology in the many-body case.
Second, the Liouvillian gap under OBC is smaller than that
under PBC, reversing the situation in the single-fermion case
and affecting the long-time dynamics, as we show below. Last
but not least, while the steady-state degeneracy is typically
quite large under OBC at s = 0, it is significantly reduced
under a finite s. The lifting of the steady-state degeneracy
is accompanied by the emergence of eigenmodes that lie
close to λ = 0 and dominate the long-time dynamics. In
the following, we address these eigenmodes as quasisteady
modes.

IV. STEADY-STATE DEGENERACY

To understand the steady-state degeneracy, we adopt a
Fock basis {| j1, j2, . . . , jN 〉}, where ji ∈ [1, L] indicates the
site index occupied by the ith fermion, with the understanding
that each basis state is properly antisymmetrized. Here the lat-
tice sites are labeled in ascending order from left to right. The
Hilbert space is then divided into different subspaces HB, each
with a fixed sum of occupied-site index B = ∑N

i=1 ji. Such an

index quantitatively characterizes the extent of localization—
states localized to the left (right) boundary possess small
(large) index. Since the jump operator K̂ transforms a state in
the subspace HB to one in HB−1, its matrix in the Fock basis
is block-off-diagonal.

In the case of PBC, since [K̂, K̂†] = 0, K̂ and K̂† have
common eigenstates and complex-conjugate eigenvalues. It
is then straightforward to show that the steady states of the
Liouvillian L can be constructed from the eigenstates of K̂
(regardless of the value of s). Specifically, denoting the eigen-
states of K̂ as {|φnβ〉}, where n and β, respectively, label the
eigenvalue and the corresponding degenerate eigenstate, the
steady-state density matrix can be constructed as arbitrary
superpositions of {|φnβ〉〈|φnβ ′ |}. The steady-state degeneracy
is therefore

∑
n β2

n , where βn is the degeneracy of the nth
eigenvalue. Since

∑
n β2

n � L!
N!(L−N )! , the latter being the di-

mension of the full Hilbert space, the steady states are highly
degenerate under PBC, with the degeneracy dependent only
on L and N .

Under OBC, by contrast, [K̂, K̂†] �= 0 and the steady-state
degeneracy becomes s dependent. When s = 0, the steady
states can only be constructed from the dark states of K̂ .
From the block-off-diagonal nature of the K̂ matrices, one
can deduce that the number of dark states is at least Gm,
where Gm is defined as the maximum dimension of all pos-
sible HB. For all cases considered in this work, we have
numerically checked that the lower bound Gm gives the
exact number of dark states. Further, in the limit L, N �
1, we apply the central limit theorem to find that Gm ≈√

6
πN (L−N )(L+1)

L!
N!(L−N )! (see Appendix B). The corresponding

steady-state degeneracy is then G2
m, which already pro-

vides an accurate estimation for N = 2, 3 considered in this
work.

Under finite s, we find that for any ρ0 with [K̂, ρ0] =
[K̂†, ρ0] = 0, the steady states ρs can be generated through
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FIG. 3. (a),(b) Long-time damping of the cavity field |α|2 under
OBC, for s = 0.5, 1.1, 1.6 (green, blue, purple), respectively. We
show |α2| relative to the steady-state value |αs|2, which is esti-
mated using |α|2 at γ t = 105. (c),(d) Atomic density distribution for
s/γ = 0, 0.5, 1.6 (red, green, purple), respectively, at time γ t = 104.
The initial states are given by a diagonal density matrix with even
on-site distribution in (a)–(c) and a localized Fock state in (d); their
spatial distributions are indicated by the black dashed lines in (c) and
(d). For all figures, L = 10 with N = 2 fermions. The markers in
(a) and (b) indicate the typical timescales tq at which a given group
of quasisteady modes dominates the dynamics (see Fig. 4).

(see Appendix C)

ρs =
∑

n

n∑
q=0

A−q
+ A−(n−q)

− K̂q(K̂†)n−qρ0, (3)

where A± = ∓is
(1±i�c/κ )γ . Since K̂q = (K̂†)q = 0 for q > NL,

the summation over n has finite terms. Exhausting all possible
forms of ρ0, one can prove that the steady-state degeneracy is
significantly reduced to 1 + 1+(−1)L

2 �N
2 , where �N

2  gives the
integer part of N

2 (see Appendix C).
Hence, most of the steady-state degeneracy is lifted once

the Raman-assisted hopping is switched on, thanks to the
competition between the cavity-induced gauge coupling and
the Raman-assisted hopping. As we show below, this would
give rise to hosts of quasisteady eigenmodes and unique long-
time dynamics under OBC.

V. LONG-TIME DYNAMICS AND QUASISTEADY MODES

Under the mean-field approximation, the cavity field
is given by the expression |α|2 = λ2〈K̂〉2/(�2

c + κ2). In
Figs. 3(a) and 3(b), we show the long-time damping behav-
ior of the cavity field under OBC. The cavity field exhibits
different exponential damping rates at different times, with
a smaller rate at longer times. Note that since the operator
commutation relations are highly boundary dependent, the
cavity field remains constant under PBC (see Appendix E).
Further, regardless of the initial state, the cavity damping is
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FIG. 4. (a),(c) Real components of the Liouvillian spectra for the
quasisteady modes under OBC, as s/γ increases in the vicinity of s =
0. Only eigenmodes with eigenvalues close to Reλ = 0 are shown.
The green, blue, and purple markers are taken at s/γ = 0.5, 1.1, 1.6,
respectively. Their shapes correspond to different branches of qua-
sisteady modes, which dominate at different time scales (see Fig. 3).
The marked timescales shown in Fig. 3 are estimated using tq =
1/Reλ for the corresponding markers. (b),(d) Power-law exponent
p as a function of Bm. Calculations from the numerical fit [over
solid-line segments in (a) and (c)] are indicated by blue dots, and
the analytically obtained lower bounds are shown by a red diamond.
We take L = 10, and (a),(b) N = 2 and (c),(d) N = 3 fermions.

accompanied by an increased localization of the time-evolved
state toward the boundary [see Figs. 3(c) and 3(d)].

The stagewise slowdown in the steady-state-approaching
dynamics can be understood by adopting a perturbative anal-
ysis under small s. We rewrite the Liouvillian as L = L0 +
sL1, collecting all s-dependent terms in sL1, with L1[ρ] =
−i[K̂ + K̂†, ρ]. We expand the density matrix as ρ = ρs +∑

n=1 snρn, where ρs is the steady state for s = 0, with
L0[ρs] = 0. Formally, the steady state can be written as ρs =∑

i, j αi j |DBi
L 〉〈DBj

L |, where |DBi〉 is a dark state of K̂ in the
subspace HBi . We then define Bm = max(Bi, Bj ), which char-
acterizes the extent of spatial localization of the state ρs.

Matching coefficients in s order by order in the eigenequa-
tion L[ρ] = λρ, one concludes that the density-matrix expan-
sion should have infinite terms when ρ is a steady state, with
ρn satisfying L0[ρn+1] = −L1[ρn]. For quasisteady eigen-
modes, the expansion would first truncate at some order M,
with ρ = ρs + ∑M

n=1 snρn. We derive an analytic expression
of ρn for the quasisteady states (see Appendix D), revealing a
power-law scaling of their eigenvalues,

λ ∼ sM+nL+1 Tr(ρnLL1[ρM]), (4)

where nL is the lowest order at which Tr(ρnLL1[ρM]) �= 0.
A lower bound of the exponent p = M + nL + 1 can also be
derived, which monotonically increases with decreasing Bm

(see Fig. 4), connecting the eigenvalues of the quasisteady
states with localization.
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In Figs. 4(a) and 4(c), we show the Liouvillian spectra
Reλ of several groups of quasisteady modes, each group
exhibiting similar power-law scaling with respect to s. As a
consequence of the hierarchy of structures in the Liouvillian
spectrum, under any given s, different groups of eigenmodes
take turns to dominate the long-time dynamics. For instance,
under s/γ = 0.5, the eigenmodes marked by a green square
and triangle sequentially dominate the damping dynamics at
typical times tq = 1/Reλ [marked in Figs. 3(a) and 3(b) by
the corresponding symbols]. The exponential damping rates
of the cavity field, fitted using solid lines in Figs. 3(a) and
3(b), agree well with Reλ at the corresponding markers.

Importantly, different groups of eigenmodes, characterized
by different exponents p, have distinct localization proper-
ties. In Figs. 4(b) and 4(d), we plot the relation between
the power-law exponent p and Bm. The analytically obtained
lower bounds lie below, but close to, the numerically cal-
culated exponent. Since eigenmodes with Reλ ∼ sp should
dominate the dynamics at the timescale tq ∼ s−p, for any
given small hopping rate s, eigenmodes with larger p (hence
more localized) should dominate at longer times. Thus, the
OBC significantly enriches the long-time dynamics, exciting
eigenmodes with localization-dependent eigenvalues out of
the steady-state subspace, such that more localized eigen-
modes dominate the dynamics at later times.

VI. CONCLUSION

We demonstrate the impact of NHSE in the many-body
dynamics of an atom-cavity hybrid system. Besides inducing
boundary localization of the steady states, the NHSE exhibits
intriguing features that are absent in the single-particle case.
In particular, the NHSE gives rise to a stagewise slowdown
of the long-time dynamics under OBC. The situation is com-
pletely contrary to the single-body case, where the long-time
dynamics is slower under the PBC due to the finite Liouvillian
gap under the OBC. Thus, the slowdown under OBC in the
many-body case is a direct manifestation of the NHSE beyond
the single-body paradigm. Physically, this stagewise slow-
down indicates the presence of distinct groups of quasisteady
states, with each group featuring unique power-law-scaled Li-
ouvillian eigenvalues, as well as a similar extent of boundary
localization. Our results thus establish a general connection
between spectral geometry and open-system dynamics, and
reveal the rich spectral and dynamic consequences of non-
Hermitian physics in many-body quantum open systems.

Given the recent progress in atom-cavity hybrid systems,
our predictions can be experimentally checked either in real-
space or momentum-space lattices [24,25,75]. For instance,
in the latter case, our model can be implemented in the mo-
mentum space of the atoms, following the design in Ref. [75].
Therein, discrete momentum states of atoms in an optical cav-
ity are coupled by Bragg processes consisting of pump lasers
and the cavity field. While the discrete momentum states can
be mapped to discrete lattice sites, the Bragg processes play
the role of Raman-assisted hopping discussed in this work.
Further, the directional transfer along the momentum lattice
is facilitated by the photon recoil of the Bragg processes
(together with the cavity dissipation), such that tilting of the
lattice, as shown in Fig. 1(a), is no longer necessary. Finally,

the long-time dynamics can be probed by detecting the time
evolution of the cavity field as well as the momentum-space
distribution of atoms through the time-of-flight imaging.
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APPENDIX A: STEADY-STATE DEGENERACY UNDER
THE PERIODIC BOUNDARY CONDITION

Under the periodic boundary condition (PBC), [K̂, K̂†] =
0, and therefore K̂ and K̂† have common eigenstates and
complex-conjugate eigenvalues. We denote their common
eigenstates as {|φnβ〉}, where n and β, respectively, label
the eigenvalue and the corresponding degenerate eigenstate.
It follows that K̂|φnβ〉 = μn|φnβ〉 and K̂†|φnβ〉 = μ∗

n|φnβ〉,
where μn is the nth eigenvalue with a degeneracy βn.

For any density matrix ρs = ∑
β,β ′ αβ,β ′ |φnβ〉〈φnβ ′ | with

superposition coefficients αβ,β ′ , we have [K̂, ρs] = [K̂†, ρs] =
0. With direct calculation, we find

L[ρs] = −i[Ĥ , ρs] + γ (2K̂ρsK̂
† − {K̂†K̂, ρs})

= γ (2μnμ
∗
n − 2μ∗

nμn)ρs = 0. (A1)

Therefore, ρs is a steady state under PBC. Taking ρs at dif-
ferent n and αβ,β ′ , we can construct a total number of

∑
n β2

n
independent steady states. We have numerically checked that
for all cases considered in our work, this number actu-
ally gives the exact steady-state degeneracy. Since βn � 1,
the steady-state degeneracy D = ∑

n β2
n � ∑

n βn = L!
N!(L−N )! ,

where the latter is the dimension of the Hilbert space with L
sites and N spinless fermions.

APPENDIX B: STEADY-STATE DEGENERACY AT s = 0
UNDER THE OPEN BOUNDARY CONDITION

We consider a one-dimensional lattice with L sites and
N spinless fermions, and adopt the antisymmetrized Fock
basis {| j1, j2, . . . , jN 〉}, where ji ∈ [1, L] indicates the site
occupied by the ith fermion. Here the lattice sites are labeled
in ascending order from left to right. The Hilbert space is
then divided into different subspaces HB, each with a fixed
sum of the occupied-site labels B = ∑N

i=1 ji. Here, B can only
take integer values within the range of Bmin = N (N + 1)/2 �
B � Bmax = N (2L − N + 1)/2. It is straightforward to show
that the quantum jump operator K̂ transforms a state in the
subspace HB to one in HB−1. The matrix of K̂ can therefore
be written in a block-off-diagonal form. We denote the off-
diagonal block between the subspaces HB and HB−1 using the
transfer matrix MB. Here, MB is a GB × GB−1 matrix, where
GB is the dimension of the subspace HB. Formally, GB can be
determined from the recursive relation

GB(L, N ) =
L∑

n=�B/N+1

GB−n(n − 1, N − 1) (B1)
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FIG. 5. (a) The rescaled distribution function G̃B =√
N (L−N )N!(L−N )!

L! GB vs B̃ = B−N (L+1)/2√
N (L−N )

. The red, blue, and green
lines are, respectively, calculated using N = 2, N = 3, and
N = L/2. The black lines indicate the Gaussian distribution
G̃B = exp(−B̃2/2σ 2)/

√
2πσ , with the variance σ 2 = (L + 1)/12.

The lattice size L = 10, 20, 50 for solid, dashed, and dotted lines.
(b) Relative error between Gm and its estimation Gest using Eq. (B6).
The red, blue, and green dots are, respectively, N = 2, 3 and
N = L/2 (with even L).

and the condition

GB(L, 2) = max

[
0, min

(⌊
B + 1

2

⌋
− 1, L −

⌊
B

2

⌋)]
.

(B2)

Here, GB(L, N ) is the dimension of the corresponding sub-
space (fixed by B) for a lattice with L sites and N fermions,
and �· · ·  gives the integer part of · · · .

We now examine the dark state |DL〉 of K̂ , satisfying
K̂|DL〉 = 0. Since the transfer matrix MB is, in general, not
square, there are at least max(GB−1 − GB, 0) vectors (denoted
as vB) that satisfy MBvB = 0, each corresponding to a dark
state in the subspace of HB. Notice that the number of dark
states (in the subspace of HB) is at the minimum when the
rank of the matrix MB is full. On the other hand, for each
given L and N , GB monotonically increases with B to a maxi-
mum value Gm, after which it decreases monotonically with B
[see Fig. 5(a)]. It follows that when all the transfer matrices
between adjacent subspaces are considered, the number of
dark states is at least Gm. Given the form of the Lindblad
equation, the steady states, depicted by density matrices, have
a degeneracy of at least D = G2

m at s = 0. The minimum
degeneracy occurs only if all MB matrices are of full rank.
Numerically, we have checked that this is true for all cases
considered throughout the work.

The exact value of Gm is determined by the maximum of
GB in the recursive relation given by Eq. (B1). However, in the
limit L, N � 1, we can estimate its value by adopting a statis-
tical approach. More explicitly, we treat the atomic positions
as dependent integer random variables uniformly distributed
in the range of [1, L], satisfying the Pauli exclusion principle.
We can then view GB/( L!

N!(L−N )! ) as the distribution function of
B = ∑

i ji. The mean and variance of the position for the ith
atom are, respectively, E [ ji] = L+1

2 and σ 2[ ji] = (L+1)(L−1)
12 .

The covariance of the position for any two atoms i and k is
Cov[ ji, jk] = − L+1

12 . From these, we calculate the mean and
variance for B = ∑

i ji as

E [B] =
∑

i

E [ ji] = N (L + 1)

2
, (B3)

σ 2[B] =
∑

i

σ 2[ ji] +
∑
i �=k

Cov[ ji, jk] = N (L − N )(L + 1)

12
,

(B4)

and the correlation coefficient

η

⎡
⎣ ji,

∑
k �=i

jk

⎤
⎦ = Cov

[
ji,

∑
k �=i jk

]
√

σ 2[ ji]σ 2
∑

k �=i[ jk]

= −
√

N − 1

(L − N + 1)(L − 1)
. (B5)

Since η[ ji,
∑

k �=i jk] converges to 0 with increasing L, we
apply a dependent central limit theorem [76] and find that the
distribution of B converges to a discrete Gaussian distribution
under L, N � 1.

In Fig. 5(a), we plot a rescaled GB for different values of
L and N . With a proper rescaling, GB is very close to the
Gaussian distribution even for N = 2, 3, as considered in this
work.

Since the Hilbert-space dimension is L!
N!(L−N )! , the maxi-

mum dimension of the subspace with a fixed B is approxi-
mately

Gm ≈ Gest
m = 1√

2πσ 2[B]

L!

N!(L − N )!

=
√

6

πN (L − N )(L + 1)

L!

N!(L − N )!
. (B6)

In Fig. 5(b), we plot the relative error between the exact value
of Gm and its estimation using Eq. (B6). While the error
approaches 0 with increasing N and L, it is already smaller
than 10% for N = 2, 3.

Finally, since the matrix of K̂ is block-off-diagonal, any
dark state |DL〉 can be written as |DL〉 = ∑

B αB|DB
L〉, where

|DB
L〉 is the dark state in the subspace HB, and αB is the

weight of the superposition. For the convenience of later dis-
cussions, we note that since PK̂P−1 = K̂† (where P is the
spatial-inversion operator), |DBmax−B

R 〉 = P|DB
L〉 is a dark state

of K̂† in the subspace HBmax−B, with K̂†|DBmax−B
R 〉 = 0.

APPENDIX C: STEADY STATES UNDER FINITE s, γ

WITH OBC

To find the steady states under finite s, γ , we start by
considering the simplest case of γ = 0. When γ = 0, the
system is no longer an open system and the steady states are
generated by the eigenstates of the Hermitian Hamiltonian.
Assuming that the Hamiltonian H has an eigenstates with n-
fold degeneracy, the steady-state degeneracy is then

∑
n ann2,

which is typically a large number.
However, with a very small γ , most of these states become

perturbed and are no longer a steady state of the system.
Their Liouvillian eigenvalues exhibit linear dependence with
γ . The remaining steady states can be formally written as
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ρs = ∑
n=0 γ nρn, where

γ nρn =
n∑

q=0

A−qB−(n−q)K̂q(K̂†)n−qρ0. (C1)

Here, A = −is
(1+i�c/κ )γ , B = is

(1−i�c/κ )γ are the same as those

in Eq. (D10), and the generator ρ0 satisfies [K̂, ρ0] =
[K̂†, ρ0] = 0.

Equation (C1) can be derived by induction. For this pur-
pose, we write the Liouvillian as L = L′

0 + γL′
1, where

L′
0 = −is[Ĥ1, ρ], (C2)

L′
1[ρ] = − i

γ
[Ĥ0, ρ] + (2K̂ρK̂† − {K̂†K̂, ρ}), (C3)

and

Ĥ0 = −�c

κ
γ K̂†K̂, (C4)

Ĥ1 = K̂ + K̂†. (C5)

The steady-state condition L[ρs] = 0 requires

L[ρ0] = γL′
1[ρ0], (C6)

L[ρn] = −L′
1[ρn−1] + γL′

1[ρn] for n > 1. (C7)

At the zeroth order, ρ0 satisfies Eq. (C1). Now if, up to the
nth order, ρn satisfies Eq. (C1), using Eq. (C7), we have

γL′
1[γ nρn]

= 2γ

n∑
q=0

A−qB−(n−q)K̂q+1(K̂†)n−q+1ρ0

−
(

1 + �c

κ
i

)
γ

n∑
q=0

A−qB−(n−q)K̂†K̂q+1(K̂†)n−qρ0

−
(

1 − �c

κ
i

)
γ

n∑
q=0

A−qB−(n−q)K̂q(K̂†)n−q+1K̂ρ0

= −L′
0[γ n+1ρn+1]. (C8)

The expression for ρn+1 can then be solved and is found to be
consistent with Eq. (C1).

Notice that K̂ transforms a state in the subspace HB to
one in HB−1. Combined with the condition B ∈ [Bmin, Bmax],
we have K̂q = (K̂†)q = 0 if q > Bmax − Bmin = NL. It fol-
lows that there are only finite terms in the expansion ρs =∑

n=0 γ nρn, yielding the analytic form of the steady state.
With Eq. (C1), each distinct ρ0, with [K̂, ρ0] = [K̂†, ρ0] =

0, would give a distinct steady state. In the following, we
count the steady-state degeneracy by constructing different ρ0.
We start by considering the following dark states of K̂ :∣∣DB(m)

L

〉 = |1, 2, . . . , N − 2m〉 ⊗ ∣∣C2m
L−2N+4m(N − 2m)

〉
,

(C9)

where |CN
L (d )〉 is recursively defined for even N, L as

∣∣CN
L (d )

〉 =
{

1√
L/2

∑L/2
q=1(−1)q|q + d〉 ⊗ |L + 1 − q + d〉 for N = 2

1√
(L−N )/2+1

∑(L−N )/2+1
q=1 (−1)qN/2|q + d〉 ⊗ ∣∣CN−2

L−2q(q + d )
〉 ⊗ |L + 1 − q + d〉 for N � 4.

(C10)

Specifically, |DB(m)
L 〉 is a dark state of K̂ in the subspace

HB(m) with B(m) = N (N + 1)/2 + m(L − 2N + 2m). Note
that |DN (L+1)−B(m)

R 〉 = P|DB(m)
L 〉 is a dark state of K̂†, which

is also the spatial inversion of |DB(m)
L 〉.

We further define a series of states |ϕi, j〉, such that

K̂|ϕi, ji〉 =
ni−1∑
j=1

|ϕi−1, j〉〈ϕi−1, j |K̂|ϕi, ji〉

=
∑
k, j

|ϕk, j〉〈ϕk, j |K̂|ϕi, ji〉, (C11)

K̂†|ϕi, ji〉 =
ni+1∑
j=1

|ϕi+1, j〉〈ϕi+1, j |K̂†|ϕi, ji〉

=
∑
k, j

|ϕk, j〉〈ϕk, j |K̂†|ϕi, ji〉, (C12)

with |ϕB(m),1〉 = |DB(m)
L 〉, and |ϕN (L+1)−B(m),1〉 =

|DN (L+1)−B(m)
R 〉. In deriving Eqs. (C11) and (C12), we used

the property that K̂ and K̂† only couple states with adjacent B
labels.

For ρ0 = ∑
i, ji

|ϕi, ji〉〈ϕi, ji |, with Eqs. (C11) and (C12), we
find K̂ρ0 = ρ0K̂ = ρ0K̂ρ0 and K̂†ρ0 = ρ0K̂† = ρ0K̂†ρ0. The
total number of steady states corresponds to the total number
of distinct |DB(m)

L 〉, which is given by

D = 1 + 1 + (−1)L

2

⌊
N

2

⌋
. (C13)

We have numerically checked that this is exactly the steady-
state degeneracy at finite s, γ for all cases considered in this
work.

Now that we have derived the steady-state degeneracy un-
der different conditions, we summarize the results in Table I
and Fig. 6. With a fixed atom number N , the degeneracy under
PBC or OBC at s = 0 has a power-law relationship with the
lattice size L [see Figs. 6(a) and 6(b)]. With a fixed filling, the
degeneracy under PBC or OBC at s = 0 has an exponential
relationship with L [see Fig. 6(c)]. For the cases considered in
this work (with N = 2, 3 and L ∼ 10), the degeneracy is the
largest under PBC, which is reduced significantly under OBC
and further decreased (also significantly) at a finite s.
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TABLE I. Exact value and its estimation of the steady-state degeneracy under different conditions.

D PBC OBC, s = 0 OBC, finite s/γ

Exact degeneracy
∑

n β2
n G2

m 1 + 1+(−1)L

2 � N
2 

Estimation value � L!
N!(L−N )! ≈ 6

πN (L−N )(L+1)

(
L!

N!(L−N )!

)2

APPENDIX D: PERTURBATIVE CHARACTERIZATION
OF THE LIOUVILLIAN SPECTRUM

Under finite s, some (or most) degenerate steady states for
s = 0 become perturbed and are no longer steady states. The
Liouvillian gap of the system (under OBC) is determined by
these states, which have a dramatic impact on the long-time
dynamics as we show in the main text.

From numerical simulations, we find that Reλ, the real
components of the Liouvillian eigenvalues, of these perturbed
states manifest distinct power-law scalings with s. In this
section, we show what these perturbed states are and what the
exponents of the power-law scalings are.

We start by devising a perturbation series for the density
matrix, by writing the Liouvillian as L = L0 + sL1. Here,

L0[ρ] = −i[Ĥ0, ρ] + γ (2K̂ρK̂† − {K̂†K̂, ρ}), (D1)

L1[ρ] = −i[Ĥ1, ρ], (D2)

where H0 and H1 are defined in Eqs. (C4) and (C5), respec-
tively.

The steady-state density matrices ρs satisfy L0[ρs] = 0.
Motivated by the power-law dependence of Reλ on the param-
eter s, we make the following expansion of the density matrix
ρ = ρs + ∑

n=1 snρn. For a steady state, L[ρ] = 0 should hold
at each given order of s; we then have L0[ρn] = −L1[ρn−1].
This leads to the series expansion

L[ρs] = sL1[ρs], (D3)

L[ρ1] = −L1[ρs] + sL1[ρ1], (D4)

L[ρ2] = −L1[ρ1] + sL1[ρ2], (D5)

· · · (D6)

L[ρn] = −L1[ρn−1] + sL1[ρn], (D7)

which should continue indefinitely for a steady state.

For a quasisteady mode, the series must terminate at
some order M, where one cannot find any ρM+1 to satisfy
L0[ρM+1] = −L1[ρM]. Keeping the density matrix expansion
up to the Mth order, ρ = ρs + ∑M

n=1 snρn, we have

L[ρ] = sM+1L1[ρM]. (D8)

Perturbatively, the leading order of the eigenvalue λ for this
quasisteady mode is

λ ∼ sM+nL+1 Tr(ρnLL1[ρM]), (D9)

where nL is the lowest order at which Tr(ρnLL1[ρM]) �= 0.
Note that the conclusion above relies on the observation that
under small but finite s, Reλ of the low-lying quasisteady
modes have power-law scalings. In the following, we will
derive the lower bound of the exponent pmin = M + nL + 1,
which characterizes the lowest-order exponent of the power-
law scaling. In the process, we will also reveal the nature of
the low-lying quasisteady modes.

Before proceeding, we prove the following theorem.
Theorem 1. For a given operator O and any state |φ〉,

there exists a state |ψ〉 such that O|ψ〉 = |φ〉, if and only if
〈φ|OD〉 = 0 holds for all |OD〉. Here, |OD〉 is the dark state of
O†, with O†|OD〉 = 0.

Proof. We first write the singular-value decomposition of
O as O = U�V †, where U and V † are unitary matrices, and
� = diag{�i} is a real diagonal matrix with non-negative
diagonal elements given by {�i}. We then define a matrix
�̃ = diag{�̃i}, where �̃i = 1/�i for �i �= 0, and �̃i = 0 oth-
erwise.

On the one hand, notice that O†U (I − ��̃)U †|φ〉 = 0,
so that U (I − ��̃)U †|φ〉 is a dark state of O†. Under
the condition that 〈φ|OD〉 = 0 for all |OD〉, we must have
〈φ|U (1 − ��̃)U †|φ〉 = 〈φ|U (1 − ��̃)†(1 − ��̃)U †|φ〉 =
0. This leads to ��̃U †|φ〉 = U †|φ〉. We then construct
|ψ〉 = V �̃U †|φ〉, such that O|ψ〉 = U��̃U †|φ〉 = |φ〉.
This shows the existence of |ψ〉. In the derivations
above, we have used the relations � = ���̃ and
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FIG. 6. Steady-state degeneracies under PBC (blue), OBC with s = 0 (red), and OBC with finite s/γ (orange), respectively. The blue
dashed lines indicate the dimension of the Hilbert space, L!

N!(L−N )! . The red dashed lines indicate the estimated values of G2
m. The fermion

numbers are (a) N = 2, (b) N = 3, and (c) N = L/2 (with even L).
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(I − ��̃)†(I − ��̃) = (I − ��̃), where I is the identity
matrix.

On the other hand, if O|ψ〉 = |φ〉, we must also have
〈φ|OD〉 = 〈ψ |O†|OD〉 = 0 for any |OD〉. Theorem 1 is thus
proved. �

As a direct consequence of Theorem 1, for any operator
O with O|ψ〉 = |φ〉, we can construct another operator Õ =
V �̃U †, where V , �, and U are defined through the singular-
value decomposition O = U�V †. Provided 〈φ|OD〉 = 0, we
have Õ|φ〉 = |ψ〉, that is, the operator Õ serves as the inverse
of O in the relevant subspace. Applying the statement above
to the operators K̂ and K̂†, we can define K̃ and K̃†, despite K̂
and K̂† being singular and noninvertible in general.

With this construction, if 〈DR|K̃qρs = 0 hold for any dark
state |DR〉 (assuming q < n), the closed-form expression of ρn

can be written as

snρn =
n∑

q=0

AqBn−qK̃qρs(K̃
†)(n−q). (D10)

Here, A = −is
(1+i�c/κ )γ , B = is

(1−i�c/κ )γ , and ρs is a steady state

at s = 0, satisfying K̂ρs = ρsK̂† = 0.
We now derive Eq. (D10) by induction. With direct calcu-

lation,

L1[ρs] = −isK̂†ρs + isρsK̂ . (D11)

Since L0[sρ1] = −sL1[ρs], under the condition 〈DR|K̃ρs = 0
and ρsK̃†|DR〉 = 0 for any |DR〉, ρ1 is formally given by

sρ1 = −is

(1 + i�c/κ )γ
K̃ρs + is

(1 − i�c/κ )γ
ρsK̃

†. (D12)

Here we have applied Theorem 1 to define K̃ and K̃†. Equa-
tion (D12) is consistent with Eq. (D10).

Now, if up to the nth order, ρn has the expression of
Eq. (D10), then, in the (n + 1)th order, we have

sL1[snρn] = is
n−1∑
q=0

AqBn−qK̃qρs(K̃
†)n−q−1

− is
n∑

q=1

AqBn−qK̃ (q−1)ρs(K̃
†)n−q

− is
n∑

q=0

AqBn−qK̂†K̃qρs(K̃
†)n−q

+ is
n∑

q=0

AqBn−qK̃qρs(K̃
†)n−qK̂

= −L0[sn+1ρn+1]. (D13)

In the derivations above, we have assumed 〈DR|K̃n+1ρs = 0,
ρsK̃†n+1|DR〉 = 0. The expression of ρn+1 can be solved from
Eq. (D13) and is consistent with Eq. (D10). We have therefore
derived Eq. (D10) by induction.

Equipped with Eq. (D10), we are now ready to analyze
the power-law scaling of the quasisteady states. We start
from a general steady state under s = 0, given by ρs =∑

i, j αi, j |DBi
L 〉〈DBj

L |, where αi, j are the superposition coeffi-

cients, and the superscript Bi indicates the dark state |DBi
L 〉

in the subspace of HBi . We define Bm to be the largest of all
superscripts {Bi, Bj} with nonzero αi, j .

We are interested in determining the least order l at which
〈DR|K̃ l |DBm

L 〉 �= 0. Physically, |DB
R〉 (|DB

L〉) is localized to the
right (left) side of the lattice, and the extent of the localization
is indicated by B. For the overlap integral 〈DR|K̃ l |DBi

L 〉 to
be nonzero, a larger l is required when Bi becomes smaller,
that is, when |DBi

L 〉 becomes more and more localized to-
ward the left. Thus, assuming l is the least order at which
〈DR|K̃ l |DBm

L 〉 �= 0, we must have 〈DR|K̃n|DBn
L 〉 = 0 for any

n < l . This leads to 〈DR|K̃nρs = 0 and ρsK̃†n|DR〉 = 0 for any
n < l . Following the derivation of Eq. (D10), the perturbative
expansions of the quasisteady states above ρs are given by ρn

(n < l) in the form of Eq. (D10).
More explicitly, there can be two scenarios. First, when l >

0, the quasisteady states are given by ρ = ρs + ∑l
n=1 snρn,

with L[ρn] = −L1[ρn−1] + sL1[ρn] for any n � l . Accord-
ing to Eq. (7), we have M = l . And by matching the total
occupied-site label B on either side of Eq. (8), we have nL =
l − 1. This gives pmin = 2l .

Alternatively, when l = 0, ρ = ρs, meaning M = 0. Since
Tr(ρsL1[ρs]) = 0 (determined by counting the label B of ρs

and L1[ρs]), we have nL � 1 according to Eq. (8). This gives
pmin = 2.

To summarize the above, we have

Reλ ∼ sp, where

{
p � 2l for l > 0

p = 2 for l = 0.
(D14)

Finally, since the low-lying quasisteady states fea-
ture different pmin, they reside in different subspaces
labeled by distinct B, and hence have different local-
ization characteristics. The stagewise slowdown of the
long-time dynamics is therefore due to the dominance of
quasisteady states with different localizations at different
timescales.

In Table II, we summarize the real components of the
Liouvillian eigenvalues at the marked times in Figs. 4(a)
and 4(b) and the numerically fitted damping rate, ob-
tained by fitting the solid-line segments in Figs. 3(a) and
3(b). Their excellent agreement directly confirms the stage-
wise dominance of quasisteady modes at the corresponding
times.

TABLE II. |Re(λ)| and fitted exponent near the markers (square, triangle) in Figs. 3(a) and 3(b).

Markers Green Blue Purple

|Re(λ)| 0.125, 0.00108 0.0366, 0.00220 0.0280, 0.00107
−fitted exponent 0.255, 0.00108 0.0322, 0.00219 0.0262, 0.00106
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APPENDIX E: COMPARISON OF THE DYNAMICS UNDER
PBC AND OBC

In our system, the boundary condition dramatically mod-
ifies the dynamics. Here we illustrate this by studying the
dynamics of two typical observables, the cavity field |α|2 and
the bulk current 〈Ĵ〉. The bulk current operator is defined as

Ĵ =
∑

i

Ĵi = 2γ K̂†K̂ − is(K̂ − K̂†), (E1)

where Ĵi satisfies ∂t n̂i + (Ĵi − Ĵi−1) = 0, and n̂i is the
fermionic number operator on site i.

Under PBC, since [K̂, K̂†] = 0, the operators K̂ and Ĵ
commute with both the Hamiltonian and the quantum jump
operator. Thus, |α|2 and 〈Ĵ〉 are both conserved quantities,
determined only by the initial state (see the black lines in
Fig. 7). Particularly, a constant bulk flow emerges if the initial
state has a nonzero current, which is consistent with the non-
Hermitian skin effect at the single-particle level [57].

However, under OBC, the cavity field and the bulk current
are not conserved, but approach their steady-state values in a
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FIG. 7. Dynamics of the cavity field |α|2 and the bulk current
〈J〉 under PBC (black, regardless of s) and under OBC with s/γ =
0.5, 1.1, 1.6 (green, blue, purple). The density matrix of the initial
state is an even-distributed diagonal matrix, which is the same as
those in Figs. 3(a)–3(c).

stagewise fashion. The steady-state value of the bulk current
〈Ĵ〉 is always 0, since all atoms accumulate to the boundary in
the steady states [see Fig. 7(b)].
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