
PHYSICAL REVIEW RESEARCH 5, 033172 (2023)

Exploring energy landscapes of charge multipoles using constrained density functional theory
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We present a method to constrain local charge multipoles within density-functional theory. Such multipoles
quantify the anisotropy of the local charge distribution around atomic sites and can indicate potential hidden
orders. Our method allows selective control of specific multipoles, facilitating a quantitative exploration of
the energetic landscape outside of local minima. Thus, it enables a clear distinction between electronically
and structurally driven instabilities. We demonstrate the effectiveness of this method by applying it to charge
quadrupoles in the prototypical orbitally ordered material KCuF3. We quantify intersite multipole-multipole
interactions as well as the energy-lowering related to the formation of an isolated local quadrupole. We also map
out the energy as a function of the size of the local quadrupole moment around its local minimum, enabling
quantification of multipole fluctuations around their equilibrium value. Finally, we study charge quadrupoles in
the solid solution KCu1−xZnxF3 to characterize the behavior across the tetragonal-to-cubic transition. Our method
provides a powerful tool for studying symmetry breaking in materials with coupled electronic and structural
instabilities and potentially hidden orders.
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I. INTRODUCTION

Spontaneous symmetry breaking is ubiquitous in physics,
found in fields ranging from cosmology and nuclear physics
to condensed matter [1]. Prominent cases of spontaneous
symmetry breaking in condensed matter physics are the emer-
gences of charge or magnetic order [2–5], which correspond
to ordered arrangements of local charge monopoles or mag-
netic dipoles, respectively. Recently, more exotic forms of
order involving higher-order charge or magnetic multipoles
have attracted considerable attention [6–11]. Higher-order
multipoles encode anisotropies in the charge or magnetiza-
tion density. For example, in inversion symmetric materials,
such anisotropy can be caused to leading order by charge
quadrupoles, i.e., the second-order multipoles, depicted in
Fig. 1(a) as excess and depletion of electronic charges. Charge
quadrupoles provide a physically intuitive framework for
quantifying and analyzing the orbital order from spontaneous
symmetry breaking [12,13].

Higher-order multipoles are challenging to detect experi-
mentally and thus constitute a type of “hidden” order [15,16].
The difficulty in experimental detection makes computational
first-principles-based studies highly desirable. In particular, in
many materials, two or more order parameters are simulta-
neously involved in the symmetry breaking. For example, an

*These authors contributed equally to this work.
†maximilian.merkel@mat.ethz.ch
‡claude.ederer@mat.ethz.ch

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

electronic transition can occur simultaneously with a struc-
tural phase transition, such as orbital ordering together with
a Jahn-Teller distortion [13,17–20]. In such cases, it is not
immediately clear which quantity is the primary order param-
eter driving the transition, and this question can be directly
addressed in computational studies.

While varying the structural order parameters in simula-
tions is commonly and easily done by constraining lattice
parameters and atomic positions, varying the corresponding
electronic order parameter for a fixed structure is challenging.
This, however, is crucial for identifying the physical mecha-
nisms driving spontaneous symmetry breaking and separating
electronic from structural effects. When exploring different
local energy minima as a function of, e.g., arrangements of
local charges or magnetic dipole moments, suitable initializa-
tions can be effective [21–24]. However, this becomes more
cumbersome for higher-order multipole moments. Addition-
ally, it is often desirable to explore the physics beyond local
minima and systematically vary the electronic order parame-
ters in both the magnitude and the spatial arrangements of the
local multipole moments.

Different approaches have been used to indirectly disentan-
gle electronic and structural order parameters. For instance, by
fitting a model to the results of first-principles calculations, the
metal-insulator transitions in a range of rare-earth nickelates
have been shown to be driven by proximity to an electronic in-
stability which couples strongly to a lattice distortion [25–27].
Another approach has been pursued in studies on a variety of
transition-metal perovskites with quadrupolar order, such as
cuprates, manganates, vanadates, and titanates. Here simula-
tions separately varying the electronic temperature and frozen
distortions show an electronic instability that does not require
structural distortions but is often stabilized by them [28–30].

We introduce a method for directly controlling the mag-
nitude and spatial order of the electronic order parameter
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FIG. 1. (a) Visualization of the angular charge distribution cor-
responding to the five charge quadrupoles Qt ≡ w2t . Green and red
regions represent regions with excess and reduced electronic charge
relative to a spherical distribution, respectively. (b), (c) Crystal struc-
ture of KCuF3 with K in purple, Cu in blue, and F in gray as well as
blue CuF6 octahedra. (b) High-symmetry cubic perovskite reference
structure with Pm3̄m symmetry. (c) Top view of the experimental
crystal structure [14] with I4/mcm symmetry. The sign of the Jahn-
Teller distortion alternates between adjacent CuF6 octahedra and is
therefore described as a G-type antiferro distortion.

by constraining local multipoles independently of the crystal
structure. Our method applies the framework of constrained
density-functional theory (DFT) [31,32] to local multipoles
[6] and enables the selective mapping of the energetic land-
scape as a function of local multipoles outside of local
minima. We introduce the methodology for charge multipoles
noting that it can easily be extended to magnetic and magne-
toelectric multipoles [6,33,34].

While the main goal of the present paper is methodolog-
ical, as a case study, we apply our method to KCuF3, a
prototypical Jahn-Teller-active perovskite with a 3d9 elec-
tronic configuration [14,35,36]. It adopts a tetragonal structure
with I4/mcm symmetry and room-temperature lattice param-
eters of a = b = 4.14 Å and c = 3.93 Å [35–38], which is
stable up to at least 800 K [39] and possibly even up to the de-
composition temperature [38]. This structure can be obtained
from the high-symmetry cubic perovskite parent structure
[Fig. 1(b)] by applying an R+

3 antiphase Jahn-Teller distortion
of the CuF6 octahedra together with a tetragonal distortion of
the unit cell. The result is a G-type 3D-checkerboard antiferro-
distortive pattern of alternating short and long Cu-F distances
[Fig. 1(c)]. At around 38 K, KCuF3 becomes an A-type anti-
ferromagnet, in which magnetic dipoles on the Cu ions order
ferroically in the a-b plane and antiferroically along the c
direction [36].

Numerous computational studies have investigated the or-
bital order and Jahn-Teller distortion in KCuF3 [18,28,40–42].
For example, DFT + U calculations have shown that even in
its (hypothetical) high-symmetry cubic structure, KCuF3 has
a tendency toward orbital ordering [40], or equivalently in
the language of multipoles, toward quadrupolar ordering [20].

This could suggest a purely electronic Kugel-Khomskii-type
origin of the ordering due to superexchange [18,40]. However,
DFT plus dynamical mean-field theory (DMFT) simulations
showed that the Kugel-Khomskii superexchange mechanism
leads to a hypothetical transition temperature of only around
350 K in KCuF3 and structural distortions are necessary to
stabilize the orbital order up to at least 800 K [28]. Thus,
the symmetry breaking in KCuF3 appears to result from the
interplay of electronic and structural degrees of freedom.

The remainder of this article is organized as follows:
First, we outline the derivation of multipole-constrained DFT.
We then verify our approach by applying it to KCuF3

and demonstrate its capabilities in the context of inter-
site quadrupole-quadrupole interactions. Finally, we use our
method to study the electronic instability in the solid solution
KCu1−xZnxF3 across the transition from the tetragonal, Jahn-
Teller-distorted KCuF3 to cubic KZnF3, in which the Zn has
a 3d10 configuration.

II. METHODS

In this section, we first review the definition of charge mul-
tipoles [6] and then sketch the derivation of the modification to
the Kohn-Sham potential required to constrain them. Finally,
we specify the parameters of the DFT calculations used in this
study.

A. Charge multipoles

To define charge multipoles, we consider the electron den-
sity n(r) in the local environment of an atom at the origin,
r = 0, in an inhomogeneous external electric potential �(r)

�(r) = �(0) + ri∂i�(r)|r=0 + rir j∂i∂ j�(r)|r=0 + · · · ,

which has an electrostatic energy E of

E/e = −
∫

drn(r)�(r)

= −
(∫

drn(r)

)
�(0) −

(∫
drn(r)ri

)
∂i�(r)|r=0

−
(∫

drn(r)rir j

)
∂i∂ j�(r)|r=0 − · · · . (1)

The integrals in the parentheses correspond to charge mul-
tipoles of order k = 0, 1, and 2, i.e., monopole, dipole, and
quadrupole, respectively.

We now represent that electron density in terms of a den-
sity matrix ρα′α in the basis of a complete set of atomic-like
orbitals |�α〉, such that

n(r) = 〈r|n|r〉 =
∑
αα′

〈r|�α′ 〉〈�α′ |n|�α〉〈�α|r〉

=
∑
αα′

�α′ (r)ρα′α�∗
α (r), (2)

and use the fact that the atomic-like orbitals can be ex-
pressed as product of a radial part and a spherical harmonic,
�α (r, θ, φ) = Rnl (r)Ylm(θ, φ), where n is the principal quan-
tum number and l and m are the angular-momentum quantum
numbers. Furthermore, the products of spatial coordinates in
the integrals of a multipole of order k in Eq. (1) can be
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FIG. 2. Visualization of our method for applying potential shifts to manipulate multipoles. (Top) Starting from a crystal structure, DFT
normally computes the ground-state energy E and the corresponding density, which can then be decomposed into multipoles. (Bottom) By
applying an orbital-dependent potential shift s, the charge density is changed by directly induced multipoles of the same symmetry as the shift
and possibly indirectly induced multipoles with different symmetries. The change in energy 	E reveals the energetics of the obtained charge
density.

expressed in spherical harmonics, Ykt , where t ∈ {−k,−k +
1, . . . , k} labels the different types of multipoles of the same
order k. The integrals of Eq. (1) thus separate into a radial and
a (dimensionless) angular part. In the following, we consider
only the angular part of the multipoles, in accordance with
previous work [6,7].

For simplicity, we consider only terms of the density matrix
that are diagonal in the angular momentum (l = l ′), which
can be assumed to give the dominant contributions for most
relevant cases. We note that the generalization to l �= l ′ is
straightforward. We can then express the l contribution to the
multipoles of order k as

ŵlkt ∝
∑
mm′

ρlm′lm

∫
dθ dφY ∗

lmYlm′Ykt sin θ

∝
∑
mm′

ρlm′lm (−1)m

(
l k l

−m t m′

)
︸ ︷︷ ︸

∝μ̂lkt
mm′

, (3)

which defines the charge-multipole operators μ̂lkt up to some
normalization. The “2 × 3 matrix” in Eq. (3) is the Wigner
3- j symbol, and, for ease of presentation, we have dropped all
prefactors that depend only on k and l .

In the following, we suppress the index l (we will always
focus on a single l component) and instead add an index I
corresponding to the atomic site around which the multipoles
are defined. Furthermore, we use the normalization defined in
Eq. (26) of Ref. [6], which leads to the definition of charge
multipoles we use:

wI
kt =

l∑
m,m′=−l

μkt
mm′ρ

I
m′m, (4)

where μ is a real-valued linear combination of the complex-
valued charge multipole operators:

μ̂kt
mm′ = (−1)l−m+k

(
l k l

−m t m′

)
n−1

lk

with nlk = (2l )!/
√

(2l − k)!(2l + k + 1)!. (5)

To obtain real-valued multipoles wI
kt , we have used Eq. (A1)

from Appendix A to transform the multipole operators μ̂kt

expressed in complex spherical harmonics to the μkt that are
used in Eq. (4) and are expressed in real spherical harmonics.
Appendix A also contains further details on our definition of
multipoles and the relation to the notation used in Ref. [6].
We note that wI

kt , ρI , and μkt are dimensionless quantities
since they contain only the angular part, while the full charge
multipoles introduced in Eq. (1) have units that depend on the
specific multipolar order.

The multipole moments wI
kt defined in Eq. (4) can be easily

obtained within DFT via the local density matrix (see, e.g.,
Refs. [32,43]),

ρI
mm′ =

∑
pν

fpν〈ψpν |PI
mm′ |ψpν〉. (6)

Here |ψpν〉 and fpν are the Kohn-Sham eigenfunctions and
corresponding occupations at a wave vector p and for a band
and spin indexed by ν. The operators PI

mm′ = |�I
nlm′ 〉〈�I

nlm|
correspond to the projection on a suitable local atomic-like
basis at site I (n and l indices suppressed for ease of notation),
which is readily available in most DFT codes. This decom-
position of a charge density into its multipole components is
schematically illustrated in the right part of Fig. 2.

B. Constraining multipoles in DFT

Now we present the formalism we use to control or induce
multipoles by applying a suitable local potential shift. We
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start within the framework of constrained DFT, in which a
constraint on the density is implemented by adding this con-
straint to the energy functional using the method of Lagrange
multipliers [31]. To constrain some or all charge multipoles
wI

kt for a given angular momentum l to the desired values w̃I
kt ,

one uses

E
[{

w̃I
kt

}] = min
n(r),sI

kt

(
EDFT[n(r)] −

∑
Ikt

sI
kt

(
wI

kt [n(r)] − w̃I
kt

))
,

(7)

where EDFT is the original DFT (or DFT + U ) functional,
sI

kt are the Lagrange multipliers, and the sum runs over the
constrained multipoles.

Performing the minimization with respect to n(r) leads to
the usual Kohn-Sham equations but with an additional con-
tribution to the Kohn-Sham potential proportional to sI

ktμ
kt
m′m

resulting from the constraint [cf. Eq. (9)]. In practice, finding
a solution that satisfies the constraint for specific w̃I

kt then re-
quires self-consistent adjustment of the Lagrange multipliers.
However, since in most situations it is of greater interest to
systematically vary the multipole moments within a certain
range rather than constraining them to a specific value, we use
a Legendre transformation E := E − ∑

Ikt sI
kt w̃

I
kt to change

from w̃I
kt to sI

kt as the independent variables, analogous to the
procedure in Refs. [32,44]:

E
[{

sI
kt

}] = min
n(r)

(
EDFT[n(r)] −

∑
Ikt

sI
ktw

I
kt [n(r)]

)
. (8)

As already stated, minimization of the first term on the
right-hand side of Eq. (8), EDFT, leads to the usual Kohn-Sham
equations. The second term results in an additional contribu-
tion to the Kohn-Sham equations, which can be obtained by
taking the derivative with respect to 〈ψpν |. Using Eq. (4) and
Eq. (6), this becomes

∂

∂〈ψ∗
pν |

(
−

∑
Ikt

sI
ktw

I
kt

)
= −

∑
Ikt

sI
kt

∑
mm′

∂wI
kt

∂ρI
mm′

∂ρI
mm′

∂〈ψ∗
pν |

=
∑
Imm′

(
−

∑
kt

sI
ktμ

kt
m′m

)
︸ ︷︷ ︸

:=δV I
mm′

fpνPI
mm′ |ψpν〉.

(9)

This defines the additional orbital-dependent contribution to
the Kohn-Sham potential δV I

mm′PI
mm′ . The additional potential

thus acts only on the l component of the wave functions at
sites I and consists of a sum of “potential shifts” of magnitude
sI

kt that have an orbital mm′ dependence corresponding to the
multipole operators μkt

m′m.
The bottom panel of Fig. 2 illustrates the effect of such

an additional potential contribution, in this case for an
(x2 − y2)-type charge quadrupole, which then per Eq. (8)
induces multipoles, either directly with the same (x2 − y2)
symmetry or indirectly with a different symmetry, such as the
(x2 − y2)z2 hexadecapole shown. In practice, we are usually
constraining only one specific l component of the correspond-
ing multipole moment, as defined in Eqs. (4) and (5).

To obtain the correct energy E [{w̃I
kt }] of the constrained

system, which equals the DFT energy EDFT[n(r)] evaluated
on the constrained charge density, one also has to consider the
additional potential contribution to the Kohn-Sham equations.
Typically, in the calculation of total energy, the kinetic-energy
contribution of the Kohn-Sham system is computed as the
band energy, i.e., the sum over all occupied Kohn-Sham eigen-
values, minus the potential energy of the Kohn-Sham system
in the effective potential (see, e.g., Ref. [45]). Therefore,
with the additional contribution to the Kohn-Sham potential
δV I

mm′PI
mm′ , this potential energy increases by∑

pν

fpν〈ψpν |
∑
Imm′

δV I
mm′PI

mm′ |ψpν〉 =
∑
Imm′

δV I
mm′ρ

I
mm′ . (10)

Thus, the contribution from Eq. (10) has to be subtracted from
the total energy in the DFT code.

Alternatively, the total energy can be obtained by taking
∂E [{w̃I

kt }]/∂w̃I
kt in Eq. (7), using the Hellmann-Feynman the-

orem, and then integrating over the applied potential shift (see
also Ref. [31]):

∂E
[{

w̃I
kt

}]
∂w̃I

kt

= sI
kt (11)

⇒ E
[{

w̃I
kt

}] − E [{0}] =
∫ {w̃I

kt }

{0}

∑
Ikt

sI
kt

[
w̃′I

kt

]
dw̃′I

kt , (12)

where {0} represents the multipoles of the reference state
without the additional potential applied. In Sec. III A 2, we use
Eq. (11) to understand the hysteresis behavior of quadrupoles
and their instabilities, whereas Eq. (12) serves as a consistency
check of the implementation of the energy calculation in our
DFT modification.

C. DFT details

We implemented the method outlined in the previous
subsection, including the additional potential terms and the
necessary modifications to the total energy calculation in a
modified version of the “Vienna Ab-initio Simulation Pack-
age” (VASP) in version 6.3.0 [46,47]. The necessary Python
code is publicly available, and the modifications to the VASP
code are documented on GitHub [48]. Our modified VASP
version is used for all DFT calculations presented in this work.

The calculations presented here are performed using a
cubic 2 × 2 × 2 supercell containing eight formula units of
KCuF3 or KCu1−xZnxF3. We employ the PBE exchange-
correlation functional [49] and projector augmented-wave
(PAW)-type potentials [50,51] for K, Cu, Zn, and F as pro-
vided by VASP, where the semicore 3p states for K are
included in the valence. Except where otherwise noted, the
strong electron-electron interaction in the Cu 3d orbitals are
corrected with an on-site Hubbard interaction Ueff [52], with
a value of 6.6 eV [40]. Lattice constants are obtained from
relaxations in the ideal cubic perovskite structure without spin
polarization or the +U correction and are a = 4.092 Å for
KCuF3 and a = 4.136 Å for KZnF3. For KCu1−xZnxF3, we
linearly interpolate the lattice constant between these values.
We use a 5 × 5 × 5 and a 7 × 7 × 7 k-point grid centered
at the  point for calculations with and without relaxations,
respectively. The energy cutoff of the plane-wave basis set
is chosen as 900 eV to ensure convergence of higher-order
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multipoles. The energy convergence criterion is set to
10−8 eV, and the tetrahedron method is used to perform
Brillouin-zone integrations.

We note that the +U correction, the multipole calculation,
and the multipole-shifting potential all use the same PAW
projectors. Furthermore, in this paper, we apply only potential
shifts on quadrupoles of Cu-3d orbitals, and we generally
switch off symmetries for electronic relaxations in the DFT
calculations unless explicitly stated, to allow the charge den-
sity to break the crystal symmetry, either spontaneously or due
to applied potential shifts.

III. RESULTS

In this section we present the results of our constrained
multipole calculations for KCuF3 and its solid solutions with
KZnF3. We focus on charge quadrupoles, with k = 2, and use
the usual Cartesian representations of the multipoles shown in
Fig. 1(a), Qz2 ≡ w20, Qx2−y2 ≡ w22.

A. Exploring the electronic instability of KCuF3

1. KCuF3 without electronic instability (U = 0)

As a first application of our method, we demonstrate
that a potential shift indeed induces a multipole with the
same symmetry as the applied shift and that we can control
the magnitude of the multipole by varying the amplitude of
the shift. To prove these capabilities in a simple system, we
study cubic KCuF3 using nonmagnetic DFT calculations with
Ueff = 0 and apply an (x2 − y2)-quadrupolar shift (i.e., k = 2
and t = 2) on the Cu sites. The absolute amplitude of this
shift, sx2−y2 , is the same on every site, but the sign alternates
to create a G-type antiferro-quadrupolar order. We choose this
type of order because its symmetry is the same as that of the
experimentally observed Jahn-Teller distortion in KCuF3.

Figure 3(a) shows the quadrupoles QI
x2−y2 on the two sub-

lattices obtained from the DFT calculations as functions of the
shift amplitude sx2−y2 . For sx2−y2 = 0, we recover the cubic
Pm3̄m ground-state charge density without any quadrupoles.
For a finite potential shift, |sx2−y2 | > 0, we induce (x2 − y2)
quadrupoles with the same magnitude on each site but the
sign of the quadrupole equals the sign of the applied shift,
Qx2−y2 := Q(1)

x2−y2 = −Q(2)
x2−y2 . The induced quadrupoles are

linear for small shifts and then start to saturate for larger
shifts, with QI

x2−y2 [−sx2−y2 ] = −QI
x2−y2 [sx2−y2 ], as mandated

by symmetry.
The sizes of the other quadrupole components, corre-

sponding to t �= 2, are shown in Fig. 3(b). The t2g-type
quadrupoles Qxy, Qxz, and Qyz are numerically zero, while
a small, ferro-ordered Qz2 develops due to its coupling to
the Qx2−y2 quadrupole. However, Qz2 always remains at least
two orders of magnitude smaller than Qx2−y2 . We note that in
addition to the quadrupoles, some of the higher-order hexade-
capoles (k = 4) also respond to the sx2−y2 shift. Therefore, this
shift changes the magnitude of the hexadecapoles allowed in
cubic symmetry and also induces an additional one due to the
lowered symmetry.

The total energy as a function of the Qx2−y2 quadrupole
is shown in Fig. 3(c). First, we note that the energy obtained
from the nonmagnetic DFT calculations has its minimum
at Qx2−y2 = 0. Therefore, the system does not exhibit an

FIG. 3. G-type antiferro-Qx2−y2 -type quadrupolar order in struc-
turally cubic KCuF3 at U = 0 obtained by applying a G-type
antiferroic shift with amplitude sx2−y2 . (a) x2 − y2 and (b) other
quadrupoles on both types of sites I as a function of the applied shift
sx2−y2 . (c) Energies as a function of Qx2−y2 from nonmagnetic DFT
(circles), Eq. (12) based on the Hellmann-Feynman theorem applied
on the data in (a) (thick line), and spin-polarized DFT with A-type
antiferromagnetic order (squares). The DFT energies of the metallic
regime (nonmagnetic and spin-polarized with |Qx2−y2 | < 0.4) are
fitted with even polynomials (thin lines).

electronic instability toward a nonzero quadrupole moment.
The energy curve yields a parabolic dependence for small
Qx2−y2 with a stiffness ∂2E/∂Q2

x2−y2 = 1.58 eV. Furthermore,
the calculations always result in a metallic state. These results
are consistent with earlier calculations showing that for
U = 0, KCuF3 exhibits no structural Jahn-Teller instability
[40].

As a consistency check, we also show in Fig. 3(c) the
energy obtained from Eq. (12), i.e., from integrating a third-
order fit of the s[Q] curve shown in Fig. 3(a) with the
zero-quadrupole ground state as reference energy. This in-
tegrated energy overlaps perfectly with the total energy
calculated directly in the modified DFT code.

We then perform additional calculations in which we allow
for spin polarization in the experimentally observed A-type
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antiferromagnetic order, i.e., with ferromagnetically ordered
layers stacked antiferromagnetically along the [001] direction.
The resulting total energy as a function of Qx2−y2 is also shown
in Fig. 3(c). We were able to stabilize this antiferromagnetic
state only for shifts |sx2−y2 | � 0.2 (|Qx2−y2 | � 0.19). Thus,
the presence of the quadrupolar order stabilizes the antifer-
romagnetic order (even without a +U correction) relative to
the nonmagnetic order. The resulting QI

x2−y2 have the same
absolute value on each site, even though the relative sign
between magnetic and quadrupolar moment varies from site to
site due to their different spatial orderings, indicating a local
biquadratic coupling in the lowest order. Large quadrupoles,
|Qx2−y2 | > 0.4, result in a transition in the electronic structure
from metallic to insulating.

A parabolic fit of the energies in the metallic regime,
i.e., for small but nonzero Qx2−y2 , results in a stiffness of
1.11 eV. Thus, the stiffness is reduced compared to the non-
magnetic case, showing that the quadrupolar and magnetic
order interact cooperatively. We also note that the parabolic
fit to the antiferromagnetic total energy extrapolates to the
same value at Qx2−y2 = 0 as the corresponding nonmagnetic
energy (within the fitting accuracy), which suggests that for
Qx2−y2 = 0 the nonmagnetic and antiferromagnetic states are
nearly degenerate.

These results illustrate that, even though for U = 0 KCuF3

does not exhibit an electronic instability toward spontaneous
quadrupolar order, our method allows us to systematically
map out the corresponding energy surface, determine the
stiffness with respect to quadrupole formation, and study, for
example, how the formation of quadrupoles interacts with
different types of magnetic order.

2. KCuF3 with electronic instability (U > 0)

Next, we investigate the spontaneous electronic instabil-
ity of KCuF3 in a more realistic setting by including both
magnetic order and the +U correction in the calculations
[40]. Again, we use our method of applying quadrupolar
local potential shifts to systematically vary the local charge
quadrupole in KCuF3, independently of the structural degrees
of freedom, i.e., with all atoms remaining in their positions
corresponding to the ideal cubic perovskite structure. As be-
fore, we apply an (x2 − y2)-type shift with the same G-type
antiferro-quadrupolar order as observed experimentally. In
addition to the Qx2−y2 quadrupole moment, we also monitor
the Qz2 quadrupole. According to the nominal d9 valence of
the Cu2+ cation, KCuF3 has one hole residing in the Cu-eg

bands. Depending on which specific linear combination of
eg orbitals is occupied (or left empty) by this hole, this can
create either a Qx2−y2 - or a Qz2 -type quadrupole (or a linear
combination thereof). The exact relation between hole orbital
and quadrupole moment is discussed in Appendix B. For the
remainder of this paper, we focus on constraining Qx2−y2 ,
which dominates the orbital order in KCuF3 [28,53].

In all of the following calculations, we also employ a G-
type antiferromagnetic order, which has an energy difference
of less than 8 meV/formula unit (f.u.) compared to the ex-
perimentally observed A-type antiferromagnetic ground state.
For our purposes, the G-type antiferromagnetic order has the
advantage of conserving the local cubic site symmetry, and

FIG. 4. G-type antiferro Qx2−y2 quadrupolar order in cubic
KCuF3 at U = 6.6 eV obtained by applying a shift sx2−y2 with the
same symmetry. Three types of calculations are shown: a zero-
quadrupole calculation with cubic symmetry enforced (triangle),
calculations with shifts starting from a charge density with cubic
symmetry (circles), and calculations with negative shifts starting
from the charge density for the smallest positive shift, as indi-
cated by the arrows, to access the inner part of the energy well
(squares). (a) Qx2−y2 and indirectly induced Qz2 as a function
of the applied shift sx2−y2 . (b) Energy as a function of Qx2−y2 .
The line is a sixth-order, even polynomial fit −1.53 eV Q2

x2−y2 −
0.06 eV Q4

x2−y2 + 1.08 eV Q6
x2−y2 . The calculation with cubic symme-

try enforced defines the reference energy E0.

thus the orbital degeneracy of the Cu-eg states, while still
introducing a local spin splitting that allows the system to
become insulating. The orbital degeneracy of the Cu-eg states
allows us to enforce electronic cubic symmetry, which implies
zero quadrupolar potential shifts, such that the system con-
verges to a nonquadrupolar state, and thus to clearly separate
charge effects and magnetic ordering.

We first perform such a reference calculation enforcing
cubic electronic symmetry. Consequently, the corresponding
quadrupoles are zero [indicated by the gray triangle in Fig. 4
(a)]. Then we allow for an electronic symmetry breaking and
apply a (positive) potential shift sx2−y2 . Figure 4(a) shows the
resulting Qx2−y2 and Qz2 on one representative site as a func-
tion of sx2−y2 (see data points marked as circles and labeled as
“start from cubic”). Already for the smallest shift shown here,
KCuF3 develops a strong quadrupole moment of Qx2−y2 ≈
0.85, which then increases only very gradually on further
increasing sx2−y2 . This behavior is of course reminiscent of the
spontaneous symmetry breaking, i.e., spontaneous quadrupole
formation, already observed previously in structurally cubic
KCuF3 [40].

Additionally, the symmetry breaking allows for a fer-
roically ordered Qz2 quadrupole, which, however, has a much
smaller magnitude than Qx2−y2 and becomes suppressed at
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larger shifts sx2−y2 . For the remainder of this work, we there-
fore focus on the dominant quadrupole component Qx2−y2 .

The tendency for spontaneous quadrupole formation can
also be seen from the total energy as function of Qx2−y2 ,
shown in Fig. 4(b). The symmetry breaking induced by a small
positive shift leads to an energy lowering of 0.73 eV/f.u. com-
pared to the energy E0 of the nonquadrupolar high-symmetry
calculation. Increasing the potential shift then leads to a pro-
nounced increase in energy. This allows us to map out the
“outer” part of the underlying energy surface, i.e., corre-
sponding to values of the quadrupole moment that are larger
than the equilibrium ground state value. Note that, within
standard DFT(+U ) calculations, only the high-symmetry
nonquadrupolar state and the low-symmetry ground state
would be accessible.

In order to also map out the “inner” part of the energy
surface around its minimum, i.e., corresponding to (positive)
values of Qx2−y2 smaller than the ground state value, we per-
form calculations where we apply a negative potential shift,
while starting from the converged charge density obtained
with the smallest positive shift, i.e., close to the ground state,
as indicated by the gray arrows in Fig. 4. The corresponding
results are shown in Fig. 4 as square symbols and labeled as
“start from minimum.” It can be seen that this initialization
indeed allows us to converge the charge density into a local
minimum of Eq. (8), which results in a weak decrease of
the Qx2−y2 quadrupole [see Fig. 4(a)] and the correspond-
ing increase in the total energy [see Fig. 4(b)]. At a certain
amplitude of the negative shift potential, Qx2−y2 then jumps
to a larger negative value, slightly lower than the negative
equilibrium value.

Without an applied shift, the two oppositely polarized
states, with positive or negative quadrupole moment on the se-
lected site, are of course energetically degenerate. By applying
quadrupolar potential shifts with the respective opposite sign,
the system can be switched from one of the corresponding
domain states to the other. We can fit the calculated energies
with an even sixth-order polynomial. The fit, indicated by the
solid lines in Fig. 4, shows almost perfect agreement with the
calculated values, with a maximum deviation of 7 meV/f.u. It
clearly shows that the energy as a function of Qx2−y2 forms a
symmetric “double well” with two degenerate minima around
Qx2−y2 = ±0.84. The fit also allows us to estimate the stiff-
ness of the energy around the minimum to be ∂2E/∂Q2

x2−y2 =
12.55 eV. This stiffness is an important quantity to character-
ize fluctuations of Qx2−y2 around its equilibrium value.

From this fit, we can also obtain a relation for the
quadrupole moment as a function of the applied shift, Q[s],
by taking the derivative of E [Q] and using Eq. (11) to obtain
s[Q]. The resulting curve is also shown (as a solid blue line)
in Fig. 4(a). It correctly predicts hysteresis as a function of
the shift due to the double-well potential and agrees almost
perfectly with the explicitly calculated values, both in terms
of the overall size of Q[s] as well as with respect to the
width of the hysteretic regime. The quadrupoles obtained us-
ing positive shifts all lie on the upper branch of the hysteresis
curve, whereas the values obtained for negative shifts first
also follow the upper branch and then jump onto the lower
branch for large negative shifts beyond the extremum of s[Q]
(or equivalently, the inflection point of E [Q]).

FIG. 5. (a)–(c) Schematic representation of different quadrupolar
orderings in cubic KCuF3. We consider (a) G-type antiferro-
quadrupolar ordering, (b) ferro-quadrupolar ordering, and (c) G-type
antiferro-quadrupolar ordering with one quadrupole flipped in sign.
(d), (e) Energy with respect to the zero-quadrupole energy E0 as
a function of the average absolute |Qx2−y2 | for the quadrupolar or-
derings visualized in (a)–(c). The solid lines are even, sixth-order
polynomial fits.

This example shows that our method allows us to system-
atically map out the energy landscape as a function of the
quadrupolar order parameter around its equilibrium value for
a system that exhibits spontaneous instability, within the given
hysteretic limits.

B. Intersite quadrupole-quadrupole interactions

Up to now, all calculations were performed for the G-type
antiferro-quadrupolar order, compatible with the experimen-
tally observed antiphase Jahn-Teller distortion. Now we
explore the effect of different quadrupolar orders to calculate
the strength and nature of intersite quadrupole-quadrupole
interactions. We keep a G-type antiferromagnetic order for all
these calculations. Figures 5(a)–5(c) show the different orders
we consider: Fig. 5(a) the previously used G-type antiferro-
quadrupolar order, Fig. 5(b) a ferro-quadrupolar order, and
Fig. 5(c) the same as in Fig. 5(a) but with the sign of one
multipole out of eight flipped.

We can stabilize these orders by applying small quadrupo-
lar potential shifts with the appropriate site-dependent signs.
Note that such states would be difficult to access without our
method.

We plot the energy as a function of the site-averaged ab-
solute quadrupole QI

x2−y2 in Figs. 5(d) and 5(e). We note that
configuration [Fig. 5(c)] breaks the symmetry between sites,
but this symmetry breaking leads to only small differences
of less than 0.02 between the |QI

x2−y2 | on different sites. As
can be seen in Figs. 5(d) and 5(e), all quadrupolar orders
lead to an energy lowering of around 0.7 eV/f.u., relative to
the nonquadrupolar reference state, whereas the energy dif-
ferences between the different configurations are significantly
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smaller, around 30 meV/f.u. between the ferro- and antiferro-
quadrupolar configuration.

Thus, we can distinguish two rather different energy
scales. The energy lowering of 0.7 eV/f.u. can be related
to the local quadrupole formation, since this energy contri-
bution is independent of the specific spatial ordering [54].
The second energy scale of around 30 meV/f.u., defined by
the energy differences between the different spatial arrange-
ments of quadrupoles, is the energy scale of the intersite
quadrupolar-quadrupolar interactions. The corresponding en-
ergy differences can in principle be mapped on an Ising-like
model (potentially taking into account also energies of further
spatial configurations to incorporate anisotropic or further-
neighbor couplings of the quadrupoles). Such a model can
then be used to estimate the hypothetical, purely electronic
quadrupolar ordering temperature, or can be further extended
by explicitly taking into account also structural degrees of
freedom, e.g., a corresponding Jahn-Teller distortion. Thus,
our approach allows clear separation of the purely electronic
interactions from electron-phonon-related or other structural
contributions.

C. Atomic substitution from KCuF3 to KZnF3

Finally, we address the suppression of the quadrupolar
tetragonal phase of KCuF3 by substitution of Cu with Zn.
KZnF3 is a cubic perovskite with a full 3d10 shell and exper-
imentally, KCu1−xZnxF3 becomes cubic at a concentration of
x > 0.4, with a lattice constant of around 4.06 Å [55]. How-
ever, Monte Carlo and cluster-expansion studies showed that
even in the cubic phase, the remaining CuF6 octahedra still
exhibit a Jahn-Teller distortion, but without any long-range
order [55,56]. In the following, we use our method of con-
straining local quadrupoles to study the role of the electronic
instability in cubic KCu1−xZnxF3, and to further characterize
the nature of the tetragonal-to-cubic phase transition upon
ionic substitution. This is intended as a demonstration of the
capabilities of our method rather than an exhaustive analysis
of KCu1−xZnxF3.

We consider x ∈ {0, 0.5, 0.75, 0.875}, i.e., 8, 4, 2, and 1
Cu atom in the cubic 2 × 2 × 2 supercell, respectively. For
each case, we use the most symmetric arrangement of Cu
and Zn, which allows us to converge a nonquadrupolar state
by enforcing the respective crystal symmetry in our calcula-
tions. In these arrangements, the CuF6 octahedra are always
as far apart as possible and in particular there are no CuF6

octahedra neighbors for x � 0.5. We explicitly checked for
x = 0.75 that the ground-state energy difference to all other
non-symmetry-equivalent configurations is only on the order
of a few meV/f.u. (here and in the following, f.u. always refers
to one five-atom unit).

We keep the directions of the magnetic dipole moments
on the Cu sites the same as in the previously studied G-
type antiferro-magnetic state. However, since the Zn2+ cations
have a completely filled 3d shell, they do not exhibit any
magnetic moment, which means that for x � 0.5, the chosen
arrangement of Cu2+ ions corresponds to ferromagnetic order
on the Cu sublattice. The same applies to the G-type antiferro-
ordered potential shifts.

As Fig. 6(a) shows, quadrupole formation always leads to
an energy lowering for all compositions we consider here,

FIG. 6. (a) Energy of KCu1−xZnxF3 when inducing quadrupoles
on the Cu sites for different Zn concentrations x. (b) Well depth and
stiffness as a function of x.

with a smaller energy lowering for higher Zn concentration
x. This persistence of the electronic instability shows that the
Qx2−y2 quadrupole will always tend to form locally on Cu
sites, independent of the neighboring octahedra, which is con-
sistent with the presence of locally distorted CuF6 octahedra
even in the experimentally reported globally cubic structure
with x > 0.4 [55,56].

Again, we can reliably fit the data for all x with a sixth-
order, even polynomial. This allows us to extract the curvature
and depth of the energy minimum, as depicted in Fig. 6(b).
Both quantities scale almost perfectly linearly with the num-
ber of Cu atoms and extrapolate to zero for pure KZnF3. This
shows that the energy gain per Cu is basically independent of
the concentration x. These results strengthen the observation
from Sec. III B that quadrupole formation is primarily a local
on-site property.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a method to perform
DFT calculations with constrained local charge multipole mo-
ments. We implement this in the framework of constrained
DFT using Lagrange multipliers [31], which introduces
orbital-dependent potential shifts coupling directly to specific
multipoles. This allows us to vary both magnitude and spatial
order of the local multipole moments and thereby disentangle
electronic from structural degrees of freedom. By enabling
the exploration of the multipolar energy landscape also
outside of local minima, our method represents a signifi-
cant advance compared to previous methods based on, e.g.,
initialization of the density matrix. We note that specific
quadrupolar moments can straightforwardly be constrained by
iteratively adjusting the potential shifts with a script wrapping
around our implementation. Alternatively, the Lagrange pa-
rameter required to obtain a specific quadrupole can directly
be extracted from the systematic variation of shifts, as pre-
sented in Figs. 3(a) and 4(a).
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While we envision many different applications, we have
demonstrated the effectiveness of the method in disentangling
the electronic instabilities of Jahn-Teller-active materials from
their crystal structures by mapping out the charge-quadrupolar
energy surface of KCuF3. Our method enables access to
the energetics of the material as a function of the charge
quadrupole moments in the absence (U = 0) and presence
(U > 0) of electronic instabilities. For U = 0, we observed
that the charge quadrupole order stabilizes an antiferromag-
netic order. For the case of U > 0, the electronic instability
leads to two degenerate energy minima and hysteretic behav-
ior of the quadrupole moments as a function of the applied
potential shift, which can be explored by using appropriate
initialization. Such access to the energy as a function of the
multipole moment for a fixed crystal structure is invaluable for
understanding purely electronic as well as coupled electronic
and structural phase transitions.

Furthermore, our method allows us to extract multipole-
multipole interactions, which can be used to construct
simplified Ising-like Hamiltonians for further studies by stabi-
lizing various configurations with different signs of the local
multipole moments on different sites. In our KCuF3 example,
we found that the scale of energy differences between the
different quadrupolar configurations is around 30 meV/f.u.,
similar to the purely electronic Kugel-Khomskii temperature
obtained from earlier DFT+DMFT calculations [28]. There-
fore, by considering only the electronic degrees of freedom,
our results further support the conclusion that structural dis-
tortions are vital for stabilizing the orbitally ordered state in
KCuF3 to higher temperatures.

Finally, we showed that our method can be used to study
the evolution of electronic instabilities in solid solutions by
applying it to the example of KCu1−xZnxF3. Our analysis
showed that the instability towards the formation of a local
quadrupole moment on the Cu site persists down to low Cu
concentrations, even where the average crystal structure is
experimentally known to be cubic. The energy gain from
the local quadrupole formation is around 0.7 eV/Cu and thus
much larger than the energy scale of the quadrupolar intersite
interactions (around 30 meV/f.u.).

While here we have demonstrated the capabilities of our
multipole-constrained DFT method for the case of charge
quadrupoles, the extension to other (higher-order) charge and
magnetic multipoles is rather straightforward. We anticipate,
therefore, that the method will be invaluable in disentangling
the contributions of coupled and/or competing magnetic,
electronic, and lattice orders in a broad range of correlated
materials [57], such as the pseudogap phase of unconventional
superconductors [58], 5d1 [12] and 5d2 [24] transition-metal
double perovskites, f -electron systems with hidden high-
order multipolar order parameters [16], and magnetoelectric
multiferroics [59,60].
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APPENDIX A: FORMULAS FOR THE
MULTIPOLAR OPERATOR

In order to convert from the complex spherical harmonics
used in Ref. [6] to real spherical harmonics that are more in-
tuitive to interpret, we use the following transformation from
the shift matrix in spherical harmonics μ̂ to the corresponding
matrix in real harmonics μ:

μkt
mm′ =

⎧⎪⎪⎨
⎪⎪⎩

(
μ̂k,t

mm′ − (−1)t μ̂k,−t
mm′

)
i
/√

2 t < 0

μ̂k,0
mm′ t = 0(
μ̂k,−t

mm′ + (−1)t μ̂k,t
mm′

)/√
2 t > 0

. (A1)

The multipoles wI
kt from Eq. (4) are real because the μkt are

Hermitian matrices.
Since we consider only charge multipoles here, we are

able to use a simpler notation than that of Ref. [6], with the
complex-valued ŵkt from Eq. (4) of this paper corresponding
to the wk0k

t from Eq. (26) in Ref. [6].
The transformation from density matrix to multipoles is

a linear, invertible operation because the μkt form an or-
thogonal, complete basis for Hermitian (2l + 1) × (2l + 1)
matrices. The completeness relations for the matrices μ are∑

mm′
μkt

mm′μ
k′t ′
m′m = δkk′δtt ′/ck,

∑
kt

ckμkt
mm′μ

kt
n′n = δmnδm′n′ , (A2)

with ck = (2k + 1)n2
lk . Similar completeness relations also

exist for μ̂.

APPENDIX B: CONNECTING QUADRUPOLES
AND THE eg-ORBITAL MIXING ANGLE

Here we present the relation between local quadrupoles
and the eg-orbital mixing angle in KCuF3, which we exem-
plify by the data from Sec. III A 2.

Insulating KCuF3 nominally has one hole occupying a Cu-
eg state. This state can be expressed as a linear combination
of the dz2 and dx2−y2 orbitals through an orbital-mixing angle
θ [61]:

|θ〉 = cos
θ

2
|z2〉 + sin

θ

2
|x2 − y2〉. (B1)

If we analytically calculate the density matrix ρmm′ =
〈m|θ〉〈θ |m′〉 and the quadrupole operators μ2t

mm′ , we obtain the
quadrupoles through Eq. (4):

Qz2 = cos θ,

Qx2−y2 = − sin θ,

Qxz = Qyz = Qxy = 0. (B2)

Therefore, the quadrupole moments lie on a circle with ra-
dius 1 in the Qz2 -Qx2−y2 plane, where the phase angle can be
directly related to the eg-mixing angle of the corresponding
hole orbital, Eq. (B1). This relationship is visualized in Fig. 7.

In a real material, the quadrupoles can deviate from that
picture. For example, hybridization with ligands influences
the occupation of eg and t2g orbitals, which can distort the
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FIG. 7. Quadrupoles Qz2 and Qx2−y2 calculated for a d9 shell
where the hole occupies a linear combination of the eg orbitals,
parametrized by a mixing angle θ . The possible quadrupole values
lie on the unit circle, with the corresponding phase angle determined
by θ .

circle or even create other quadrupoles. The radius, for ex-
ample, corresponds to the eg hole occupation and is therefore
directly affected by hybridization. Also, if the density matrix
of the hole does not represent a pure state but a mixed state,
the quadrupoles cannot be described by a single parameter θ

anymore. This can lead to quadrupole values in the inner part
of the circle.

In this context, we can now discuss the results shown in
Fig. 4(a). For the smallest x2 − y2 potential shift, we ob-
tain a large, antiferro-ordered Qx2−y2 = ±0.85 and a small,
ferroic Qz2 = −0.10. This indicates a hole occupation of
(Q2

x2−y2 + Q2
z2 )1/2 = 0.86 and a mixing angle θ = ∓96.9◦.

The deviation from 90◦, which is the angle favored by the
x2 − y2 shift, shows the influence of effects intrinsic to the
material, such as superexchange. This influence gets further
suppressed for larger shifts, where θ → ∓90◦. In principle, by
applying different linear combinations of x2 − y2- and z2-type
potential shifts, our method would also allow to map out the
energy landscape as function of the orbital mixing angle. This
could then give insights into the underlying superexchange
mechanism.
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A. Bajorek, and G. Chełkowska, Influence of Pr substitu-
tion on the physical properties of the Ce1−xPrxCoGe3 system:
Combined experimental and first-principles study, Phys. Rev. B
102, 245127 (2020).

[23] O. I. Malyi, X.-G. Zhao, A. Bussmann-Holder, and A. Zunger,
Local positional and spin symmetry breaking as a source of
magnetism and insulation in paramagnetic EuTiO3, Phys. Rev.
Mater. 6, 034604 (2022).

[24] D. Fiore Mosca, L. V. Pourovskii, and C. Franchini, Modeling
magnetic multipolar phases in density functional theory, Phys.
Rev. B 106, 035127 (2022).

[25] O. E. Peil, A. Hampel, C. Ederer, and A. Georges, Mech-
anism and control parameters of the coupled structural and
metal-insulator transition in nickelates, Phys. Rev. B 99, 245127
(2019).

[26] A. B. Georgescu, O. E. Peil, A. S. Disa, A. Georges, and A. J.
Millis, Disentangling lattice and electronic contributions to the
metal–insulator transition from bulk vs. layer confined RNiO3,
Proc. Natl. Acad. Sci. USA 116, 14434 (2019).

[27] A. B. Georgescu and A. J. Millis, Quantifying the role of the
lattice in metal–insulator phase transitions, Commun. Phys. 5,
135 (2022).

[28] E. Pavarini, E. Koch, and A. I. Lichtenstein, Mechanism for
Orbital Ordering in KCuF3, Phys. Rev. Lett. 101, 266405
(2008).

[29] E. Pavarini and E. Koch, Origin of Jahn-Teller Distortion and
Orbital Order in LaMnO3, Phys. Rev. Lett. 104, 086402 (2010).

[30] X.-J. Zhang, E. Koch, and E. Pavarini, LaVO3: A true Kugel-
Khomskii system, Phys. Rev. B 106, 115110 (2022).

[31] P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Ground
States of Constrained Systems: Application to Cerium Impu-
rities, Phys. Rev. Lett. 53, 2512 (1984).

[32] W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Reformulation
of the LDA+U method for a local-orbital basis, Phys. Rev. B 58,
1201 (1998).

[33] F. Thöle and N. A. Spaldin, Magnetoelectric multipoles in met-
als, Philos. Trans. R. Soc. A 376, 20170450 (2018).

[34] S. Bhowal and N. A. Spaldin, Magnetoelectric Classification of
Skyrmions, Phys. Rev. Lett. 128, 227204 (2022).

[35] A. Okazaki, The polytype structures of KCuF3, J. Phys. Soc.
Jpn. 26, 870 (1969).

[36] M. T. Hutchings, E. J. Samuelsen, G. Shirane, and K. Hirakawa,
Neutron-diffraction determination of the antiferromagnetic
structure of KCuF3, Phys. Rev. 188, 919 (1969).

[37] K. Knox, Perovskite-like fluorides. I. Structures of KMnF3,
KFeF3, KNiF3 and KZnF3. Crystal field effects in the series and
in KCrF3 and KCuF3, Acta Crystallogr. 14, 583 (1961).

[38] L. G. Marshall, J. Zhou, J. Zhang, J. Han, S. C. Vogel, X. Yu, Y.
Zhao, M. T. Fernández-Díaz, J. Cheng, and J. B. Goodenough,
Unusual structural evolution in KCuF3 at high temperatures
by neutron powder diffraction, Phys. Rev. B 87, 014109
(2013).

[39] J. S. Zhou, J. A. Alonso, J. T. Han, M. T. Fernández-Díaz, J. G.
Cheng, and J. B. Goodenough, Jahn–Teller distortion in per-
ovskite KCuF3 under high pressure, J. Fluorine Chem.Special
Issue, 132, 1117 (2011).

[40] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-
functional theory and strong interactions: Orbital ordering in
Mott-Hubbard insulators, Phys. Rev. B 52, R5467 (1995).

[41] H. Sims, E. Pavarini, and E. Koch, Thermally assisted ordering
in Mott insulators, Phys. Rev. B 96, 054107 (2017).

[42] J. Varignon, M. Bibes, and A. Zunger, Origins versus finger-
prints of the Jahn-Teller effect in d-electron ABX3 perovskites,
Phys. Rev. Res. 1, 033131 (2019).

[43] O. Bengone, M. Alouani, P. Blöchl, and J. Hugel, Imple-
mentation of the projector augmented-wave LDA+U method:
Application to the electronic structure of NiO, Phys. Rev. B 62,
16392 (2000).

[44] M. Cococcioni and S. de Gironcoli, Linear response approach
to the calculation of the effective interaction parameters in the
LDA+U method, Phys. Rev. B 71, 035105 (2005).

[45] A. B. Shick, A. I. Liechtenstein, and W. E. Pickett, Implemen-
tation of the LDA+U method using the full-potential linearized
augmented plane-wave basis, Phys. Rev. B 60, 10763 (1999).

[46] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid
metals, Phys. Rev. B 47, 558 (1993).

[47] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[48] M. E. Merkel, multipyles v1.1.0 (Zenodo, 2023),
doi:10.5281/zenodo.8199391.

[49] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[50] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[51] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[52] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Electron-energy-loss spectra and the structural
stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57,
1505 (1998).

[53] K. I. Kugel and D. I. Khomskii, Crystal structure and magnetic
properties of substances with orbital degeneracy, Zh. Eksp.
Teor. Fiz. 64, 1429 (1973) [Sov. Phys. JETP 37, 725 (1973)].

[54] Strictly speaking, even-power higher-order, e.g., biquadratic,
intersite couplings could also contribute to this energy lowering.
However, from the results presented in Sec. III C it can be seen
that the energy lowering for an isolated Cu site in KCu1−xZnxF3

is also around 0.7 eV/Cu, which implies that such higher order
intersite couplings are negligible.

[55] N. Tatami, Y. Ando, S. Niioka, H. Kira, M. Onodera, H. Nakao,
K. Iwasa, Y. Murakami, T. Kakiuchi, Y. Wakabayashi, H. Sawa,
and S. Itoh, Orbital ordering and the dilute effect in copper
fluoride, J. Magn. Magn. Mater. 310, 787 (2007).

[56] T. Tanaka, M. Matsumoto, and S. Ishihara, Randomly Diluted eg

Orbital-Ordered Systems, Phys. Rev. Lett. 95, 267204 (2005).
[57] E. Dagotto, Complexity in strongly correlated electronic sys-

tems, Science 309, 257 (2005).
[58] C. Varma, Mind the pseudogap, Nature (London) 468, 184

(2010).
[59] B. B. Van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, Ob-

servation of ferrotoroidic domains, Nature (London) 449, 702
(2007).

[60] C. Ederer and N. A. Spaldin, Towards a microscopic theory of
toroidal moments in bulk periodic crystals, Phys. Rev. B 76,
214404 (2007).

[61] D. I. Khomskii, Transition Metal Compounds (Cambridge
University Press, Cambridge, 2014).

033172-11

https://doi.org/10.1103/PhysRevB.102.245127
https://doi.org/10.1103/PhysRevMaterials.6.034604
https://doi.org/10.1103/PhysRevB.106.035127
https://doi.org/10.1103/PhysRevB.99.245127
https://doi.org/10.1073/pnas.1818728116
https://doi.org/10.1038/s42005-022-00909-z
https://doi.org/10.1103/PhysRevLett.101.266405
https://doi.org/10.1103/PhysRevLett.104.086402
https://doi.org/10.1103/PhysRevB.106.115110
https://doi.org/10.1103/PhysRevLett.53.2512
https://doi.org/10.1103/PhysRevB.58.1201
https://doi.org/10.1098/rsta.2017.0450
https://doi.org/10.1103/PhysRevLett.128.227204
https://doi.org/10.1143/JPSJ.26.870
https://doi.org/10.1103/PhysRev.188.919
https://doi.org/10.1107/S0365110X61001868
https://doi.org/10.1103/PhysRevB.87.014109
https://doi.org/10.1016/j.jfluchem.2011.06.047
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.96.054107
https://doi.org/10.1103/PhysRevResearch.1.033131
https://doi.org/10.1103/PhysRevB.62.16392
https://doi.org/10.1103/PhysRevB.71.035105
https://doi.org/10.1103/PhysRevB.60.10763
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.5281/zenodo.8199391
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1016/j.jmmm.2006.10.181
https://doi.org/10.1103/PhysRevLett.95.267204
https://doi.org/10.1126/science.1107559
https://doi.org/10.1038/468184a
https://doi.org/10.1038/nature06139
https://doi.org/10.1103/PhysRevB.76.214404

