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Reentrant delocalization transition in one-dimensional photonic quasicrystals
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Waves propagating in certain one-dimensional quasiperiodic lattices are known to exhibit a sharp localization
transition. We theoretically predict and experimentally observe that the localization of light in one-dimensional
photonic quasicrystals is followed by a second delocalization transition for some states on increasing quasiperi-
odic modulation strength—an example of a reentrant transition. We further propose that this phenomenon can
be qualitatively captured by a dimerized tight-binding model with long-range couplings. This work furthers our
understanding of localization physics in complex systems and the impact of quasiperiodicity on light transport
in photonic devices.
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I. INTRODUCTION

Anderson localization is the generic phenomenon of wave
localization in randomly disordered media [1]. The presence
of localized states implies the cessation of all wave transport
in the thermodynamic limit and thus the Anderson model has
provided deep insights into the nature of metal-to-insulator
transitions for electrons in disordered solids [2] as well as
for light propagating in disordered photonic structures [3,4].
Specifically in photonics, localization has been proposed and
observed in photonic crystals (PhCs) and waveguide arrays,
both in truly random [3,5–9] and quasicrystalline lattices
[4,10–16]. In the latter case, light transport resulting from
complex interference processes is much less well understood
and this has often led to surprising effects such as multi-
fractality of states [17,18], localization transitions in lower
dimensions [10,19], and disorder-enhanced transport [20].
The study of such photonic structures is therefore of fun-
damental interest. Furthermore, localization of light can be
employed for various photonic applications, such as for ran-
dom nanolasing [21], the formation of photonic pseudogaps
[22], the formation of high Q/V nanocavities [11,12,23,24],
and for reducing the crosstalk between waveguides in fiber
arrays for endoscopy and telecommunications [25].

In one and two dimensions, it can be shown that an
infinitesimal amount of random disorder causes wave local-
ization, but in three dimensions, a sharp transition occurs
between extended and localized regimes at a finite value of
disorder strength [26,27]. This transition can also occur in
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one dimension when the random disorder of lattice poten-
tials is replaced by quasiperiodicity. A model first proposed
by Aubry and André consists of a one-dimensional lattice
with quasiperiodic on-site energy modulation and nearest-
neighbor couplings that exhibits such a sharp localization
transition [19]. Specifically, the on-site potential for the nth
site in a chain of atoms is modulated according to En = E0 +
ξ cos(2πβn), where E0 is the unperturbed on-site energy, β is
an irrational number, and ξ is the strength of the quasiperiodic
modulation. For this simple model, the localization transition
occurs for the entire spectrum at a single value of ξ due to a
duality between the extended and localized regimes [19].

Extensions of the Aubry-André model with long-range
couplings [28–30] and non-Hermiticity [31,32] were inves-
tigated theoretically and found to possess single-particle
mobility edges and consequently intermediate regimes, where
both extended and localized states coexist. Moreover, some
dimerized tight-binding models [32–36] and driven Aubry-
André systems [37] were recently found to exhibit a second
reentrant transition of some states back to the extended
regime. Simple two-component one-dimensional PhCs can be
thought of as naturally dimerlike due to the patterning of their

FIG. 1. Schematic of multilayer photonic structures made out
of Si and SiO2 layers. The structures have increasing quasiperiodic
modulation of layer thicknesses (from left to right); the leftmost
structure is a perfect one-dimensional photonic crystal and the rest
are photonic quasicrystals.
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different dielectrics and may exhibit non-Hermiticity from
gain or radiative loss. They are therefore a potentially useful
platform for exploring the rich localization physics in complex
quasiperiodic models.

In this paper, we experimentally demonstrate localiza-
tion and delocalization phenomena in multilayer struc-
tures with quasiperiodic thickness modulation, i.e., one-
dimensional photonic quasicrystals (PhQCs). We observe
that in addition to the complete inhibition of transmis-
sion due to a sharp localization transition, there is a
second transition to an extended regime upon increas-
ing the quasiperiodic modulation strength. This results in
the complete recovery of transmission through the struc-
ture as the quasiperiodic modulation increases well beyond
the localized regime. This reentrant delocalization transi-
tion is not known to occur in random potentials and is a
unique feature of quasicrystalline systems. To further ex-
plore the reentrant transition, we develop a tight-binding
model inspired by our PhQCs, that captures the physics of
localization and delocalization in our system.

II. NUMERICAL RESULTS AND DISCUSSION

The system considered here is shown in Fig. 1 and consists
of a set of multilayer structures made out of two materials,
silicon and silica (SiO2), with refractive indices nSi = 3.5 and
nSiO2 = 1.5, respectively. These layers are stacked along the z
direction and define the dielectric function ε(z). When propa-
gation purely along the z direction is considered, this system
is described by the following Maxwell eigenvalue problem for
a single scalar field H(z) [38,39],

−∂z

(
1

ε(z)
∂z

)
H(z) =

(
ω

c

)2

H(z), (1)

where HTE = H(z)x̂ and HTM = H(z)ŷ are the transverse
electric (TE)- and transverse magnetic (TM)-polarized
magnetic field solutions, respectively, with frequency
eigenvalue ω.

Motivated by the Aubry-André model, we modulate the
thicknesses of each layer in a unit cell (defined as a pair of
neighboring Si and SiO2 layers) according to

tn = t0[1 + A cos(2πβn)], (2)

where n ∈ {1, 2, . . . , N} identifies a pair of layers, 2N is the
total number of layers, A is the strength of the spatial modula-
tion, and β is the closest Diophantine (rational) approximation
to the golden mean, φ = (1 + √

5)/2, for a given value of
system size N .

When A = 0, all layers have the same thickness t0 and
the system is a one-dimensional (1D) PhC with a lattice
constant of a = 2t0, whereas for nonzero values of A, the
integer sampling frequency of the cosine term and the irra-
tional modulation frequency β provide two competing and
incommensurate periods that result in a 1D PhQC. In the
latter case, the average lattice constant 〈a〉 = 2t0 provides a
convenient length scale. We note that since A modulates the
thicknesses of layers, it is a bounded parameter with |A| � 1.

We obtain the states of our PhQCs using the plane-wave
expansion method, as implemented in the open source soft-
ware package MIT Photonic Bands (MPB) [40], and calculate

FIG. 2. (a) Eigenvalue spectrum of the PhQC states and their
corresponding IPRs as a function of A for N = 89 and β = 144/89.
(b) The transmission spectrum as a function of A for N = 89.
Localization of various states corresponds to sharp drops in trans-
mission (white arrows). Some states undergo a second delocalization
transition around A = 0.8, which results in a sharp recovery of trans-
mission (blue arrow). (c) Normalized H(z)-field profiles of a state
near the black arrow in (a), for various values of A.

their inverse participation ratios (IPRs) given by

IPRp =
∫ |Hp(z)|4dz

[
∫ |Hp(z)|2dz]2

, (3)

where Hp is the scalar field in (1), corresponding to the pth
state and the integral is taken over the entire finite system.
IPR is a measure of localization of states, where small (large)
values of IPR indicate extended (localized) states.

The results for a system size of N = 89 are shown in Fig. 2.
Figure 2(a) shows a plot of the eigenvalue spectrum of the
PhQC states as a function of A and their corresponding IPRs.
In this plot, we focus on states that constitute the second band
in the PhC limit (i.e., at A = 0), and convert their correspond-
ing frequency eigenvalues to dimensionless wavelength. For
small values of A (A < 0.3), the states are extended since the
structure may be thought of as being crystalline with a small
quasicrystalline perturbation. For larger values of A, the states
undergo transitions to a localized regime, as indicated by a
sharp increase in their IPRs. However, as seen from Fig. 2(a),
these transitions do not all occur at the same value of A.
Moreover, for some states around λ/〈a〉 = 3.2 and A = 0.8,
we observe a sharp reduction in IPRs on further increasing
A, marking a reentrant transition to a second extended regime
for these states. In Fig. 2(c), we also examine the H(z)-field
profile for one such state that undergoes a reentrant transition,
marked by the black arrow in Fig. 2(a). The field profiles show
the transition from extended to localized and back to extended
as A is increased.

Our system thus exhibits some crucial distinctions from the
simple Aubry-André model. Each pair of layers that forms
a unit cell in our PhQCs is not well approximated as a
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resonator or atomic potential that is evanescently coupled
only to its nearest neighbors. If the PhQC corresponds to a
tight-binding model at all, it must be thought of as possessing
long-range couplings that can be accurately computed using
Wannier-function methods [41]. The presence of these effec-
tively long-range couplings creates single-particle mobility
edges that result in intermediate regimes where both extended
and localized states coexist [28]. In fact, we find that due to
the bounded nature of the quasiperiodic modulation strength
via the parameter A, a large part of the spectrum of the PhQC
remains in an intermediate regime [30]. Moreover, the states
corresponding to the lowest band of the PhC limit never local-
ize for any value of A up to its bounds (see appendices). This
is because PhQCs act as effectively homogeneous dielectric
media at long wavelengths. Finally, the presence of a reen-
trant transition suggests the breakdown of the duality between
the localized and extended regimes that exists in the simple
Aubry-André model.

Since the localization of states causes the cessation of
wave transport, we explore its consequences in the trans-
mission spectrum of the PhQCs. Figure 2(b) shows a plot
of the transmission spectrum of the PhQCs as a function of
A, calculated using a transfer-matrix approach. We see that
the localization transitions from Fig. 2(a) correspond to the
vanishing of transmission through the structures. This occurs
because the system size here exceeds the localization length
of the localized states, preventing these states from forming
a transmission channel across the structures. Furthermore, we
also see a recovery of transmission around λ/〈a〉 = 3.2, which
corresponds to the reentrant transition of some of the states to
an extended regime. This observation is not a finite-size effect
and persists for much larger system sizes (see appendices).
PhQCs and their transmission spectra therefore provide an ac-
cessible experimental setting in which to explore localization
phenomena in one-dimensional systems.

III. EXPERIMENTAL RESULTS

For the experiment, we fabricate the PhQCs using plasma-
enhanced chemical vapor deposition (PECVD), alternating
between Si and SiO2 deposition on a glass substrate. The
deposition times control the thicknesses of each layer and are
determined from (2). We fabricate a total of ten samples with
〈a〉 = 0.25 µm, t0 = 0.125 µm, N = 13, β = 21/13, and vary-
ing values of A. A scanning electron microscope (SEM) image
of a typical sample is shown in Fig. 3(a). To characterize
our samples, we measure the transmission spectrum of each
sample as a function of wavelength, normalized to the trans-
mission through the bare glass substrate. This is performed
using a supercontinuum laser in combination with a filter that
allows for wavelength selection in the range of 690–1100 nm.
The transmitted power is measured with a photodiode power
sensor.

The measured transmission spectrum is shown in Fig. 3(b),
along with the simulation results for comparison in Fig. 3(c).
We find that despite the relatively small system size, the lo-
calization transitions for states near λ ∼ 0.85 and 0.75 µm
are clearly observed as a sharp inhibition of transmission.
Furthermore, the second transition to an extended regime near
λ ∼ 0.78 µm is observed as a sharp recovery of transmission

FIG. 3. (a) Scanning electron microscope (SEM) image of a cut
through a typical one-dimensional photonic quasicrystal fabricated
by PECVD. Both layers in a pair of neighboring Si and SiO2 layers
have identical thicknesses. The thickness values of each such pair
are modulated according to Eq. (2). (b) Experimentally measured
transmission spectrum as a function of A for N = 13. (c) Simulated
transmission spectrum as a function of A for N = 13. In (b) and (c),
the localization transitions are marked with white arrows and the
reentrant delocalization transition is marked with a blue arrow.

for A > 0.8. The states near λ ∼ 1 µm are localized for A >

0.5, however, the system size in the experiment is smaller than
the localization length of these states and as such we measure
finite transmission around this wavelength (see appendices).
Therefore it would be possible in principle to extract the
localization length of states directly from the transmission
spectrum of PhQCs by varying the system size.

IV. TIGHT-BINDING MODEL

To further explore the observed localization features, we
develop a tight-binding model that qualitatively captures
the physics of localization in our PhQCs. In particular, we
consider a 1D quasiperiodic model with nearest- and next-
nearest-neighbor couplings given by the Hamiltonian

H =
∑

j=A,B

N∑
i=1

Ei, j[1 + α cos(2πβi)]ni, j

−tNN

N∑
i=1

(c†
i,Aci,B + H.c.) − tNN

N−1∑
i=1

(c†
i,Bci+1,A + H.c.)

−tNNN

∑
j=A,B

N−1∑
i=1

(c†
i, jci+1, j + H.c.), (4)
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FIG. 4. (a) Schematic of the tight-binding model. The dimerized
unit cell for the periodic system (α = 0) is highlighted. The solid
(dotted) lines represent nearest-neighbor (next-nearest-neighbor)
couplings. (b) The energy spectrum and IPR of the states of the
model for Ei,A = 1, Ei,B = 2, tNN = 0.7, tNNN = 0.35, and N = 89.
The states of the second band exhibit a mobility edge and are local-
ized for 0.25 < α < 0.6. Some states of this band undergo a reentrant
delocalization transition at α ∼ 0.6. (c) A plot of the 〈IPR〉 and
〈NPR〉 for the states of the upper band for large N . The highlighted
areas indicate intermediate regimes, where both 〈IPR〉 and 〈NPR〉 are
nonzero, and localized and extended states coexist.

where c†
i, j , ci, j , and ni, j are respectively the creation, anni-

hilation, and number operators on site i of sublattice j =
A, B. tNN, tNNN are the nearest- and next-nearest-neighbor
couplings, respectively, and Ei, j are the unperturbed on-site
energies of site i of sublattice j. This lattice of 2N sites is
shown schematically in Fig. 4(a). We choose Ei,A = 1 as the
energy scale and set β = (1 + √

5)/2. α is an unbounded
parameter that governs the strength of the quasiperiodic mod-
ulation of the on-site energies and we choose Ei,B �= Ei,A to
introduce dimerization, akin to the two different dielectrics in
the PhQCs.

We plot the IPR of the states of this model for N = 89
in Fig. 4(b), where we observe some important qualitative
similarities with our PhQCs. The states of the lower band
stay extended until a much larger value of α, compared to the
upper band, similar to the lowest two bands in the PhQCs.
We also observe that the states of the upper band exhibit
mobility edges and an intermediate regime, before undergoing
a transition to a completely localized regime at α ∼ 0.25.
Moreover, some states of this band undergo a second tran-
sition at α ∼ 0.6 and remain extended for a range of α values.
Eventually all states of this model become localized for a large
enough value of α (α > 2). We find that these features are
generic and persist for a range of parameters of the model.

We also calculate the average IPR and average normalized
participation ratio (NPR) for a set of M states, given by

〈IPR〉 = 1

M

M∑
n=1

2N∑
i=1

|ψn,i|4, (5)

〈NPR〉 = 1

M

M∑
n=1

(
2N

2N∑
i=1

|ψn,i|4
)−1

, (6)

where |ψn,i〉 is the normalized nth eigenstate of H and i labels
the sites. The extended regime is characterized by near-zero
〈IPR〉 and nonzero 〈NPR〉 and vice versa for the localized
regime. A nonzero value for both 〈IPR〉 and 〈NPR〉 implies the
presence of an intermediate regime in the spectrum. The plot
of 〈IPR〉 and 〈NPR〉 for the states of the upper band is shown
in Fig. 4(c). Comparing this plot with Fig. 4(b), we can see
that the first intermediate regime arises due to a mobility edge
and the second intermediate regime arises due to a reentrant
delocalization transition for the lowest lying states of this
band.

Through this model, we see that a combination of stag-
gered potentials and long-range couplings, competing with
quasiperiodicity, can cause the delocalization of previously
localized states for a range of parameter values. These findings
are consistent with other models with similar qualities that are
known to exhibit reentrant transitions [33–35].

V. CONCLUSION

In conclusion, we have observed a reentrant delocalization
transition—a feature that is not present in the standard Aubry-
André model—in 1D PhQCs with an Aubry-André-type
quasiperiodic modulation. Our findings indicate, counter-
intuitively, that in quasiperiodic systems, increasing the
quasiperiodic modulation can fully restore light transport
previously inhibited by strong localization. The PhQCs and
their transmission spectra thus provide a means to experimen-
tally explore more complex models with richer localization
physics, as compared to simple nearest-neighbor tight-binding
models. Inspired by the PhQCs, we have also explored the
localization features of our system in a tight-binding setting in
order to lend physical insight into the nature of the transitions.
In the future, it will be interesting to explore localization in
passive non-Hermitian 1D PhQCs enabled via a patterning
of lossy dielectric materials. Furthermore, examining local-
ized states in higher-dimensional realizations of PhQCs is
warranted since it could lead to better-performing photonic
nanocavities with lower-index materials.
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APPENDIX A: LARGER SYSTEM SIZE AND FINITE-SIZE
EFFECTS

In the main text, we mention that the reentrant transition
is not a small-system-size effect but persists for much larger
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FIG. 5. (a) Transmission spectrum for N = 13. This is the system
size fabricated in the experiment. (b) Transmission spectrum for
N = 144. (c) Transmission spectrum for N = 2584. The reentrant
transition occurs for arbitrarily large system sizes.

system sizes. Here, we show this using the simulated trans-
mission spectra for a very large system size. Figures 5(a)–5(c)
show the transmission spectra for a system size of N = 13,
N = 144, and N = 2584, respectively. In all three cases, we
can see the inhibition of transmission associated with the
localization transitions at λ ∼ 0.85 and 0.75 µm, A ∼ 0.3,
and the recovery of transmission associated with the reentrant
delocalization transition at λ ∼ 0.78 µm, A ∼ 0.8. We note
that all features in the spectrum are already well converged
for N = 144.

We next address some finite-size effects observed in our
experiment. The localized regimes are characterized by modes
that are exponentially localized with a characteristic local-
ization length λL. If the system size is smaller than λL, the
localized modes will be able to outcouple to vacuum due to
the overlap between their evanescent tails and vacuum modes.
These modes would then be detected as clear transmission
channels in the spectrum. However, on increasing the system
size to be larger than λL, these channels would no longer
appear since the evanescent overlap between the modes and
vacuum states would be negligible.

To further explore this, we show the simulated transmission
spectra of our 1D PhQCs for various system sizes in Fig. 6
(while keeping other parameters fixed). Here, we see that the
transmission channel marked with the white arrows is only
present in very small system sizes (N = 8) and vanishes for
larger sizes, including the system size considered in the exper-
iment (N = 13). The corresponding state, shown in Fig. 6(h),
is indeed found to be localized for 0.3 < A < 1 with its λL

smaller than the experimental system size. Similarly, the state
marked with the blue arrows in Fig. 6 is found to be local-
ized for A > 0.5 but has a larger localization length than the
experimental system size and thus appears as a transmission
channel in our experiments. The field profile of this state is
shown in Fig. 6(g). On increasing system size to N = 21 and
beyond, this channel also vanishes for A > 0.5.

APPENDIX B: INTERMEDIATE REGIMES

In the main text we state that much of the eigenvalue
spectrum of the PhQCs is in an intermediate regime. In Fig. 7,
we plot the spectrum for a larger frequency range along with
the IPRs of the corresponding states. We notice the presence
of multiple mobility edges as well as multiple reentrant de-
localization transitions for various values of A. Furthermore,
we also see that the lowest band does not localize for the full

FIG. 6. Transmission spectrum vs quasiperiodic modulation
strength (A) for the 1D PhQCs with varying system sizes: (a) N = 8,
(b) N = 13, (c) N = 21, (d) N = 34, (e) N = 55, and (f) N = 89.
(g), (h) The H(z)-field profiles of the states for N = 13 marked with
the blue and white arrows, respectively.

range of A due to the behavior of these PhQCs as effectively
homogeneous dielectrics at long wavelengths.

FIG. 7. The eigenvalue spectrum for the family of PhQCs con-
sidered in the main text for a larger frequency range. In the main text
and in the experiment, we focus on the localization features of states
in the dimensionless frequency range of 0.227–0.357 (dashed box)
that constitute the second band of the PhC limit (i.e., at A = 0).
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FIG. 8. Comparison of a sample’s layer thicknesses extracted
from SEM images (blue) and targeted thickness (red).

APPENDIX C: METHODS

For the fabrication of 1D PhQCs, we employ the plasma-
enhanced chemical vapor deposition (PECVD) process to
deposit alternating layers of silicon (Si) and silica (SiO2). The
layers are deposited onto a glass substrate (Corning 18-mm-
square microscope glass cover slide). Si is deposited from Ar

and SiH4 precursor gases at 220 ◦C and a pressure of 4.5 Torr,
while silica is deposited from N2O and SiH4 precursor gases at
300 ◦C and pressure of 3.5 Torr. The thicknesses of the layers
are controlled by the deposition time.

To characterize the fabrication imperfections in our system
and show that the observed features are robust against fab-
rication disorder, we extract the layer thicknesses of one of
the samples from SEM images and compare them with the
targeted thicknesses given by Eq. (2) in Fig. 8. We observe
random fluctuations in the layer thicknesses with respect to
the target thickness by a maximum of ±8% and an average
of 2%. This is most likely caused by the fabrication process,
where the chemical reaction, and thus the layer formation,
is controlled purely by a timed precursor release into the
chamber (a process which inherently is prone to fluctuations).
We find that these fabrication errors are not large enough to
cause any meaningful deviation of the observed localization
features compared to simulations.

For the measurements, a collimated, unpolarized laser
beam is sent through the PhQCs at normal incidence, and the
transmitted power is measured via a power meter (Thorlabs
S120c). To sweep through the wavelengths in the range of
690–1100 nm, a SuperK EVO white-light laser (NKT Photon-
ics) and a SuperK Select filter box are used. The transmitted
power is normalized to that from the bare glass substrate.
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