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Kinetic energy equipartition: A tool to characterize quantum thermalization
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According to both Bohmian and stochastic quantum mechanics, the standard quantum mechanical kinetic
energy can be understood as consisting of two hidden-variable components. One component is associated
with the current (or Bohmian) velocity, while the other is associated with the osmotic velocity (or quantum
potential), and they are identified with the phase and the amplitude, respectively, of the wave function. These
two components are experimentally accessible through the real and imaginary parts of the weak value of the
momentum postselected in position. In this paper, a kinetic energy equipartition is presented as a signature of
quantum thermalization in closed systems. This means that the expectation value of the standard kinetic energy
is equally shared between the expectation values of the squares of these two hidden-variable components. Such
components cannot be reached from expectation values linked to typical Hermitian operators. To illustrate these
concepts, numerical results for the nonequilibrium dynamics of a few-particle harmonic trap under random
disorder are presented. Furthermore, the advantages of using the center-of-mass frame of reference for dealing
with systems containing many indistinguishable particles are also discussed.
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I. INTRODUCTION

A renewed interest in statistical mechanics of closed
quantum systems has arisen [1–15] as a consequence of
the successful experimental ability to isolate and manip-
ulate bosonic [16–20] and fermionic [21–25] many-body
systems built on ultracold atomic gases subjected to optical
lattices. The main question to be addressed is when an ini-
tial nonequilibrium state thermalizes and, if so, under which
conditions. The eigenstate thermalization hypothesis (ETH)
[26,27], which has become a cornerstone in the study of quan-
tum thermalization, claims that all relevant energy eigenstates
of a given Hamiltonian, in the description of a quantum state,
are thermal in the sense that they are similar to an equilib-
rium state as long as one deals with macroscopic observables.
In recent years a large number of numerical experiments
have successfully tested the ETH by directly diagonalizing
in physical space some sort of short-range many-body lattice
Hamiltonian, such as a Fermi- or Bose-Hubbard Hamiltonian
[17,22,23,28–30] and an XXZ- or XYZ-Heisenberg Hamilto-
nian [6,15,18,31–34], in the search for chaotic signatures in
the statistics of their spectra, as in general induced by local
impurities, without the need to explicitly evolve the initial
nonequilibrium state. The true time evolution of such a state
is not as widespread due to the inherently huge configuration
space involved.
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Our understanding of quantum thermalization has largely
been based on expectation values of observables linked to
Hermitian operators. It is well known that other explanations
of quantum phenomena allow one to discuss properties not
directly linked to Hermitian operators. Such alternative ex-
planations are in general labeled as hidden-variable theories.
The Bohmian theory, formulated by de Broglie in 1927 [35]
and further developed by Bohm in 1952 [36], is the most
well-known example of a quantum theory with additional
microscopic variables: Particles have always well-defined
positions that conform trajectories. Another example is the
stochastic quantum mechanics, proposed by Nelson in 1966
[37]; although it also assumes particles with well-defined
trajectories, these are unknown, and only their statistical be-
havior is handled.

These two hidden-variable theories assume that the stan-
dard quantum mechanical kinetic energy, which is labeled in
this paper as the orthodox kinetic energy, in fact has two com-
ponents: In the Bohmian theory, it is computed as the square
of the so-called Bohmian velocity plus a quantum potential,
while in the stochastic quantum mechanics, it is given by
the square of a mean current velocity plus the square of a
so-called osmotic velocity. The central question in this paper
is whether these two hidden-variable components of the ki-
netic energy also thermalize when the orthodox kinetic energy
thermalizes. We show that in fact, one can characterize the
thermalization time teq as the time when the expectation values
of the (squared) current and osmotic velocities become equal
or, similarly, when the expectation values of the Bohmian
kinetic and quantum potential energies become the same, each
being equal to half of the orthodox kinetic energy. Such a
kinetic energy equipartition is the hidden-variable signature
of quantum thermalization.

Nowadays, the information carried by such hidden vari-
ables is accessible in the laboratory through the so-called
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weak values. Since the original single-particle proposal [38],
weak values have been attracting a lot of theoretical [39–45]
and experimental [46–48] interest in distinct research fields,
and a many-particle generalization has been presented by the
authors elsewhere [49]. Our goal in this paper is to emphasize
that the existence of the local-in-position weak values [50]
allows novel characterization of quantum systems. One could
use distinct types of weak values, but working with weak
values of the momentum postselected in position allows one
to apply all the mathematical machinery (without choosing
their ontology) of the Bohmian and stochastic quantum me-
chanics. For that, in particular, we focus here on how the
expectation values of the (squared) real and imaginary parts of
such new empirical data allow one to characterize the process
of quantum thermalization of a fermionic few-body closed
system, defined by a harmonic trap under random disorder.
At the end of this paper, we reformulate our proposal in the
center-of-mass frame, so that our findings are also extendable
to larger systems with many indistinguishable particles.

The paper is organized as follows. Section II presents a
brief summary of the needed theoretical background. Sec-
tion III addresses the orthodox kinetic energy equipartition
between its two hidden-variable components. Section IV
presents the theoretical model and the numerical results for
a particular few-body harmonic trap under random disorder,
within three distinct scenarios for the dynamics; the center-of-
mass frame is then considered for approaching larger systems.
In Sec. V we conclude.

II. THEORETICAL BACKGROUND

This section provides a summary of the needed theoretical
background: Sec. II A presents the weak values from the polar
form of the many-body wave function, as well as the main
equations of both Bohmian quantum mechanics and stochastic
quantum mechanics; Sec. II B develops the non-Hermitian
expectation values derived from such weak values. Atomic
units are employed throughout this paper, which assumes N
nonrelativistic spinless particles, each in a one-dimensional
(1D) physical space, so that the position in configuration space
is x = (x1, . . . , xN ).

A. Weak values postselected in position

A simple path to define the (complex) local-in-position
weak value of the momentum for particle j at position
x, pW, j (x, t ), linked to the Hermitian operator for the mo-
mentum, p̂ j = −i ∂/∂x j , comes after inserting the identity∫

dx|x〉〈x| into the expectation value 〈�(t )| p̂ j |�(t )〉,

〈p̂ j〉 = 〈�(t )| p̂ j |�(t )〉 =
∫

dx|�(x, t )|2 〈x| p̂ j |�(t )〉
〈x|�(t )〉 . (1)

From the polar form of the wave function, �(x, t ) =
R(x, t )exp(iS(x, t )) with |�(x, t )|2 = R2(x, t ), the weak value
as stated in (1) decomposes as

pW, j (x, t ) ≡ 〈x| p̂ j |�(t )〉
〈x|�(t )〉 = ∂S(x, t )

∂x j
− i

1

R(x, t )

∂R(x, t )

∂x j

= v j (x, t ) − i u j (x, t ), (2)

where the current v j (x, t ) and osmotic u j (x, t ) velocities for
particle j are identified in (2) as

v j (x, t ) = ∂S(x, t )

∂x j
= Im

[
1

�(x, t )

∂�(x, t )

∂x j

]
, (3)

u j (x, t ) = 1

R(x, t )

∂R(x, t )

∂x j
= Re

[
1

�(x, t )

∂�(x, t )

∂x j

]
. (4)

Notice that v j (x, t ) and u j (x, t ) depend only on the phase
and on the amplitude, respectively, of �(x, t ). The strategy
above in fact can be used for any operator; for the bilinear
momentum, p̂ j p̂l = −∂/∂x j∂/∂xl , one has

〈p̂ j p̂l〉 = 〈�(t )| p̂ j p̂l |�(t )〉 =
∫

dx|�(x, t )|2 〈x| p̂ j p̂l |�(t )〉
〈x|�(t )〉 ,

(5)
where the bilinear weak value pW, jl (x, t ) is

pW, jl (x, t )≡ 〈x| p̂ j p̂l |�(t )〉
〈x|�(t )〉

= v j (x, t )vl (x, t ) − u j (x, t )ul (x, t ) − ∂ul (x, t )

∂x j

−i

(
u j (x, t )vl (x, t )+v j (x, t )ul (x, t )+ ∂vl (x, t )

∂x j

)
,

(6)

which, for j = l , defines the weak value of (twice) the kinetic
energy for particle j, KW, j (x, t ),

2KW, j (x, t ) ≡ 〈x| p̂2
j |�(t )〉

〈x|�(t )〉
= v2

j (x, t ) − u2
j (x, t ) − ∂u j (x, t )

∂x j

− i

(
2u j (x, t )v j (x, t ) + ∂v j (x, t )

∂x j

)
. (7)

Section II B will show that the imaginary part does not con-
tribute for ensemble values of (2), (6), or (7). One could also
define from (2) and (6) the (weak) correlation of the mo-
mentum postselected in position, CpW, j ;pW,l ≡ 〈pW, jl (x, t )〉 −
〈pW, j (x, t )〉〈pW,l (x, t )〉, as

CpW, j ;pW,l = −
〈
∂ul (x, t )

∂x j

〉
− i

〈
∂vl (x, t )

∂x j

〉
, (8)

which could be used in situations where separated entangle-
ments in phase and amplitude of �(x, t ) were accessible [51],
since the real (imaginary) part of CpW, j ;pW,l depends only on the
amplitude (phase) of �(x, t ). Some given properties between
current (3) and osmotic (4) velocities will prove important in
our derivation. For that, one can use some basic elements of
both Bohmian and stochastic quantum mechanics.

1. Bohmian quantum mechanics

The Bohmian theory assumes that particles follow well-
defined trajectories guided by �(x, t ), the solution of the
Schrödinger equation

i
∂�(x, t )

∂t
= H (x)�(x, t ), (9)
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whose Hamiltonian is

H (x) = −1

2

N∑
j=1

∂2

∂x2
j

+ V (x) = K (x) + V (x), (10)

with K (x) = ∑N
j=1 Kj (x j ), where Kj (x j ) ≡ −∂2/2∂x2

j is the
orthodox kinetic energy of each of the N particles, whose
interaction is given by the potential energy V (x). From the
polar form of �(x, t ), Eq. (9) gets rewritten as two coupled
equations. On the one hand, the imaginary part yields the
continuity equation,

∂R2(x, t )

∂t
+

N∑
j=1

∂

∂x j

(
R2(x, t )

∂S(x, t )

∂x j

)
= 0, (11)

in which from (3) one identifies the j component of the current
density as Jj (x, t ) ≡ R2(x, t )v j (x, t ). On the other hand, the
real part yields the quantum Hamilton-Jacobi equation,

∂S(x, t )

∂t
+ KB(x, t ) + QB(x, t ) + V (x) = 0, (12)

with KB(x, t ) = ∑N
j=1 KB, j (x, t ) and QB(x, t ) =∑N

j=1 QB, j (x, t ), where the j components of the Bohmian
kinetic KB, j (x, t ) and quantum potential QB, j (x, t ) energies
are

KB, j (x, t ) = 1

2

(
∂S(x, t )

∂x j

)2

, (13)

QB, j (x, t ) = − 1

2R(x, t )

∂2R(x, t )

∂x2
j

. (14)

The Bohmian trajectories, thanks to the current density
Jj (x, t ) in (11), are obtained from the integration solely of
v j (x, t ) [u j (x, t ) plays no role]; so, throughout this paper,
v j (x, t ) is interchangeably identified either as the Bohmian
velocity or the current velocity. In Bohmian theory, while
the kinetic energy is determined by the phase of the wave
function, the quantum potential, determined by its amplitude,
has indeed the status of a potential energy since, from a time
derivative in (3) and by using (12), one gets the set of Newton-
like equations,

d2x j (t )

dt2
= −

[
∂

∂x j
(V (x, t ) + QB(x, t ))

]
x=x(t)

, (15)

which is another way of getting the Bohmian trajectories.

2. Stochastic quantum mechanics

The stochastic quantum mechanics may be understood
as an attempt to give a kinematic interpretation also to the
quantum potential, although such a potential is not explicit in
its original derivation. Notice indeed that, from (3) and (4),
Eqs. (13) and (14) can be cast into

KB, j (x, t ) = 1

2
v2

j (x, t ), (16)

QB, j (x, t ) = −1

2
u2

j (x, t ) − 1

2

∂u j (x, t )

∂x j
, (17)

so that KB, j (x, t ) and QB, j (x, t ) depend only on Bohmian
and osmotic velocities, respectively. Notice that KB, j (x, t ) and

QB, j (x, t ) are not weak values computed from the Hermitian
operator of the kinetic energy, as happens with KW, j (x, t ) in
(7). One should keep in mind that according to this stochastic
theory, v j (x, t ) + u j (x, t ) has the meaning of a mean velocity,
while the true velocity is a random velocity around it. Such
a theory is defined in terms of a stochastic diffusion process
in the configuration space, which requires that the probability
R2(x, t ) satisfies both forward (+) and backward (−) Fokker-
Planck equations for a parameter ν,

∂R2(x, t )

∂t
= −

∑
j

∂

∂x j
((v j (x, t ) ± u j (x, t ))R2(x, t ))

± ν
∑

j

∂2R2(x, t )

∂x2
j

, (18)

whose sum yields the continuity equation in (11), irrespective
of u j (x, t ) and ν, and whose difference yields

ν
∂2R2(x, t )

∂x2
j

= ∂ (u j (x, t )R2(x, t ))
∂x j

, (19)

which is satisfied by the u j (x, t ) in (4) and with ν = 1/2.
In other words, the Fokker-Planck equations in (18), with
(4) and ν = 1/2, delineate a picture using (19) in which the
osmotic current uj (x, t )R2(x, t ) is balanced by some diffusion
current ν∂R2(x, t )/∂x j , so that the continuity equation in (11)
remains valid and determined solely by the current velocity
v j (x, t ). As such, the kinematic interpretation of the quantum
potential, implicit in the derivation of the stochastic quantum
mechanics, empirically reproduces both Bohmian and ortho-
dox quantum mechanics.

B. Expectation values from weak values

From (1) and (2) the expectation value for the momentum
weak value postselected in position, 〈pW, j〉, is

〈p̂ j〉 =
∫

dx pW, j (x, t )|�(x, t )|2 ≡ 〈pW, j〉. (20)

For this particular case one can directly compute the expec-
tation values of each of its real and imaginary parts, yielding
from (1) and (2)

〈v j〉 =
∫

dx Re[pW, j (x, t )]|�(x, t )|2 = 〈p̂ j〉, (21)

〈u j〉 =
∫

dx Im[pW, j (x, t )]|�(x, t )|2 = 0, (22)

so that, while v j (x, t ) �= pW, j (x, t ), 〈v j〉 = 〈pW, j〉 and the os-
motic velocity has no role in the expectation values of either
p̂ j or pW, j (x, t ) (for a wave function vanishing at the system
borders). Strictly speaking, v j (x, t ) and u j (x, t ) are not weak
values themselves, but they are postprocessed real and imagi-
nary parts, respectively, of the weak value pW, j (x, t ). In other
words, while pW, j (x, t ) is linked to the Hermitian operator p̂ j ,
no Hermitian operators can be linked to v j (x, t ) or u j (x, t ).
The connection between pW, j (x, t ) and v j (x, t ) is approached
elsewhere [52–59], while more attention has recently been
paid to the meaning of uj (x, t ) [60–68]. We distinguish in
this paper three types of expectation values: (i) 〈â〉, with the
“hat,” for the operator â; (ii) 〈aW 〉, with subscript “W,” for
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the weak value aW ; and (iii) 〈a〉 for the value a obtained by
postprocessing the weak value.

The expectation value of the bilinear weak value, 〈pW, jl〉,
is from (5) and (6)

〈p̂ j p̂l〉 =
∫

dx pW, jl (x, t )|�(x, t )|2

= 〈v jvl〉 + 〈u jul〉 ≡ 〈pW, jl〉, (23)

where we have used 〈
∂ul

∂x j

〉
= −2〈ul u j〉, (24)

〈
∂vl

∂x j

〉
= −〈ulv j〉 − 〈vl u j〉; (25)

for an antisymmetric �(x, t ), one has 〈ulv j〉 = 〈vl u j〉. Once
more, the weak value pW, jl (x, t ) is linked to p̂ j p̂l , but
v j (x, t )vl (x, t ) and u j (x, t )ul (x, t ) are just postprocessed data
obtained from the real and imaginary parts of the weak values
pW, j (x, t ) and pW,l (x, t ). Interestingly, from (24) the expec-
tation values of the Bohmian kinetic 〈KB, j〉 and quantum
potential 〈QB, j〉 energies in (16) and (17) become

〈KB, j〉 = 1
2

〈
v2

j

〉
, (26)

〈QB, j〉 = 1
2

〈
u2

j

〉
, (27)

〈K̂j〉 = 1
2

(〈
v2

j

〉 + 〈
u2

j

〉)
, (28)

where the last equation is the expectation value of the or-
thodox kinetic energy, 〈K̂j〉 = 〈p̂2

j〉/2, as promptly obtained
from (23). Neither 〈v2

j 〉 nor 〈u2
j〉 are expectation values of

a weak value; they are instead expectation values of the
(squared) real and imaginary parts, respectively, of the weak
value pW, j (x, t ). Notice that by integrating the weak values
of the kinetic energy in (7) with the use of (24) and (25) and
comparing the result with (28), one obtains

〈K̂ j〉 =
∫

dx KW, j (x, t )|�(x, t )|2 = 〈KW, j〉. (29)

Similar to the (weak) correlation in (8), one can define
the correlations Câ,b̂ ≡ 〈âb̂〉 − 〈â〉〈b̂〉 between operators and
Ca,b ≡ 〈ab〉 − 〈a〉〈b〉 between quantities postprocessed from
weak values. For the momentum operator, from (23) and (21)
one obtains

Cp̂j ,p̂l = 〈v jvl〉 + 〈u jul〉 − 〈v j〉〈vl〉 = Cv j ,vl + Cuj ,ul , (30)

CpW, j ;pW,l = 2〈u jul〉 + i(〈u jvl〉 + 〈v jul〉), (31)

where (22) is used in (30), while (31) results from applying
(24) and (25) in (8). So, while the Bohmian velocity fully de-
termines 〈p̂ j〉 in (21), the osmotic velocity, although satisfying
(22), induces a deviation between the quantum correlations of
the momentum with respect to the current velocity in (30).
Notice that from (30) and (31) one has Re[CpW, j ;pW,l ] = 2Cuj ,ul ,
while one should have Im[CpW, j ;pW,l ] ≈ 0.

III. EQUIPARTITION AT THERMALIZATION OF THE
HIDDEN-VARIABLE COMPONENTS

Since the expectation values 〈KB, j〉 and 〈QB, j〉 cannot be
computed from Hermitian operators, the typical argumenta-
tion of ETH to discuss thermalization of observables cannot
directly be applied to these quantities, although the very same
spirit can still be used. For that, let us first summarize the usual
interpretation of the thermalization of expectation values.

From an initial nonequilibrium state |�(0)〉, whose unitary
evolution is dictated by |�(t )〉 = ∑

n cne−iωnt |n〉, with |n〉 be-
ing an energy eigenstate with eigenvalue ωn and with cn =
〈n|�(0)〉 being defined by initial conditions, the expectation
value of some Hermitian operator â reads

〈â〉 =
∑

n

ρn,n(0)an,n +
∑

n,m �=n

ρn,m(t )am,n, (32)

with am,n = 〈m|â|n〉 and with ρn,m(t ) = c∗
mcnei(ωm−ωn )t being

the density matrix, composed of diagonal time-independent
and nondiagonal time-dependent terms; while the former can
never be neglected (unless it is zero by construction), the
latter needs to be negligible after some given time if one
expects 〈â〉 to thermalize. A system is said to equilibrate if,
after some time teq long enough for full dephasing between
different energy eigenstates, the nondiagonal terms cancel out
so that (32) can solely be computed from the diagonal terms,
〈â〉 ≈ ∑

n ρn,n(0)an,n, for most times t > teq. The system is
then said to thermalize when 〈â〉 becomes roughly equal to
the expectation value as computed from its microcanonical
density matrix. The ETH states that such dephasing is more
typical in nondegenerate and chaotic many-body scenarios,
where the nondiagonals am,n in (32) become exponentially
smaller than the diagonals an,n. In other words, a nonequi-
librium state whose evolution involves a large number of
eigenstates (not necessarily of particles) is required [69].
Such a picture immediately applies to the thermalization of
the orthodox kinetic K (x) and potential V (x) operators in
(10). For the hidden-variable components of the Bohmian
and stochastic kinetic energies, however, one needs an extra
step, which renders us the main result of our work in what
follows.

The Bohmian velocity for particle j is, from (3),

v j (x, t ) = Im

[
1

�(x, t )

∂�(x, t )

∂x j

]
= 1

2i

(
�̃ j

�
− �̃∗

j

�∗

)
, (33)

where �̃ j ≡ ∂�(x, t )/∂x j and � ≡ �(x, t ). The ensemble
value of the product 〈v jvl〉 is

〈v jvl〉 =
∫

dx|�(x, t )|2 v j (x, t )vl (x, t )

= −1

4

∫
dx

1

|�|2 (�̃ j�
∗ − �̃∗

j �)(�̃l�
∗ − �̃∗

l �)

= 1

2

∫
dx�̃ j�̃

∗
l

− 1

4

∫
dx

1

|�|2 (�̃ j�
∗�̃l�

∗ + �̃∗
j ��̃∗

l �). (34)

The first integral is just half of 〈p̂ j p̂l〉 =
〈( p̂ j�(t ))∗| p̂l�(t )〉 = ∫

dx�̃ j�̃
∗
l , which then follows
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the same thermalization process discussed after (32) for
Hermitian operators. The second integral is the sum of one
component plus its complex conjugate so that (34) remains
indeed real. As discussed in the Appendix, this second
integral yields a sum of random numbers around zero with
vanishing contribution, so that the thermalized value of (34)
becomes

〈v jvl〉 ≈ 〈p̂ j p̂l〉
2

. (35)

From exactly the same procedure, since the osmotic velocity
for particle j is, from (4),

u j (x, t ) = Re

[
1

�(x, t )

∂�(x, t )

∂x j

]
= 1

2

(
�̃ j

�
+ �̃∗

j

�∗

)
, (36)

the ensemble value of the product 〈ujul〉 will be exactly the
same as in (34), but with a positive sign in the second integral.
Thus, applying the same reasoning as above, one finds the
thermalized value

〈u jul〉 ≈ 〈p̂ j p̂l〉
2

, (37)

so that (23) remains satisfied after thermalization.
Applying (35) and (37) with j = l into (26)–(28) yields

〈K̂j〉 = 〈KB, j〉 + 〈QB, j〉, (38)

〈K̂j〉
2

≈ 〈KB, j〉 ≈ 〈QB, j〉. (39)

While (38) is already true in (26)–(28), and so is valid in
any scenario, thermalized or not, the kinetic energy equipar-
tition in (39), being only valid at times t > teq, presents
the hidden-variable signature of quantum thermalization:
Bohmian kinetic and quantum potential energies become
equal, with each being equal to half of the orthodox kinetic
energy. Similarly, while 〈p̂2

j〉 = 〈v2
j 〉 + 〈u2

j〉 applies at any
time, at t > teq, 〈p̂2

j〉/2 ≈ 〈v2
j 〉 ≈ 〈u2

j〉 should also apply. That
is, thermalization also implies that (squared) Bohmian and
osmotic velocities become equal, with each being equal to
half of the (squared) orthodox momentum; in other words,
information from the phase of the wave function and informa-
tion from the amplitude of the wave function become similar
after t > teq, which is a result of the initially localized wave
function, in a nonequilibrium dynamics, spreading almost
homogeneously through the whole configuration space after
the onset of thermalization. In addition to (38) and (39), and
particularly for a randomly disordered harmonic trap, one
should also find

〈Ĥ〉 = 〈K̂〉 + 〈V̂ 〉, (40)

〈Ĥ〉
2

≈ 〈K̂〉 ≈ 〈V̂ 〉. (41)

Equation (40) expresses the conservation of total energy, from
the Hamiltonian in (10) in a unitary evolution, valid at any
time. Equation (41) tells us that the orthodox virial theorem,
as one reaches some steady state at t > teq, is expected to be
restated; that is, potential and kinetic energies should become

equal, with each being equal to half of the total energy. It
is assumed in (40) and (41) that 〈V̂ 〉 mostly comes from the
confining potential. At last, from entering (35) and (37) into
(30) and (31), the thermalized correlations should satisfy

Cp̂j ,p̂l

2
≈ Cv j ,vl ≈ Cuj ,ul ≈ CpW, j ;pW,l

2
. (42)

IV. NUMERICAL RESULTS

The nonequilibrium initial state and the Hamiltonian of our
model are found in Sec. IV A, Sec. IV B addresses our results
according to three scenarios with distinct initial conditions,
and in Sec. IV C we reformulate our model in the center-of-
mass frame.

A. Initial state and trap Hamiltonian

The initial N-electron nonequilibrium pure antisymmetric
state is

〈x|�(0)〉 = 1

C

N!∑
n=1

sgn( �p(n))
N∏

j=1

ψ j (xp(n) j , 0), (43)

with C being a normalization constant and sgn( �p(n)) being
the sign of the permutation �p(n) = {p(n)1, . . . , p(n)N }. Each
initial Gaussian state in (43) is

ψ j (x, 0) = exp

[
− (x − x0 j )2

2σ 2
j

]
exp[ip0 j (x − x0 j )], (44)

with spatial dispersion σ j , central position x0 j , and central
velocity p0 j . Any nonzero x0 j or p0 j may activate the nonequi-
librium dynamics.

The Hamiltonian H (x) propagating the many-body wave
function �(x, t ) is given in (10), where the kinetic term K (x)
is already defined. The potential term V (x), in our disordered
harmonic trap, is defined by

V (x) ≡ VH (x) + VI (x) + VD(x), (45)

where the harmonic potential VH (x) with frequency ω is

VH (x) = 1

2
ω2

N∑
j=1

x2
j (46)

and the electron-electron interaction potential VI (x) with
smooth parameter α is

VI (x) = 1

2

N∑
j=1

N∑
l �= j

1√
(x j − xl )2 + α2

. (47)

To ensure that the initial state in (43) is built as a superposition
of a large (and “chaotic”) number of eigenstates, we include
the random disorder potential VD(x),

VD(x) = γD

N∑
j=1

M∑
l=1

bl exp

[
−4(x j − gl )2

σ 2
D

]
, (48)

where γD is its strength and σD is its spatial dispersion, with
gl running through M grid points; the set of random numbers
bl satisfies 〈bl〉 = 0 and 〈b2

l 〉 = 1, and the disorder potential
is normalized so that the integral of V 2

D (x) yields γ 2
D. Such
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TABLE I. The three scenarios, D1, D2, and D3, for the dynamics
with and without disorder for N = 2. The first two rows show values
of (x01, x02) and (p01, p02) for the initial nonequilibrium state. The
last three rows show features of the expectation values of (〈x〉, 〈p〉)
and of orthodox (〈K〉, 〈VH 〉) and Bohmian (〈KB〉, 〈QB〉) energies. The
symbol � (×) indicates that such expectation values allow (do not
allow) one to identify teq.

Scenario D1 Scenario D2 Scenario D3

Disorder No Yes No Yes No Yes

(x01, x02) (−2, 2) (−20, 20) (−2, 2) (−2, 2) (−2, 2) (−20, 20)
(p01, p02) (0,0) (0,0) (4,4) (20,20) (2,2) (20,20)
(〈x〉, 〈p〉) × � �
(〈K〉, 〈VH 〉) � � ×
(〈KB〉, 〈QB〉) � � �

a shape is typical of speckle potentials [70–76] in fermionic
traps.

B. Expectation values in three scenarios

Our results initially focus on N = 2. However, our main
conclusions, as the kinetic energy equipartition at thermaliza-
tion, are valid for any N as the discussion in the center-of-mass
frame will later settle. We focus on three scenarios, D1, D2,
and D3, which are distinct in terms of the initial values of
x0 j and p0 j , as summarized in Table I, where each scenario
considers both dynamics with no disorder and dynamics with
disorder. Values of x0 j in scenario D1 and p0 j in scenario
D2 are chosen to be identical so as to yield the same turning
points in both dynamics; the remaining simulation parameters
are found in Ref. [77]. The no-disorder cases employ smaller
values of x0 j and p0 j to render the features more visible.

The dynamics for scenarios D1, D2, and D3 is shown in
Figs. 1–3, respectively: Panels (a)–(d) in each figure show a
few initial cycles with no disorder, and panels (e)–(h) show
the full evolution with disorder. The structure of these three
figures, which focus on the time evolution of some perti-
nent expectation values, is as follows: Panels (a) and (e)
show kinetic 〈K〉, harmonic 〈VH 〉, interaction 〈VI〉, and total
〈H〉 = 〈K〉 + 〈VH 〉 + 〈VI〉 + 〈VD〉 energies, with disorder en-
ergy 〈VD〉 ≈ 0 at any t not shown; panels (b) and (f) show
Bohmian velocity 〈v j〉, position 〈x j〉, and osmotic velocity
〈u j〉, with momentum 〈p j〉 = 〈v j〉 not shown, and the label
j is not indicated since it is redundant in our antisymmetrized
model; panels (c) and (g) repeat the orthodox kinetic energy
〈K〉, for its comparison with the Bohmian kinetic 〈KB〉 and
quantum potential 〈QB〉 energies; and panels (d) and (h) show
the correlations for momentum Cp̂1,p̂2 , Bohmian Cv1,v2 and
osmotic Cu1,u2 velocities, and position Cx̂1,x̂2 .

1. Dynamics from the initial position

Let us first focus on the D1 dynamics without disorder in
Figs. 1(a)–1(d), which has p01 = p02 = 0 and a small x01 =
−x02 = −2. At t = 0, Fig. 1(a) yields 〈VH 〉(0) = x2

01/2 +
x2

02/2 + EV /2 = 4.5 and 〈K〉(0) = p2
01/2 + p2

02/2 + EV /2 =
0.5, where EV = ω(n + 1) is the ground state energy (ω = 1,
n = 0) which is equally shared between potential and kinetic

terms. That is, the virial theorem in (41) is not satisfied (at
any t) thanks to the nonequilibrium initial situation; however,
the total energy in (40), 〈H〉(0) = 5.27 since 〈VI〉(0) = 0.27,
is conserved (at any t) thanks to the unitary evolution. In
Fig. 1(c), at t = 0, one has 〈QB〉(0) = 0.5 and 〈KB〉(0) = 0
[since the initial velocities are zero; see Fig. 1(b)], so that
indeed 〈K〉(0) = 0.5 and (38) is satisfied (at any t), while
(39) does not apply here. Each D1 cycle has a π period
and three stages. For the first cycle, the following occurs: (i)
At t = 0, electrons are at (x1, x2) = (−2, 2), with minimum
〈K〉 and maximum 〈VH 〉; (ii) the dynamics pushes the elec-
trons against each other until, at t = π/2, they try binding
together at (x1, x2) = (0, 0), which is avoided thanks to ex-
change symmetry, Coulomb repulsion, and quantum potential,
as indicated by the peak in 〈VI〉 and in 〈QB〉, with maximum
〈K〉 and minimum 〈VH 〉 and 〈KB〉; and (iii) at t = π , elec-
trons are back to (x1, x2) = (−2, 2), and a new cycle starts.
Notice that 〈KB〉 has a double peak around the peak of 〈QB〉
because the velocity acquires a first maximum from t = 0 to
t = π/2, which is the time electrons “stop” to reverse their
movements, and a second maximum from t = π/2 to t = π .
One sees how the quantum potential, acting “in phase” with
the Coulomb repulsion, carries the quantumness of the two-
body entanglement. The correlations in Fig. 1(d) are a mirror
of the above discussion; they are all negative since as one
variable increases, the other decreases in the D1 dynamics.
In terms of moduli, at t = 0, Cx̂1,x̂2 is at its maximum due to
the maximum electron separation, and reaches its vanishing
minimum at t = π/2 when electrons are closest to each other.
The three kinetic correlations are zero at t = 0 thanks to the
same initial zero velocity for the electrons; at t = π/2, since
at that time it is only 〈QB〉 that contributes to 〈K〉, Cu1,u2

reaches its maximum while Cv1,v2 vanishes. Notice that (30) is
satisfied at any t , while (42) does not apply here. In Fig. 1(b),
〈v〉 = 〈x〉 = 〈u〉 = 0 at any t is a trivial consequence of the D1
dynamics being antidiagonal in the configuration space x1x2,
with electrons initially equidistant, what anticipates that such
terms reflect center-of-mass properties.

The full D1 dynamics with disorder is shown in Figs. 1(e)–
1(h). Thanks to the larger x01 = −x02 = −20, the oscillation
amplitudes are larger but with the same π period. The magni-
tude of 〈VI〉, though, remains similar to the no-disorder case,
such that we magnify it by 100 here, while the initial peaks in
〈VI〉 and in 〈QB〉 as well as the minima in 〈KB〉 become steeper
in the disordered scenario. As the cycles succeed, all expec-
tation values overall reach quasistationary magnitudes once
thermalization is set at teq ≈ 55. In Fig. 1(e), while main-
taining 〈H〉 constant as in (40), kinetic and potential energies
interchange their magnitudes until (41) becomes valid, and
the virial theorem appears to be restated after thermalization,
seemingly an indication that a thermalized state is reached; the
Coulomb repulsion 〈VI〉 smears out, and its peaks disappear
after thermalization. In Fig. 1(g), while (38) remains true at
any t , the peaks in 〈QB〉 and minima in 〈KB〉 also smear out and
disappear after thermalization. Most interestingly, this hap-
pens in such a way as to satisfy (39), allowing one to visualize
the central result of this paper: In addition to the “restatement”
of the virial theorem, thermalization also implies a kinetic
energy equipartition, the hidden-variable signature of quan-
tum thermalization. The trivial values of 〈x〉 = 〈v〉 = 〈u〉 ≈ 0
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FIG. 1. Expectation values from the dynamics in scenario D1, with (p01, p02) = (0, 0). (a)–(d) A few initial cycles under no disorder with
a smaller (x01, x02) = (−2, 2); (e)–(h) full dynamics under disorder with a larger (x01, x02) = (−20, 20). (a) and (e) show energies: orthodox
kinetic energy 〈K〉, harmonic confining energy 〈VH 〉, Coulomb repulsion energy 〈VI〉, and total energy 〈H〉 [〈VI〉 is magnified by 100 in (e)].
(b) and (f) show velocities: Bohmian velocity 〈v〉, position 〈x〉, and osmotic velocity 〈u〉. (c) and (g) show a comparison of the kinetic energies:
orthodox 〈K〉, Bohmian 〈KB〉, and quantum potential 〈QB〉 energies. (d) and (h) show correlations: momentum Cp̂1, p̂2 , Bohmian Cv1,v2 and
osmotic Cu1,u2 velocities, and position Cx̂1,x̂2 . All quantities in atomic units.

remain at any t in Fig. 1(f) and so present no feature to identify
thermalization. The correlations in Fig. 1(h) are once more a
mirror of the above discussion, so the maxima and minima of
the initial cycles smear out after thermalization, when one also
finds that, in addition to (30), Eq. (42) is also satisfied, as well
as Cp̂1,p̂2 ≈ Cx̂1,x̂2 ; the correlations remain negative, reaching
small values after teq.

2. Dynamics from the initial velocity

Let us start the discussion of the D2 dynamics once
more from the no-disorder case in Figs. 2(a)–2(d), which has
x01 = −x02 = −2 [as (x01, x02) = (0, 0) cannot be used in a

fermionic trap] and a small p01 = p02 = 4 (such that both
electrons start moving in the same direction). As such, at t =
0, one still has 〈VH 〉(0) = 4.5 and 〈VI〉(0) = 0.27, but a larger
〈K〉(0) = 16.5, built from 〈KB〉(0) = 16 and 〈QB〉(0) = 0.5,
so yielding 〈H〉(0) = 21.27. Each D2 cycle has a 2π period
and five stages. The first cycle is as follows: (i) At t = 0,
electrons are at (x1, x2) = (−2, 2) with minimum 〈VH 〉 and
maximum 〈K〉; (ii) at t = π/2, electrons reach the positive
turning point and try to collide at (x1, x2) = (4, 4), yielding
peaks in 〈VI〉 and in 〈QB〉, while 〈KB〉 = 0 as the electrons
stop at that time (the fact that the peak in 〈QB〉 is now at the
minimum of 〈K〉 is the reason why a double peak is no longer
seen in 〈KB〉 contrarily to the D1 scenario); (iii) at t = π ,
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FIG. 2. Expectation values from the dynamics in scenario D2, with (x01, x02) = (−2, 2). (a)–(d) A few initial cycles under no disorder
with a smaller (p01, p02) = (4, 4); (e)–(h) full dynamics under disorder with a larger (p01, p02) = (20, 20). (a) and (e) show energies: orthodox
kinetic energy 〈K〉, harmonic confining energy 〈VH 〉, Coulomb repulsion energy 〈VI〉, and total energy 〈H〉 [〈VI〉 is magnified by 100 in (e)].
(b) and (f) show velocities: Bohmian velocity 〈v〉, position 〈x〉, and osmotic velocity 〈u〉. (c) and (g) show a comparison of the kinetic energies:
orthodox 〈K〉, Bohmian 〈KB〉, and quantum potential 〈QB〉 energies. (d) and (h) show correlations: momentum Cp̂1, p̂2 , Bohmian Cv1,v2 and
osmotic Cu1,u2 velocities, and position Cx̂1,x̂2 . All quantities in atomic units.
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FIG. 3. Expectation values from the dynamics in scenario D3, with mixed x0, p0 influence. (a)–(d) A few initial cycles under no disorder
with small (x01, x02) = (−2, 2) and small (p01, p02) = (2, 2); (e)–(h) full dynamics under disorder with a large (x01, x02) = (−20, 20) and
a large (p01, p02) = (20, 20). (a) and (e) show energies: orthodox kinetic energy 〈K〉, harmonic confining energy 〈VH 〉, Coulomb repulsion
energy 〈VI〉, and total energy 〈H〉 [〈VI〉 is magnified by 100 in (e)]. (b) and (f) show velocities: Bohmian velocity 〈v〉, position 〈x〉, and osmotic
velocity 〈u〉. (c) and (g) show a comparison of the kinetic energies: orthodox 〈K〉, Bohmian 〈KB〉, and quantum potential 〈QB〉 energies. (d) and
(h) show correlations: momentum Cp̂1, p̂2 , Bohmian Cv1,v2 and osmotic Cu1,u2 velocities, and position Cx̂1,x̂2 . All quantities in atomic units.

electrons pass back at (x1, x2) = (−2, 2); (iv) at t = 3π/2 the
electrons reach the negative turning point and try to collide
at (x1, x2) = (−4,−4), with new peaks in 〈VI〉 and in 〈QB〉
and again with 〈KB〉 = 0; and (v) at t = 2π the electrons are
back to (x1, x2) = (−2, 2), and a new cycle starts. The cycle
shows that although the initial velocity is the same for both
electrons, they acquire different velocities in the dynamics
as one moves in favor of and the other against the harmonic
potential. The results in Fig. 2(b) are trivially understood from
the previous analysis, confirming the center-of-mass character
of those quantities: The D2 dynamics, being diagonal in the
configuration space x1x2, has that 〈x〉 ranges from 〈x〉 = 0
when electrons are at (2,−2) to 〈x〉 = 4 (〈x〉 = −4) when

electrons are at the positive (4,4) [negative (−4,−4)] turn-
ing point, while 〈v〉 is just out of phase and 〈u〉 = 0 from
(22). Interestingly, the correlations in Fig. 2(d) do not change
from the D1 dynamics. So let us explain the origin of the
double-peak feature in Cv1,v2 : At t = 0, Cv1,v2 = 0 since both
electrons have the same initial velocity to the right; as time
evolves, the left (right) electron gains (loses) velocity, there-
fore negatively increasing Cv1,v2 , which reaches its first peak
as the left electron crosses the origin; then the left electron
also starts to decrease its velocity until both electrons reach
the positive turning point, causing Cv1,v2 = 0 at t = π/2; and
finally, electrons then start moving to the left, again with a
higher velocity for the left electron, inducing a new negative
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increase in Cv1,v2 , until the left electron passes by the origin
at its highest velocity, causing the second peak in Cv1,v2 . We
remind that such left-right labeling of an electron does not
imply that one is “identifying” the electron.

The full D2 dynamics with disorder is seen in Figs. 2(e)–
2(h), in which the larger p01 = p02 = 20 induces larger
oscillation amplitudes with the same 2π period, except for
〈VI〉, which is once more magnified by 100. Overall, the
smearing out of the oscillations in 〈K〉 and 〈VH 〉, of the
peaks in 〈VI〉 and 〈QB〉, and of the minima in 〈KB〉 happens
as the system thermalizes, with such quantities seeming to
reach stationary values at teq ≈ 220. Thermalization in sce-
nario D2 also induces the feature 〈x〉 ≈ 〈v〉 ≈ 0 in Fig. 2(f)
[compare with Fig. 1(f)]. All four equations (38)–(41) are
also satisfied in scenario D2 at t > teq, such that the virial
theorem seems to be restated in Fig. 2(e), and the hidden-
variable signature of thermalization is once more seen in
Fig. 2(g). While (30) and (42) are also valid in scenario D2, as
well as Cp̂1,p̂2 ≈ Cx̂1,x̂2 , the correlations in Fig. 2(h) become
positive (since both electrons move in the same direction)
and stabilize at larger magnitudes (from the larger initial
velocity).

3. Dynamics from the initial position and the initial velocity

After detailing scenarios D1 and D2 we will only describe
here the distinct features of the D3 dynamics. Once more
we start from the no-disorder case in Figs. 3(a)–3(d), which
has both a small p01 = p02 = 2 and a small x01 = −x02 =
−2. Such identical initial values obviously yield 〈VH 〉(0)
= 〈K〉(0) = 4.5, and since 〈VI〉(0) = 0.27 one has 〈H〉(0) =
9.27, while 〈KB〉(0) = 4 and 〈QB〉(0) = 0.5 are the values
building 〈K〉(0). The dynamics, though, is more involved
since it is a superposition of the two previous scenarios, with
cycles in a 2π period. At the initial cycles, 〈K〉 looks almost
constant since 〈QB〉 reaches magnitudes comparable to 〈KB〉
[compare Fig. 3(c) with Figs. 2(c) and 1(c)], as 〈KB〉 may still
vanish whenever 〈v〉 = 0 in Fig. 3(b). The correlation plots in
Fig. 3(d), interestingly, are identical to those in Figs. 2(d) and
1(d), while 〈v〉 and 〈x〉 in Fig. 3(b) oscillate in between the
turning points at (2,2) and (−2,−2), with center-of-mass-like
values.

The full D3 dynamics with disorder is shown in Figs. 3(e)–
3(h), which considers both a large p01 = p02 = 20 and a large
x01 = −x02 = −20. With such values the constancy of the
kinetic and potential energies in Fig. 3(e) becomes evident
such that, besides the trivial energy conservation in (40), the
virial theorem in (41) looks “as if” it is always satisfied at
any t , even before thermalization is set at teq ≈ 110, mistak-
enly telling us that some stationary state could be present
since t = 0. In other words, the onset of thermalization is
no longer identifiable in the energy expectation values of
Fig. 3(e) (where 〈VI〉 is magnified again by 100), although
it remains identifiable in Fig. 3(f). The central result of this
paper, however, is once more found in Fig. 3(g), where the
kinetic energy equipartition in (39) is verified although fol-
lowing a different thermalizing path compared with Figs. 2(g)
and 1(g). The correlations in Fig. 3(h) are about the same as in
the D1 scenario, where (42), as well as Cp̂1,p̂2 ≈ Cx̂1,x̂2 , apply
once more.

TABLE II. The main expectation values relevant in the discus-
sion of the kinetic energy equipartition, addressed in Figs. 1–3.
Expectation values marked with × cannot directly be computed from
a Hermitian operator, but they can be accessed by postprocessing the
weak value of the momentum pW (x, t ).

Expectation Eq. Operator From weak values

〈p〉 (20) p̂ pW (x, t )
〈K〉 (28) K̂ Re[pW (x, t )]2 + Im[pW (x, t )]2

〈v〉 (21) × Re[pW (x, t )]
〈u〉 (22) × Im[pW (x, t )]
〈KB〉 (26) × Re[pW (x, t )]2

〈QB〉 (27) × Im[pW (x, t )]2

C. Revisiting the three scenarios within the center-of-mass
framework

1. The issue of empirical indistinguishability

All expectation values presented in Figs. 1–3 refer to a
single particle, but thanks to the antisymmetry of �(x, t ),
there is no need to identify “which” particle. This is true
no matter whether they are linked to Hermitian operators
such as K̂ or p̂ or to postprocessings of weak values such as
pW (x, t ), as the exchange symmetry of both the phase and
the amplitude of �(x, t ) is directly translated to the current
velocity in (3) and the osmotic velocity in (4), respectively
(and to the postprocessing data). However, if one is interested
in how expectation values such as 〈v〉 or 〈u〉 are obtained
in a laboratory, one needs to differentiate between the ones
computed from Hermitian operators and the ones computed
from postprocessings of weak values, as indicated in Table II.

Let us illustrate the problem with N = 2. The experimen-
tal weak value pW,1(x1, x2, t ) requires two measurements: a
first weak measurement linked to p̂1, plus a second strong
measurement linked to x̂1 and x̂2. Such a weak value is
obtained after a preselection (repeating the same exper-
iment for a large number of identically prepared initial
wave functions) plus a postselection (to obtain an ensemble
value of all weakly measured momenta whose subsequent
strongly measured position yields a specific location); a
similar procedure is required for getting pW,2(x1, x2, t ) by in-
terchanging the measurements on particles 1 and 2. Although
〈pW,1〉 = ∫

dx1 dx2 pW,1(x1, x2, t )|�(x1, x2, t )|2 is the same as
〈pW,2〉 = ∫

dx2 dx1 pW,2(x2, x1, t )|�(x2, x1, t )|2, their empiri-
cal evaluation requires one to identify which are the particles 1
and 2 being weakly or strongly measured, which is impossible
for systems with indistinguishable particles. One should keep
in mind, though, that while Bohmian particles are ontologi-
cally distinguishable, the Bohmian dynamical laws ensure that
expectation values are empirically indistinguishable.

To handle this issue, we consider an effective
single-particle weak value, p̃W, j (xk, t ), by defining
Xk = (x1, . . . , xk−1, xk+1, . . . , xN ) such that x = (xk, Xk ),
as

p̃W, j (xk, t ) =
∫

dXk pW, j (xk, Xk, t )|�(xk, Xk, t )|2
P(xk, t )

, (49)

P(xk, t ) =
∫

dXk |�(xk, Xk, t )|2. (50)
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It is straightforward to show that

〈p̃W, j〉 =
∫

dxk p̃W, j (xk, t )P(xk, t )

=
∫

dxkdXk pW, j (xk, Xk, t )|�(xk, Xk, t )|2

= 〈pW, j〉. (51)

Here, we only need the case j = k; the general case j �= k
is found elsewhere [49]. We remind the reader that 〈p̃W,k〉 =
〈pW,k〉 does not imply that p̃W,k (xk, t ) can promptly be used in
place of pW,k (xk, Xk, t ) to obtain expectation values such as
〈v〉 or 〈u〉. This is only the case when the degree xk is decou-
pled from the other N − 1 degrees in Xk, that is, when one has
�(xk, Xk, t ) = ψk (xk, t )ψk(Xk, t ). Then, it is straightforward
to show that pW,k (xk, Xk, t ) = p̃W,k (xk, t ) with P(xk, t ) =
|ψk (xk, t )|2, so that the evaluation of the weak value linked
to the weak momentum and position of the particle xk does
not require measurement of the other positions Xk, but it still
requires that one identify the particle xk . This last difficulty
can be solved by dealing with the center-of-mass frame.

It is well known [78–83] that our trap Hamiltonian in
the absence of the disorder potential VD(x), that is, when
H (x) ≡ K (x) + VH (x) + VI (x), can be written in separable
terms for center-of-mass coordinates xc and relative coordi-
nates Xr = (xr,1, xr,2, . . . , xr,N−1), where xc = ∑N

i=1 xi/N and
xr, j = x j − x j+1. In such a situation [Figs. 1(a)–1(d), 2(a)–
2(d), and 3(a)–3(d)], the discussion above promptly applies by
taking xc ≡ xk and Xr ≡ Xk. Then one indeed could consider
p̃W,c(xc, t ), to which one has experimental access, instead
of the intricate pW,c(xc, Xr, t ), to compute quantities from
Table II such as ṽ2

c (xc, t ) = Re( p̃W,c(xc, t ))2 and ũ2
c (xc, t ) =

Im( p̃W,c(xc, t ))2, instead of v2
c (xc, Xr, t ) or u2

c (xc, Xr, t ).
One would also have H = Hc + Hr and �(xc, Xr, t ) =
ψc(xc, t )ψr(Xr, t ), such that p̃W,c(xc, t ) = pW,c(xc, Xr, t ) in
(49) and P(xc, t ) = |ψc(xc, t )|2 in (50). That is, a weak mea-
surement of the momentum of the center of mass followed
by a strong measurement of its position, without measuring
the other N − 1 degrees, should yield information about the
N-body trap. The kinetic energy equipartition discussed so
far should remain valid in any frame of reference. So the
question one needs to pose now is whether or not the inclusion
of disorder, which drives the system towards thermalization
[Figs. 1(e)–1(h), 2(e)–2(h), and 3(e)–3(h)], induces a coupling
between center-of-mass and relative coordinates.

2. Results in the center-of-mass frame

To answer that question, we once more make use of N = 2,
with Xr = (xr,1) ≡ xr . The disordered-trap Hamiltonian be-
comes simply

H (xc, xr ) = Hc(xc) + Hr (xr ) + VD(xc, xr ), (52)

with

Hc(xc) = −1

4

∂2

∂x2
c

+ ω2x2
c , (53)

Hr (xr ) = − ∂2

∂x2
r

+ 1

4
ω2x2

r + 1

|xr + α| ; (54)

only with VD(xc, xr ) = 0 would one obtain �(xc, xr, t ) =
ψc(xc, t )ψr (xr, t ) with i∂ψc(xc, t )/∂t = Hcψc(xc, t ) and
i∂ψr (xr, t )/∂t = Hrψr (xr, t ). Figure 4 shows the dynamics
for scenarios D1, D2, and D3 in the left, middle, and right
panels, respectively, in which 〈VH,c〉 and 〈Kc〉 (〈VH,r〉 and
〈Kr〉) label the confining potential and kinetic components of
(53) [of (54)]; the component related to the Coulomb term
〈VI,r〉 in (54) is not shown since, as we have seen in Figs. 1–3,
it remains small. The labels 〈KB,c〉 = 〈(v1 + v2)2〉/4 and
〈KB,r〉 = 〈(v1 − v2)2〉/4 [〈QB,c〉 = 〈(u1 + u2)2〉/4 and
〈QB,r〉 = 〈(u1 − u2)2〉/4] for the center-of-mass and relative
components, respectively, of the Bohmian kinetic energy
(quantum potential energy) are also employed.

Figures 4(a)–4(c) show that indeed, both center-of-mass
and relative coordinates thermalize, that is, 〈VH,r〉 and 〈Kr〉
on the one hand, while 〈VH,c〉 and 〈Kc〉 on the other hand,
reach about the same stationary values at the same teq, with
relative energies being larger than the center-of-mass energies
in scenarios D1 and D3; the opposite happens in the D2
dynamics, where the relative energies also present a much
smaller teq. The black lines, which present the total energies
Ec = 〈Kc〉 + 〈VH,c〉 and Er = 〈Kr〉 + 〈VH,r〉, show that, in fact,
center-of-mass and relative coordinates are not decoupled at
t < teq, since their respective energies do not remain constant
in the time evolution. So, in principle, the picture presented in
Sec. IV C 1 should not apply. However, such energies do stabi-
lize after teq, seemingly indicating that thermalization implies
a negligible dependence of xc on xr . This should not come
as a surprise since, first, the physics should not be different
owing to changing a frame of reference and, second, as the
disorder potential is random and does not privilege any degree
of freedom, it seems natural to expect that, while coupling is
to be found at the beginning, the time evolution should ho-
mogeneously spread the probabilities over the configuration
space, no matter whether between x1 and x2 or xc and xr .
So, the empirical measurements as pictured in Sec. IV C 1 do
apply at thermalization, and more importantly, the negligible
dependence of xc on the relative coordinates becomes an even
more robust result for thermalized systems with larger N [84].
Figures 4(d)–4(f) and 4(g)–4(i) confirm that the kinetic energy
equipartition remains verified for the center-of-mass and rela-
tive coordinates, respectively, for each of the three scenarios,
and it should also be verified for any N in this new reference
frame. One also has to remember, though, that thermalization
has been studied in small systems with as few as six [18], five
[6], or two to four bosons [85,86] and even in single-particle
systems [87–89].

V. CONCLUSIONS

Weak values have gradually been transitioning from a the-
oretical curiosity to a practical tool in the laboratory allowing
novel characterizations of quantum systems, as they can pro-
vide information beyond the traditional expectation values
linked to Hermitian operators. In particular, we have shown
that weak values of the momentum postselected in positions,
without linking the discussion to any specific ontology but
reusing the mathematical machinery of both Bohmian and
stochastic quantum theories, can be used as a relevant tool
to characterize quantum thermalization in closed systems. As

033168-11



CARLOS F. DESTEFANI AND XAVIER ORIOLS PHYSICAL REVIEW RESEARCH 5, 033168 (2023)

FIG. 4. Center-of-mass and relative energy expectation values for scenarios D1 [(a), (d), and (g)], D2 [(b), (e), and (h)], and D3 [(c), (f), and
(i)]. (a)–(c) Kinetic energies 〈Kc〉 and 〈Kr〉 and confining potential energies 〈VH,c〉 and 〈VH,r〉; the respective total energies Ec = 〈Kc〉 + 〈VH,c〉
and Er = 〈Kr〉 + 〈VH,r〉 are shown as black lines. 〈VI,r〉 is not included. (d)–(f) Bohmian kinetic 〈KB,c〉 and quantum potential 〈QB,c〉 energies in
comparison with orthodox 〈Kc〉 center-of-mass energies. (e)–(h) Bohmian kinetic 〈KB,r〉 and quantum potential 〈QB,r〉 energies in comparison
with orthodox 〈Kr〉 relative energies. The legend in (c) also applies to (a) and (b), the legend in (f) also applies to (d) and (e), and the legend in
(i) also applies to (g) and (h). All quantities in atomic units.

an example, we have addressed the monopole oscillations in
the configuration space of a two-electron fermionic harmonic
trap under random disorder, with different initial conditions
employed to initiate three distinct nonequilibrium dynamics.

On the one hand, the expectation values from the orthodox
operators cannot always be employed to access the onset of
thermalization. For example, 〈v〉 and 〈x〉 cannot identify such
an onset in Fig. 1(f) for scenario D1, and 〈K〉 and 〈VH 〉 cannot
identify such an onset in Fig. 3(e) for scenario D3; in scenario
D2, both Fig. 2(e) and Fig. 2(f) identify such an onset. The
differences between these dynamics and their path to thermal-
ization result from the different initial conditions, in which
in the configuration space the dynamics is either antidiagonal
(scenario D1), diagonal (scenario D2), or both (scenario D3).

On the other hand, the onset of thermalization is al-
ways accessible from its hidden-variable signature in every
scenario, irrespective of the initial conditions. Not only is
(38) obviously satisfied at any time, but also the kinetic en-
ergy equipartition in (39), stating that Bohmian kinetic and
quantum potential energies should become equal, with each
equalizing half of the orthodox kinetic energy, is always true
after thermalization is set. This is the same as saying that
the squared values of osmotic and current velocities become
equal, with each equalizing half of the squared momentum,
which also implies that the correlations obey (42) in addition
to (30); the validity of (41) in addition to (40) can be taken
as a restatement of the virial theorem when reaching some
thermalized state.

These hidden variables, linked separately to amplitude (os-
motic) and phase (current) components of the many-body
wave function, are not linked to orthodox operators, but are
accessible in the laboratory through a postprocessing of local-
in-position weak-value protocols for momentum and kinetic
energy; the real and imaginary parts of the momentum weak

value are tied to the current and osmotic hidden variables,
respectively. Thermalization is, so to speak, a manifesta-
tion of both real (amplitude) and imaginary (phase) parts of
the many-body wave function becoming completely and ho-
mogeneously spread through the whole configuration space,
making it hard for one to differentiate between them.

In order to properly understand the merits of our work it
is essential to notice that all the hidden-variable results in
Secs. II and III not only are visualizing tools but also a link
between theoretical predictions and empirical data. This link
opens unexplored possibilities to characterize static and dy-
namic properties of quantum systems in the laboratory, being
the kinetic energy equipartition studied in this paper just a first
example. Notice that the use of the term “hidden variables”
has no ontological implication. All quantum theories with em-
pirical agreement with experiments exactly predict the same
weak values. In simpler words, the link between theoretical
predictions and empirical data does not need to consider any
particular ontology. To emphasize the accessibility of weak
values in the laboratory, we have also addressed, by moving
to the center-of-mass frame of reference, how the weak values
of such a center of mass can be employed to approach larger
systems with N identical particles, where the kinetic energy
equipartition here presented should also be verified.
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APPENDIX: EVALUATION OF EXPRESSION (34)

The ensemble value of the product 〈v jvl〉 is

〈v jvl〉 =
∫

dx|�(x, t )|2 v j (x, t )vl (x, t ) = −1

4

∫
dx

1

|�|2 (�̃ j�
∗ − �̃∗

j �)(�̃l�
∗ − �̃∗

l �)

= 1

2

∫
dx�̃ j�̃

∗
l − 1

4

∫
dx

1

|�|2 (�̃ j�
∗�̃l�

∗ + �̃∗
j ��̃∗

l �). (A1)

Let us evaluate this expression in detail.

1. Evaluation of the term 1
2

∫
dx�̃ j�̃

∗
l

The first integral of the last line in (A1), using the decomposition �(x, t ) = ∑
n cne−iωntψn(x), is rewritten as

1

2

∫
dx� j�̃

∗
l = 1

2

∑
a,b

cac∗
be−i(wa−wb)t

∫
dx

∂ψa(x)

∂x j

∂ψ∗
b (x)

∂xl

= 1

2

∑
a

|ca|2
∫

dx
∂ψa(x)

∂x j

∂ψ∗
a (x)

∂xl
+ 1

2

∑
a �=b

cac∗
be−i(wa−wb)t

∫
dx

∂ψa(x)

∂x j

∂ψ∗
b (x)

∂xl
. (A2)

The first summand (populations or diagonal elements) in (A2) is time independent. For example, for the case 〈v jv j〉, one can
rewrite it as

1

2

∫
dx

∂ψa(x)

∂x j

∂ψ∗
a (x)

∂x j
= −1

2

∫
dx

∂2ψa(x)

∂x2
j

ψ∗
a (x) =

∫
dx (Ea − V (x))|ψa(x)|2, (A3)

where we have used that − 1
2

∂2ψa(x)
∂x2

j
+ V (x)ψa(x) = Eaψa(x). Thus

1

2

∑
a

|ca|2
∫

dx
∂ψa(x)

∂x j

∂ψ∗
a (x)

∂xl
=

∑
a

|ca|2
∫

dx (Ea − V (x))|ψa(x)|2, (A4)

such that the first term in (A2) is just the sum of the kinetic energies of the different eigenstates, weighted by the importance of
each eigenstate in the description of the initial state, as given by |ca|2. The relevant point is that its value does not change before
or after thermalization.

The second summand (coherences or nondiagonal elements) in (A2) is time dependent, and one can distinguish two
contributions:

(i) By defining ca = |ca|eiθa and cb = |cb|eiθb , one can rewrite cac∗
be−i(wa−wb)t = |ca||cb|e−i((θb−θa )+(wa−wb)t ). At the initial time

t = 0, the term e−i((θb−θa )+(wa−wb)t ) still keeps the initial information θa and θb, but it becomes basically a random number (with
positive or negative real and imaginary parts) as time increases, (wa − wb)t > 2π , giving e−i((θb−θa )+(wa−wb)t ) ≈ cos( − (wa −
wb)t ) + i sin( − (wa − wb)t ). Notice that in the absence of disorder the energy separation of the harmonic potential eigenstates
wa − wb would be well defined, but disorder randomly modifies the energy spectrum.

(ii) In the absence of disorder, the eigenstates of the harmonic potential have well-defined energies. However, the randomly
disordered harmonic potential introduces spatial fluctuation and randomness into the spatial patterns of the a and b eigenstates.
As a result, the term

∫
dx ∂ψa(x)

∂x j

∂ψ∗
b (x)

∂xl
for a �= b becomes basically a random number at the onset of thermalization.

The overall result is that such a second summand in (A2) is basically a sum of random numbers yielding a vanishing
contribution. As such, only the time-independent contribution from the first summand in (A2) should remain after the onset
of thermalization. The above discussion is the usual explanation of the process of thermalization, and it is directly applicable to
any ensemble value of any Hermitian operator. When using the energy eigenstates representation, the expectation value of any
Hermitian operator is written as contributions from populations (diagonal elements) and coherences (nondiagonal elements) of
the density matrix of the system.

2. Evaluation of the term 1
4

∫
dx 1

|�|2 (�̃ j�
∗�̃l�

∗) + c.c.

The second integral of the last line in (A1) requires a different explanation because it cannot be written as an expectation
value of a Hermitian operator. It is the sum of one component plus its complex conjugate so that it remains indeed real. From
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the decomposition �(x, t ) = ∑
n cne−iωntψn(x) it becomes (without the complex-conjugate component for simplicity)∫

dx
�̃ j�

∗�̃l�
∗

|�|2 =
∫

dx
�̃ j�

∗�̃l

�
=

∫
dx

∑
a,b,c cac∗

bcce−iwa,b,ct ψ̃a, jψ
∗
b ψ̃c,l∑

a′ ca′e−iwa′ tψa′

=
∫

dx

∑
wa,b,c=0 cac∗

bccψ̃a, jψ
∗
b ψ̃c,l + ∑

wa,b,c �=0
cac∗

bcce−iwa,b,ct ψ̃a, jψ
∗
b ψ̃c,l∑

a′ |ca′ |e−i(wa′ t−θa )ψa′

=
∑

wa,b,c=0

cac∗
bcc

∫
dx

ψ̃a, jψ
∗
b ψ̃c,l∑

a′ |ca′ |e−i(wa′ t−θa )ψa′
+

∑
wa,b,c �=0

cac∗
bcce−iwa,b,ct

∫
dx

ψ̃a, jψ
∗
b ψ̃c,l∑

a′ |ca′ |e−i(wa′ t−θa )ψa′
, (A5)

where ψ̃s,q ≡ ∂ψs(x)/∂xq and ψs ≡ ψs(x), for s = a, b, c, q = j, l , and wa,b,c = wa − wb + wc. Notice that there is a time-
independent term in the numerator of (A5) when wa,b,c = 0, but the numerator remains always time dependent and is given,
after the equilibration time to eliminate the dependence on θa, by

∑
a′ |ca′ |e−iwa′ tψa′ . As such, even when the energies of the

eigenstates involved in (A5) add to zero, there is no time-independent term. This is the key difference between (A2) and (A5).
The rest of the demonstration is about justifying the randomness of the different summands.

As we have discussed for the second summand of (A2), one can distinguish two sources of randomness in (A5):
(i) By defining ca = |ca|eiθa , cb = |cb|eiθb , and cc = |cc|eiθc , one can rewrite cac∗

bcce−i wa,b,c t =
|ca||cb||cc|e−i((−θa+θb−θc )+(wa,b,c )t ). After the equilibration time, this term in the numerator will become basically a random
number. The same will happen for the denominator e−i(θa+(wa )t ) ≈ cos( − (wa)t ) + i sin( − (wa)t ). As already mentioned,
disorder modifies the energy separation of the harmonic potential in a random way.

(ii) In the disordered harmonic potential, the disorder introduces spatial fluctuation and randomness into the spatial patterns
of the a, c, and b eigenstates. As a result, the spatial integral of the summand in (A5),∫

dx
ψ̃a, jψ

∗
b ψ̃c,l∑

a′ |ca′ |e−i wa′ tψa′
=

∫
dx

∂ψa(x)
∂x j

ψ∗
b (x) ∂ψc (x)

∂xl∑
a′ |ca′ |e−i wa′ tψa′ (x)

, (A6)

becomes basically a random number at the onset of thermalization.
In summary, the whole term in (A5) cannot be separated as the sum of a time-dependent part plus a time-independent part

(because there is no time-independent part). Then, the chaotic nature of the eigenstates due to disorder, as explained above,
results in (A5) being basically a sum of random numbers yielding a negligible contribution after the onset of thermalization.
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