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Quantum droplets in imbalanced atomic mixtures
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Quantum droplets are a quantum analog to classical fluid droplets in that they are self-bound and display
liquid-like properties—such as incompressibility and surface tension—though their stability is the result of
quantum fluctuations. One of the major systems for observing quantum droplets is two-component Bose gases.
Two-component droplets are typically considered to be balanced, having a fixed ratio between the densities
of the two components. This work goes beyond the fixed density ratio by investigating spherical droplets in
imbalanced mixtures. With increasing imbalance, the droplet is able to lower its energy up to a limit, at which
point the droplet becomes saturated with the atoms of the majority component and any further atoms added to this
component cannot bind to the droplet. Analyzing the breathing mode dynamics of imbalanced droplets indicates
that the droplet can emit particles, as in balanced mixtures, but the imbalance leads to an intricate superposition
of multiple simultaneously decaying collective oscillations.
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I. INTRODUCTION

Quantum gases are highly controllable systems due in
part to their diluteness, yielding a highly versatile platform
for exploring quantum many-body physics [1]. For a system
of bosons, a mean-field model for quantum gases is Gross-
Pitaevskii (GP) theory [2,3], which captures much of the
physics of these systems, while neglecting beyond-mean-field
effects such as quantum fluctuations [4,5]. For a single-
component homogeneous Bose gas stability is governed by
the atomic interactions, with the gas becoming unstable to
collapse for attractive interactions. This has been demon-
strated experimentally by using a Feshbach resonance to
tune the interactions from repulsive to attractive [6,7]. For
a two-component system, the stability depends on both the
inter- and intraspecies contact interactions, which can likewise
be tuned via Feshbach resonances [8–10]. For repulsive in-
traspecies interactions—to ensure stability of each individual
component—and attractive interspecies interactions, mean-
field theory once more predicts an unstable gas. However, this
attractive collapse can be stabilized at high densities by quan-
tum fluctuations [11] forming a self-bound quantum droplet;
this has inspired work in so-called Lee-Huang-Yang (LHY)
fluids [12,13], named for the correction describing quantum
fluctuations to first order. By tuning mean-field interactions
between the components to vanish, the interactions of LHY
fluids are described by quantum fluctuations alone [12,13].
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In free space quantum droplets exist in equilibrium with the
vacuum and form a seemingly counterintuitive dilute liquid-
like state [11,14]. This adds to the variety of properties that
quantum gases can be used to investigate, as the majority
of experiments are inherently within the gas phase—a prop-
erty widely exploited in time-of-flight imaging [15]—whereas
quantum droplets open up the field to explore the properties
of quantum liquids, such as surface tension [11,16,17] and
incompressibility [18,19], within controllable experimental
conditions.

Quantum droplets have been experimentally observed in
two systems: (1) dipolar gases of Dy [20–22] and Er [23]
and (2) homonuclear 39K [19,24–26] and heteronuclear,
41K - 87Rb and 23Na - 87Rb [27,28], two-component mixtures.
The underlying mechanism for droplet formation is the result
of a vanishing mean-field interspecies attraction tending to
cause instability that is countered by the repulsive quantum
fluctuations which become significant with increasing density
[11]. However, the mean-field interactions within a dipolar
Bose gas include both the two-body, short-ranged interactions
of a nondipolar gas and anisotropic, long-ranged interac-
tions resulting from strong atomic magnetic dipoles [29].
This anisotropy results in elongated droplet profiles [30–34],
which differentiates dipolar droplets from nondipolar, two-
component droplets.

A defining property of three-dimensional (3D) two-
component quantum droplets is self-evaporation [11]. In
certain regimes of the droplet’s phase diagram, excitations
will cause the droplet to shed atoms in order to relax to a sys-
tem of lower energy. This occurs when the energies of these
excitations exceed −μ, the particle emission threshold, where
μ is the chemical potential of the droplet. Furthermore, the
lowest energy monopole mode—the breathing mode—decays
across the largest proportion of the droplet’s phase diagram
relative to other collective modes [11,35]. Self-evaporation is
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a nonintuitive and remarkable property that is not exhibited
by dipolar quantum droplets [18], or for the breathing mode
of a one-dimensional (1D) two-component droplet [36], and
has not been experimentally observed, but it is crucial in
understanding the dynamics of these objects.

The formation of a two-component quantum droplet also
has an interesting property: density balancing. A key re-
sult from the pioneering work of Petrov is the energetic
favorability for the two-component densities to maintain a
fixed ratio n2/n1 = const [11] where ni is the number den-
sity of the ith component. By pairing this assumption with
negligible spin modes [11]—i.e., assuming only in-phase den-
sity oscillations—the mixture can be modeled via a single
macroscopic wave function. The majority of the literature has
focused on such balanced droplets, with theoretical studies of
imbalanced systems limited to dipolar mixtures [37,38] and
low dimensions [39,40]. This work is a systematic study of
the ground states and breathing modes of 3D spherical im-
balanced quantum droplets in homonuclear mixtures. Adding
atoms to one component of the mixture yields a lower en-
ergy configuration than the associated balanced droplet. This
forms a droplet with a density imbalance in the core, and
this imbalance can be increased to a limit at which point
any further atoms cannot bind to the droplet. By investigating
imbalanced droplets in the free space limit, this work explores
how the density profiles, chemical potentials, and breathing
mode dynamics of the droplet are modified by the presence of
a population imbalance.

This work begins with a discussion of the underlying the-
ory in Sec. II. This theory is then applied in Secs. III and IV
to first isolate imbalanced droplet ground states and then to
propagate these states in time, subject to an initial perturba-
tion, to analyze the droplet breathing modes. Finally the main
results and potential future research avenues are discussed in
Sec. V.

II. THE MODEL

A zero-temperature mixture of two weakly interacting,
dilute Bose gases can be described by the energy functional
[11,41]

E =
∫ [

h̄2

2m1
|∇�1|2 + h̄2

2m2
|∇�2|2 + g11

2
|�1|4 + g22

2
|�2|4

+ g12|�1|2|�2|2 + ELHY

V

]
d3r, (1)

in which mi are the atomic masses of the ith component, and
gii and g12 are the effective intra- and interspecies interaction
strengths, respectively, and are related to the intra- and in-
terspecies scattering lengths by gii = 4π h̄2aii/mi and g12 =
2π h̄2a12(1/m1 + 1/m2). The first two terms of (1) are the
kinetic energy contributions; the next three terms describe the
two-body interactions within and between the components.
The final term is the LHY correction, which, to first order,
describes the effects of quantum fluctuations on the conden-
sate [42]. For a Bose-Bose mixture, the LHY correction takes

the form [11]
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where f is a function, defined in [16,43], with arguments
z = m1/m2, u = g2

12/(g11g22) and x = (g22n2)/(g11n1). The
function f (z, u, x) means that the LHY term takes a relatively
simple form in homonuclear mixtures (m2 = m1) [11], but
takes a far more complex form in heteronuclear mixtures
(m2 �= m1) [11,16]. The function argument, u, reduces to one
by assuming that the mixtures lies at the critical point of
attractive stability, i.e., g2

12 = g11g22 ⇒ u = 1, removing the
issue of complex contributions resulting from an unstable
phonon mode [11,44,45]. It should be noted that this approx-
imation is made only in this derivation and does not imply
any parameter choice in subsequent analyses. Crucial to the
formation of quantum droplets, quantum fluctuations stabilize
the attractive mixture against collapse, and furthermore are
ubiquitous in nature though they often play a limited role in
the physics of many quantum gas experiments as discussed in
Sec. I.

The two component densities can each be related to a
macroscopic wave function or order parameter, ni = |�i|2 =
�∗

i �i. A variational approach, ih̄∂�i/∂t = δE/δ�∗
i [4], can

then be used to derive the coupled extended GP equations,
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The computational complexity of these LHY terms can be
minimized by assuming a homonuclear mixture, giving the
equal-mass coupled extended GP equations [11],
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Finally, the dimensional scalings r = ξ r̃, t = τ t̃ and �i =
ρ

1/2
i �̃i result in the dimensionless, equal-mass coupled
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extended GP equations,

i
∂�1

∂t
=

[
− 1

2
∇2 + |�1|2 + η|�2|2

+ α
(|�1|2 + β|�2|2

)3/2
]
�1,

i
∂�2

∂t
=

[
− 1

2
∇2 + β|�2|2 + ηβ|�1|2

+ αβ2
(|�1|2 + β|�2|2

)3/2
]
�2, (3)

in which all tildes are hereafter neglected and the dimension-
less parameters are
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with dimensional parameters
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where δa = a12 + √
a11a22, and n(0)

1 is the equilibrium density
of component 1 for the balanced mixture. The expression of
the equilibrium density is calculated in a homogeneous infi-
nite system under the criterion of a vanishing pressure—i.e.,
the droplet in equilibrium with the vacuum—and takes the
form [11]

n(0)
1 = 25π

1024
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a11a22)2

a3/2
11 a22(

√
a11 + √

a22)5
.

The density scalings ρi correspond to rescaled normalization
constants, Ñi = Ni/(ρiξ

3), in which Ni is the normalization
constant of the ith component wave function. In subsequent
sections the dimensionless forms of Ni, �i, r, and t are used,
with tildes omitted for clarity.

By assuming a constant density ratio, n2/n1 = √
g11/g22,

the two component wave functions can be expressed in
terms of a single wave function, �i = √

niφ, neglecting any
out-of-phase motion between the components [11,46,47].
Equations (2) reduce to a single equation,

i
∂φ

∂t
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φ,

with the system described by a single parameter, an effective
atom number, Ñ , given by [11]

Ñ =
( √

g22

n(0)
1 (

√
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)
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ξ 3
, (4)

in which N is the total atom number N = N1 + N2. Within this
work, balanced and imbalanced droplets are both modeled by
Eqs. (3), though it should be noted that, for a balanced droplet,
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FIG. 1. Energy of a flat-top density ansatz as a function of imbal-
ance, δN , with parameters N2 ≈ 22 524, α ≈ 0.0152, β = 1.0, and
η = −1.2. The equilibrium energy, Eeqbm, is shown in the main plot
with the orange, vertical line indicating the location of the minimum
at δN ≈ 703. The inset shows the equilibrium energy per particle,
[E/(2N + δN )]eqbm, with the only minimum appearing at the origin.

the dimensionless parameters (N1, N2, α, β, η) can be recast
to Ñ . In the density-locked model, a given set of interaction
strengths, gii and g12, correspond to a fixed population number
ratio, N2/N1 = √

g11/g22, imposing that the atoms can reside
only bound to the droplet. By breaking the assumption of den-
sity locking, it is possible to imbalance population numbers
such that N2/N1 �= √

g11/g22. The next section explores the
effect of this imbalance on the density structure and energy of
3D spherical droplet ground states.

III. GROUND STATES

This work considers spherically symmetric droplets. Den-
sity is hence assumed to be a function of radius only, reducing
the computational problem to an effective 1D system with
the kinetic term becoming ∇2�i → [∂2(r�i)/∂r2]/r. Further
assumptions within this work include a homonuclear mixture
and balanced intraspecies scattering lengths (a11 = a22 ⇒
β = 1) to simplify the problem. Thus, the only differences
between the components can arise from an imposed atom
number imbalance of N1 = N2 + δN1.

A. Flat-top droplet limit

A simplified ansatz for the density of large droplets, as
used in Ref. [11], is a flat-top, step function in which kinetic
energy contributions are neglected. The two components of
the imbalanced droplet are modeled as majority and minority
components with N + δN and N atoms, respectively. Substi-
tuting this ansatz into the two-component energy functional
gives the equilibrium energy of the flat-top droplet, Eeqbm, as
a function of the imbalance, δN (see the Appendix for further
details, including a schematic of the ansatz). The results of
this energy calculation are given in Fig. 1 with the total equi-
librium energy given in the main plot, and the inset shows the
equilibrium energy per particle.

First, the main plot of Fig. 1 shows that there is a minimum
at δN �= 0 in the total energy, indicating the droplet can lower
its energy by absorbing particles into one component. How-
ever, the equilibrium energy per particle given in the inset
of Fig. 1 exhibits a minimum at δN = 0 demonstrating that
while the total energy of the droplet can be lowered by single-
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component absorption, there is a corresponding increase in
the energy per particle resulting in a less stably bound
droplet. Second, the Appendix shows that the minimum in
the equilibrium energy occurs at δN/N = 2(η − 2) + [(η − 1)
(4η − 14)]1/2; that is, the energy of the droplet decreases with
imbalance up to this limit. The dependence of this quantity
on the scattering lengths is consistent with the prediction of
Ref. [11] at linear order [48]. For the parameters of Fig. 1
δn ≈ 0.458, as highlighted by the orange vertical line.

At this limit the droplet becomes saturated with the ma-
jority component. Hence if further majority component atoms
are available, they cannot be absorbed into the droplet and
will form an unbound gas around the droplet (as described in
Ref. [11]). There are thus three droplet states: (1) balanced
droplets, (2) bound, imbalanced droplets, and (3) saturated,
imbalanced droplets (which can be immersed in a halo of
unbound atoms).

The decrease in energy of an imbalanced droplet is con-
sistent with the predictions of Ref. [11] and stems from the
basic argument that droplets always seek to lower their en-
ergy by absorbing atoms. For example, in the density-locked
model, atoms can only be added to both components to ensure
that N2/N1 = √

g11/g22 is preserved, and by adding atoms
to both components, a lower energy state is recovered. One
way to conceptualize this is due to droplets having negative
chemical potentials, meaning that it is always energetically
favourable to absorb more particles into both components.
However, the subtlety in the energy calculation given in the
Appendix is that the energy of a droplet can also be lowered by
absorbing particles into one component if there is an excess of
this component available, up to the saturation limit discussed
above.

By using the simple flat-top density ansatz, key insights are
gained into effects of a population imbalance on the density
structure and energy of a two-component droplet. However,
for smaller droplet sizes kinetic energy cannot be neglected;
thus, to extend this analysis to general, spherical droplets, the
coupled GP equations are solved numerically.

B. Numerical solutions

To find ground-state solutions, the coupled GP equa-
tions are propagated numerically in imaginary time until the
energy of the mixture is deemed adequately converged. The
numerical scheme is a fourth-order Runge-Kutta method, with
centered finite-difference methods for the spatial derivatives.
Neumann boundary conditions (∂�i/∂r = 0) are applied at
the center of the computational box as the density in the
droplet core is approximately constant. The boundary at r =
Lr , where Lr is the radial computational box size, has either
Neumann or Dirichlet [�i(r = Lr ) = 0] boundary conditions,
which are discussed further below with reference to Fig. 2.

By enforcing the Dirichlet boundary condition at r = Lr ,
Figs. 2(a), 2(b), and 2(c) show the three different ground-state
solutions (discussed above) by varying δN1, i.e., by varying
the imbalance of the mixture. Figure 2(a) presents an example
of a balanced droplet (N1 = N2 ⇒ δN1 = 0) with an inset of
the density difference 
n(r) = n1(r) − n2(r), showing that
the two component densities are identical. By increasing the
population imbalance to δN1 ≈ 450, as shown in Fig. 2(b),

the two component densities start to split within the droplet
core, with both an increase and decrease in the majority and
minority components’ central densities, respectively. Hence,
the two components are no longer identical, but notably the
density differences in the inset show that this imbalanced
droplet has no unbound atoms around the droplet. This implies
that this state is a bound, imbalanced droplet. Driving the
imbalance higher to δN1 ≈ 5631, Fig. 2(c) demonstrates a
more pronounced density splitting within the droplet core,
but crucially also exhibits a nonzero gas density outside of
the droplet [highlighted in the inset of Fig. 2(c)]. This ground
state hence corresponds to a saturated, imbalanced droplet at
the center of the box with an unbound gas cloud outside of the
droplet core.

For a set droplet size—i.e., fixed α, η, and N2—the only
free parameter is δN1 and thus Fig. 2(d) shows two measures
of the droplet ground states for varying δN1. The two mea-
sures are the central density difference, 
n(r = 0) = n1(r =
0) − n2(r = 0), and the majority component density, n1, at a
fixed radius outside of the droplet. The chosen fixed radius
is r = 0.75Lr , which is chosen to be relatively far from the
droplet surface but not too close to r = Lr , to avoid the density
drop resulting from the Dirichlet boundary condition. These
measures are used to illustrate the transition between bound,
imbalanced droplets, and saturated, imbalanced droplets.
Figure 2(d) shows that for increasing δN1 from zero, there
is an immediate density splitting within the droplet corre-
sponding to the approximately linear increase in 
n(r = 0). It
should be noted that in this regime, n1(r = 0.75Lr ) stays fixed
at zero, meaning that this relatively small δN1 regime corre-
sponds to bound, imbalanced droplets. However, increasing
δN1 further eventually leads to the formation of a shoulder in

n(r = 0) which is the saturation of the imbalanced droplet,
i.e., the droplet is reaching a limit of how many majority
component atoms can be absorbed. Beyond this shoulder

n(r = 0) then approaches a constant value [labeled here as

nsat (r = 0)]. Once in the saturated droplet regime, there is
a corresponding increase in n1(r = 0.75Lr ), indicating that
the excess atoms reside outside of the droplet. The phase
diagram in Fig. 2(d) corresponds to the three ground-state
densities in Figs. 2(a), 2(b), and 2(c) given by the vertical gray
lines. Furthermore, the inset of Fig. 2(d) illustrates how the
central density splitting of the saturated droplet varies with
droplet size, given by Ñ , the effective atom number of the
balanced droplet in (4) (from Ref. [11]). To vary droplet size,
the fixed parameters are α and η, thus N2 (and hence N1) is
varied for the different droplet sizes, with Ñ calculated for the
balanced droplet (δN1 = 0) parameters. The central density
difference of the saturated droplet increases with droplet size
and asymptotically approaches a constant value of δn ≈ 0.458
[given by the orange, dashed, horizontal line in the inset of
Fig. 2(d)] in the limit of an large, flat-top droplet as discussed
above.

Figures 2(c) and 2(d) show that in the limit of the saturated
droplet, there exists the unbound gas. This work seeks to ex-
plore imbalanced droplets, in the absence of this unbound gas,
to probe the physics of unbalancing the droplet in free space.
Thus, rather than imposing a Dirichlet boundary condition at
r = Lr , instead the same Neumann boundary condition used at
r = 0 is used at r = Lr , also. This gives a numerical approx-

033167-4



QUANTUM DROPLETS IN IMBALANCED ATOMIC … PHYSICAL REVIEW RESEARCH 5, 033167 (2023)

FIG. 2. Balanced and imbalanced ground state droplets with fixed parameters: N2 ≈ 22 524, α ≈ 0.0152, β = 1.0, and η = −1.2. (a, b,
and c) Ground-state density profiles of a balanced droplet (δN1 = 0); a bound, imbalanced droplet (δN1 ≈ 450); and a saturated, imbalanced
droplet with an unbound halo of majority component atoms (δN1 ≈ 5631), respectively. The inset shows the difference in component densities,

n(r). (d) The difference in central densities as a function of imbalanced majority component atoms, δN1, with box size of Lr = 128. At
δN1 = 0 the system is balanced, with the leftmost vertical gray line corresponding to (a). Increasing δN1 leads to an approximately linear
increase in 
n(r = 0); there are, however, no atoms outside of the droplet as n1(r = 0.75Lr ), a measure of density outside of the droplet, is
zero. This regime corresponds to a bound, imbalanced droplet with the central vertical gray line corresponding to (b). The linear increase in

n(r = 0) eventually plateaus to a regime in which the central densities in the droplet cannot be unbalanced further and the imbalanced droplet
saturates with the density outside of the droplet increasing, resulting in a nonzero density of unbound atoms. The inset shows a measure of the
difference in central densities in the limit of a saturated imbalanced droplet, 
nsat (r = 0), as a function of droplet size given by the effective
atom number Ñ in (4), using the parameters for the δN1 = 0 case. The orange, dashed, horizontal line corresponds to δn ≈ 0.458, with the
droplet size used in the main plot highlighted by the gray, vertical line. (e) Neumann boundary conditions are applied at both boundaries of the
computational box, with Lr = 1024. The main plot shows the difference in central densities, recreating the results from (d), showing that the
behavior is not a function of the boundary conditions. It likewise demonstrates that the saturated droplet reaches a lower energy, E [�1, �2],
state than the balanced droplet. The inset shows an example imbalance of δN1 ≈ 22 524, with varying box size Lr . In the limit of a large
computational box any background gas will be effectively zero density, thus converging to a saturated droplet in free space.

imation to a free space system. Figure 2(e) uses equivalent
parameters as in Fig. 2(d), with a slightly increased δN1 range,
and exhibits the same central density difference behavior as
with the Dirichlet boundary conditions at r = Lr . From this
point on, Neumann boundary conditions are applied at both
boundaries.

Figure 2(e) also shows the energy of the mixture which
uses the dimensionless form of (1), by defining Ẽ = E/ε

where ε = [4/(3π2α)][h̄2/(mξ 2)], in which tildes are subse-
quently neglected. The energy decreases with imbalance—
as predicted by the analytic calculated presented in the
Appendix—until again reaching the saturation limit. Note
again that a saturated, imbalanced droplet cannot absorb fur-
ther majority component atoms, and thus the energy of the
droplet does not vary with δN1. However, this is an effect
of the large computational boxes used, in that the density
of the unbound atoms is negligibly small such that once in
this saturation limit the system is essentially identical with

changing δN1. In smaller computational boxes—or equiva-
lently, exploring much larger imbalances—the density of the
background gas becomes significant [e.g., Fig. 2(c)], which is
explored in the inset of Fig. 2(e). By fixing δN1 ≈ 22 524, i.e.,
an imbalanced droplet in the saturation limit, the size of the
computational box is varied. In small boxes, the density of the
unbound gas is nonzero and thus has a significant, positive
energy contribution. The existence of the background gas
likewise modifies the internal structure of the droplet as can
be seen by the increased value of 
n(r = 0). In the limit of
large Lr (or equivalently small 1/Lr) the energy contribution
of the background approaches zero as the density of the gas
approaches zero. Thus in the limit of a large box, all of the
ground states converge to the saturated droplet in free space,
as can be seen from the convergence of both the energy and

n(r = 0) in the inset of Fig. 2(e).

Further evidence of the energy saturation is given by
the two component chemical potentials in Fig. 3(a). For
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increasing δN1 the majority component chemical potential
(the dark orange curve) converges towards zero, implying
there is no energetic favorability for the droplet to ab-
sorb more majority component atoms. Additionally, if more
atoms of the minority component were made available to
the droplet, then these atoms will likewise be absorbed
into the droplet, reducing the energy of the droplet even
further.

In summary, droplets will always seek to absorb atoms to
reduce the system energy. If there is an imbalance of atoms
from N2/N1 = √

g11/g22, then the droplet will absorb more
of the majority component, but this reaches a limit in which
the droplet is saturated with the majority component atoms. It
should be noted that in the case of a nonzero density unbound
gas, this limiting behavior will be modified by the positive
energy contribution of the majority component density tails,
similar to submerged droplets observed in 1D imbalanced
droplets [39,40]. These results have been presented both from
an analytic energy calculation and from numerical simula-
tions, the latter of which is to be used next to explore the
dynamical stability of these imbalanced droplets across their
parameter space.

IV. BREATHING MODE

Self-evaporation is a key property of 3D two-component
quantum droplets [11]. Recalling that the density-locked
droplet can be described by a single parameter, Ñ , there
are three main regimes of interest for the droplet collective
modes: (1) all modes exceed the particle emission threshold
and hence are evaporated (Ñ � 94.2), (2) the monopole
mode evaporates but other nonzero angular momentum
modes are stable (94.2 � Ñ � 933.7), and (3) the monopole
is stabilized (Ñ � 933.7) [11,35]. This first phase is the
principal argument behind the self-evaporative property of
a two-component droplet, since a finite-temperature droplet
is inherently excited by contributions from, for example,
the noncondensate components. Thus, these excitations
are evaporated and the droplet relaxes to a lower energy
configuration, akin to self-cooling [11].

In this work the system is restricted to spherically sym-
metric droplets, meaning that the only observable mode is
the breathing mode. The restriction of spherical symmetry is
applied to reduce computational cost. This is due to particle
shedding of self-evaporative droplets resulting in reflections
from the computational box boundaries, which become a sub-
stantial issue for long-time dynamics. To avoid this issue,
very large box sizes—Lr = 8192, approximately 500 times
the droplet sizes considered here—are used to observe the
dynamics of the droplets without interference from reflected
particles. If simulating a general 3D droplet, these box sizes
would quickly become infeasible. Note that the use of large
computational boxes is crucial to the focus of this paper,
namely, imbalanced droplets in free space, i.e., without the
external effects of unbound atoms. By excluding any nonzero
angular momentum modes, the spherical symmetry yields two
regimes, a decaying and a stable breathing mode, and thus this
work analyzes the stability of breathing modes in the presence
of an imbalance.

The breathing mode frequencies of the balanced, density-
locked droplet are a function of the single parameter, Ñ [11].
However, for an imbalanced system, a further degree of free-
dom is introduced, the size of the imbalance. As shown in
the previous section, the central density differences, chemical
potentials, and energies, as functions of imbalance, reach the
saturation limit, and any further imbalance has no significant
effect on the internal structure of the droplet. In order to
observe these collective modes, the ground-state solutions
found via imaginary time propagation, shown in Sec. III, are
then evolved in real time via Eqs. (3). To trigger a breathing
mode in the droplet, a harmonic phase is imprinted on the
ground-state wave function, i.e., eiεr2

where ε is small (here
ε = 10−5) [4,49]. This phase is always imprinted onto the
minority component, though breathing modes are an in-phase
oscillation, so the subsequent dynamics are not dependent on
this choice of component.

A. Self-evaporative regime

The first modes to consider are within the self-evaporative
regime (Ñ � 933.7). Breathing modes of spherical, balanced
droplets have been quite extensively investigated [11,35,50].
Dynamically, within this regime, the droplet begins to oscil-
late at a frequency exceeding the particle emission threshold,
−μ, and rapidly decays with the decay rate asymptotically
tending to zero and the oscillation frequency tending to the
particle emission threshold [50]. The initial rapid decay is
due to a high dissipation of energy through particle emis-
sion, though in the long-time limit this corresponds to limited
particle emissions at the energy of the chemical potential.
This asymptotically decaying behavior is likewise recovered
in the imbalanced case though with three modes instead of
one due to the imbalance yielding two chemical potentials.
Figure 3(a) describes the three superimposed modes: the
early-time, rapidly decaying mode—see purple dashed lines
in Fig. 3(a) denoting the extracted equal frequencies of the two
components—that varies marginally with imbalance, which
can be considered as the intrinsic droplet breathing mode; at
late times there are two further modes replacing the early-time
mode. The late-time modes arise from the splitting of the
chemical potentials which diverge with increasing imbalance
before again reaching the saturated droplet [see orange lines
in Fig. 3(a)].

To visualize the single early mode and two late modes,
Figs. 3(b) and 3(c) represent a measure of the droplet central
density, n̄i(t ) = ni(r = 0, t ) − 〈ni(r = 0)〉t , with insets show-
ing the associated power spectra |F ′[n̄i]|2 in which F ′[·]
denotes the power spectrum rescaled by the mean, and all
negative frequencies set to zero purely for data visualization.
The early-time mode is a high-amplitude, rapidly decaying
mode that is given in Fig. 3(b), with an inset of the associated
power spectrum highlighting the frequency (vertical dashed
line) corresponding to the purple dashed lines in Fig. 3(a).
As this mode decays, it is then replaced by the two late-time
modes corresponding to the split chemical potentials. The
late-time dynamics is thus a superposition of a higher and
lower frequency mode, as can be seen in Fig. 3(c), once more
with the associated power spectra showing peaks at the two
chemical potentials (given by the vertical dashed lines). It
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FIG. 3. Chemical potentials and breathing modes as a function of
majority component imbalance, δN1, in the self-evaporative regime
(equivalent to a balanced droplet, N1 = N2, with Ñ ≈ 649). (a) The
chemical potentials (light orange, minority component; dark orange,
majority component) and early-time breathing mode frequencies
(light and dark purple dashed lines) as a function of imbalance.
These results correspond to the range 0 � δN1 � 4257, N2 ≈ 17 027,
α ≈ 0.00657, and η ≈ −1.11. At δN1 = 0, the chemical potentials
are equal but diverge as the imbalance is increased, eventually reach-
ing a saturation point where the chemical potential of the majority
component is approximately zero. The minority component chemical
potential likewise saturates, to an increased value. (b) A highlighted
simulation of δN1 ≈ 1447 [corresponding to the bold vertical line in
(a)] at early times, with an inset of the associated power spectrum.
This indicates that at early times, there is a single rapidly decaying
mode. (c) The same δN1 ≈ 1447 simulation at late times in which
there is a superposition of two modes corresponding to the two
chemical potentials, given by the vertical dashed lines in the inset
power spectrum of (c).

should be noted that evidence of these late-time modes can
even be seen at early times, such as the shorter peak in the
inset of Fig. 3(b), which roughly corresponds to the chemical
potential of the majority component.

In summary, at early times the droplet oscillates with an
unstable, high-amplitude mode that decays rapidly due to en-
ergy dissipation from particle emission. In the long-time limit,
however, the particle emission is considerably reduced, with
particles emitted only at energies of the two chemical poten-
tials. Hence, these late-time modes decay at much slower rates
than the initial mode. This is analogous to the density-locked
mixture [50], in which the mode frequency asymptotically
converges to the particle emission threshold, with a vanish-

ing decay rate. Physically this vanishing decay rate is the
result of late-time emitted particles of energy ≈ − μ, which
thus have a negligible effect on the kinetic energy of the
droplet. Equivalently, for an imbalanced droplet, there are now
two chemical potentials which each have associated particle
emission and hence associated residual long-lived breathing
modes [50].

B. Non-self-evaporative regime

The second set of breathing modes are within the non-self-
evaporative regime (Ñ � 933.7). For a balanced droplet in this
regime the breathing mode frequency is lower than the particle
emission threshold resulting in a stable oscillation [11,50]. In
the self-evaporative regime, the dynamics of the imbalanced
droplet is highly reminiscent of the balanced case but with
further modes corresponding to the split chemical potentials,
whereas the non-self-evaporative region of the droplet phase
has some greater subtleties.

Figure 4(a) shows that, as in the self-evaporative case,
the chemical potentials diverge with increasing imbalance
until reaching the saturated, imbalanced droplet. The dynam-
ics are again dominated by a high-amplitude mode in both
components—given by the central purple dashed lines of
Fig. 4(a)—that is relatively constant with the changing imbal-
ance. This mode can again be considered the intrinsic droplet
breathing mode, as described in [51]. In the balanced case,
the stability of the breathing mode for droplets of this size
is due to the particle emission threshold exceeding the mode
frequency. With increasing imbalance, however, as the chemi-
cal potentials split, the majority component chemical potential
[i.e., the lower chemical potential branch in Fig. 4(a)] eventu-
ally crosses over the frequency of the stable high-amplitude
mode, at which point this mode will begin to decay. This
mode crossing implies that the imbalanced non-self-
evaporative regime can instead be split into two regions: (1)
a stable breathing mode and (2) a decaying breathing mode.
This behavior is highlighted in the upper inset of Fig. 4(a),
focusing on smaller imbalances. Decay of the high-amplitude,
intrinsic mode occurs when the frequency exceeds the nega-
tive of the majority component chemical potential, validating
the idea that stability of the mode is entirely dependent on
the mode frequency exceeding the droplet’s particle emission
threshold. The lower left inset of Fig. 4(a) shows that the mode
is stable, for an imbalance of δN1 ≈ 45, as the frequency lies
beneath both chemical potentials. However, the lower right
inset shows that this mode becomes unstable, for an imbalance
of δN1 ≈ 180, and decays as the frequency exceeds one of the
chemical potential branches. The critical imbalance between
stability and instability of this mode is δN1 ≈ 124 for this
specific droplet. Thus for a sufficiently small imbalance, it is
possible to have an imbalanced droplet with a stable breathing
mode.

Figures 4(b) and 4(c) focus on the early and late times of
an unstable breathing mode in this regime. At early times,
the initial high-amplitude mode dominates the system and
oscillates at approximately the frequency of the balanced case.
This is highlighted in the power spectrum shown in the inset
of Fig. 4(b) with the frequency given by the vertical dashed
line. As found in the self-evaporative regime, the energy of
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FIG. 4. Chemical potentials and breathing modes as a function
of majority component imbalance, δN1, in the non-self-evaporative
regime (equivalent to a balanced droplet, N1 = N2, with Ñ ≈ 1502),
using the same parameters as in Fig. 2 with 0 � δN1 � 5631. (a) The
chemical potentials (light orange, minority component; dark orange,
majority component) and early-time breathing mode frequencies
(light and dark purple dashed lines) as a function of the imbalance.
The top inset shows the majority component chemical potential
crossing the breathing mode frequencies. This is shown in the lower
insets in which the mode is either stable (left) or is decayed (right).
(b) A highlighted simulation with δN1 ≈ 1014 [corresponding to the
bold vertical line in (a)] at early times, with the associated power
spectrum (inset). The early-time dynamics are dominated by a single
damped breathing mode. (c) The same δN1 ≈ 1014 simulation as
in (b), at late times showing a superposition of three modes, with
the lowest and highest energy modes corresponding to the majority
and minority component chemical potentials, respectively. The third
mode [the central peak in the inset of (c)] is the early-time mode still
decaying.

the droplet is dissipated through atom shedding which then
leads to the evaporation of the initial mode. The oscillations at
late times—shown in Fig. 4(c)—are instead dominated by two
other modes, with frequencies corresponding to the chemical

potentials of each component given by the two outer vertical
dashed lines. There are still residual oscillations from the
decaying initial mode, which hence explains the interference
seen in the oscillations of Fig. 4(c) and the central peak shown
in the power spectrum.

Thus, in both the self-evaporative and non-self-evaporative
regimes, provided there is decay of the initial high-amplitude
mode, there are two main regions of the dynamics: early
times—where the dynamics is dominated principally by a
high-amplitude, intrinsic mode that is related to the balanced
droplet—and late times—where there is a superposition of
two modes corresponding to each chemical potential. All of
these modes are decaying but over different timescales due to
the rate of atom shedding. The initial mode decays relatively
rapidly due to a high dissipation of energy from the parti-
cle emission. However, at late times the particle emission is
considerably reduced, with slower emission of particles. This
slower emission of particles, at energies of the two chemical
potentials, is negligible relative to the droplet kinetic energy,
and hence the dynamics decay asymptotically [50].

Finally, it should be noted that the breathing modes of
imbalanced droplets have a larger range of instability than
balanced droplets, which have an unstable breathing mode
in the self-evaporative regime only. This is consistent with
the discussions in both Sec. III and the Appendix of how the
energy, and energy per particle, varies with imbalance. The
key point from these discussions is that increasing imbalance
corresponds to an increasing energy per particle and thus a
less stably bound droplet. Hence, it would be expected that a
less stably bound object would be more susceptible to particle
shedding when perturbed, as is shown in the main results of
this section.

V. DISCUSSION AND CONCLUSIONS

By solving the spherically symmetric, coupled extended
GP equations, this work has systematically investigated the
spherical ground states and breathing modes of imbalanced
droplets across the size of the droplet and imbalance, in free
space. Droplets can lower their energy by absorption of atoms,
either by absorbing a symmetric number of atoms into each
component, under the condition N2/N1 = √

g11/g22, or, as has
been investigated here, if there exists an asymmetric quantity
of atoms available, the droplet will absorb the available atoms
forming a majority and a minority component. This modifies
the core structure of the droplet by splitting the two central
component densities, yielding a bound, imbalanced droplet.
If further majority component atoms become available, then
the imbalanced droplet saturates, and thus any excess majority
components will not bind to the droplet and reside outside
of the droplet as an unbound gas. To investigate the density
profiles, chemical potentials, and breathing dynamics of these
imbalanced droplets, without the external effects of the un-
bound gas, large computational boxes were used such that the
background gas density is effectively zero.

One of the main experimental probes to justify the obser-
vation of a quantum droplet is measuring a constant width of
the atomic cloud, after switching off all traps; i.e., the object
is self-bound in free space [25,27,28]. In this scenario any
unbound gas would be lost, though the imbalanced droplet
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could still remain stable in free space as demonstrated in
this work. The observation of the three breathing mode fre-
quencies could be experimentally achieved in homonuclear
mixtures, for which the number of atoms in each component
can be tuned by radio-frequency pulses on the cloud [26], and
there have been recent experimental observations of imbal-
anced heteronuclear mixtures [52]. However these system will
be affected by three- and higher-body losses.

An immediate next question of this work is to explore
how the application of trapping potentials effects imbal-
anced droplets. Isotropic harmonic traps could be applied
to the spherically symmetric system considered here, to in-
vestigate the modification of both the ground states and
breathing mode dynamics. The breathing mode dynamics of
trapped, spherically symmetric droplets has been investigated
in Ref. [51], and so there are natural extensions of these
results for imbalanced droplets. Further ideas include investi-
gating the spherically symmetric ground states and dynamics
of a heteronuclear mixture, as the differing kinetic energy
contributions of the two components may lead to novel dy-
namics. This is computationally challenging, however, due to
the form of the two-component LHY correction of a heteronu-
clear mixture [11,16]. There are approximations for this term,
though they are least accurate at the droplet centers [43]. This
presents an issue for accurate analysis of imbalanced ground
state solutions and dynamics, especially for the superimposed,
time-dependent collective excitations shown here.

With the continuing development of quantum droplet
experiments—for example, through the realization of new
mixtures [53]— it will become increasingly important to
understand how these mixtures can minimize their energy,
from self-evaporating excitations to modifying their internal
structure.

The data presented in this paper are available [54].
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APPENDIX: DENSITY DIFFERENCE OF IMBALANCED,
INFINITE DROPLETS

The density profile of a droplet in the limit of large Ñ
approaches a flat-top, step function, i.e., a constant density
in the droplet core and a steep drop to zero density at the
surface [11]. This approximate form is a useful model for
infinite-sized droplets as it allows for kinetic energy contri-
butions to be neglected. Figure 5 shows a schematic of the
step function model of a large imbalanced droplet, used in
this derivation. The minority component is modeled as hav-
ing volume V = 4

3πR3, while the majority component has

R + δR

n + δn

R

n

r

n
i(
r)

FIG. 5. Flat-top density profiles as an ansatz for each com-
ponent of an imbalanced droplet. The orange component is the
higher-density, majority component, and the purple component is the
lower-density, minority component.

volume V + δV = 4
3π (R + δR)3. The step functions hence

correspond to the central densities n and n + δn for the mi-
nority and majority components, respectively, with the two
components normalized to N and N + δN in which δN � 0,
imposing the population imbalance. The dimensionless form
of the energy functional given in (1), with β ≡ √

a22/a11 = 1,
can be written in terms of these constant imbalanced densities
giving

E =
∫ [

(n + δn)2

2
+ n2

2
+ η(n + δn)n

+ 2

5
α(2n + δn)5/2

]
d3r. (A1)

The schematic in Fig. 5 states nothing about the sign of δR;
i.e., the volume of the majority component, V + δV , can be
larger or smaller than the minority component volume, V .
However, it can be shown that the only physical system is
that where δV = 0, which is demonstrated in the following
calculation.

Beginning with the δV > 0 case, (A1) can be written in
terms of the component volumes and population numbers as

E = (N + δN )2

2(V + δV )
+ N2

2V
+ η

N (N + δN )

V + δV

+ 2

5
α

[
V

(
N + δN

V + δV
+ N

V

)5/2

+ δV

(
N + δN

V + δV

)5/2
]
.

To analyze how the energy of this model varies with δV , the
energy above can be minimized with respect to the difference
in component volumes, giving

∂E

∂ (δV )
= − (N + δN )2

2(V + δV )2
− η

N (N + δN )

(V + δV )2

+ 2

5
α

[
− 5

2

V (N + δN )

(V + δV )2

(
N + δN

V + δV
+ N

V

)3/2

+
(

N + δN

V + δV

)5/2

− 5

2
δV

(N + δN )5/2

(V + δV )7/2

]
.
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Taking the limit of δV → 0+ reduces to

∂E

∂ (δV )

∣∣∣∣
δV →0+

= − (N + δN )2

2V 2
− η

N (N + δN )

V 2

+ α

[
− (N + δN )

V

(
2N + δN

V

)3/2

+ 2

5

(
N + δN

V

)5/2
]
,

which can be written in the form

∂E

∂ (δV )

∣∣∣∣
δV →0−

= −N + δN

2V 2
[(1 + 2η)N + δN] + O(α).

Recall from Sec. II that δa = a12 + √
a11a22, and that defin-

ing δa < 0 implies dominantly attractive interactions, which
can be written as η < −1 in the dimensionless parameters
used here. Thus, with δN small, the mean-field terms be-
comes dominantly positive, while the LHY contributions are
small due to α 
 1. Hence, the limit of δV → 0+ yields
∂E/∂ (δV ) � 0.

The next case to check is δV < 0, for which (A1) takes the
form

E = (N + δN )2

2(V + δV )
+ N2

2V
+ η

N (N + δN )

V

+ 2

5
α

[
(V + δV )

(
N + δN

V + δV
+ N

V

)5/2

− δV

[
N

V

]5/2
]
.

This expression is again minimized with respect to the differ-
ence in component volumes,

∂E

∂ (δV )
= − (N + δN )2

2(V + δV )2
+ 2

5
α

[(
N + δN

V + δV
+ N

V

)5/2

− 5

2

(N + δN )

V + δV

(
N + δN

V + δV
+ N

V

)3/2

−
(

N

V

)5/2
]
.

Taking the limit of δV → 0− yields

∂E

∂ (δV )

∣∣∣∣
δV →0−

= − (N + δN )2

2V 2
+ α

[
2

5

(
2N + δN

V

)5/2

− N + δN

V

(
2N + δN

V

)3/2

− 2

5

(
N

V

)5/2
]
,

which can be written in the form

∂E

∂ (δV )

∣∣∣∣
δV →0−

= − (N + δN )2

2V
+ O(α).

Hence, the limit of δV → 0− results in ∂E/∂ (δV ) � 0. Thus,
the conditions

∂E

∂ (δV )

∣∣∣∣
δV →0+

� 0 and
∂E

∂ (δV )

∣∣∣∣
δV →0−

� 0

imply that δV = 0 is either a smooth minimum or a cusp.
This is physically realistic in the limit of large droplets, as
this implies that the radii of the two components are equal,
i.e., no single-component atoms reside outside of the droplet

core. However, in the finite droplet limit this is not the case
as kinetic energy contributions cannot be neglected, as is
highlighted in the ground-state profiles in Figs. 2(b) and 2(c).
The imbalanced droplet hence appears to slowly approach the
flat-top density profile, relative to the rate at which the large,
balanced droplet approaches the flat-top density limit.

Taking the case of δV = 0, the energy can be written as

E

2N
= (N + δN )2

4NV
+ N

4V
+ η

N + δN

2V

+ 2

5
α

[
V

2N

(
2N + δN

V

)5/2
]
.

A factor of (1 + δN/2N ) can be factored out of this expres-
sion, allowing for the above equation to be written in powers
of (N/V ),

E

2N
=

(
1 + δN

2N

)[
A

(
N

V

)
+ B

(
N

V

)3/2
]
,

where

A =
(

1 + δN

2N

)
+ (η − 1) + 1 − η

2

(
1

1 + δN
2N

)

and

B = 4
√

2α

5

(
1 + δN

2N

)3/2

.

Section II discusses the key property that droplets exist in
equilibrium with the vacuum; i.e., they have zero pressure,
∂E/∂V = 0. With N constant, this expression for the zero
pressure droplet can be rewritten as ∂ (E/2N )/∂ (N/V ) = 0,
yielding (

N

V

)1/2

= −2A
3B ⇒ n =

(
N

V

)
= 4A2

9B2
,

giving an expression for the equilibrium density. This results
in the equilibrium energy, given by

Eeqbm = (2N + δN )

(
4A3

27B2

)
, (A2)

or equivalently as the equilibrium energy per particle,(
E

2N + δN

)
eqbm

= 4A3

27B2
. (A3)

For fixed α, η, and N , Eqs. (A2) and (A3) are plotted as
functions of δN in Fig. 1. The main plot in Fig. 1 shows
(A2) varying with δN . By differentiating (A2), the minimum
is located at

δN

N
= 2(η − 2) + [(η − 1)(4η − 14)]1/2.

For the parameters of Fig. 1 the minimum is at δN ≈ 703,
which using the expression

δn = δN

N

(
4A2

9B2

)
corresponds to δn ≈ 0.458, i.e., the orange, dashed, horizontal
line in the inset of Fig. 2(d).
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