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Quantum computing on magnetic racetracks with flying domain wall qubits
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Domain walls (DWs) on magnetic racetracks are at the core of the field of spintronics, providing a basic
element for classical information processing. Here, we show that mobile DWs also provide a blueprint for large-
scale quantum computers. Remarkably, these DW qubits showcase exceptional versatility, serving not only as
stationary qubits, but also performing the role of solid-state flying qubits that can be shuttled in an ultrafast
way. We estimate that the DW qubits are long-lived because they can be operated at sweet spots to reduce
potential noise sources. Single-qubit gates are implemented by moving the DW, and two-qubit entangling gates
exploit naturally emerging interactions between different DWs. These gates, sufficient for universal quantum
computing, are fully compatible with current state-of-the-art experiments on racetrack memories. Further, we
discuss possible strategies for qubit readout and initialization, paving the way toward future quantum computers
based on mobile topological textures on magnetic racetracks.
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I. INTRODUCTION

Magnetic domain walls (DWs) have garnered significant
attention in recent years [1–13] owing to their wide-ranging
applications in the field of spintronics. They are integral to
various logic devices [14–18] and are recognized as stable
information carriers due to their inherent topological robust-
ness [19–24]. This has led to their deployment in classical
racetrack memories, pushing the boundaries of technology
[25]. In recent developments, DWs demonstrated large and
tunable mobility on both antiferromagnetic and ferrimagnetic
nanotracks [1–7], which has significantly enhanced our ability
to control the movement of DWs in magnetic nanowires.

While experimental endeavors have largely focused on the
classical regime, the recent technological advancements in
spintronics, specifically the ability to stabilize and manipu-
late nanoscale DWs [1–13], have opened doors to compelling
opportunities to breach the quantum frontier and explore ap-
plications of DWs in quantum realms. Concurrently, there is a
mounting quest for quantum computing platforms, fueled by
the capability of large-scale universal quantum computers to
tackle problems beyond the reach of their classical counter-
parts [26]. Diverse platforms, such as trapped ions [27–29],
superconducting circuits [30,31], and quantum dots [32–37]
are actively pursued. In this context, nanosize spin textures
are gaining attention as potential qubits [38–43], serving as
the fundamental building blocks of a quantum computer.
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In this work, we propose a scalable implementation of a
universal quantum computer on ferrimagnetic racetracks with
mobile DW qubits. The qubit computational space is spanned
by two topologically distinct states, each possessing opposite
chirality, as depicted in Fig. 1. Our design takes advantage
of the topological nature of the DW and its high mobility,
thereby fully harnessing the potential of DWs within the
quantum regime. The proposed platform brings several cru-
cial advantages. First, the inherent mobility of DWs uniquely
positions them to act as both stationary and solid-state flying
qubits. This property expedites entanglement distribution and
fosters long-distance coherent quantum communication, elim-
inating the need for external components such as resonators
commonly employed in superconducting qubit platforms.
Conservatively estimated, DW qubits can fly coherently for
distances of a few micrometers at velocities up to 100 m/s
within their coherence time, estimated to be in the microsec-
ond regime. Second, the strong coupling between the qubit
subspace and DW motion, originating from the spin Berry
phase accumulated by spins within the DW, enables us to
achieve fast and high-fidelity single- and two-qubit operations
on the scale of 0.1 ns. Attaining such a substantial effective
spin-orbit coupling proves challenging in alternative solid-
state qubits [44–46]. Third, the racetrack system inherently
facilitates scalability, as it allows for the preparation of multi-
ple DWs, thereby providing a natural pathway for scalability
in experimental setups. Additionally, racetrack arrays present
the potential for a genuinely three-dimensional (3D) quantum
computing platform [25,47], enabling higher qubit density
and substantial advantages for the development of large-scale
quantum computing. Finally, our design is compatible with
state-of-the-art experimental spintronic architectures, such as
racetrack memory, and can be naturally integrated with ad-
vanced DW control technology. This compatibility paves the
way for the application of spintronic schemes in future quan-
tum information technology.
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FIG. 1. Sketch of two DW qubits on two parallel ferrimagnetic
racetracks. Spins stand for the uncompensated magnetic moments
of the sublattices. The spin texture of the right racetrack has a
well-defined positive chirality and is in state |�〉, whereas the tex-
ture within the left one has negative chirality and is in state |�〉.
Single-qubit gates are implemented by shuttling the domain wall and
controlling its velocity v(t ). Two-qubit entangling gates between dif-
ferent racetracks take advantage of intertrack exchange and dipolar
interactions.

II. QUBIT FROM DOMAIN WALL CHIRALITY

We consider a quasi-one-dimensional two-sublattice fer-
rimagnet described by the effective low-energy Lagrangian
density

L = h̄2N

8J
(ṅ − h × n)2 + h̄NSeṅ · A − U (n), (1)

where J > 0 is the antiferromagnetic exchange coupling and
h = gμBB/h̄ with external magnetic field B and electronic g
factor. The first term is the kinetic energy density of the Néel
vector n in the presence of a magnetic field [48], while the
second term is the spin Berry phase due to the uncompensated
moments with excess spin Se per site and vector potential A(n)
defined by ∇n × A = −n. We assume that the direction of the
excess spin is locked along the Néel vector [49,50], as only
the low-energy spin dynamics is concerned.

The energy density U (n) can be separated into two
parts. The first contribution with larger energy is U1(n) =
NKz[(∂xn)2 − n2

z ]/2 and defines a DW of width λ =
Sa

√
J/Kz. Here, Kz is the easy-axis anisotropy along the z

direction, S is the average spin, a is the lattice spacing, and
N is the total number of spins within a DW. We remark
that we use a dimensionless spatial coordinate x through-
out this work, measuring distance in units of λ. The DW
profile that minimizes U1 is nx + iny = ei�sech(x − X ), nz =
tanh(x − X ), where for concreteness we use the boundary
condition nz(±∞) = ±1. The two zero-modes � and X ,
whose variations leave U1 invariant, physically represent the
position of DW in real space and its azimuthal angle in
spin space. The second energy contribution to U (n) is U2 =
NKyn2

y − h̄NSeh · n, where Ky defines the easy xz plane and

the second term is the Zeeman energy. The hierarchy of energy
scales in the system is given by J � Kz � Ky, h̄Se|h|.

The two zero-modes are crucial to encode a qubit in the
DW. To illustrate this concept, we first focus on the dynamics
of � alone that defines the computational space. The coordi-
nate X plays a critical role for implementing qubit gates and
defining the physical qubit frequency, which will be discussed
later. The Lagrangian for � is L = M�̇2/2 − V (�), where
the potential energy is

V (�) = 2NKy(sin2 � − 2bx cos � − 2by sin �), (2)

and bi = π h̄Sehi/4Ky is the dimensionless magnetic field, rel-
ative to the easy plane anisotropy. The detailed derivation is
provided in Appendix A. This Lagrangian describes a particle
with effective mass M = Nh̄2/2J moving in a double-well
potential [see Fig. 2(a)] whose low-energy states can be under-
stood with the path integral quantization [51]. The two states
with opposite chirality |�〉 ≡ |� = 0〉 and |�〉 ≡ |� = π〉
correspond to macroscopically distinct topological spin tex-
tures and span our computational space. The easy-plane
anisotropy Ky breaks the original U(1) symmetry down to Z2,
where the two chirality states are equally preferred. This Z2 is
further broken by an external field bx, resulting in a detuning
energy ε = −8NKybx favoring one chirality over the other,
see Fig. 2(b). We remark that the Dzyaloshinskii-Moriya in-
teraction, which prefers DWs with certain chirality observed
in recent experiments [1–7], acts as an effective magnetic
field along the racetrack. It can be compensated by turning on
bx in the opposite direction. For small DW sizes, containing
N ≈ 102 spins which is feasible experimentally [52], the DW
is in the quantum regime, and the two chiralities hybridize
with a tunnel splitting tg ≈ 4h̄ω0

√
Sinst/2π h̄ exp{−Sinst/h̄}.

Here, Sinst ≈ 4V0/ω0 is the instanton action with the tunnel-
ing barrier V0 = 2NKy(1 − by)2 and the level spacing h̄ω0 =
2

√
2JKy(1 − b2

y ) (Appendix B). We emphasize that the tun-
neling rate tg/h̄ is highly tunable by the external magnetic
field by: The barrier V0 is suppressed for larger values of by,
resulting in a larger tg.

Because h̄ω0/tg ∝ e4V0/h̄ω0 is large when by < 1 [53], the
subspace spanned by {|�〉, |�〉} is well isolated from higher
energy levels, and we obtain the effective DW qubit Hamilto-
nian (Appendix B)

HQ = ε

2
σz − tg

2
σx, (3)

where σi are Pauli matrices and the qubit energy is h̄	 =√
ε2 + t2

g (on the scale of 20 GHz), as shown in Fig. 2(b).

We anticipate that the physical qubit frequency 	̃ [depicted
in Fig. 2(c)] is suppressed by an order of magnitude because
of the strong coupling between � and X , as detailed below.

III. EFFECTIVE HAMILTONIAN FOR FLYING
DOMAIN WALL QUBITS

To implement single- and two-qubit gates, we take ad-
vantage of the coupled dynamics of the two soft modes X
and �, which originates from the finite excess spin Se in
ferrimagnets. The spin Berry connection A and the magnetic
field h in Eq. (1) give rise to an effective spin-orbit interaction
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FIG. 2. The DW qubit. (a) The effective potential energy V (�). Two states with opposite chirality, which span the Hilbert space of the DW
qubit, are localized at two minima of the potential. They are hybridized by the tunneling tg through the barrier V0 that is controlled by By and
Ky. The detuning ε of the two minima is proportional to Bx . (b) Energy dispersion of the Hamiltonian (3) against ε. A finite value of Bx favors
states with a well-defined chirality. (c) The physical qubit splitting 	̃ as a function of the dimensionless magnetic field bx and by with zero
shuttling velocity. The red star marks the qubit operational point used for estimations. Here, we used the parameters given in Table I.

between X and �, and enable qubit operations by controlling
the spatial motion of the DW [54].

To obtain the effective Hamiltonian for the DW flying on
the magnetic racetrack, we start from the Hamiltonian for the
two soft modes X,�:

H = P̂2
�

2M
+ V (�̂) + [P̂ + Â(�̂)]2

2M
+ Mω2

p

2
[X̂ − X0(t )]2,

(4)

with Â = −πMhx sin �̂/2 + πMhy cos �̂/2 − 2Nh̄Se�̂.
Here we quantized both �̂ and X̂ , with [�̂, P̂�] = [X̂ , P̂] =
ih̄. We assume the minimum of the DW confining potential
is located at X0(t ), which is a classical parameter that can be
accurately controlled in the experiment by several different
means, enabled by the recent progress in spintronics [1–11],
such as by magnetic or electric fields, or spin-polarized
electric current. We model the DW confinement with a
harmonic potential with frequency ωp which we assume to
be comparable to the level spacing ω0 ∼ 300 GHz in our
estimation.

We now project �̂ onto the qubit space (Appendix B),
yielding the Hamiltonian

H = ε

2
σz − tg

2
σx + (P̂ + β · σ)2

2M
+ Mω2

p

2
[X̂ − X0(t )]2, (5)

with effective spin-orbit interaction vector β =
(−πMhxγx/2, 0, πMhyγz/2 + 2Nh̄Seγ̄z ). Here we dropped
the constant part of the gauge field because it can be gauged
away by a spin-independent transformation. γx, γz, and γ̄z are
constants, depending on system parameters. Their explicit
expressions are given in Appendix B.

Let us now derive the effective Hamiltonian of the fly-
ing DW qubit on the magnetic racetrack. It is convenient to
introduce the notation β = √

β2
x + β2

z (cos β, 0, sin β ), with
cos β = βx/

√
β2

x + β2
z and sin β = βz/

√
β2

x + β2
z . We switch

to a frame moving with the domain wall by Hm = T̂ †HT̂ −
Ẋ0(t )ih̄T̂ †∂X0 T̂ , with the displacement operator in real space
T̂ = exp[−iP̂X0(t )/h̄], [55,56] which effectively shifts X̂ →
X̂ + X0(t ) and introduces the Galilean term −ih̄T̂ †∂t T̂ =
−Ẋ0P̂ [57]. We then obtain the following effective

Hamiltonian in the moving frame:

Hm = ε

2
σz − tg

2
σx + (P̂ + β · σ )2

2m
+ mω2

pX̂ 2

2
− Ẋ0(t )P̂. (6)

To investigate the effect of the large effective spin-orbit
interaction on the qubit dynamics, we perform a gauge trans-
formation Hm = Ĝ†HmĜ, with Ĝ = exp(−iX̂β · σ/h̄) being
a spin-dependent displacement in phase space. It effec-
tively shifts P̂ → P̂ − β · σ and locally rotates the spin
space in a position-dependent way. We obtain the following
Hamiltonian:

Hm = h̄ωpâ†â − Ẋ0(t )P̂ + Ẋ0(t )β · σ

− tg
2
Ĝ†σxĜ + ε

2
Ĝ†σzĜ. (7)

Here, we quantized the spatial degree of freedom X̂ with the
bosonic opertors â, â†. We now project the orbital dynamics
onto its ground state |0〉 defined by â|0〉 = 0, which leads
to the effective Hamiltonian of the flying DW qubit on the
magnetic racetrack

Hm = ε̃(t )

2
σz − t̃g

2
σx, (8)

with the renormalized tunneling splitting t̃g and the detuning
ε̃,

t̃g = − 2h̄ cos βẊ0(t )

lso
− ε sin β cos β

(
1 − e−l2

p/l2
so
)

+ tg
(

cos2 β + sin2 βe−l2
p/l2

so
)
,

ε̃ = 2h̄ sin βẊ0(t )

lso
+ ε

(
sin2 β + cos2 βe−l2

p/l2
so
)

− tg
(
1 − e−l2

p/l2
so
)

sin β cos β. (9)

Here, lp = √
h̄/Mωp is the characteristic length of the har-

monic potential which reflects the uncertainty of the DW
position and lso = h̄/|β| is the spin-orbit length (the qubit state
is flipped by spin-orbit interactions after a distance π lso/2).
For realistic system parameters, we estimate that these lengths
both are on the scale of a few nanometers, see Table I. We
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TABLE I. Domain-wall qubit parameters. We assume J = 300 K, Kz = 3 K, Ky = 0.1 K, a = 5 Å, λ = 5 nm, Bx = Bz = 0,

By = 1 T, N = 100, S = 1, Se = 0.01, lp = 2.25 nm, shuttling velocity v = 20 m/s, temperature T = 50 mK, and Gilbert damping parameter
α = 10−5.

Qubit splitting 	̃ lso T1 T2 Maximal shuttling speed Coherent shuttling distance Quality factor

5 GHz 1.5 nm 0.23 µs 0.15 µs 100 m/s 3 µm 2 × 103

emphasize that such large spin-orbit interactions are chal-
lenging to reach in alternative solid-state qubits, where lso

is about 10 ∼ 100 nm [44–46,58–60]. With the parameters
that we assume, we have βx � βz (Appendix B). Thus we
can approximate cos β = 0, sin β = 1, in which case the pa-
rameters above are reduced to t̃g = tgexp(−l2

p/l2
so) and ε̃ =

2h̄Ẋ0(t )/lso + ε. It is clear that the effective tunneling t̃g in the
presence of the spin-orbit interaction [61–63] is suppressed
and the effective detuning 2h̄Ẋ0(t )/lso is proportional to the
externally tunable velocity v ≡ Ẋ0(t ), which emerges because
of the broken spatial inversion symmetry caused by the motion
of the DW.

We stress that the velocity v of the domain wall should be
slow enough such that we can safely project the dynamics of
the system onto the qubit space and the orbital ground state.
This adiabatic condition explicitly implies v � ωplp, ω0lso

(we estimate ωplp ≈ 4725 m/s and ω0lso ≈ 3150 m/s). For this
reason, we restrict the velocity to v � 100 m/s. Besides, the
large spin-orbit interaction emerging in our system is a tool to
effectively manipulate the spin state. However, if this quantity
becomes too large, our effective qubit theory fails because
the variables X,� become strongly coupled and one can-
not reliably separate their dynamics. This coupling becomes
more pronounced in large domain walls, where the system
behaves more classically. To use the low-energy sectors of �

as our qubit space and the motion of the domain wall given
by X as a control knob, we require that the effective spin-
orbit interaction is smaller than h̄ωp, h̄ω0 ≈ 15K . With the
parameters we use, we estimate that the spin-orbit energy is
P̂Â/M ∼ SeJ

√
ωp/ω0 ≈ 3 K, and it is therefore safely smaller

than the level spacing h̄ωp, h̄ω0.
The Hamiltonian (8) is Hm = h̄	̃σ̂z/2 in the diagonal basis

where we perform single- and two-qubit gates; we label this
frame by the Pauli matrices σ̂i. The energy of the DW qubit

h̄	̃ =
√
ε̃2 + t̃2

g is in the GHz range, as shown in Fig. 2(c). We

note that 	̃ first grows as we increase by since the tunneling
barrier is suppressed, whereas it decreases at larger values of
by because of the renormalization of the tunneling energy due
to the large spin-orbit interaction.

IV. SINGLE-QUBIT GATES

The effective spin-orbit interactions in our system enable
fast qubit manipulation. Here, we propose to realize single
qubit rotations by moving the DW on the racetrack [54]. When
the qubit is shuttled across the racetrack with uniform velocity,
ε̃(t ) is constant and Hm in Eq. (8) yields the unitary time-
evolution U (t ) = exp(−i	̃ t m̂ · σ/2) that describes a rotation
of an angle 	̃t around m̂ = (sin θ, 0, cos θ ) [tan θ = −t̃g/ε̃].
Therefore, single-qubit rotations (around the tunable axes in

the xz plane) are achieved by modulating the DW velocity or
the applied field By.

Alternatively, one could perform gates by shaking the qubit
by a time-dependent velocity profile Ẋ0(t ) = v0s(t ) cos(ωdt +
φ0) [54], where v0 is the velocity amplitude, s(t ) is a dimen-
sionless envelope function, ωd is the drive frequency, and φ0

is the initial phase [64]. In the rotating frame, the Hamiltonian
reads

Hr = h̄ δω

2
σ̂z + h̄	Rs(t )

2
(cos φ0σ̂x + sin φ0σ̂y), (10)

with the detuning frequency δω = 	̃/h̄ − ωd and 	R =
v0/lso. At resonance h̄ωd = 	̃, the in-phase pulse φ0 = 0
yields spin rotations around the x axis (and the out-of-phase
pulse yields rotations around y)

R̂φ0=0
x = exp

{
−i	R

∫ t

0
dτ s(τ )

σ̂x

2

}
, (11)

resulting in typical Rabi oscillations with frequency 	R. The
single-gate operational time 	−1

R is on the scale of 0.1 ns when
v0 ∼ 20 m/s, as shown in Fig. 3(a).

V. TWO-QUBIT GATES

An entangling two-qubit gate, supplemented with single-
qubit gates is sufficient for universal quantum computation

(a)

(c) (d)

(b)

FIG. 3. DW qubit performance. (a) Single- and two-qubit gate
time as a function of the shuttling velocity v. (b) Qubit relaxation
T1 and dephasing T2 time as function of v at different temperatures
T . (c) The relaxation rate T −1

1 of a stationary qubit as a function
of dimensionless magnetic fields bx, by. (d) The dephasing rate T −1

2

of a stationary qubit as a function of dimensionless magnetic fields
bx, by. The red star marks the working point of the qubit used in our
estimations.
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[65]. Here, we propose a way to implement the controlled-
NOT gate with DW qubits by taking advantage of spin-spin
interactions of DWs moving in different racetracks.

We consider two DW qubits on two parallel racetracks
or two tracks on top of each other separated by a thin non-
magnetic spacer layer. Intertrack exchange between the Néel
vectors in the two racetracks yield the energy

H (2) = N2
∫

dx1dx2 Jαβ (x1 − x2)nα
1 (x1)nβ

2 (x2)

≈ N2Jαβ

∫
dx nα

1 (x)nβ

2 (x), (12)

where α, β are spin indices and n1(x1), n2(x2) describe mag-
netic textures living on two racetracks with x1, x2 being the
coordinates for these two tracks (we again scale x → λx).
In the equation above, we also assume the interaction to be
local, Jαβ (x1 − x2) ≈ Jαβδ(x1 − x2). The interaction strength
can be tuned experimentally by varying the distance between
the racetracks or by modulating the spacer-layer thickness
[66,67]. Assuming the two DWs are separated by a distance
D(t ) along the direction (x) of the racetracks, we project the
interaction onto the qubit subspace resulting in (Appendix C)

H(2) = 2N2JxxD

sinh D
σ̂ x

1 ⊗ σ̂ x
2 . (13)

This interaction decreases exponentially when the two DWs
are far way (D > 1, recall we measure the distance in units
of λ), while when they approach each other, the two qubits
become entangled by the two-qubit gate

Û (2) = exp

{
− iπ2N2Jxx

h̄v
σ̂ x

1 ⊗ σ̂ x
2

}
. (14)

Here we assume that one qubit travels to the other with
constant velocity Ḋ = v, and we note that Û (2) gener-
ates a controlled-NOT gate up to single-qubit rotations
when N2Jxx/h̄v = 1/4π . For DW interactions with N2Jxx ∼
50 MHz, which is achievable in experiments, we require v ∼
20 m/s, corresponding to a two-gate operational time λ/v ∼
0.2 ns, as shown in Fig. 3(a). A stronger interaction allows for
a larger shuttling velocity thus a shorter gate time.

VI. LIFETIME OF DOMAIN WALL QUBITS

Decoherence of the DW qubit arises from couplings be-
tween spins and various environmental degrees of freedom,
such as phonons and electrons. Here we first derive the dis-
sipative forces experienced by the two soft modes X and �,
from which we can infer their fluctuations according to the
fluctuation-dissipation theorem. We start with the Rayleigh
dissipation function R[n] ∝ αNh̄S

∫
dx ṅ2, where, again, we

scale x → λx, α is the Gilbert damping, and Nh̄S is the
total angular momentum within the DW. This contribution
translates into R[X,�] ∝ αNh̄S(Ẋ 2 + �̇2), leading to fric-
tion forces acting on X,�: F� = −∂�R = −α̃�̇ and FX =
−∂X R = −α̃X where α̃ = αNh̄S. This implies random fluc-
tuating forces acting on X,�, that can be modeled by a fluc-
tuating potential δV = ξ (t )� + ξ (t )X. The stochastic forces
are fully characterized by the classical ensemble average and
their correlation function 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = S(t − t ′),

where S(t ) is related to the dissipation parameter via the fluc-
tuation dissipation theorem Sξ (ω) = α̃h̄ω coth(h̄ω/2kBT ),
with S(t ) = ∫

dω/2π Sξ (ω)e−iωt . Let us first focus on the
fluctuation in �, which leads to two effects-fluctuation in the
detuning and fluctuation in the tunneling barrier height V0

between two chirality states δH = ξσz/2 + ∂V0tgξσx/2. This
translates into δH� = ξ (t )σz/2 + ∂V0 t̃gξ (t )σx/2, in the qubit
shuttle Hamiltonian.

For the spatial degree of freedom, the fluctuating poten-
tial gives rise to a fluctuation in the domain wall position
X0 → X0 + ξ (t )/Mω2

p, which leads to a fluctuating term in
the Hamiltonian of the qubit shuttle δHX = ξ̇ (t )l2

p/(ωplso)σz.
Combined with δH�, we obtain the following noise Hamilto-
nian for the DW on a racetrack in the DW comoving frame:

δHm = ξ (t )

2
σz + ξ (t )

2

∂ t̃g
∂V0

σx + l2
p ξ̇ (t )

ωplso
σz, (15)

resulting in relaxation and dephasing. The relax-
ation rate �1 = T −1

1 is given by �1 = sin2 θ (ω2
pl2

so +
4l2

p	̃
2)Sξ (	̃)/2(h̄ωplso)2 (Appendix D), which is ∼1 μs−1

as shown in Fig. 3(c). The dephasing rate is given
by �2 = T −1

2 = �1/2 + �ϕ with the pure dephasing
�ϕ = cos2 θSξ (0)/2h̄2, where tan θ = −t̃g/ε̃. We point
out that bx = 0 is the sweet spot for a stationary qubit as
shown in Fig. 3(d), where the pure dephasing is absent. This
sweet spot is slightly shifted when the qubit shuttles with a
finite velocity on the racetrack (Appendix D).

To estimate the coherence time, we use Gilbert damping
α = 10−5, operational temperature 50 mK, and DW veloc-
ity v = 20 m/s. With these realistic parameters, we find that
the DW qubit has a moderately long coherence time with
T1 ≈ 0.23 μs and T2 ≈ 0.15 μs, and the quality factor, i.e.,
the number of coherent Rabi oscillations within the coherence
time, is rather large Q = vT2/lso ≈ 2 × 103. The dependence
of the qubit coherence times on the DW velocity and for
different operating temperatures is shown in Fig. 3(b). The
distance that the DW can travel before losing the coherence
is vT2 ≈ 3 µm. We remark that, in our estimation, we use the
conservative value of α = 10−5; in the milli-Kelvin regime
where the DW qubit operates, we expect α to be smaller
[68,69], resulting in longer coherence times. As a result,
these DWs are not only attractive alternative platforms to
implement magnetic-based large-scale quantum computers,
but could also be used as coherent quantum links to distribute
entanglement over long distances between different types of
qubits such as spin qubits [70] or nitrogen-vacancy (NV)
center qubits [71–74].

VII. INITIALIZATION AND READOUT

Reliable state preparation and readout are crucial for a
complete proposal for scalable quantum computers. A pos-
sible initialization scheme to achieve DW with a well-defined
chirality is obtained by cooling down the system sufficiently
slowly and applying a magnetic field Bx aligned to the race-
track, see Fig. 2(b). Arbitrary product states can be initialized
in the system by sequentially applying single-qubit rotations
to each qubit.
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We discuss two possible schemes for DW qubit read-
out. The first approach relies on the recent advances in
nanoscale imaging techniques. NV centers have been utilized
for imaging nanoscale DWs [75,76], and they hold potential
as noninvasive quantum sensors for assessing the chirality of
DW qubits. Additionally, these projective measurements can
be harnessed for preparing states with a definite chirality. An
alternative strategy to measure the chirality of the qubit is
to adapt well-developed readout techniques for spin qubits.
For conducting nanotracks, the chirality readout could be per-
formed by a paramagnetic dot that is comparable or smaller
than the DW: Electrons near the center of a DW can tunnel
into the dot whose polarization becomes linked to the DW
chirality and can be measured by conventional methods [32].
A 75%-reliable measurement of the chirality can be obtained
in this approach (Appendix E). For insulating nanotracks, the
DW could be magnetically coupled to a spin qubit whose state
can be readout by various standard means [77–82].

VIII. CONCLUSION

We proposed a platform for scalable quantum computers
based on mobile DWs on magnetic racetracks. The quantum
information stored in the chirality of the DW textures can be
efficiently manipulated and transferred along the racetrack by
shuttling the qubits. In state-of-the-art settings, the qubit re-
sponse is fully tunable by varying an applied global magnetic
field and adjusting the DW velocity. Finally, we remark that
the proposed qubit operations by shuttling applies also to other
magnetic qubits, e.g., based on skyrmions [38], opening up
to new possibilities to integrate different classical spintronic
components into the next generation of quantum processors.
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APPENDIX A: EFFECTIVE ACTION OF MAGNETIC
DOMAIN WALLS

We consider a quasi-one-dimensional two sublattice ferri-
magnetic system with the following Hamiltonian:

H = J
∑
〈i, j〉

Si · S j − K̃z

∑
i

(
Sz

i

)2+K̃y

∑
i

(
Sy

i

)2 − h̄
∑

i

h · Si,

(A1)

where J > 0 is the antiferromagnetic exchange coupling and
K̃z, K̃y > 0 define the z axis to be the easy axis and the xz
plane to be the easy plane, respectively. Here, h ≡ gμBB/h̄ is
related to the magnetic field B and g is the electronic g factor.
We defined the spin operator without h̄, so all parameters
J, K̃z, K̃y, h̄|h| have the dimension of energy. We denote the
average and the excess spin per unit cell as S and Se, respec-
tively. We assume the magnetic racetrack is aligned along the
x direction. With the state-of-the-art technology, the racetrack

can be made to be atomically thin in the z direction and the
width of the track can be made to be around 10 nm in the y
direction. So low-energy spin dynamics is frozen in these two
directions. We treat the system as a quasi-one-dimensional
system and focus on the spin dynamics in the direction of the
racetrack.

We find a continuum description of the low-energy dynam-
ics of our system by closely following the procedure used
to derive the effective description of a two-sublattice antifer-
romagnet [83]. The key differences are that we now have a
weak ferromagnetism and a Berry phase contribution because
of the excess spin Se. As only the low-energy dynamics is
concerned, we assume the ferromagnetic order is a slaved
degree of freedom whose direction is locked with the Néel
vector n(x, t ). We then obtain the following Lagrangian:

L[n(x, t )] = N
∫

dx

[
h̄2

8J
(ṅ − h × n)2 + h̄Seṅ · A

]
− U (n),

(A2)

with the potential energy

U [n(x, t )] = NKz

2

∫
dx

[
(∂xn)2 − n2

z

]
+ N

∫
dx

(
Kyn2

y − h̄Seh · n
)
. (A3)

Here, we renormalized the microscopic anisotropies as Kz =
2K̃z(S2 + S2

e ) and Ky = K̃y(S2 + S2
e ). We also rescaled the

spatial coordinate x → λx, such that x above is dimensionless
and we measure the spatial distance in the unit of the domain
wall size λ ≡ Sa

√
J/Kz (a is the lattice constant). We use this

dimensionless coordinate x throughout this Appendix and also
the main text. We also introduced the parameter N ≡ λNA/a
that corresponds to the total number of spins within a domain
wall, with NA being the number of spins of the cross sec-
tion (yz plane) of the quasi-one-dimensional system. The first
term in L[n] is the typical kinetic energy of the Néel vector,
∝ (ṅ − h × n)2, in the presence of a magnetic field, whereas
the second term is the spin Berry phase due to the net spin Se,
where the vector potential A(n) is defined by ∇n × A = −n.
We assume n = (sin θ cos φ, sin θ sin φ, cos θ ), and we use
the gauge ṅ · A = φ̇(cos θ − 1), where the Dirac string is
aligned to the −z axis.

We now define the domain-wall configuration. To this end,
we assume that J is the largest energy in the problem, and the
easy z-axis anisotropy energy Kz is the second largest, yielding
the hierarchy of energies J � Kz � Ky, h̄Se|h|. In our esti-
mation, we take J ∼ 300 K, Kz ∼ 3 K, Ky ∼ 0.1 K. With this
assumption, we can treat the second term of U [n] as a pertur-
bation to the first term. Let us assume the boundary condition
to be nz(x = ±∞) = ±1 for concreteness. We minimize the
first term in the potential energy, yielding [84]

nx + iny = ei�sech(x − X ), nz = tanh(x − X ), (A4)

where X stands for the position of the domain wall in the
racetrack and � stands for the azimuthal angle of the domain
wall in spin space. These coordinates are two zero-modes,
corresponding to the spontaneous symmetry breaking of the
translation in real space and the rotation in spin space.

033166-6



QUANTUM COMPUTING ON MAGNETIC RACETRACKS PHYSICAL REVIEW RESEARCH 5, 033166 (2023)

We can now derive the effective action for the two collective coordinates X,� [84,85]. We plug Eq. (A4) into the Lagrangian
(A2), and we obtain∫

dx (ṅ − h × n)2 = 2(Ẋ 2 + �̇2) + 2[π (hx sin � − hy cos �)Ẋ − 2hz�̇] − 2(hx cos � + hy sin �)2,∫
dx φ̇(cos θ − 1) = −2X �̇,

∫
dx n2

y = 2 sin2 �,

∫
dx h · n = π (hx cos � + hy sin �) − 2hzX. (A5)

Putting all terms together, we find the following effective action for X,�:

L(X,�) = M

2
�̇2 − N

[
2Ky sin2 � + 1

4J
(h̄hx cos � + h̄hy sin �)2 − π h̄Se(hx cos � + hy sin �)

]
−→ Lagrangian for �

+ M

2
Ẋ 2 − 1

2
Mω2

pX 2 −→ Lagrangian for X

+ πM

2
(hx sin � − hy cos �)Ẋ − 2Nh̄SeX �̇, −→ Couplings between � and X, (A6)

where we set hz = 0 because it is not needed to define a
domain-wall qubit, and we add a confining potential Mω2

pX 2

for the domain wall along the racetrack. We take h̄ωp ∼ 15 K
in our estimation and thus the associated harmonic charac-
teristic length is

√
h̄/Mωp ∼ 2.25 nm (with J ∼ 300 K, N ∼

100, λ ∼ 5 nm), where the effective mass M ≡ Nh̄2/2J for �

and X is proportional to the domain-wall size and inversely
proportional to the stiffness J . The magnetic fields hx, hy

have two effects. First, they introduce effective anisotropies
∝ (h̄hx cos � + h̄hy sin �)2. Because these contributions are
much smaller than other potential terms in the Lagrangian
for �, we will neglect them in our treatment. Second, the
magnetic fields hx, hy induce a finite magnetization that ac-
cumulates spin Berry phase and yields an effective coupling
∝ (hx sin � − hy cos �)Ẋ between the two coordinates. The
excess spin Se also results in two effects. One is the poten-
tial energy ∝ (hx cos � + hy sin �) in the Lagrangian of �

through the Zeeman coupling to applied magnetic fields. This
contribution is crucial to define a domain-wall qubit because
it allows to engineer the potential energy of �. Second, the
net spin also accumulates spin Berry phase, leading to the
coupling X �̇. Finally, we remark that because the action is
proportional to N , larger domain walls behave classically,
while to observe the quantum effect the domain wall needs
to be small.

APPENDIX B: CONSTRUCTION FOR THE
ORTHONORMAL BASIS OF THE COMPUTATIONAL

SPACE OF THE DOMAIN WALL QUBIT

To define the domain wall qubit, we focus on the angular
degree of freedom with the following potential:

V (�) = 2NKy(sin2 � − 2bx cos � − 2by sin �), (B1)

where we introduce the dimensionless magnetic field bi ≡
π h̄Sehi/4Ky, which is the ratio of the Zeeman energy to the
easy plane anisotropy. We first consider the case bx = 0, cor-
responding to the symmetric double-well potential V (�) =
2NKy(sin2 � − 2by sin �), which has two minima determined
by sin �± = by. We focus on the regime where the dimen-
sionless magnetic field by is finite but small. Thus the two
minima of the potential lie at �− ≈ 2πZ (corresponding to

domain-wall textures with positive chirality) and �+ ≈ π +
2πZ (corresponding to domain-wall textures with negative
chirality), as shown in Fig. 4(a) where we use by = 0.15
(corresponding to By ≈ 1 T). We note that by suppresses the
barrier at π/2 + 2πZ and increases the barrier at −π/2 +
2πZ. As a result, the tunneling process between two minima
is dominated by the process A, shown in Fig. 4(a). Thus
we will focus on � ∈ [−π/2, 3π/2]. By standard calculation
using the instanton technique, we conclude that two chirality
states would hybridize yielding with a tunnel splitting tg ≈
4h̄ω0

√
Sinst/2π h̄ exp{−Sinst/h̄}, where Sinst ≈ 4V0/ω0 is the

instanton action, with the tunnel barrier V0 = 2NKy(1 − by)2

and the level spacing h̄ω0 = 2
√

2JKy(1 − b2
y ). We remark that

the two chirality states are localized at the two minima of
the potential energy, which correspond to spin textures lying
within the easy xz plane. On the other hand, higher energy
states outside the subspace have a significant probability of
deviating from the easy xz plane, which is energetically un-
favorable. As a result, they have higher energies compared to
the two chirality states.

As we discussed in the main text, we use the subspace
spanned by {|↑〉 ≡ |�−〉, |↓〉 ≡ |�+〉} as the computation
space of our domain wall qubit. We now explicitly construct
the wave functions of the basis states in the � representation.
These wave functions allow us to obtain an effective qubit
Hamiltonian by projecting the Lagrangian for � onto the qubit
subspace. The natural choice for the wave functions of the two
bases is given by two Gaussian eigenstates localized at the two
minima

〈�|↑̃〉 =
exp

[ − (�−�− )2

2�2
0

]
π1/4

√
�0

, 〈�|↓̃〉 =
exp

[ − (�−�+ )2

2�2
0

]
π1/4

√
�0

,

(B2)

where �0 = √
h̄/Mω0 is the localization length of the wave

function. However, the bases are not orthogonal to each other,
with a small overlap given by

p = 〈↓̃|↑̃〉 = exp

{
− (�+ − �−)2

4�2
0

}
, (B3)
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(a) (b)

FIG. 4. Construction of the computational space of DW qubits. (a). The potential energy of the collective coordinate �. The dashed gray
curve shows the case of zero magnetic field by = 0, see Eq. (B1). The green curve corresponds to a finite magnetic field by = 0.15. We take
bx = 0 for both cases. Because of by, the tunneling barrier at � = π/2 + 2πZ is suppressed, whereas the barrier at −π/2 + 2πZ is increased.
(b) A detuning ε due to a finite bx , where we set bx = 0.025.

which vanishes when the two minima are far away from each
other compared with �0. To construct an orthonormal basis
for the chirality states, we first introduce the symmetric and
antisymmetric states (with zero overlap with each other) and
then normalize them as follows:

|S〉 = |↑̃〉 + |↓̃〉√
2(1 + p)

, |A〉 = |↑̃〉 − |↓̃〉√
2(1 − p)

. (B4)

We then transform them back to the chirality basis(|↑〉
|↓〉

)
= 1√

2

(
1 1
1 −1

)(|S〉
|A〉

)
= P

(|↑̃〉
|↓̃〉

)
, (B5)

with

P =
(

1√
1 + p

+ 1√
1 − p

)
I

2
+

(
1√

1 + p
− 1√

1 − p

)
σx

2
.

(B6)

Here the matrix P connecting the old basis and the new basis is
symmetric and Hermitian, and any operator A in the orthonor-
mal basis is related by A = PÃP to the corresponding operator
Ã in the nonorthogonal basis.

We can now project the potential terms in V (�) onto the
qubit space. The cos � and sin � potentials translate into

cos � −→
√

1 − b2
y

1 − p2
e− �2

0
4 σz ≡ γzσz,

sin � −→ by − p2

1 − p2
e− �2

0
4 I + (1 − by)p

1 − p2
e− �2

0
4 σx ≡ γ0I + γxσx,

(B7)

in the orthonormal basis. As an estimation of γz, γ0, γx, we
take the system parameters used in the main text: h̄ω0 =
15 K, J = 300 K, N = 100, and by = 0.15. We then ob-
tain �+ − �− = 2.85,�0 = 0.6, p = 3.5 × 10−3, and γz =
0.9, γ0 = 0.14, γx = 2.7 × 10−3. We note that γz is close to
1, whereas γx is three orders of magnitude smaller than γz, as
it is related to the tunneling process. In the main text, we thus

use γz = 1, for simplicity. For the Lagrangian of �,

L(�) = M

2
�̇2 − 2NKy(sin2 � − 2by sin �)

+ π h̄NSehx cos �, (B8)

the first two terms yield in the qubit basis −tgσx/2 (tg
is the tunneling splitting obtained by instanton calculation)
and the last term gives us εσz/2 with ε = −2π h̄NSehxγz =
−8NKybxγz (by using what we obtained above). We thus
derive the effective Hamiltonian for a stationary domain-wall
qubit

Hs = ε

2
σz − tg

2
σx, (B9)

given in Eq. (4) in the main text. We note that, here we turned
on a finite bx which gives rise to a finite detuning energy for
the two chirality states, as shown in Fig. 4(b) where we set
bx = 0.025, corresponding to a magnetic field Bx ≈ 160 mT.
We require both tg and ε to be much smaller than the level
spacing h̄ω0 and tunneling barrier V0 so that two chirality
states are well localized within two wells. In this case, the
instanton calculation we performed is justified. We finally
work out the projection of � onto the qubit space. It is given
by � → −γ̄zσz + π/2 with γ̄z = (π/2 − arcsin by)/

√
1 − p2

(which can be approximated by π/2). This is useful in the
derivation of the effective Hamiltonian for the flying domain-
wall qubits in the main text.

APPENDIX C: TWO-QUBIT
INTERACTION HAMILTONIAN

Here we derive the Eq. (13) in the main text. The interac-
tion between two domain walls sitting on two tracks can be
found by substituting n1 = n0(�1, X1) and n2 = n0(�2, X2 =
X1 + D), where n0 is the domain-wall configuration that we
obtained in Eq. (A4) and D is the distance between the two
domain walls along the direction of the track, as depicted in
Fig. 5. We obtain the following interaction Hamiltonian in

033166-8



QUANTUM COMPUTING ON MAGNETIC RACETRACKS PHYSICAL REVIEW RESEARCH 5, 033166 (2023)

FIG. 5. Two-qubit interaction Hamiltonian. A top view of two
domain walls sitting on two parallel magnetic racetracks with a
distance D(t ) from each other. One domain wall is moving with a
velocity v(t ). A two-qubit gate can be achieved as this domain wall
passes by the other one.

terms of collective coordinates:

H (2) = 2N2D

sinh D
(Jxx cos �1 cos �2 + Jyy sin �1 sin �2

+ Jxy cos �1 sin �2 + Jyx sin �1 cos �2)

+ πN2 tanh
D

2
(Jzy sin �2 − Jyz sin �1

+ Jzx cos �2 − Jxz cos �1). (C1)

Let us first look at terms in the last two lines. We project these
terms onto qubit space and obtain

H (2) ⊃ π2N2 tanh
D

2

× (
Jzyγxσ

x
2 − Jyzγxσ

x
1 + Jzxγzσ

z
2 − Jxzγzσ

z
1

)
. (C2)

We recall that γz ∼ 1 and γx ∼ 10−3 as we estimated before.
Therefore, we would have terms ∝ σ z

i which renormalize the
qubit detuning ε̃. These terms are finite when two domain
walls are far way from each other (D > 1), which just re-
flects that a qubit on one track can “see” the nz of the other
track as these terms originate from interactions ∝ nz

1nx
2, nz

2nx
1.

We remark that these single-qubit terms are absent when the
interaction is isotropic J αβ ∝ δαβ . We may also make local
interaction centers similar to a quantum point contact where
qubits are made to interact (by making two tracks closer to
each other at these centers). Then we can get rid of these
single-qubit renormalization terms since a qubit on one track
cannot “see” the other when it is not at these centers.

We now project terms in the first two lines of Hamiltonian
(C1) onto the qubit space and obtain

H̃(2) = 2N2D

sinh D

[
Jxxγ

2
z σ z

1 ⊗ σ z
2 + Jyy

(
γ0 + γxσ

x
1

)
⊗ (

γ0 + γxσ
x
2

) + Jxyγzσ
z
1 ⊗ (

γ0 + γxσ
x
2

)
+ Jyxγz

(
γ0 + γxσ

x
1

) ⊗ σ z
2

]
. (C3)

We note that this interaction decays exponentially as the qubit
distance is beyond the domain-wall size D � 1 (recall we
measure the distance in unit of domain wall size λ). We
estimated before that γz ∼ 1 and γ0 ∼ 0.1, γx ∼ 10−3. Thus
the first term in the interaction is much larger than the others
and we will neglect these small corrections (and approximate
γz ≈ 1). In the main text, we assume bx = 0 and thus the
stationary Hamiltonian takes the form of −tgσx/2. We switch

to the diagonal basis (by σx → −σ̂z, σz → σ̂x) and the inter-
action Hamiltonian reads

H(2) = 2N2JxxD

sinh D
σ̂ x

1 ⊗ σ̂ x
2 , (C4)

corresponding to Eq. (13) in the main text.

APPENDIX D: DETAILED DISCUSSION ON QUBIT NOISE

The fluctuating terms in the domain-wall qubit Hamilto-
nian are

δHm = ξ (t )

2
σz + ∂V0 t̃g

ξ (t )

2
σx + l2

p ξ̇ (t )

ωplso
σz

≡ ζz(t )σz + ζx(t )σx, (D1)

with ζz = ξ/2 + l2
p ξ̇ /ωplso and ζx = ξ∂V0 t̃g/2. When the

domain wall is moving with uniform velocity, we can
diagonalize Hm = ε̃σz/2 − t̃gσx/2 by a rotation in spin space:
σz → cos θσ̂z − sin θσ̂x, σx → cos θσ̂x + sin θσ̂z, where

sin θ = −t̃g/h̄	̃, cos θ = ε̃/h̄	̃ with h̄	̃ =
√

t̃2
g + ε̃2. Then the

total Hamiltonian becomes

Hm + δHm → h̄	̃

2
σ̂z + ζ θ

z (t )σ̂z + ζ θ
x (t )σ̂x, (D2)

where ζ θ
z (t ) = ζz cos θ + ζx sin θ and ζ θ

x (t ) = −ζz sin θ +
ζx cos θ . Finally, we have

�1 = 2

h̄2 Sζ θ
x
(	̃), �2 = �1

2
+ �ϕ, (D3)

with �ϕ = (2/h̄2)Sζ θ
z
(ω = 0). We can write these results in a

more explicit form:

�1 = Sξ (	̃)

h̄2

[
sin2 θ

2

(
1 + 4l4

p	̃
2

ω2
pl2

so

)
− sin θ cos θ∂V0 t̃g

+ cos2 θ

2
(∂V0 t̃g)2

]
,

�ϕ = Sξ (0)

h̄2

[
cos2 θ

2
+ sin θ cos θ∂V0 t̃g + sin2 θ

2
(∂V0 t̃g)2

]
.

(D4)

Using the parameters of the main text, we estimate the dimen-
sionless number ∂V0 t̃g in our system to be ∂V0 t̃g ≈ 0.02 � 1.
We can thus set ∂V0 t̃g = 0 in the expressions above resulting in

�1 = sin2 θSξ (	̃)

2h̄2

(
1 + 4l4

p	̃
2

ω2
pl2

so

)
, �ϕ = cos2 θSξ (0)

2h̄2 ,

(D5)

which are the expressions we give in the main text [in the
discussion below Eq. (15)].

We point out that the sweet spot is at bx = 0 for a sta-
tionary DW qubit since ε̃ = 0 (so cos θ = 0) thus the pure
dephasing �ϕ vanishes in this case, as we discussed in the
main text. When we shuttle the qubit with a finite velocity v,
the sweet spot is shifted to bx = h̄v/lsoNKy, proportional to
v. In this case, we have ε̃ = 0 and zero pure dephasing. As
shown in Fig. 6(a), the T2 is maximal on the line given by
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FIG. 6. Coherence time of DW qubits. (a) T2 as a function of
dimensionless magnetic field bx and shuttling velocity v. (b) T1 as a
function of bx and v. (c) The dephasing rate T −1

2 as a function of bx

and by. (d) The relaxation rate T −1
1 as a function of bx and by. We

fixed by = 0.15 in (a) and (b). In (c) and (d), we fixed the velocity to
be v = 10 m/s.

bx = h̄v/lsoNKy. For example, the sweet spot is bx = 1.2 ×
10−3 (corresponding to Bx = 8 mT) when v = 10 m/s. Here
we assume by = 0.15 (corresponding to By = 1 T). The relax-
ation time T1 is minimal at the sweet spot since sin θ = 1 thus
�1 ∝ sin2 θ reaches its maximum in this case, as shown in
Fig. 6(b). It should be clear that T2 is the main limiting factor
(with the parameters we used for estimation). Therefore, we
would like to work at the sweet spot to extend the qubit
lifetime. It is also clear from Figs. 6(c) and 6(d) that the sweet
spot (the symmetry axis) is shifted in the presence of a finite
shuttling velocity [compared to the Figs. 3(c) and 3(d) in the
main text where the velocity is zero].

APPENDIX E: QUBIT READOUT
WITH PARAMAGNETIC DOTS

Here we provide some details about the qubit readout
with a paramagnetic dot, as sketched in Fig. 7. To read out
the chirality state, we require that the size (the diameter) of
the paramagnetic dot to be comparable or smaller than the

FIG. 7. Qubit readout via a paramagnetic dot. When the dot
is comparable with the domain-wall size, electrons with similar
directions would tunnel to the dot, leading to the formation of a fer-
romagnetic domain. When we interpret the magnetization direction
of the domain in the right (left) hemisphere as positive (negative) chi-
rality state, a 75%-reliable measurement of the chirality is obtained.

domain-wall size (∼5 nm) which is feasible in experiments.
Therefore, the directions of the electrons that tunnel to the
paramagnetic dot would be approximately along the same
direction, as shown in Fig. 7. We point out that this read-
out method does not require these directions to be perfectly
parallel to each other. The tunneling event results in the forma-
tion of a ferromagnetic domain within the paramagnetic dot.
The magnetization direction of this domain can be reliably
determined using conventional measurement methodologies.
We can parametrize the magnetization direction with (θ, φ),
and the measurement outcomes would form a continuous
set instead of two discrete values. This scenario is ex-
plained by the general formalism of positive-operator-valued
measurements.

If the magnetization direction (θ, φ) in the right hemi-
sphere is interpreted as a positive chirality state and in the
left hemisphere as negative chirality state, a 75%-reliable
measurement of the chirality is obtained. The argument is
similar to the original proposal of the quantum dot qubit.
Assuming the paramagnetic dot is isotropic, the positive
measurement operators would be projectors into the overcom-
plete set of spin-1/2 coherent states: |θ, φ〉 = cos(θ/2)|↑〉 +
eiφ sin(θ/2)|↓〉. Then the reliability of the measurement is

1

2π

∫
U

d	|〈↑|θ, φ〉|2 = 3

4
, (E1)

where U denotes integration over the right hemisphere.
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