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Active nematics on flat surfaces: From droplet motility and scission to active wetting
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We consider the dynamics of active nematics droplets on flat surfaces, based on the continuum hydrodynamic
theory. We investigate a wide range of dynamical regimes as a function of the activity and droplet size on
surfaces characterized by strong anchoring and a range of equilibrium contact angles. The activity was found
to control a variety of dynamical regimes, including the self-propulsion of droplets on surfaces, scission, active
wetting, and droplet evaporation. Furthermore, we found that on a given surface (characterized by the anchoring
and the equilibrium contact angle) the dynamical regimes may be controlled by the active capillary number of
suspended droplets. We also found that the active nematics concentration of the droplets varies with the activity,
affecting the wetting behavior weakly but ultimately driving droplet evaporation. Our analysis provides a global
description of a wide range of dynamical regimes reported for active nematics droplets and suggests a unified
description of droplets on surfaces. We discuss the key role of the finite size of the droplet and comment on the
suppression of these regimes in the infinite-size limit, where the active nematics is turbulent at any degree of
activity.
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I. INTRODUCTION

Since their discovery, liquid crystals (LC) provided a fertile
ground for the development of new theoretical methods and
applications. While the direction of molecular alignment in
nematics, the director n, is arbitrary in the bulk, in the pres-
ence of surfaces and interfaces it selects a particular direction,
which is known as surface anchoring. Typical anchorings
include homeotropic (perpendicular to the surface), random
planar (random in the surface plane), and planar (along one
direction in the surface plane).

In fact, nematic wetting of flat surfaces was predicted in the
framework of the Landau–de Gennes (LdG) functional [1–3],
and then observed experimentally [4,5] shortly before the
wetting transition proper was discovered by John Cahn, based
on the Landau-Ginzburg free-energy functional for systems
with conserved scalar order parameters, such as fluids and
fluid mixtures [6–9].

At the nematic–isotropic (NI) coexistence, the quantity
of interest is the nematic orientational order parameter Q, a
traceless symmetric tensor (to be defined below), as the den-
sities of the coexisting liquid phases are very similar and their
spatial variation may be safely neglected. In order to describe
nematic wetting, however, we have to consider the anchoring
at the surface and at the NI interface. In the simplest case,

*rcvcoelho@fc.ul.pt

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

both favor homeotropic anchoring and the LdG functional
reduces to the Landau–Ginzburg free-energy functional of a
subcritical fluid at a flat surface (see [10] for the mapping and
a brief summary of results for different anchorings).

Recently, LCs received renewed attention in a different
context, as the LdG free energy turned out to provide a (well-
understood) starting point for the continuum hydrodynamic
theory of active nematics [11], a new class of soft matter
systems characterized by the input of energy at the particle
level and its conversion into directed motion [12,13]. In active
nematics the long-range orientational order in the bulk, i.e.,
the alignment of the particles, is unstable to (bend or splay)
distortions for any degree of activity and leads to a globally
disordered state characterized by spontaneous chaotic flows
known as active turbulence. This spontaneous flow state ex-
hibits strong vorticity and motile topological defects, which
are continually created and destroyed. Active turbulence is
one of the most striking, if not the most striking, collective
behavior of active matter and it is a current hot topic of
research [14].

Control of these spontaneous chaotic flows, however, is re-
quired for most practical applications. Confinement of active
nematics stabilizes the chaotic flow at low activities and the
active turbulent state is often preceded by nonsteady states at
intermediate activities [15–17]. It has been shown that some
of these systems are amenable to controlled macroscopic di-
rected flow, which is key to their use in applications [18].

A second line of research has focused on droplets of ac-
tive nematics. In addition to controlling the directed motion
of self-propelled motion, active nematics droplets provide
a model for some biophysical processes. Recent work sug-
gests that the motility, morphological changes, and scission
of active nematics droplets share mechanisms with similar
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processes observed in living cells. This spurred the investi-
gation of 2D and 3D active nematics droplets, based on the
continuum hydrodynamic theory of active nematics [19,20].

Indeed, topological defects in active nematics confined in
spherical geometries were proposed to drive the onset of self-
propulsion of droplets, through surface induced distortions of
the director field, which in turn drive flow instabilities [21].
In 2D systems, the nematics hydrodynamic equations exhibit
an instability for activities above a threshold that depends
on R−1. This argument suggests that self-propulsion results
from the interplay of activity and elasticity of droplets with
strong surface anchoring. Furthermore it was shown that the
suspended droplet dynamical regimes in 2D are controlled
by a single physical parameter, namely, an active capillary
number [19]. For a review of recent work including results
for 3D droplets see [21].

Much less attention has been given to the behavior of
active droplets on surfaces, despite the fact that a range
of technological applications and biological processes, such
as development and regeneration in tissue morphology, are
driven by surface dynamical instabilities. In analogy with
the behavior of passive fluids, some of these transitions have
been interpreted as wetting transitions [22]. This analogy was
questioned because the active cellular and the cellular-surface
interactions that drive tissue wetting were not identified or
measured. In a recent paper that combines experiments and
theory it was shown that the transition between 2D epithelial
monolayers and 3D aggregates can be understood as an active
wetting transition [23]. Furthermore, the role of an intrinsic
lengthscale that controls active wetting was revealed. The
latter is absent in passive wetting and it was proposed as one of
the distinguishing features of active wetting transitions [23].

More recently, a combination of experimental and theoret-
ical work, addressed the question of how mechanical activity
shapes the interfaces that separate an active from a passive
fluid. In particular, the authors reported that when in contact
with a solid surface, the active-passive interface exhibits a
nonequilibrium wetting transition, and identified an active
interfacial tension that controls the contact angle defined
through Young’s equation [24].

At equilibrium, the mechanical interfacial tension and the
interfacial free energy are identical. In active fluids this is no
longer the case [25,26] and active forces may contribute in
various ways to the interfacial tensions and drive the active
wetting transition. However, it is not clear how to relate the in-
terfacial active stresses considered in [23,24] not least because
the first is a dry system while in the latter hydrodynamics
appears to play a significant role. Furthermore, there are sev-
eral mechanisms through which the activity may change the
wetting phase behavior, including a shift in the active-passive
bulk phase diagram [27–29].

Central to the work reported here, is the role of the ac-
tive capillary number introduced in [19], which controls the
dynamics of suspended active nematics droplets, but has not
been investigated in the context of active wetting, i.e., when
active droplets are deposited on a flat surface.

Motivated by these fundamental questions we consider the
dynamics of active nematics droplets on flat surfaces, based on
the continuum hydrodynamic theory. We investigate a wide
range of dynamical regimes for droplets with different ac-

tivities and sizes on surfaces with different anchorings and
equilibrium contact angles. The activity was found to drive
a variety of dynamical regimes, including self-propulsion of
droplets on surfaces, scission, active wetting, and droplet
evaporation. Furthermore, we found that these regimes on a
particular surface are controlled by the active capillary num-
ber introduced for suspended droplets. We also found that
the nematic order parameter in the droplets varies with the
activity, affecting weakly the wetting behavior but ultimately
driving droplet evaporation. Our analysis provides a unified
overview of the striking dynamical regimes of active nematics
droplets on flat surfaces.

The article is arranged as follows. We start with a brief
description of the hydrodynamic model followed by an an-
alytic estimate of the interfacial tension of active nematics,
which controls the contact angle through Young’s equation.
We also discuss the active capillary number that measures the
relative importance of the active forces on the droplet and the
interfacial tension. Then we present our results for surfaces,
which are characterized by different types of (strong) anchor-
ing and thermodynamic contact angles. We consider one type
of activity and investigate the dynamical regimes of extensile
active nematics droplets by solving the hydrodynamic equa-
tions numerically. The effect of droplet size is also analyzed
in order to confirm the hypothesis that the active capillary
number Caα encodes the properties of the droplets in a single
physical parameter. Particular attention is given to the active
wetting transition on planar surfaces and to the transition from
linear to chaotic motion on homeotropic surfaces. We end with
a summary and a discussion of the results, with emphasis on
the active wetting transitions reported in Refs. [23,24].

II. THEORY AND METHODS

A. Hydrodynamic equations

For uniaxial nematics, the order is described by the director
field nα , which is the average direction of alignment of the
particles, and the scalar order parameter S, which measures
the degree of alignment. These two fields are combined in
the tensor order parameter Qαβ = S(nαnβ − δαβ/3), which is
traceless and symmetric. The equilibrium state of the system
is given by the minimum of the Landau-de Gennes free energy
F = ∫

V d3r fLdG, where the energy density is given by

fLdG(γ ) = A0

2

(
1 − γ

3

)
Q2

αβ − A0γ

3
QαβQβγ Qγα

+ A0γ

4
(QαβQαβ )2 + L

2
(∂γ Qαβ )2. (1)

Here A0 is a positive constant that sets the energy of the
nematic, L is a positive elastic constant that penalizes
distortions in Qαβ , and γ is the ordering field, e.g.,
temperature in thermotropic and a concentration related
parameter in lyotropic liquid crystals [30,31]. The nematic
(N) and isotropic (I) phases coexist when γ = 2.7, where
the free energy of the nematic, with a scalar order parameter
SN = 1/3, is zero. This NI transition is (weakly) first order,
as observed in the experiments, driven by the presence of the
cubic term in the free-energy density. For simplicity, we use
the single-elastic constant approximation, i.e., we neglect the
LC elastic anisotropy [32].
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The LdG model does not conserve the N order parameter
and a multicomponent model that considers two immiscible
conserved fluids, with the concentration given by a scalar field
φ, φ = +φ0 for the nematic and φ = −φ0 for the isotropic
fluid, with φ0 the absolute value of φ at coexistence, is often
employed for lyotropic LCs. The latter are mixtures of con-
served nematogen particles in isotropic fluids. We consider the
mixture deep in the two-phase region. The free-energy density
reads f = fφ + fLdG(γ (φ)), where the contribution from the
concentration field is

fφ = a

4
(φ2 − 1)2 + K

2
(∂γ φ)2, (2)

where a is a positive constant that sets the energy related to
the φ field, and K is a positive elastic constant, which penal-
izes inhomogeneities in φ. The concentration at coexistence
is φ0 = ±1 and the ordering field γ is a function of φ that
sets the coefficient of the quadratic term of the LdG free-
energy density, Eq. (1), around its value at NI coexistence,
γ (φ) = γ0 + γs(φ + 1)/2, with γ0 being the minimum value
of γ and γs being the difference between the values of γ in the
nematic and isotropic components. The linear dependence of
γ (φ) accounts for the increase in the nematic order with the
concentration of nematogen particles, which increases with φ.
We set γ0 = 2.6 and γs = 0.2, which implies that the order
is nematic when φ = 1 and isotropic when φ = −1. Recall
that the LdG free energy exhibits a first-order NI transition at
γ = 2.7, which is the value taken by γ at φ = 0 in the middle
of the diffusive interfacial region.

The time evolution of the nematic is governed by the Beris-
Edwards equation [31], the continuity, the Navier-Stokes
equation, [31,33] and the Cahn-Hilliard equation, respec-
tively,

∂t Qαβ + uγ ∂γ Qαβ − Sαβ = �Hαβ, (3)

∂βuβ = 0, (4)

ρ∂t uα + ρuβ∂βuα = ∂β

[
2ηDαβ + σ n

αβ − ζQαβ

]
, (5)

∂tφ + ∂β (φuβ ) = M∇2μ, (6)

where Dαβ = (∂βuα + ∂αuβ )/2 is the shear rate. Equa-
tion (3) describes the evolution of the order parameter Qαβ ,
Eqs. (4) and (5) describe the dynamics of the velocity field uα ,
while Eq. (6) describes the evolution of the field φ. Here � is
the system-dependent rotational diffusivity, ρ is the density,
η is the shear-viscosity, and M is the mobility constant that
controls the diffusion of the concentration field. The last term
in Eq. (5) is the active stress, which corresponds to a force
dipole density, with ζ the activity parameter being positive
for extensile stresses (systems of pushers) and negative for
contractile ones (systems of pullers) [11]. Thus gradients in Q
produce a flow field, which is the source of the hydrodynamic
instabilities reported in bulk and confined active nematics. The
corotational term is as follows:

Sαβ = (ξDαγ + Wαγ )

(
Qβγ + δβγ

3

)
+

(
Qαγ + δαγ

3

)

· (ξDγ β − Wγ β ) − 2ξ

(
Qαβ + δαβ

3

)
(Qγ ε∂γ uε ), (7)

where Wαβ = (∂βuα − ∂αuβ )/2 is the vorticity and ξ is the
flow alignment parameter, which characterizes the relative
importance of the shear rate and the vorticity in the flow
alignment of the particles. The molecular field Hαβ describes
the relaxation of the order parameter towards equilibrium,

Hαβ = − δF
δQαβ

+ δαβ

3
Tr

(
δF

δQγ ε

)
. (8)

The passive nematic stress tensor is [31]

σ n
αβ = − P0δαβ + 2ξ

(
Qαβ + δαβ

3

)
Qγ εHγ ε

− ξHαγ

(
Qγ β + δγβ

3

)
− ξ

(
Qαγ + δαγ

3

)
Hγ β

+ σ s
αβ + Qαγ Hγ β − Hαγ Qγ β, (9)

where P0 is the isotropic pressure. The chemical potential is
given by

μ = ∂ f

∂φ
− ∂γ

[
∂ f

∂ (∂γ φ)

]
. (10)

In Eq. (9), the term σ s
αβ is

σ s
αβ =

(
f − μ

(φ + 1)

2

)
δαβ − δF

δ(∂βφ)
∂αφ

− δF
δ(∂βQγ ν )

∂αQγ ν. (11)

The results and parameters are expressed in simulation units:
The lattice spacing corresponding to the spatial step is �x =
1, the time step is �t = 1, and the reference density is ρref =
1. The conversion to physical units is given either by setting
appropriate values to these three quantities or by comparing
nondimensional numbers as the active capillary number that
will be described.

The simulations were performed in a 2D domain of width
LX = 256 and height LY = 128 with periodic boundary con-
dition in the x direction. There are two identical surfaces:
one at the bottom and another at the top, both with no-slip
boundary conditions for the velocity field, with the same equi-
librium contact angle and with the same director alignment
(surface anchoring). The distance between the two surfaces
is larger than the other relevant length scales: droplet radius,
active length, vortex size, and nematic correlation length. A
nematic droplet with radius R = 22.4 (except where stated
otherwise) is initialized at x = LX /2 and y = R with uniform
alignment, i.e., it starts as a circular droplet touching the sur-
face and then spreads. The simulations run up to t = 3 × 106

iterations. The wetting boundary conditions follow Ref. [34].
We use half-way bounce-back [35] conditions for the popu-
lations corresponding to the Navier-Stokes equation, which
results in no-slip conditions at the surface. The system of
differential equations is solved using a hybrid method with
the same spatial discretization: Equation (3) is solved us-
ing finite differences and Eqs. (4)–(6) are recovered in the
macroscopic limit with the lattice-Boltzmann method. The
numerical method is similar to those used in Refs. [17,36,37]
and, for simplicity, we use the single relaxation time approx-
imation in the Boltzmann equation [35,38]. The parameters
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used in the simulations, except when stated otherwise, are
L = 0.04, ξ = 0.7 (flow aligning), A0 = 0.1, ρ = 10, τ = 1.0
[or, kinematic viscosity ν = (τ − 1/2)/3 = 0.17], � = 0.34,
K = 0.08, a = 0.05, and M = 0.5.

The nematic correlation length is the square root of the
ratio of the quadratic terms of the LdG free-energy density,
Eq. (1). Assuming that the director is uniform, Eq. (1) sim-
plifies (see the Appendix) and in the single-elastic constant
approximation the perpendicular and tangential correlation
lengths are equal and given by

�N =
√

L

A0
(
1 − γ

3

) . (12)

We note that this correlation length depends on the value of
the ordering field γ that varies throughout the interface. At
the NI transition, right in the middle of the diffusive interface

(φ = 0) the nematic correlation length is �N =
√

10L
A0

≈ 2, for

the parameters given in the Appendix, setting the (free) NI
interfacial width 2�N ≈ 4 (see the Appendix).

Similarly, the correlation length associated with the con-
centration field φ is

�φ =
√

K/a. (13)

For the parameters given in the Appendix �φ ≈ 1.26 setting
the equilibrium interfacial width of the concentration field,√

2�φ ≈ 1.78. We note that both correlation lengths and in-
terfacial widths are similar and larger than the lattice spacing
(�x = 1).

In the Appendix we compare the orientational order pa-
rameter S and the concentration φ profiles of active nematics
droplets obtained numerically using the hydrodynamic equa-
tions, with the approximate analytical expressions for the flat
passive interfaces discussed above and find excellent agree-
ment at low activities for large droplets (see the Appendix for
the details and Figs. 9 and 10 for the numerical and analytic
profiles).

B. Interfacial tension and wetting

The interfacial tension between the passive nematic and
the isotropic phase at coexistence is the integral of the excess
free-energy density across the interface, � = ∫ ∞

−∞ f dx. This
has two contributions: one from fφ and the other from fLdG.
We note that the free energy of the coexisting phases is zero
(by construction) and assume that the concentration and tensor
order parameter fields, φ and Qαβ , are independent in order to
estimate the contributions to the interfacial tension of a flat
interface from the spatial variation of each of the two fields.
For the concentration field φ we obtain the well-known result,

�φ =
∫ ∞

−∞
fφdx =

√
8Ka

9
φ2

0 , (14)

where x is the coordinate normal to the interface and we used
the equilibrium concentration profile obtained by minimizing
the free-energy density,

φ(x) = φ0 tanh

(
x√
2�φ

)
, (15)

with φ0 = ±1 the concentrations at coexistence. Note that the
interfacial tension depends on the values of φ at coexistence,
which may change with the activity as we will discuss in the
next sections. A similar calculation for the Qαβ field yields

�N =
∫ ∞

−∞
fLdGdx =

√
A0L

81
√

10
, (16)

at the NI coexistence (γ = 2.7). We assumed that the director
field is uniform and homeotropic and thus the LdG free energy
depends only on the scalar order parameter S. The equilibrium
profile is obtained by minimizing the free-energy density (see
the Appendix),

S = SN

2

[
tanh

(
x

2�N

)
+ 1

]
, (17)

where SN is the value of the nematic scalar order parameter
at NI coexistence. We assumed the coefficients of the LdG
free energy are independent of φ, and set them to those at
the NI transition. These are the coefficients of the LdG free
energy at the center of the diffuse interface, φ = 0, and we
expect Eq. (16) to provide a good estimate of the contribu-
tion of the LdG free energy Eq. (1) to the total interfacial
tension. For the parameters used here (see the Appendix)
we find �φ/�N ≈ 241.5 and thus the contribution of the φ

field to the interfacial tension is clearly dominant. We can
therefore neglect the contribution from the Qαβ field and use
� ≈ �φ = 0.06. We can argue that the contribution from the
orientational order parameter field to the interfacial tension is
near-critical and thus much smaller than the contribution from
the concentration field. This is corroborated by inspection of
the order-parameter profiles for passive and active droplets in
Figs. 9 and 10 (see below), where the width of the S profile
is ≈2.8 times larger than that of φ. We recall that the coef-
ficient of the quadratic term of the LdG free-energy density
Eq. (1) varies around its value at the NI transition in the pas-
sive system and this implies that the nematic order-parameter
field varies on longer lengthscales than the concentration field,
which is deep in the phase separated regime.

We now turn our attention from the flat interface to nematic
droplets on flat surfaces. At the thermodynamic level, a pas-
sive liquid droplet deposited on a flat solid surface will form
a spherical droplet, defining the equilibrium contact angle of
the liquid with the surface. The cornerstone of wetting phe-
nomena, a force balance known as Young’s equation, relates
the contact angle θc with the interfacial tensions of the solid–
vapor �sv , solid–liquid �sl , and liquid–vapor � interfaces,

cos(θc) = �sv − �sl

�
. (18)

When the contact angle is zero, the liquid spreads to cover the
surface and we say that the liquid wets the solid. A wetting
transition occurs when the contact angle changes from a finite
value to zero, as the temperature or the surface properties vary.
The wetting transition of simple fluids on flat surfaces at-
tracted enormous attention a few decades ago and is now well
understood [6–9]. In the simplest case for nematic droplets,
both the surface and the NI interface favor homeotropic an-
choring, in which case the LdG functional reduces to the
Landau–Ginzburg free-energy functional of a subcritical fluid
at a flat surface [10].
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We define the difference between the interfacial tensions
of the surface with the two coexisting fluid phases �s =
�sv − �sl and note that �s > 0 in the partial wetting regime
where θc < 90◦ and �s < 0 in the nonwetting or partial dry-
ing regime. At θc = 90◦ the surface wetting is neutral. For a
system in the partial wetting regime, the threshold for wetting
θc = 0◦ occurs by decreasing the interfacial tension �, an
argument used by John Cahn in his seminal work for critical
point wetting [6] or by increasing the surface term �s. For a
given solid surface the thermodynamic �s is fixed but addi-
tional forces will arise driven by the activity. We note that for
extensile active nematics the active forces increase �s as we
will discuss later. For contractile systems the sign of the active
forces is reversed.

The equilibrium contact angle θc of the passive system is
controlled by the value of φ at the surface (φs), which is set in
the simulations as

cos(θc) = 3

2

φs

φ0

(
1 − φ2

s

3φ2
0

)
. (19)

Note that this equation is obtained using the φ field and
neglects the orientational order-parameter contribution to the
interfacial tension, which as we have discussed is much
smaller. The value of φ0 at coexistence, however, may change
with the activity due to local shearing effects as reported
recently [29]. Thus, the contact angle may depend also on the
activity through a shift in φ0. As we will show later this effect
is subdominant when compared to the effect of the active
forces on the droplet in the force balance equation.

C. Active forces: Active capillary number

We now turn our attention to active nematics droplets on
flat surfaces. Bulk active nematics attracted enormous atten-
tion thanks to their success in describing novel collective
behavior such as active turbulence. Active nematics droplets
were also studied as their self-propulsion is technologi-
cally relevant and they provide simple models of biological
processes such as cell motility and scission. The active in-
teractions of the particles with each other and with the
surrounding medium give rise to active mechanical stresses
and flows, which are responsible for these and other phenom-
ena not observed in passive systems. Recently, the spreading
of a droplet of epithelial cells on a flat surface was reported
and the transition was shown to be driven by the balance of
(cell-cell and cell-surface) active stresses, which have been
measured. The transition was coined active wetting [23].

The hydrodynamic model described in the previous sec-
tion can include various types of active stress. Some, which
we will call elastic active stresses, are coupled to the inter-
facial square gradients of the order parameters (through the
constants K and L) and were introduced in the context of
scalar order parameters in the active model H [25,26]. Another
type of active stress is linearly coupled to the orientational
order parameter Qαβ and was introduced in the context of the
hydrodynamic theory of active nematics in [11]. For simplic-
ity, we consider only the latter type of active stresses, which is
known to drive spontaneous flows through the Navier-Stokes
Eq. (5). This type of active stress corresponds to a force dipole
density, with ζ the strength of the activity being positive for

extensile stresses (pushers) and negative for contractile ones
(pullers) [11]. A very similar model was used recently to
describe the active wetting transition reported experimentally
for an active-passive interface in contact with a solid surface
[24]. A closely related model was also used in [19] to study
the dynamics of 2D suspended droplets, where a range of
dynamical regimes was reported, and it was shown that the
droplet dynamics is controlled by a single physical parameter
corresponding to an active variant of the capillary number.

In fluid dynamics, the capillary number (Ca) is a dimen-
sionless quantity that measures the relative effect of viscous
drag and interfacial tension forces acting across an interface
between a liquid and a gas, or between two immiscible liquids.
A neutrally buoyant droplet placed in a shear flow experi-
ences a strain that scales linearly with the capillary number
Ca = ηU/� where U is a typical flow velocity and η is the
fluid viscosity. For active nematics, the typical velocity of the
flow generated by the defects scales as UζR/η [39] and Giomi
and Simone defined an active capillary number as

Caα = ζR

�
. (20)

We note that � is the total interfacial tension. As we have
discussed above, the contribution to � from the spatial varia-
tion of the orientational order parameter is negligible and the
interfacial tension may be approximated by Eq. (14).

The stress tensor includes bulk elastic and active contri-
butions. Assuming that the bulk elastic contribution is much
smaller than the active stresses the force balance, Eq. (5) in
the Stokes regime implies that η∇2u = ζ∇ · Q. Dimensional
analysis then suggests ηU ∼ Rζ , where R is the characteristic
length scale, i.e., the radius of the droplet. Thus, we can extend
the active capillary number defined in [19] to active fluids at
low velocities with nonsingular director distortions.

Finally, we note that the active capillary number may be
interpreted as an active bond number (Bo), a dimensionless
number that measures the importance of active (rather than
gravitational) forces compared to the interfacial tension in the
movement of a liquid front. The active bond number is then
the ratio of the active stress ζR to the interfacial tension �.
This interpretation is useful as it allows us to use the same
number for wet and dry systems where hydrodynamic flows
are absent. One important consequence that follows from
these numbers is that the size of the droplet, measured by its
radius R at equilibrium, amplifies the effect of the activity:
increasing the droplet radius at a nonzero activity is equivalent
to increasing the activity. The dependence of active wetting
on the droplet radius was considered to be a distinguishing
feature of the active wetting transition in [23]. The latter
model is substantially different from the hydrodynamic model
of the active-passive mixture used here and in [24,39] but the
scaling of the active stress anticipates the existence an active
wetting transition at a threshold activity that depends on the
droplet radius.

III. RESULTS

A. Planar anchoring

We start by analyzing the behavior of extensile active
nematics droplets on flat surfaces with strong planar

033165-5



COELHO, FIGUEIREDO, AND TELO DA GAMA PHYSICAL REVIEW RESEARCH 5, 033165 (2023)

FIG. 1. Scheme illustrating the shape of a passive droplet (top
left), of an extensile active droplet (top right) and of a flat droplet in
the active wetting regime (bottom), i.e., with zero apparent contact
angle, on a surface with planar anchoring. The active force and the
apparent contact angle θa are depicted on the active droplet at the top
right.

anchoring. We consider an equilibrium partial wetting
contact angle θc = 60◦ (see Fig. 1). As we neglect the
elastic anisotropy there is no anchoring at the passive NI
interface. At the active interface, however, the anchoring
is planar for extensile systems with flow aligning particles
(ξ > 0). This is known as active anchoring [32,40] and its
strength increases with the activity. We find nearly uniform
parallel director fields [see Figs. 2(a) and 2(b)], except in the
interfacial region [see Figs. 2(c) and 2(d)]. At low activities
the surface anchoring dominates while at high activities the
droplet flattens and both the surface and the active anchorings
favor parallel alignment, resulting in nearly uniform parallel
director fields over a wide range of activities.

As the activity increases, the droplet spreads increasing
the contact area with the surface and lowering the apparent
contact angle. This is quantified by the droplet aspect ratio
ε = height/width plotted in Fig. 2(e).

The contact angle varies with the activity. The interfa-
cial tension �, which is dominated by the spatial variation
of the concentration field scales with the square of the or-
der parameter φ2

0 , Eq. (14). Through a dynamical process
known as local shear mixing [29] the affects shifts the co-
existence values of the concentration, by reducing them. This
has been reported quantitatively for a model similar to ours
[29] and was checked explicitly in Fig. 2(f) by calculating
the nematic concentration of the droplets at different activi-
ties. This shift of the binodal is similar to the shift resulting
from the addition of impurities that lower the critical point
or increasing the effective temperature of the nonequilibrium
system [29].

For θc = 60◦ and activities that vary from ζ = 0 to 0.05
(static droplet), the measured contact angle decreases by less
than 10◦. This may be understood in part using Eq. (19). If
the value of φs (concentration at the surface) is fixed and
φ0 changes from 1 to 0.92 [see Fig. 2(f)], the equilibrium
contact angle changes from 60◦ to 57.4◦. This is smaller than
the observed reduction in the contact angle and far too small
to drive active wetting. The latter is defined by an apparent
contact angle that vanishes as the droplet flattens, see Fig. 1.

The flattening of the droplet is driven by extensile active
stresses acting on the surface of the droplet, and ultimately
responsible for the vanishing of the apparent contact angle,
which we define as active wetting.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Droplet on a surface with planar anchoring, and partial wetting contact angle θc = 60◦. [(a),(b)] Director field in a droplet with
ζ = 0.001 and ζ = 0.05 respectively. [(c),(d)] Distortion or charge density field for the droplets in (a) and (b) respectively. The red (blue)
represents positive (negative) charge density, i.e., bend (splay) distortions. (e) Aspect ratio ε = height/width, as a function of the activity ζ . At
large activities ζ the droplets form wetting films on the surface. (h) Average value of φ as a function of the activity ζ in the nematic (φN , on
the left, red circles) and isotropic (φI , on the right, blue crosses) phases.
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The active forces on the surface of the droplet are given
by the divergence of the active stress, F active

α = −ζ∂βQαβ .
The projection of this force on the outward normal of the NI
interface m yields the active force perpendicular to the droplet
surface. Assuming that the director field is uniform, the forces
on the top and on the sides of the droplet are, respectively (see
Ref. [41] for a similar calculation)

Ft
⊥ = −ζ |∇S|

3
m and Fs

⊥ = 2ζ |∇S|
3

m. (21)

The extensile active force on the top of the droplet points
inwards while it points outwards on the sides. This drives
droplet spreading ultimately resulting in a flat wetting film as
illustrated in Figs. 2(a) and 2(b). At low activities, the aspect
ratio varies linearly with the activity, but departs from the
linear at ζw ≈ 0.015 in the flat wetting film regime where the
apparent contact angle vanishes. This activity can be used to
estimate the threshold for the active wetting transition. At the
threshold, most of the droplet perimeter is flat. For compu-
tational reasons, later on (Sec. III C), we define the wetting
threshold as the activity when 60% of the droplet perimeter
is flat, which leads to a slightly lower value of ζw = 0.013.
Note that these forces do not act at the contact line and thus
lead to an apparent contact angle θa, which differs from the
contact angle θc. This threshold is independent from the size
of the simulation box and allows us to define the active wetting
transition.

The active force in Eq. (21) assumes a uniform director
field but there are small distortions close to the interface due
to active anchoring. These distortions may be quantified by
calculating the charge density field [40,42],

q = 1

π
(∂xQxα∂yQyα − ∂xQyα∂yQxα ). (22)

As we will show in the next section, droplet motion occurs in
the direction of the positive charge density when the symmetry
of the charge distribution is broken. For planar anchoring,
this distribution is symmetric, see Figs. 2(c) and 2(d), and the
droplets remain static.

The mechanism for active wetting may be understood qual-
itatively as follows. If the equilibrium contact angle is less
than 90◦ (partial wetting) the active forces on the sides of the
droplet add to �sl in Young’s equation (18) with the opposite
sign and increase the difference �s = �sv − �sl , which in
turn increases the cosine and decreases the (apparent) contact
angle until it vanishes at the active wetting transition. At larger
contact angles the droplet deforms and spreads to some extent
but the apparent contact angle does not vanish in this range of
activities.

In the nonwetting regime, cos(θa) is negative and larger
active forces would be required to promote wetting. We note
that the droplet height also increases with the contact angle
and the droplet may exhibit other activity driven dynamical
regimes that pre-empt active wetting. Indeed, at the neutral
contact angle, θc = 90◦, we found that the droplet with R =
22.4 starts moving with constant velocity at ζ ≈ 0.03 before
a wetting film is formed.

An active wetting transition was reported in experiments
with an extensile microtubule-kinesin mixture on a surface
with planar anchoring [24]. Both the structure of the wetting

FIG. 3. Diagram of the droplet dynamical regimes as a function
of the activity ζ and contact angle θc for a homeotropic surface.

film and the active wetting mechanism are the same as those
described here.

In summary, active extensile forces at the interface of an
active droplet on a surface with planar anchoring will oppose
the thermodynamic solid-liquid interfacial tension in Eq. (18).
This increases �s resulting in the increase of cos(θc) and a
lower apparent contact angle, which may vanish at an active
wetting transition. The active forces scale with the radius of
the droplet and will, at fixed activity, drive a wetting transition
for sufficiently large droplets if not pre-empted by other dy-
namical regimes. In the latter case, at a given activity, there is
a critical size of the droplet where a wetting transition occurs,
something, which does not happen in passive systems. The
dependence on R or the existence of a critical droplet size at
the active wetting transition was reported in a recent paper,
based on a model with two active forces, as a signature of
active wetting [23].

We stress that the arguments discussed above hold far from
the active turbulent regime, which will set in at vanishingly
small activities for infinitely large droplets. For the droplet
considered in this section the film becomes turbulent at ζ >

0.14, an activity, which is larger that that at the active wetting
threshold. The size dependence of the threshold for active
wetting will be discussed further in Secs. III C and IV.

B. Homeotropic anchoring

At fixed radius, the droplet dynamical behavior depends
both on the activity and the equilibrium contact angle, which
will be explored in detail for homeotropic anchoring. We
found distinct dynamical regimes as described below: static,
linear, chaotic, scission, spreading, detached, and evaporated
droplets (see the videos in the Supplemental Material [43]).
These states are identified by analyzing the droplet position in
time as described in the Appendix. Figure 3 summarizes the
dynamical regimes as a function of the equilibrium contact
angle and the activity. We will start by describing the role of
activity for a neutral equilibrium contact angle, θc = 90◦. The
droplet radius is R = 22.4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Illustration of the director and flow fields for homeotropic surface anchoring with neutral equilibrium contact angle, θc = 90◦: static
[(a), (d), and (g), ζ = 0.001]; linear [(b), (e), and (h), ζ = 0.01]; and chaotic [(c), (f), and (i), ζ = 0.051]. The top row depicts the director
field, the middle row the flow field, and the bottom row the charge density field. In (d), the flow velocity has a maximum value of 1.9 × 10−4.
In (e), the flow velocity has a maximum value of 1.5 × 10−3. In (f), the flow velocity has a maximum value of 9.1 × 10−3. The streamlines are
sketched in the middle panels and the magnitude of the velocity is color coded: white for low and black for high velocities. In the bottom row,
the red color represents positive charge density while blue represents negative one. The white lines stand for the director field.

Static. The first dynamical regime is characterized by static
droplets, and occurs at low activities (0 < ζ < 0.007) for a
neutral contact angle, θc = 90◦. In this state, the droplets
remain in their original position with active flows generated
close to the droplet [see Figs. 4(a) and 4(d)]. As a consequence
of the flows, which are directed to the droplet on the sides and
away from it at the top, the aspect ratio of the droplet changes.
A similar behavior is observed in suspended droplets (far from
a surface) [19,20,32]. Figure 12 reveals that the aspect ratio
increases almost linearly with the activity for any equilibrium
contact angle. Of course the latter has a weak effect on the
slope and on the intercept. In Ref. [19], the droplet elongation
results from the repulsion between two defects at the interface,
which are formed by imposing strong homeotropic interfacial
anchoring. Although we do not impose any interfacial anchor-
ing, active anchoring arises driven by the active flows. The
director field is slightly inclined, with left-right symmetry, as
the active anchoring tends to align it parallel to the interface.
For droplets in the static regime, this anchoring is weak and a
nonsingular distortion with positive charge density is formed
at the top of the droplet [see Fig. 4(g)].

Recall that the passive droplet has an elongation that de-
pends only on the equilibrium contact angle. In what follows,
we describe the elongation of the droplet driven by active
forces. The director field is now vertical and thus the forces
on the sides and on the top of the droplet are given by

Fs
⊥ = −ζ |∇S|

3
m and Ft

⊥ = 2ζ |∇S|
3

m. (23)

As a result, the droplet is compressed on both sides and
stretched in the vertical direction. Notice that this force is per
volume and it will act mostly at the interface where the |∇S|
is nonzero. Thus, the total force will depend on the droplet ra-
dius. As the droplets become more elongated, in the direction
perpendicular to the surface, a bend instability occurs at an
activity that depends on the contact angle (and on the droplet
size, not shown) and the droplet is set in motion. This is why
the dotted curves in Fig. 3 end at different activities and shows
the dependence of the dynamical regimes on the equilibrium
contact angle.

Linear. At intermediate activities (0.007 < ζ < 0.0155)
and a neutral contact angle θc = 90◦, the symmetry of the
homeotropic director field in the droplet, elongated in the di-
rection perpendicular to the surface, is broken and the droplet
starts to move with constant velocity, to the right or to the left.
Note that for a neutral contact angle, θc = 90◦, the transition
between the static and the linear regimes occurs at ζ = 0.007,
when �A ≈ 2.4. The vortex size ∼10�A, is now comparable to
the droplet radius, and one vortex fits in the droplet, as illus-
trated in Fig. 4(e). We call this the linear regime as the droplet
position evolves linearly with time. As shown in Fig. 12, the
droplet velocity increases linearly with the activity except at
the largest activity where the linear regime starts transitioning
to different dynamical regime. The velocity does not change
significantly with the contact angle, being slightly larger for
smaller contact angles. This dynamical regime is similar to
that observed for a droplet on a surface with oblique anchoring
(see the Appendix). Although the director field is homeotropic
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(a) (b)

FIG. 5. Snapshots of two regimes for homeotropic anchoring
with nonwetting contact angle θc = 120◦: detached [(a), ζ = 0.075,
at t = 40 000]; and scission [(b), ζ = 0.1, at t = 960 000]. Although
the nematic region is smaller in (b), its total mass is conserved as
mixing occurs through local shearing by the active stresses.

at the surface, this symmetry is broken and the director field
becomes oblique elsewhere leading to directed motion, see
Figs. 4(b) and 4(e). The symmetric positive charge density in
the static regime breaks the left-right symmetry [see Fig. 4(h)]
setting the direction of the self-propelled droplet motion.

Chaotic. At higher activities (0.0155 < ζ < 0.0675) and a
neutral contact angle, θc = 90◦, the droplet moves randomly
and its shape changes in time, see Figs. 4(c) and 4(f). This
happens due to the nucleation of pairs of motile defects, within
the droplet, which drive spontaneous chaotic flows [see Fig.
4(i) and the Supplemental Material [43]]. As the director field
changes randomly in time, the spontaneous flows are also
random as found in active turbulence. The droplet is attached
to the surface, and thus it can only move in the horizontal
direction. Droplets in this state may exhibit directed motion if
driven by chemotaxis [44] or by asymmetries in the surface
[18]. On flat uniform surfaces, however, the self-generated
flows are random and thus can not drive directed motion.

Scission. At a threshold activity, which depends on the
contact angle (ζdiv ≈ 0.0675 at a neutral contact angle θc =
90◦), the droplets split and one droplet moves away from
the surface. This droplet may attach to one of the two sur-
faces later, see Fig. 5(b). This resembles the droplet division
regime reported for suspended droplets, which were shown
to divide above a certain activity [19,20]. Droplet scission
occurs as the result of morphological changes (such as fin-
gering and protrusions) driven by the activity rather than by
curvature.

Film. At lower contact angles (θc < 60◦) in the partial wet-
ting regime and high activities (Ca > 10), the droplet spreads
on the surface forming a film-like structure in the steady state.
Figure 6 illustrates this regime. Initially, the droplet elongates
in the direction perpendicular to the surface (driven by the
positive defect on the top) but then the director field close to
the surface rearranges and becomes oblique, in random di-
rections, and the droplet spreads on the surface. This film-like

structure is neither flat nor steady. In the steady state, a wetting
nematic film covers the whole surface. The threshold for this
flat film that wraps around the horizontal direction depends on
the size of the simulation box and thus we cannot define and
active wetting transition. We stress that the apparent contact
angle is never zero until finite-size effects set in and the film
spreads over the whole surface. These effects may be quite
drastic. For example, for a surface, which is twice the size,
the neck becomes so thin that the film breaks and two droplets
move away in opposite directions.

We note that not only the thresholds but the sequence
of the dynamical regimes of extensile nematics droplets on
flat homeotropic surfaces depend on the equilibrium contact
angle. In particular, film-like structures are found in the partial
wetting regime while detachment and evaporation occur in the
nonwetting regime.

Detached. In some cases (θc = 120◦, 0.0555 < ζ <

0.0875) in the nonwetting regime, θc > 90◦, the droplet com-
pletely detaches from the surface due to the currents generated
by the activity as illustrated in Fig. 5(a). After detaching, the
droplet behaves as a chaotic suspended droplet.

Evaporated. At very high activities (ζ > 0.11, and a neu-
tral contact angle, θc = 90◦), the droplet evaporates in the
steady state as the local shearing by the active forces over-
comes the interfacial tension and the passive and active fluids
mix. This happens when the value of the isotropic concentra-
tion φI , which increases with the activity, reaches the average
value of φ as shown in Fig. 13. This effect was described
in Ref. [29] for a similar model as a consequence of active
shearing, an effect similar to an increase in temperature or
to mechanical stirring of emulsions. The variation of φ is
larger here than for the planar anchoring [Fig. 2(f)] because
the droplet is motile and thus the active shearing is stronger.

C. Droplet size

The shape of passive nematic droplets may depend weakly
on their size and the elastic anisotropy. If the radius of the
droplet is much larger than the nematic correlation length �N

and there is interfacial anchoring due to elastic anisotropy,
the droplet is slightly elongated in the direction parallel to
the director field. In the simulations reported here, this effect
is absent as we neglected elastic anisotropy (single-elastic
constant approximation). Thus, the simulated passive droplets
are always circular.

It has been suggested that the threshold of the active wet-
ting transition depends on the droplet size [23,24] and the
estimated active forces discussed earlier scale with Rζ . We
stress that the arguments leading to this scaling assume that

(a) (b) (c) (d)

FIG. 6. Spreading of a droplet with ζ = 0.051, contact angle θc = 45◦, and homeotropic surface anchoring. (a) Initially, the droplet
elongates vertically. (b) The elongated droplet is unstable to bend distortions and as a result the director field undergoes strong distortions
and takes an oblique random orientation at the surface. (c) The droplet then spreads, as the surface promotes partial wetting (contact angle
θc < 90◦), driven by the active forces. (d) A stable flat film is formed.

033165-9



COELHO, FIGUEIREDO, AND TELO DA GAMA PHYSICAL REVIEW RESEARCH 5, 033165 (2023)

FIG. 7. Threshold activity for the active wetting transition of
a droplet on a surface with planar anchoring and partial wetting
equilibrium contact angle θc = 60◦. The dashed line is a linear fit
ζw (R−1) = aR−1, where a = 0.30. We considered radii from R = 25
to 50. The insets illustrate the typical droplet shape above and below
the transition line. The inset on the top is for a droplet with radius
R = 40 and ζ = 0.0106 and that on the bottom is for a droplet with
the same radius and ζ = 0.0028.

the droplet is away from the active turbulent and other non-
steady regimes.

We start with finite droplets and investigate the size de-
pendence of the dynamical transitions on the droplet size. We
analyze the thresholds of two distinct transitions: partial to
complete wetting on a planar surface and linear to chaotic
motion on a homeotropic surface.

In Fig. 7 we plot the threshold activity ζw where the ap-
parent contact angle vanishes for droplets of different radii.
This is determined by the minimum activity where at least
60% of the droplet’s perimeter is flat (see the insets of Fig. 7).
The linear fit supports the assumption that ζR is constant
at the active wetting transition (on a given surface) and, the
slope yields the active wetting threshold capillary number
for extensile active nematics on a surface with strong planar
anchoring and a partial wetting equilibrium contact angle,
θc = 60◦: Caw

α ≈ 5. This linear fit leads to ζw ≈ 0.013 for
a droplet of radius R = 22.4, which is close to the activ-
ity where the curve in Fig. 2(e) deviates from the linear
regime.

Likewise, Fig. 8 depicts the threshold activity ζlc at the
transition from linear to chaotic motion, for droplets with
different radii. The surface is homeotropic and the equilibrium
contact angle is neutral. The data follows a linear relation,
yielding the linear to chaotic motion threshold capillary num-
ber for extensile active nematics on surfaces with strong
homeotropic anchoring and neutral equilibrium contact angle,
θc = 90◦: Calc

α ≈ 5.8.
In both cases, the linear relation between the threshold

activity and the inverse radius supports the assumption that the
active capillary number Caα controls the dynamics of active
nematics droplets on a flat surface at a fixed θc. Of course, sur-
face effects such as the surface anchoring and the equilibrium

FIG. 8. Threshold activity for the transition from linear to chaotic
motion of a droplet on a homeotropic surface with neutral equilib-
rium contact angle, θc = 90◦, as a function of the inverse radius R−1.
The dashed line is a linear fit, ζlc(R−1) = aR−1, with a = 0.35. We
considered radii from R = 25 to 50.

contact angle are not encoded in the active capillary number
Caα and different capillary numbers at these thresholds will
be found for different surfaces. It is still remarkable that
the dynamics of droplets with different activities and radii,
on a particular surface, are controlled by a single physical
parameter.

This simple picture, however, will change for sufficiently
large droplets where active turbulence sets in at vanishingly
small activities. This has drastic consequences for the active
wetting and other dynamical transitions, as we will discuss in
the next section.

IV. CONCLUSIONS

We considered the dynamics of extensile active nematics
droplets on flat surfaces, based on the continuum hydrody-
namic theory. We investigated a range of dynamical regimes
as a function of the surface anchoring, equilibrium contact
angle, activity, and droplet radius.

The first two parameters (surface anchoring and equilib-
rium contact angle) characterize the surface-fluid interactions
and we have considered surfaces with planar, homeotropic,
and oblique (in the Appendix) anchoring in the strong regime,
as well as zero anchoring (in the Appendix). The solid-fluid
interactions are further characterized by the equilibrium con-
tact angle θc.

We have shown that the total NI interfacial tension � and
thus the equilibrium contact angle is dominated by the spatial
variation of the concentration profile across the interface, as
the contribution of the orientational order-parameter profile
is less than 0.5%. This can be understood by recalling that
the NI transition is weakly first order while the concentra-
tion field is considered to be deep in the bulk two-phase
region.

When the activity is switched on, we found that for fi-
nite droplets there is a single physical parameter ζR/� that

033165-10



ACTIVE NEMATICS ON FLAT SURFACES: FROM … PHYSICAL REVIEW RESEARCH 5, 033165 (2023)

controls the dynamics on a specific flat surface, in line with
previous results that revealed that this parameter, coined as the
active capillary number Caα , controls the dynamical behavior
of suspended droplets.

We found a wide range of dynamical regimes of active
droplets on flat surfaces, including static droplets, self-
propelled linear motion, chaotic motion, droplet scission,
active wetting, and droplet detachment and evaporation. The
thresholds and sequence of these dynamical regimes depend
of the surface anchoring and on the equilibrium contact angle.

The last three regimes were not reported for suspended
droplets as wetting and detachment require the presence of
a surface and droplet evaporation requires an activity driven
shift of the coexisting concentrations, which was hindered or
suppressed in Ref. [19] by imposing volume (or area) conser-
vation of the nematic phase.

We found that the nematic order parameter in active
droplets varies with the activity, affecting the wetting behavior
in a way that resembles the original argument by John Cahn
for critical point wetting. In the present context it turns out that
this effect is subdominant but this is ultimately responsible
for the observed evaporation of the droplets. The dominant
mechanism driving active wetting is related to the genera-
tion of active forces parallel to the surface that result from
gradients in the nematic order parameter. These forces are
proportional to the droplet radius R and point outwards on
both sides of extensile active droplets. On planar surfaces
there is a well-defined threshold where the apparent contact
angle vanishes. On homeotropic surfaces, by contrast, the
spreading film undulates and it becomes flat only when it
covers the whole surface, as a result of the finite size of the
simulation domain.

Fingering instabilities prior to an active wetting transition
were reported in [23] and may be characteristic of transient
states as those described above for homeotropic surfaces be-
fore active spreading sets in. Note that the presence of shape
instabilities does not appear to be a necessary condition for
active wetting, as it was not observed for agonistic surface
and active anchorings (planar surface and active anchorings)
but may play a role when these anchorings are antagonistic
(homeotropic surface and planar surface anchorings). The
droplet size will also affect the onset of these shape instabil-
ities, as for large droplets the vortices characteristic of active
turbulence are no longer screened by the confinement of the
active nematic.

In the simplest case (planar-planar) we have estimated
the active wetting threshold by the vanishing of the appar-
ent contact angle and checked that this was independent of
the size of the simulation domain. Strictly speaking, how-
ever, in the infinite-size limit the active nematic is turbulent
at any activity and it does not coexist with an isotropic
phase. In that limit, the arguments discussed above as well
as those proposed in published work to interpret experimen-
tal observations of active wetting do not apply. The active
wetting transition is a finite-size dynamical transition and
it cannot occur in the infinite droplet-size limit. Even the
droplet-size effect captured by the active wetting threshold
dependence on the active capillary length suggests that for
infinite droplets the threshold activity at the wetting transition
vanishes.

The idea of an active wetting transition, however, is a
useful concept that has already been shown to describe ex-
perimental observations both in wet as well as in dry active
systems [23,24].

The experimental system considered in [24] is well de-
scribed by our model of an extensile active-passive mixture
on a flat surface with planar anchoring. In fact, the theoretical
model used in [24] is identical to ours except that it does not
impose mass conservation. That allows the growth of wetting
films of any thickness but it is not clear how that thickness is
set in a self-consistent manner. Having noted this difference,
the film thickness at the capillary wall in [24] plays the role
of the droplet radius in our model. Other effects related to
mass conservation, such as the droplet evaporation will not be
described by the model used in [24].

The connection with the experiments and theory that re-
vealed an active wetting transition between 2D epithelial
monolayers and 3D aggregates [23] is not as straightforward.
To begin with, the system is dry so that hydrodynamics does
not play a role. The model is also quite different as there
is no underlying thermodynamic transition at zero activity.
The model considers, by contrast, an interplay between two
different active forces the ratio of which defines an intrinsic
lengthscale that controls active wetting. In more recent paper
the model was further elaborated [45] but these essential dif-
ferences remain.

In summary, our analysis provides an overview of the
striking dynamical regimes reported for active droplets on
surfaces, ranging from self-propulsion to droplet evaporation
and gives a unified description of active wetting of finite active
droplets, in systems with only one active force or where the
effect of one of the active forces dominates.

Although active wetting is ultimately a finite droplet-size
dynamical transition, it may be well characterized and was
proved useful in the interpretation of experimental results.
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APPENDIX

1. Landau-de Gennes interface

a. Interfacial profiles

We consider a flat NI interface with homeotropic anchor-
ing. Under these conditions, both the interface and the bulk
nematic are uniaxial and only the scalar orientational order
parameter S varies across the interfacial region, which has an
intrinsic width of the order of the nematic bulk correlation
length �N [46]. The Landau-de Gennes free-energy density,
Eq. (1), is written now in powers of S and its derivative in the
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direction perpendicular to the interface, say x,

fLdG = A0

2

(
1 − γ

3

)
Q2

αβ − A0γ

3
QαβQβγ Qγα

+ A0γ

4
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(
dS
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)2

,

where the numerical coefficients in the second line arise from
the sum over the indices of Qαβ implicit in the first.

This free energy has two minima at

SI = 0 and SN = γ +
√

3(−8γ + 3γ 2)

4γ
. (24)

one of which is stable and the other metastable depending on
the value of the parameter γ . The value of the free-energy den-
sity vanishes at both minima when γ = 2.7, where a nematic
phase with scalar order parameter SN = 1/3 coexists with the
isotropic phase with SI = 0. The equilibrium order-parameter
profile, obtained by minimizing the total free energy, F =∫

f d3r, is the solution of the ordinary differential equation

δF
δS

= 2A0

3

(
1 − γ

3

)
S − 2A0γ

9
S2 + 4A0γ

9
S3

− 2L

3

d2S

dx2
= 0.

A closed form solution may be obtained as follows [47].
Multiplying the equation for S(x) by dS/dx and integrating
from −∞ to x′, we find∫ x′

−∞

2L

3

d2S

dx2

dS

dx
dx

=
∫ x′

−∞

[
2A0

3

(
1 − γ

3

)
S − 2A0γ

9
S2 + 4A0γ

9
S3

]
dS

dx
dx

⇔ L

3

(
dS

dx

)2

= A0

3

(
1 − γ

3

)
S2 − 2A0γ

27
S3 + A0γ

9
S4,

where we assumed that dS/dx vanishes at −∞. The two
phases coexist at γ = 2.7, where

L

3

(
dS

dx

)2

= A0

30
S2(3S − 1)2

⇔
∫

1

S(S − 1/3)
dS = −3x

√
A0

10L
+ C, (25)

with the integration constant C = 0 setting the interface at x =
0. Finally, the explicit solution is found through the change of
variable u = S − 1/6,∫

1

u2 − 1/36
du

= −6 tanh−1(6u) = −6 tanh−1(6S − 1) = −
√

A0

10L
3x

⇔ S(x) = SN

2

[
1 + tanh

(
x

2�N

)]
, (26)

(a) (b)

(c) (d)

FIG. 9. Concentration φ and orientational order parameter S for
two static extensile active nematics droplets, with R = 22.4, on a
homeotropic surface with a neutral equilibrium contact angle, θc =
90◦. The profiles were measured along the line at an angle β with
the surface (see the inset). The radial distance r is measured from
the center of the droplet on the surface. Top row [(a),(b)], droplet
with activity ζ = 0.001. Bottom row [(c),(d)], droplet with activity
ζ = 0.006.

where SN = 1/3 is the nematic order parameter at coexistence

and �N =
√

10L
A0

is the nematic correlation length under the

same conditions.
We proceed to compare the composition and orientational

order parameter profiles of large droplets (radii at least a factor
of 10 larger than the concentration and nematic correlation
lengths) at low activities obtained from the simulations with
the analytical results for the decoupled passive concentration
and orientational order-parameter profiles, Eqs. (15) and (26).
Note that although Eq. (26) for the density profile is obtained
at coexistence (γ = 2.7) we assume the same form and simply
change the value of the nematic order parameter SN and the
nematic correlation length �N at the new value of the parame-
ter γ elsewhere in the nematic phase.

We start by analyzing the numerical results for φ(r) and
S(r) plotted in Fig. 9 for extensile active nematics droplets
with R = 22.4 at two different activities ζ , on a homeotropic
surface with a neutral equilibrium contact angle, θc = 90◦. In
the absence of activity the droplets are circular but as the activ-
ity increases active anchoring promotes parallel alignment at
the interface and the droplet elongates in the vertical direction.
We have plotted the profiles along three different angles β

(measured at the center of the droplet as shown in the inset).
For the low-activity droplet, the profiles φ and S hardly change
with the angle, as the droplet remains nearly circular. As the
activity increases, the droplet elongates and the position of the
interface (S = SN/2) changes with β. However, the profiles
are very similar, the most noticeable change being a shift in r.

In Fig. 10 we compare the theoretical concentration φ and
orientational order-parameter S profiles for a passive flat inter-
face with those of a droplet at low activity. Equation (24) gives
SN at γ = 2.8 and we used Eq. (26) for the orientational
order-parameter profile at the value of SN off coexistence.
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(a) (b)

FIG. 10. Comparison between the analytic and simulated profiles
φ (a) and S (b) along the vertical β = 90◦ direction, for a droplet
with activity ζ = 0.001 on a homeotropic surface with a neutral
equilibrium contact angle, θc = 90◦.

The correlation lengths are (for γ = 2.8): �N = 2.45 and �φ =
1.26. One can see from Fig. 10 that for large droplets and low
activities, the profiles are almost identical to those of a passive
flat interface, where the concentration and the orientational
order-parameter profiles are decoupled.

b. Interfacial tension

At coexistence, the interfacial tension of the NI interface is
given by

�N =
∫ ∞

−∞
fLdG(γ = 2.7)dx, from Eq. (25)

= 2L

3

∫ ∞

−∞

(
dS

dx

)2

dx, using Eq. (25)

= −2

3

√
A0L

10

(
S3 − S2

2
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SN

0

, but SN = 1/3

=
√

A0L

81
√

10
.

The contribution from the Qαβ to the interfacial tension is
near-critical and thus much smaller than the contribution from
φ. This is corroborated by inspection of the order-parameter
profiles for passive and active droplets in Figs. 9 and 10, where
the width of the S profile is ≈2.8 times larger than that of φ.
We recall that the coefficient of the quadratic term of the LdG
free-energy density Eq. (1) varies around its value at the NI
transition in the passive system and this implies that the ne-
matic order-parameter field varies on longer lengthscales than
the concentration field, which is deep in the phase separated
regime. This suggests that we may consider only the contribu-
tion of �φ to the surface tension, i.e., � = �N + �φ ≈ �φ .

2. Planar and homeotropic anchoring

In Fig. 2(e), we plot the aspect ratio of the droplet on a
substrate with planar anchoring as a function of the activ-
ity. It is also useful to plot the droplet height as shown in
Fig. 11. Initially, the height decreases linearly and then the
slope changes around ζw ≈ 0.015, as for the aspect ratio. As
discussed in the main text, this change can be used to estimate
the wetting transition threshold. For ζ > ζw, the top of the
droplet becomes flat and the apparent contact angle vanishes.
The dashed line in Fig. 11 stands for the vortex size ≈10�A.
The droplet height is always smaller than the vortex size,

FIG. 11. Height of the droplet as a function of the activity.
Droplet on a surface with planar anchoring, with equilibrium partial
wetting contact angle, θc = 60◦. A typical vortex size (∼10�A) is
plotted as a blue dashed line for comparison.

which explains why the droplet does not become turbulent:
vortices can not form inside the droplet.

For surfaces with homeotropic anchoring, the droplet elon-
gates perpendicular to the surface. Figure 12 shows that the
aspect ratio (height/width) increases with the activity in the
static regime. This occurs independently of the contact an-
gle. At higher activities, the droplet transitions to the linear
regime, characterized by motion at constant velocity and
shape. Figure 12 shows the droplet velocity as a function of
the activity. The velocity increases with the activity almost
linearly except at the end of the curves (at high activities)
where the transition to the chaotic regime occurs.

The active stress promotes mixing of the two components
(isotropic and nematic fluids). Figure 13 depicts the change
in the mean values of φ for the nematic (φN ) and isotropic
(φI ) components as a function of the activity for a droplet on
a homeotropic surface. The concentrations φN and φI deviate
from their equilibrium values in the passive mixture φ0 = ±1
and become closer as the activity increases. At higher activ-
ities, the droplet evaporates and the concentration becomes
uniform throughout the system, which remains in a single
isotropic phase. This happens when the value of φI , which
increases with the activity, reaches the average value of φ

as shown in Fig. 13. The variation of φ with the activity is
larger for homeotropic than for planar anchoring [Fig. 2(f)] as
the velocities are higher and thus mixing is more effective. In
particular, in the chaotic state shearing is much stronger than
in the static regime with planar anchoring.

3. Oblique anchoring

When the surface anchoring is oblique (at 45◦), we find that
the droplet moves with constant velocity at any activity. This
happens as the left-right symmetry of the nematic director
field in the droplet is explicitly broken by the surface anchor-
ing and as a result the velocity field generated by the activity
drives the droplet motion. In Fig. 14(a), we plot the droplet ve-
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FIG. 12. (Top) Aspect ratio of static droplets as a function of the
activity ζ on homeotropic surfaces with different contact angles θc.
(Bottom) Absolute velocity of the droplets in the linear dynamical
regime as a function of the activity ζ on homeotropic surfaces with
different contact angles θc.

locity at different activities. For this range of parameters, these
two quantities exhibit a linear relation, which is consistent
with the fact that the characteristic velocity generated by sin-
gular and nonsingular distortions of the director field in active
nematics is [39] v ∼ ζR/η, where η is the absolute viscosity
η = νρ. As illustrated in Figs. 14(b) and 14(c), the droplet
becomes more asymmetric as the activity increases while the
distortions in the director field increase. As discussed in the
main text, the droplet moves in the direction of the positive
charge density, which can be seen for oblique anchoring in
Figs. 14(d) and 14(e).

4. Zero anchoring

Finally, we have set the surface anchoring to zero. This
is achieved by imposing zero gradient of the director field
and S = SN at the solid-liquid interface. The initial conditions
are as in the other simulations with homeotropic anchoring:
uniform directors aligned vertically and velocity set to zero.

FIG. 13. Average value of φ for droplets with homeotropic an-
choring and θc = 90◦ as a function of the activity ζ in the nematic
phase (φN , on the left, red circles) and in the isotropic phase (φI , on
the right, blue crosses). The coexisting values of φ at activities close
to zero are slightly different from ±1 due to the nonzero thickness of
the interface. The dashed blue line represents the average value of φ

(axis on the right), which is constant.

We find that the director field breaks the left-right symmetry
and the droplet moves at lower values of the activity. This
is different from the behavior of the suspended droplets re-
ported in Ref. [19] due to differences in the model (imposed
thermodynamic interfacial anchoring) and no-slip boundary
conditions at the substrate. In Fig. 15, the droplet velocity
is plotted as a function of the activity. The insets of Fig. 15
depict the moving droplets at zero anchoring. We find that
the droplet shape becomes asymmetric and the director field
oblique as the symmetric vertical configuration is unstable to
small perturbations. This is similar to the results for oblique
surface anchoring. At higher activities, the droplet evaporates
as before.

5. Criteria to classify the regimes with homeotropic anchoring

In order to classify the three main regimes for the
homeotropic surface, two parameters were used: the order
of magnitude of the standard deviation of the linear fit used
to determine the droplet velocity (droplet position against
time) O(σm), and the coefficient of the linear fit r2. The
order of magnitude was calculated as O(σm) = log(σm), while
the position was calculated by locating the droplet’s leftmost
interface over time, as close to the surface as possible. r2

indicates how well the data fits the linear fit of the position,
which was higher for droplets moving at a constant velocity,
while σm indicates how scattered the actual data points are
around the linear fit, which is higher for chaotic droplets,
whose movement is not steady.

If σm ≈ 0, the droplet is static. This is to be expected, since
the position of static droplets is always the same. The droplet
is in the linear state if r2 � 0.9, since droplets in the linear
state are those whose motion gives the best linear fit. Finally,
if O(σm) � −5, the droplet is in the chaotic state. Since their
motion, which oscillates, often has a linear component, the
scattering is much more noticeable in this regime, as opposed
to the other droplets. Visual inspection of a few cases confirm
that the algorithm is reliable.

033165-14



ACTIVE NEMATICS ON FLAT SURFACES: FROM … PHYSICAL REVIEW RESEARCH 5, 033165 (2023)

(a)

(b) (c)

(d) (e)

FIG. 14. (a) Absolute value of the droplet velocity as a function
of the activity ζ for oblique surface anchoring and a neutral equi-
librium contact angle, θc = 90◦. [(b),(c)] Snapshots of the droplets
at the extremes of the curve in (a) (ζ = 0.001 and ζ = 0.0065 re-
spectively), which are moving to the right with constant velocity and
shape. [(d),(e)] Charge density in the two droplets shown in (b) and
(c). Red represents a positive charge density while blue represents a
negative one.

To identify the three remaining regimes, different algo-
rithms were used for each case.

For division, a “burn” algorithm was applied. The algo-
rithm consists in the following: (1) the first point where φ � 0
(i.e., where the concentration of the nematic is greater than the
concentration of the isotropic fluid), ignoring the surface, is
found and its value is changed to 2 (“burning”), (2) all squares
where φ � 0 that are adjacent to “burning” squares (excluding
diagonals) have their value changed to 3 (“will burn”), (3) the

FIG. 15. Absolute velocity as a function of the activity ζ for
active nematics droplets on surfaces with equilibrium contact angle
θc and zero anchoring. The insets are snapshots of the director field
in the droplet for two simulations in the steady state. In both cases,
the droplet moves to the right, but droplet motion to the left was also
observed (not shown).

“burning” squares are changed to 4 (“burnt”), (4) the squares
that “will burn” are changed to “burning”, (5) steps 2–4 are
repeated until there are no more “burning” squares, and (6)
if there are still squares where φ � 0, the droplet has split
into at least two pieces. This algorithm was implemented at
every time interval, since broken droplets often merge, albeit
temporarily.

Detached droplets were determined by checking if there
was at least one full “line” of nematic between the first point
in the nematic and the surface. Likewise for division, this
was performed at every time step, since detached droplets can
temporarily return to the surface.

Finally, evaporated droplets are found by checking if φ � 0
across the entire system, excluding the surface. This check
was made at the last time interval, since, similarly to wet-
ting layers, evaporated droplets stay evaporated. Although the
value of φ changes with activity in the isotropic component, it
remains smaller than 0.
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