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Discovery of quasi-six-coordinated layered phase of PBr3 at high temperature and pressure
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Layered trihalides, mainly formed by metal elements and halogens, are promising candidates for spintronic
devices and van der Waals heterostructures, but are rarely found in nonmetal halides. Motivated by the purpose
of searching for the compelling layered configuration in a covalent system, we performed systemically high-
pressure experiments to explore the crystal structures in typical PBr3 with diamond anvil cell technique. At room
temperature, PBr3 crystallizes into a molecular crystal with orthorhombic symmetry above 0.9 GPa and is found
to persist up to at least 43.9 GPa as confirmed by in situ Raman and x-ray diffraction measurements. Strikingly,
a novel layered phase with a space group P21/c is observed at ∼27.0 GPa and ∼1800 K, which is characterized
by quasi-six-coordination of P atoms with nearby Br atoms. In addition, first-principles calculations indicate that
the unusual coordination of the P atom in P21/c phase is highly correlated with the pressure-induced generation
of pnictogen bonds. Our current findings not only expand the understanding of the phase diagram of PBr3, but
also show an interesting transformation from molecular crystal to an extended layered phase achieved in a broad
range of nonmetal trihalides.
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I. INTRODUCTION

Molecular materials, characterized by strong intra- and
weak intermolecular bonds, will tend to form extended three-
dimensional geometries under extreme pressures, leading to
intriguing phenomena such as phase transition [1–3], metal-
lization [4,5], decomposition [6], disproportionation [7], and
polymerization [8,9], thus providing fundamental knowledge
in physics, chemistry, and planetary science. Recent reports
reveal that high temperatures are pivotal for observing the
above transformations owing to the kinetic barriers between
different phases and chemical reactions during compression
at room temperature, i.e., disproportionation of SO2 [8] and
phase transitions of CF4 [10] and SrOsO3 [11] were reported
at high-pressure and high-temperature (HPHT) conditions,
providing unequivocal experimental evidence for pursuing
accurate energetic landscapes in simple molecular systems.

Group V elemental trihalides AX3 (A = N, P, As, Sb,
Bi; X = F, Cl, Br, I) are a family of simple four-atom com-
pounds, which possess versatile applications in chemistry and
materials fields [12–14]. Among them, the nitrogen, phospho-
rus, arsenate, and selenium trihalides usually adopt trigonal
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pyramidal geometry with C3v point group symmetry, where
A atom is sp3 hybridized and overlaps with three halogen
atoms to form covalent compounds AX3 [15–21]. In contrast,
ionic type compounds AX3 such as BiI3, where the metal-
lic bismuth atom donates three p electrons to iodine atoms,
tend to form a six-coordinated layered structure which is
characterized by layers of bismuth ions that are octahedrally
surrounded by six iodine ions so that they share edges with
neighboring octahedra [21,22], the layers are stacked on top
of one another with weak van der Waals bonding between
adjacent layers. In addition CrI3 and VI3, which are isostruc-
tural to BiI3, possess fascinating properties such as magnetic
ordering and anisotropic electrical conductivity [23,24]. In
previous reports, pressure has been confirmed to tune non-
metal into metal [25–28], which raises a scientific question
about whether the trigonal pyramidal covalent compounds
AX3 could be transformed into a layered six-coordinated ionic
structure under external compression.

In this paper, we present a pressure-induced structural evo-
lution of PBr3 by experimental and theoretical approaches up
to 45.0 GPa. The Pnma phase of PBr3 is formed at a freezing
pressure of about 0.9 GPa and persists up to at least 43.9 GPa.
Moreover, a layered phase (space group P21/c) with quasi-
six-coordinated phosphorus is generated after laser heating at
27.0 GPa and is stable down to 1.5 GPa during decompression.
Further first-principles calculations reveal that the genera-
tion of pnictogen bonds in P21/c phase results in increased
coordination of P atoms. The discovery broadens physical
properties of PBr3 and extends its potential applications as
well as those of other two-dimensional functional materials.
This study will pave a new avenue towards understanding the
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chemical bonding and compression mechanisms in AX3 and
expand the realm of two-dimensional functional materials in
nonmetal trihalides.

II. METHODS

Phosphorus tribromide (PBr3) (Alfa Aesar, purity 99%)
was loaded into symmetric diamond anvil cells with a culet
diameter of 200 µm. T-301 gasket was preindented to 20 µm
thickness and a sample hole of 100 µm was drilled. The
liquid sample and ruby pieces were loaded into the chamber
in a glove box filled with argon. Pressures were deter-
mined using Raman shift of diamond anvil [29] and ruby
[30] luminescence method. In situ x-ray diffraction (XRD)
experiments were performed at the 4W2 beamline of the
Beijing Synchrotron Radiation Facility (BSRF). Using a pair
of Kirkpatrick-Baez mirrors to focus monochromatic syn-
chrotron radiation x-ray beam with a wavelength of 0.6199 Å
and spot size of 10 × 30μm2. The two-dimensional (2D) x-
ray diffraction patterns at different pressures were recorded
by 2D imaging plate detector (MAR-3450). The instrument
parameters were calibrated using a CeO2 standard. The ac-
quisition time of each 2D XRD pattern was 300 s. The
integration and processing of 2D XRD patterns were carried
out by using DIOPTAS program [31]. Rietveld refinements of
XRD patterns were performed using GSAS II package [32].
Additionally, pressure dependencies of the unit-cell volume
were fitted by the third-order Birch-Murnaghan equation of
state (EOS) [33]. Raman spectra were collected using a home-
made Raman instrument (Acton Standard Series SP-2556
Imaging Spectrograph and PyLoN:100BR_eXcelon CCD)
with 632.8 nm excitation in backscattering geometry, and the
Raman signals were collected using a 20× Mitutoyo long
working distance objective and dispersed by a 1200 mm−1

grating. Laser-heating experiments were excited by a Nd:YAG
laser (1064 nm) with a power of 5 W. A Mitutoyo 10× (N.A.
= 0.26) NIR objective was used to focus the laser and the
typical focal spot diameter is about 10 µm. The temperature
was determined using the emission spectrum of the black body
radiation within the Planck’s radiation law [34].

First-principles calculations based on density functional
theory (DFT) [35,36] were performed within the generalized
gradient approximation (Perdew-Burke-Ernzerhof functional)
[37], and the projector augmented-wave method [38,39] as
implemented in the VASP code [40,41]. The electron-ion
interaction was described with 3s23p3 and 4s24p5 config-
urations considered as the valence electrons of P and Br,
respectively. Setting the electronic wave functions cutoff en-
ergy to 500 eV and Sampling Brillouin zone by �-centered
k-point meshes with a value of 2π × 0.03 Å−1 are to ensure
that the convergence criteria for structural optimizations was
set to about 1 meV/atom.

III. RESULTS AND DISCUSSION

A. High-pressure experiments of molecular phase

PBr3 is a colorless liquid at ambient condition and its
Raman spectrum is characterized by two stretching modes
ω1(A) and ω3(E) and two deformation modes ω2(A) and
ω4(E), which are located at 396 cm−1, 378 cm−1, 160 cm−1,

FIG. 1. High-pressure Raman spectra of PBr3, where ω repre-
sents the Raman mode.

and 115 cm−1, respectively [42]. Among them, ω3 and
ω4 are twofold degenerate, and the detailed Raman peaks
assignments are given in Table S1 [43,44]. In order to
know the pressure response of PBr3, high-pressure Raman
measurements of PBr3 were performed up to 43.9 GPa shown
in Fig. 1. It can be seen that a liquid-solid phase transition
occurs at about 0.9 GPa evidenced by a sudden narrowing in
the full wide at half maximum (FWHM) and the appearance
of lattice modes, indicating the crystalized PBr3 possesses
a relatively uniform molecular bonding length and angle
than that of liquid phase. This transition is also confirmed
by the visual observation of crystallization in the chamber
(see Supplemental Material, Fig. S1 [44]). With increasing
pressure, except ω3 band, all other Raman peaks shift to high
wavenumber region, suggesting the reduced bond lengths
of their corresponding normal vibrations are shortened
under external compression. As changes in response
of the Raman mode with pressure could provide useful
information about phase transitions and chemical changes
et al. [45–47], which are characterized by missing and
splitting of vibrational modes, appearance of new modes, and
sudden changes in the slope of the frequency-pressure curve at
certain pressure. The Raman frequency-pressure relationships
were plotted and given in Fig. S2 [44]. Consistent with
the above analysis about the liquid-solid phase transition,
sudden slope changes in the curves and appearance of
lattice modes are observed at 0.9 GPa. Furthermore, the
twofold-degenerated bands ω3 and ω4 start to split when
the pressure approaches 5.0 and 10.0 GPa, respectively,
indicating a pressure-induced lowering of molecular point
group symmetry occurs. From the high-pressure Raman
spectra and frequency-pressure relationships of PBr3, taken
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FIG. 2. (a) Rietveld refinement of the crystal structure of Pnma phase at 1.5 GPa with a wavelength of 0.6199 Å. The black circles, red
curves, and blue curves correspond to the experimental data, Rietveld refinement fits, and residues, respectively. (b) EOS and crystal structure
of Pnma phase where the square symbols and solid line represent the experimental data and fit, respectively. Brown and beige balls represent
the P atoms and Br atoms, respectively.

together, no obvious phase transition could be concluded in
the pressure range of 0.9–43.9 GPa.

In order to clarify the crystal structure and the compression
behavior of the solid phase, we performed synchrotron XRD
measurements of PBr3 up to 42.1 GPa. The XRD patterns
were indexed in terms of an orthorhombic unit cell (space
group Pnma ) with lattice parameters of a = 7.658 Å, b =
9.723 Å, and c = 6.218 Å at 1.5 GPa [Fig. 2(a)]. The Pnma
phase was characterized as four formula units per unit cell and
each P atom is coordinated by three Br atoms. From the evo-
lution of XRD (see Supplemental Material, Fig. S3 [44]), it is
obvious that the Pnma phase is stabilized to 42.1 GPa, which
is consistent with the Raman results. Furthermore, we fitted
the equation of state (EOS) of the Pnma phase [Fig. 2(b)]
and obtained the bulk modulus B0 = 15.4 GPa and pressure
derivative B′

0 = 4.2 by using V0 = 129.4 Å3 [18].

B. High-pressure experiments
of quasi-six-coordinated layered phase

Under high pressure, enthalpy is the main parameter that
determines whether phase transitions or chemical reactions
occur. However, due to the kinetic barrier, they cannot always
be observed in the room-temperature compression process
[1]. High temperature can increase the kinetic energy of
atoms, thus inducing the system to surpass the energy barrier
and stabilize at a relatively lower enthalpy condition. In
recent years, laser-heating diamond-anvil-cell technique is an
efficient means to provide a high-temperature and pressure
environment [48,49]. Using this technique, phenomena such
as phase transition and disproportionation could be observed.
In this report, PBr3 was laser heated to about 1800 K at
27.0 GPa, and the corresponding Raman spectrum is given in
Fig. 3. Compared to the Raman spectrum of Pnma -structured
PBr3 at 27.0 GPa before laser heating, the Raman spectrum
of that after laser heating has more and sharper Raman peaks.
To qualify the width of the Raman peaks, the FWHM of
each Raman peak of PBr3 before and after laser heating at

27 GPa are shown in Fig. S4 [44]. Except the newly arisen
peaks located at 228, 316, and 359 cm−1 in P21/c phase
(after laser heating), the FWHM values of Pnma phase are
larger than that of P21/c phase. The Pnma phase of PBr3

has a character of molecular crystal, and the optical phonon
modes are 3N-6=6 where N=4 is the atomic number in
each molecular PBr3. While after laser heating, the number
of Raman peaks is almost doubled, suggesting an extended
structure or a molecular unit containing more than 4 atoms
is built. In addition, P-Br stretching modes ω1 and ω3 shift
to the low wavenumber region, indicating the P-Br bond is
elongated in the newly formed phase. Moreover, the Raman
measurements were performed at each step of decompression
and shown in Fig. S5 [44]. Compared to the Pnma phase, a

FIG. 3. Raman spectra of PBr3 before and after laser heating at
27.0 GPa.
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FIG. 4. (a) Rietveld refinement of the crystal structure of phase P21/c at 27.0 GPa with a wavelength of 0.6199 Å. The black circles, red
curves, and blue curves correspond to the experimental data, Rietveld refinement fits, and residues, respectively. (b) EOS of the P21/c phase
where the square symbols and solid line represent the experimental data and fit, respectively. Crystal structure of phase P21/c. Brown and
beige balls represent the P atoms and Br atoms, respectively. Red dashed represents longer bonding than that of bicolor line.

softening behavior of a few Raman modes is observed in the
new-formed phase, which should be attributed to the existence
of stronger intermolecular interaction. Meanwhile, it is
obvious that the newly formed phase is stable down to 1.8 GPa
and then transforms back to the Pnma phase at 1.2 GPa.

In order to know the crystal structure of the new-formed
phase of PBr3, we performed synchrony XRD measurements,
and the XRD pattern was collected and indexed as a mono-
clinic structure (space group P21/c) with lattice parameters of
a = 5.481 Å, b = 8.018 Å, c = 6.714 Å, and β = 107.5375◦ at
27.0 GPa [Fig. 4(a)], which is isostructural with SbI3 [50,51].
As shown in Fig. 4(b), the P21/c phase consists of a single
layer of P atoms sandwiched between two layers of Br atoms,
and each P atom is coordinated by three nearest-neighboring
and three next-nearest-neighboring Br atoms, forming a PBr6

octahedra. From the previous high-pressure results, it is
undoubtedly demonstrated that pressure could induce band-
gap closure and metallization in elements and compounds
[1,2,4,5,52] and could decrease electronegativities of elements
in periodic table (except Tb, Dy, and Ho) [53]. Moreover,

for ionic type compounds AX3, metal element A donates
three p electrons to X atoms forming an ideal six-coordinated
layered structure [21,23–25]. Therefore, it is reasonable that
the metallicity of nonmetal element P increases and the elec-
tronegativities decrease under high pressure leading to the
discovery of quasi-six-coordinated layered structure of PBr3.
The decompressed XRD patterns of P21/c phase are shown
in Fig. S6 [44] suggesting the P21/c phase can be stable
down to 1.5 GPa, which is consistent with the previous Raman
analysis. In addition, we fitted the EOS of P21/c phase in
Fig. 4(b) and yield the bulk modulus B0 = 14.4 GPa, pressure
derivative B′

0 = 4.4, and V0 = 123.8 Å3. Compared to the
Pnma phase, the increase in the bulk modulus and decrease
in V0 indicates the P21/c phase is a close-packed phase.

C. First-principles calculations

To gain a deeper insight into the mechanism of phase
transition of PBr3, we investigated electronic structures of
the Pnma and P21/c phases at 30 GPa (see Fig. 5). Results

FIG. 5. Calculated electronic band structures (left panel) and partial density of state (right panel) of (a) Pnma structure and (b) P21/c
structure at 30 GPa.
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FIG. 6. Electron localization functions within (a) the (h k l)
(3.569 0 1) plane of Pnma phase and (b) the (h k l) (0 1 0) plane
of P21/c phase at 30 GPa.

indicate both are indirect gap semiconductors and show a
continuous decrease in band gap as the pressure increase
(see Supplemental Material, Fig. S7 [44]). The images of the
sample chamber ( Pnma phase) at high pressure were given
in Fig. S8 [44]. It can be clearly seen that the color of the
sample gradually deepens, which is consistent with the theo-
retical results of the band gap. Furthermore, the band gap of
P21/c phase is larger than that of Pnma phase in the pressure
range of this study (see Supplemental Material, Fig. S7 [44]).
The projected density of states (PDOS) of Pnma -PBr3 [see
Fig. 5(a)] indicates that valence band is occupied mostly by
Br-4 p orbital, while the Br-4 p and P-3 p orbitals show strong
hybridization as shown in conduction band. The P21/c phase
adopts a similar p - p hybridization with the Pnma phase
[see Fig. 5(b)]. Moreover, we calculated Bader charges of
the two phases, respectively (see Supplemental Material,
Table S2 [44]), which indicates that there is no obvious dif-
ference between the two phases.

We have calculated electron localization functions (ELFs)
of Pnma phase [Fig. 6(a)] and P21/c phase [Fig. 6(b)], re-
spectively. As shown in Fig. 6(a), it is clear that the localized
charge distribution is seen within the molecule PBr3, which
is attributed to the strong P-Br covalent bond. Figure 6(b)
displays ELF in the (0 1 0) plane of P21/c phase, as a re-
sult of the layered atomic distribution, electrons are mainly
distributed within the sandwiched layers of P and Br atoms.
In addition, P-Br bonds can be divided into three strong
and three weak bonds with the bond lengths ranging from

2.26 Å to 2.30 Å and 2.68 Å to 2.80 Å, respectively (see
Supplemental Material, Fig. S9 [44]), resulting in a quasi-six-
coordinated layer structure of PBr3. Among them, the strong
bonds are relative to primitive P-Br covalent bonds as the
Pnma phase, and the weak bonds are attributed to nonco-
valent interactions—pnictogen bonds, which is the result of
Coulomb attraction between sites of unequal charge density
[54–58]. Recently, scientists found that there are three σ holes
that exist in molecule PBr3, leading to Coulomb attraction
between σ holes and atoms characterized by nucleophilicity
such as halogen atoms, thus resulting in the generation of
pnictogen bonds [59]. In conclusion, the generation of layered
phase P21/c in PBr3 is related for two reasons: firstly, high
temperature induces an increase in kinetic energy of PBr3

molecules, leading to greater freedom of movement of the
molecules; Secondly, intrinsic σ holes in PBr3 molecules at-
tract adjacent Br atoms of other PBr3 molecules by Coulomb
force, leading to generation of quasi-six-coordinated layer
phase P21/c.

IV. CONCLUSIONS

To sum up, we systematically investigate the phase tran-
sitions of PBr3 up to 43.9 GPa by a joint high-pressure
experimental (Raman scattering, synchrotron XRD, and
laser-heating diamond-anvil-cell technology) and theoretical
approaches. Upon room temperature compression, a Pnma
phase is solidified from the liquid PBr3 at 0.9 GPa and is
found to be stable up to 43.9 GPa. Intriguingly, a novel lay-
ered phase (space group P21/c) is generated from the Pnma
phase at ∼27.0 GPa and ∼1800 K, which is characterized
by quasi-six-coordination of P and Br atoms. Furthermore,
the electronic band structures PDOS and ELFs of Pnma and
P21/c phases are analyzed, which indicated that the bonds of
P21/c phase can be divided into covalent bonds and pnictogen
bonds. This report realizes the phase diagram of PBr3, paves
a new avenue towards the synthesis of layered vdW trihalides
from nonmetal elements and halogens and provides a refer-
ence for generation of three-dimensional extension structure
from molecules under the influence of pnictogen bonds.
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