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We present a study on the transport and material properties of aluminum spanning from ambient to warm
dense matter conditions using a machine-learned interatomic potential (ML-IAP). Prior research has utilized
ML-IAPs to simulate phenomena in warm dense matter, but these potentials have often been calibrated for
a narrow range of temperatures and pressures. In contrast, we train a single ML-IAP over a wide range of
temperatures, using density functional theory molecular dynamics (DFT-MD) data. Our approach overcomes the
computational limitations of DFT-MD simulations, enabling us to study the transport and material properties
of matter at higher temperatures and longer time scales. We demonstrate the ML-IAP transferability across a
wide range of temperatures using molecular dynamics by examining the ionic part of thermal conductivity, shear
viscosity, self-diffusion coefficient, sound velocity, and structure factor of aluminum up to about 60000 K, where
we find good agreement with previous theoretical data.
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I. INTRODUCTION

Warm dense matter (WDM) is a state of matter character-
ized by densities ranging from solid density to a few orders
higher than solid density and temperatures ranging from a few
eV to a few keV [1]. It is defined by two parameters: The
ionic Coulomb coupling parameter �, which is the ratio of the
average kinetic energy to the average potential energy, and
the electron degeneracy parameter �, which is the ratio of the
average kinetic energy to the average Fermi energy. WDM
is defined as the region of parameter space where � ≈ 1 and
� ≈ 1 [2–5].

The study of WDM is important for advancing our un-
derstanding of phenomena that both occur in nature and are
generated in the laboratory. In nature, such conditions can
be found in the cores of giant planets and exoplanets [6]. In
the laboratory, WDM is generated at various facilities around
the world, including pulsed power facilities such as the Z-
Machine [7] and bright photon sources such as the European
X-Ray Free-Electron Laser Facility (European XFEL) [8], the
Linac Coherent Light Source (LCLS) [9–11], and the National
Ignition Facility (NIF) [12]. Inertial confinement fusion exper-
iments also involve the creation of WDM when fuel capsules
are heated towards ignition [1,13].
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Modeling and simulating WDM is challenging due to its
unique properties, which fall in a regime that is too dense for
standard plasma theories and too hot for condensed matter
theories to be applicable. To study the dynamical and ther-
modynamical properties of WDM, DFT-MD simulations have
been widely used [14–20]. However, there are several limita-
tions to the use of DFT-MD for this purpose. First, DFT-MD
becomes computationally infeasible at higher temperatures,
making it difficult to study the properties of WDM under
these conditions. Second, finite-size effects, which are caused
by the limited number of atoms that can be simulated on
current high-performance computing (HPC) platforms (typi-
cally a few hundred atoms), can lead to inaccurate results for
many observables. Finally, DFT-MD simulations are typically
limited to time scales of around 100 ps, making it difficult
to accurately study long-timescale phenomena such as ionic
transport.

In the past, embedded atom models (EAMs) [21–23] have
been proposed as potentials for large-scale MD simulations of
WDM [24,25], but they have been found to be inconsistent
with DFT-MD simulations over a wide range of temperatures
and pressures. Similarly, Yukawa pair potentials, which model
ions that are screened by electrons, have been employed to cal-
culate the ion-ion structure factor [26–28] in WDM. However,
their utilization of ad hoc corrections does impose limitations
on their predictive capabilities.

Recently, MD simulations using machine-learning-based
interatomic potentials (ML-IAPs) have been shown to over-
come these computational limitations while maintaining the
accuracy of DFT-MD simulations [29–35]. These ML-IAPs
have the potential to enable the study of thermodynamic prop-
erties in WDM at higher temperatures and longer time scales
[36–41], enabling a deeper understanding of this important
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state of matter. The material properties the ML-IAP enables us
to simulate via large-scale MD simulations are important for
understanding the dynamics of planetary interiors and inertial
confinement fusion plasmas. For example, the diffusion of
particles plays a significant role in fuel degradation during
inertial confinement fusion [42], while the thermal conduc-
tivity of materials is an important quantity for understanding
the cooling process of a planet’s core [43–45].

In this study, we use an ML-IAP to simulate ambi-
ent aluminum up to very high temperatures corresponding
to the WDM regime. Previous research has used ML-
IAPs for WDM simulations, but these potentials have often
been calibrated for specific temperature and pressure ranges
[37,39,40,46]. In contrast, we train a single ML-IAP that
can be used across a range of temperatures using DFT-MD
data. To generate the ML-IAP, we use the spectral neighbor
analysis potential (SNAP) method [31], which represents the
local environment of each atom through bispectrum compo-
nents of the local atomic density projected onto a basis of
hyperspherical harmonics in four dimensions. These com-
ponents serve as descriptors in the SNAP method. We use
the DAKOTA optimization software [47] to tune the ML-
IAP’s hyperparameters, such as the cutoff distance for the
potential and the weight of specific training data sets. By
using this approach, we are able to accurately simulate am-
bient aluminum up to very high temperatures corresponding
to the WDM regime. We focus our study on aluminum,
which has been subject to various experimental measurements
[3,48–53].

We center our investigation on assessing the ML-IAP’s
ability to extrapolate to higher temperatures beyond the range
of the training data. In order to evaluate the accuracy of our
ML-IAP, we conduct large-scale MD simulations to calculate
various properties over a range of temperatures from 300 K
(0.0259 eV) to 58022 K (5 eV), including the ionic part
of thermal conductivity, shear viscosity, self-diffusion coef-
ficient, sound velocity, and structure factor. In the diffusion
coefficient calculation, we extend the mentioned temperature
range further up to 116 040 K (10 eV).

Our paper is organized as follows. In Sec. II, we describe
the methods used to train the ML-IAP and to calculate the
quantities using MD simulations. In Sec. III, we present
the results of our investigation on the temperature trans-
ferability of the ML-IAP by calculating various transport
and material properties. Finally, in Sec. IV, we provide our
conclusion.

II. METHODS

A. Generation of the ML-IAP

We generate an ML-IAP based on the SNAP methodology
[31,54] for aluminum in a large temperature range. Training
data is generated using DFT-MD calculations at ambient mass
density (2.7 g/cm3) using simulation cells containing 108 and
256 atoms over a temperature range of 300–10000 K. These
simulations are performed using the VASP software package
[55–57] with Kohn-Sham orbitals expanded in plane waves
and PAW pseudopotentials used for the electron-ion interac-
tion [58–60] with a core radius of rc = 1.9 aB where aB is the

Bohr radius. The plane wave cutoff is set to 450 eV and the
convergence in the total energy in each self-consistency
cycle is set to 10−5. The PBE exchange-correlation functional
[61] is applied throughout. The DFT-MD simulations are run
for 10000 steps with a time step of 0.2 fs and are thermostated
using the Nosé-Hoover method [62,63]. We investigated the
time evolution of the energy and characteristics of the radial
distribution function to test the equilibration of the system
and found that the system equilibrates around 10000 time
steps. We sample the Brillouin zone on a 2×2×2 grid of
k points and Gamma point for the solid and liquid config-
urations, respectively, and increase the number of bands in
the simulations as the temperature increases. The number of
bands is varied from 324 at the minimum temperature (300 K)
for a supercell containing 108 atoms to 896 at the maxi-
mum temperature (10000 K) considered in the data set for a
supercell containing 256 atoms. By doing so, we achieve con-
vergence in the total energy in each self-consistency cycle up
to 10−5.

In the next step, we create an ML-IAP based on this train-
ing data. Following the SNAP methodology, the total energy
of the system of N atoms with positions rN is decomposed
into

E (rN ) = Eref (rN ) +
N∑

i=1

Ei
SNAP, (1)

where Eref denotes a reference potential energy and Ei
SNAP

the total energy of atom i relative to the atoms in its neigh-
borhood. Here, the presence of the reference potential can
improve the accuracy of the potential energy, which need
not be parametrized by the training data but can be in-
cluded from known limiting cases. In this regard, we use the
Ziegler-Biersack-Littmark (ZBL) potential [64] as a reference
potential. The ZBL model for aluminum is derived from ion
stopping power data, thus providing an accurate description
of short-range (higher-energy) atomic interactions. The SNAP
ML-IAP energy of each atom is expressed as

Ei
SNAP = β · Bi (2)

in terms of a linear combination of bispectrum components
Bi and linear coefficients βk . Consequently, the forces on an
atom j are calculated from the derivatives of the bispectrum
components of atom i with respect to changes in the positions
r j , which reads

F j
SNAP = −∇ j

N∑
i=1

Ei
SNAP = −β ·

N∑
i=1

∂Bi

∂r j
. (3)

The bispectrum components Bi represent the atomic density
of those atoms in the neighborhood of atom i with a cut-
off distance Rcut. They are related to four-dimensional (4D)
hyperspherical harmonics and do preserve invariance under
symmetry operations [54]. The trainable parameters, β, of the
SNAP ML-IAP are determined by weighted linear regression
in an iterative process to reproduce the total energy and atomic
forces in each atomic configuration of the DFT-MD training
data set. The linear regression is carried out using the FitSNAP

software package [65,66]. To this end, we preprocess the DFT-
MD data by extracting the total energies and the forces on all
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the atoms. The training datasets and parameters are listed in
Table S1 [67]. The DFT-MD data is grouped into intervals
of 100 K in the temperature range from 300–1000 K, and at
intervals of 1000 K from 1000–10000 K. For each tem-
perature, we randomly select approximately 100 snapshots
of equilibrated atomic configurations. We include low-
temperature data from 300–900 K in the training because a
diverse dataset improves the quality of the trained ML-IAP
[68]. Based on this data, we generate a SNAP ML-IAP over
the desired temperature range.

Finally, we need to determine the hyperparameters of the
ML-IAP. These include the cutoff radius Rcut, which defines
the length scale of the atomic environment considered, Jmax,
which determines the number of terms in the expansion of
the atomic density in terms of bispectrum components, and
the weights of the energy and force training sets. To fix the
number of terms in the expansion, we set Jmax = 3, which de-
fines the number of descriptors, and used the DAKOTA software
package [47] to optimize the remaining parameters. We used
the single-objective genetic algorithm (SOGA), a global op-
timization scheme, with energy and force objective functions
within the DAKOTA optimization package [69]. The energy and
force objective functions are based on the root mean-square
error (RMSE) values provided by FitSNAP. To give more flex-
ibility to the genetic algorithm we also allowed DAKOTA to
vary the energy and force weights of each DFT training data
set. For the SOGA optimization, we adopt a population size of
100 and set the maximum number of iterations to 10000. The
cutoff radius was allowed to vary from 4.8–5.8 Å, whereas
both the energy weights (EW) and force weights (FW) were
optimized within the range from 0.5/(number of snapshots)
to 1.5/(number of snapshots). The DAKOTA iterations were
run approximately 1300 times to find the optimal parameters,
resulting in a cutoff radius of 5.323 Å and the energy and
force weights listed in Table S1 [67]. The FitSNAP potential
described here along with the DAKOTA/FitSNAP optimization
routine is made publicly available [70], enabling an exact
reproduction of the optimization workflow. We use the same
workflow for the generation of SNAP ML-IAP as Thompson
et al. [31] have used.

To assess the accuracy of the SNAP ML-IAP, we compare
its predictions of energy and force with the reference DFT-MD
values. This comparison is displayed in Fig. 1 as a correlation
plot, where the ideal result is a straight line (shown in red).
The SNAP predictions (represented by blue points) have a
certain spread and tilt around this line, which gives a quali-
tative measure of the error. The mean absolute error (MAE),
root mean-square error (RMSE), and standard deviation in
energy values for the trained ML-IAP were 6.27 meV/atom,
8.70 meV/atom, and 72.56 meV/atom, respectively. For
the forces, these errors were 0.22 eV/Å, 0.32 eV/Å, and
0.73 eV/Å, respectively. The RMSE in energy and force are
also calculated for each data set used in the training, see
Table S1 [67]. Furthermore, we plot the histograms of the
difference between the SNAP prediction and DFT-MD values
in the energy and force, which is displayed in Fig. S1 [67].
The distribution of the errors in the histogram is centered
around zero. The comparisons and error values indicate that
the trained ML-IAP is accurate and suitable for use in large-
scale MD simulations.

FIG. 1. Correlation plot of the energy (top) and force (bottom)
predictions illustrating the qualitative accuracy of the SNAP ML-IAP
relative to the DFT-MD reference data.

B. Time-averaged material properties from ML-IAP-driven
molecular dynamics simulations

Large-scale MD simulations are carried out using the open-
source LAMMPS [71] code. A three-dimensional cubic box
with dimensions of Lx = Ly = Lz = 15a (0 to 15a) along the
X , Y , and Z directions is created for the simulations, where
a is lattice constant. In the box, we distribute 13500 alu-
minum atoms in the face-centered cubic (fcc) configuration.
The atoms interact with each other via the SNAP ML-IAP
and ZBL potential. Periodic boundary conditions are chosen
for the simulations. We consider the aluminum atom’s mass
m = 26.9815 u (u is an atomic mass unit), atomic number
Z = 13, and lattice constant a = 4.048 Å. The lattice constant
sets the mass density of the aluminum atoms to its ambient
value ρ = 2.7 g/cm3. We chose the simulation time step as
1 fs, which ensures a fine discretization along the temporal
domain and good resolution of the underlying kinetics.

The thermalization of the system is achieved by evolving
positions and velocities from a canonical ensemble (NVT)
using a Nosé-Hoover [62,63] thermostat. For each tempera-
ture, the system is initially evolved in the NVT ensemble for
200 ps to ensure an equilibrium state. After this initial 200 ps
NVT run, the atomic configuration achieves thermodynamic
equilibrium with the desired temperature and is ready for the
transport calculation run. Transport properties are calculated
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in the microcanonical ensemble (NVE) on a total time period
of 10 ns.

III. RESULTS

The purpose of our study is to evaluate the applicability of
the trained SNAP ML-IAP in a wide temperature range, in-
cluding the challenging conditions of WDM. To achieve this,
we analyze various ionic transport and material properties,
such as thermal conductivity, shear viscosity, self-diffusion
coefficient, sound velocity, and ion-ion structure factor. Our
study focuses on aluminum with a fixed mass density of
2.7 g/cm3 and covers a broad temperature range from 300–
58022 K (along an isochore). To assess the accuracy of the
SNAP ML-IAP, we test its performance both within and out-
side the range of the provided training data.

A. Thermal conductivity

We compute the lattice contribution to the thermal conduc-
tivity κ from the well-known Green-Kubo formula [72,73]

κ = V

3kBT 2

∫ ∞

0
〈J(t )J(0)〉dt . (4)

It yields the thermal conductivity from the ensemble average
of the autocorrelation 〈J(t )J(0)〉 of the heat flux J. Here, V
denotes the volume, kB the Boltzmann constant, and T the
temperature. The heat flux is defined as

J = 1

V

⎡
⎣ N∑

i=1

eivi + 1

2

N∑
i< j

[Fi j (vi + v j )]ri j

⎤
⎦, (5)

where ei, ri j , vi, and Fi j are the per-atom energy (potential
and kinetic), the interatomic distance between atoms, velocity,
and forces between atoms, respectively. The integration in
Eq. (4) is truncated after a sufficiently large time period, which
is determined by the decay of the autocorrelation function.
We truncate it at 6 ps for low temperatures (300–950 K), at
1.5 ps at 1000 K, and at 1 ps for higher temperatures (1500–
58022 K). Taking a large time interval for integration can
introduce additional noise into the thermal conductivity [74].
Although there may be challenges associated with computing
thermal conductivity in fluids using the Green-Kubo formula
[75], we have chosen to utilize this method as a proxy to
assess the transferability of our ML-IAP and due to its recent
application in a similar context [39].

Figures 2 and 3 display our findings on the temperature-
dependent lattice contribution to thermal conductivity. In pure
metals, such as aluminum, the thermal conductivity is primar-
ily determined by free electrons, which serve as heat carriers.

The comparison of our low-temperature predictions with
the nonequilibrium MD calculation of Zhou et al. [76] and
the Boltzmann transport equation calculation of Stojanovic
et al. [77] are shown in Fig. 2. The excellent agreement illus-
trates the accuracy of our ML-IAP. The agreement with other
predictions at elevated temperatures shows that the ML-IAP
accurately reproduces the phonon heat conduction across a
large range of solid-phase temperatures.

In the range from 300–10000 K, thermal conductivity de-
creases with an increase in temperature due to enhancement
in phonon-phonon scattering, but as the temperature rises

FIG. 2. Lattice thermal conductivity of aluminum at 2.7 g/cm3

as a function of temperature from 300 K (0.0259 eV) to 950 K
(0.0819 eV). We compare our results with the nonequilibrium MD
simulation results of Zhou et al. [76] and Boltzmann transport
equation-based result of Stojanovic et al. [77].

(>10000 K), the thermal motion of atoms dominates resulting
in an increase of the thermal conductivity (see Fig. 2 and
Fig. 3). In Eq. (4), there is a kinetic and a potential contri-
bution to the thermal conductivity. The kinetic contribution
increases with an increase in temperature and dominates in
heat transport at higher temperatures (>10000 K). The vibra-
tional modes scatter in collision with other modes resulting
in reduced heat transport. The number of vibrational modes
decreases with a decrease in the temperature of the crystal,
but due to less scattering, it allows the remaining phonons to
travel further, which leads to higher thermal conductivity at a
lower temperature.

Next, we compare our predictions with those of Liu et al.
[37] in Fig. 3. Our analysis indicates that our trained SNAP
ML-IAP performs well within the range of the provided

FIG. 3. Lattice thermal conductivity of aluminum at 2.7 g/cm3

as a function of temperature from 1000 K (0.0862 eV) to 58022 K
(5 eV). The SNAP ML-IAP is trained from 300 K (0.0259 eV) to
10000 K (0.861 eV). We compare our results with the results of
Liu et al. [37], which is calculated by the deep potential molecular
dynamics method trained on each temperature.
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training data (300–10000 K) and also delivers remarkable
accuracy outside this range. However, we observe a significant
deviation between our predictions and those of Liu et al. at
approximately 5802 K (0.5 eV). This difference may be due to
noise in the calculation of Liu et al. [37] or the use of orbital-
free density functional theory (OFDFT) data in their training.
OFDFT is appropriate for high temperatures but may become
inaccurate at lower temperatures due to the approximations in-
herent in the kinetic energy functional that dominates the total
energy. In the literature, the accuracy of the OFDFT method
for WDM has been analyzed by comparing the equation of
state data obtained from it to the data obtained from DFT-MD
and path-integral Monte Carlo (PIMC) calculations [78–80].
Additionally, it is worth noting that Liu et al. [37] trained
and assessed their ML-IAP at each temperature displayed in
their study, whereas we assess the quality of our ML-IAP
outside the range of training data. Despite the sensitivity of
thermal conductivity to the interatomic potential, our ML-IAP
produces reliable outcomes over a wide temperature range.

Note that a long simulation time is required to calculate
a statistically accurate thermal conductivity [81]. Therefore,
we ran these calculations for 10 ns before collecting data
for processing. A shorter simulation time is possible, but it
will require smoothing of data along the temperature axis
to suppress noise. We also investigated the effect of finite
simulation cell size on thermal conductivity and found that
it is negligible for systems with more than 5000 atoms
(see Fig. S2 [67]).

B. Viscosity

We also use the Green-Kubo formalism to calculate the
shear viscosity

η = V

3kBT

∫ ∞

0
〈Pαβ (t )Pαβ (0)〉dt . (6)

Similarly, it is given by an autocorrelation function of the off-
diagonal elements of the stress tensor

Pαβ = 1

V

⎡
⎣ N∑

i=1

pα
i pβ

i

mi
−

N∑
i

N∑
i> j

(αi − α j )Fi j

⎤
⎦, (7)

where N is the total number of atoms, pα
i and pβ

i are the α

and β components of the momentum of the ith atom, mi is
the mass of the ith atom, αi are the Cartesian coordinates of
the atoms, Fi j are the forces between atoms i and j, and V
is the volume of the simulation box. It is important to note that
the shear viscosity calculated using the Green-Kubo formula
is dependent on the length of the simulation and that longer
simulations are required for accurate results.

Figure 4 displays the temperature-dependent shear viscos-
ity of our system. We observe a decreasing trend in viscosity
with increasing temperature from 2000–10000 K, followed by
a reversal of this trend at temperatures above 10000 K. We
compared our results with those obtained with an ML-IAP
by Cheng et al. [36] and found that our trained ML-IAP
accurately predicts the viscosity at the training points, as well
as in the intermediate and extrapolation regions.

As with thermal conductivity, the viscosity of our sys-
tem has both kinetic and potential contributions, as described

FIG. 4. Shear viscosity of aluminum at 2.7 g/cm3 as a function of
temperature from 2000 K (0.1723 eV) to 58022 K (5 eV). Our values
are compared with the shear viscosity values calculated by Cheng
et al. [36].

by Eq. (7). At lower temperatures, the momentum transport
is dominated by the potential contribution, while at higher
temperatures, the kinetic contribution becomes more signifi-
cant. In the intermediate temperature range, both contributions
play a role, resulting in longer relaxation times and higher
noise levels in the transport properties, even with simulations
as long as 10 ns. Nonetheless, our results provide valuable
insights into the temperature-dependent behavior of the vis-
cosity of our system.

C. Diffusion coefficient

We also investigate the self-diffusion coefficient, D, which
is calculated using the mean-squared displacement of atoms:

D = 1

6t

〈
N∑

i=1

[ri(t ) − ri(0)]2

〉
, (8)

where r is the position of the ith atom at a given time t . The
slope of the mean-squared displacement versus time plot gives
the values of the diffusion coefficient.

The values of the self-diffusion coefficient as a function of
temperature are displayed in Fig. 5. The diffusion coefficient
increases with an increase in temperature, which is a direct
consequence of the increased thermal motion of aluminum
atoms at higher temperatures. We compared our predicted
diffusion coefficients with DFT-MD and OFDFT calculations
of Sjostrom and Daligault [82] and with kinetic theory cal-
culations of Daligault et al. [83]. Our calculations follow the
trend in and out of the training data range. Particularly at low
temperatures, our predictions agree well with accurate DFT-
MD calculations. As temperature increases, our predictions
start deviating somewhat from those reported in the literature.
The reason for the discrepancy might be due to the use of dif-
ferent levels of theory. As the temperature reaches 116 040 K
(10 eV), the difference between our prediction and OFDFT
starts decreasing, likely due to the suitability of OFDFT at
high temperatures.
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FIG. 5. Self-diffusion coefficient of aluminum at 2.7 g/cm3 as
a function of temperature from 1500 K (0.129 eV) to 116040 K
(10 eV). We compare our results with the KSDFT and OFDFT results
of Sjostrom and Daligault [82] and kinetic theory-based results of
Daligault et al. [83]. The values at low temperatures, from 1500 K
(0.129 eV) to 10000 K (0.862 eV) are shown in the inset.

Furthermore, we can check the consistency of our result
by utilizing the Stokes-Einstein relation [84] as an empirical
reference result. It reads D = kBT/2πdη and relates the shear
viscosity with the self-diffusion coefficient, where d denotes
the diameter of a macroscopic sphere moving with constant
velocity in a fluid of a given viscosity. Following Alemany
et al. [85], we apply this macroscopic concept to our case by
determining the value of d from the first peak in the radial
distribution function g(r) and using shear viscosity values that
were obtained from the Green-Kubo relation. At 10000 K,
d = 2.4975 Å and η = 0.8317 mPa · s, the Stokes-Einstein
relation yields a self-diffusion coefficient 0.105 mm2/s which
is in good agreement with the calculation of the mean squared
displacement yielding a value of 0.091 mm2/s.

D. Longitudinal collective modes

1. Sound velocity

The sound velocity of a material at a given temperature
can be determined from the slope of the longitudinal dis-
persion relation ω(q) in the limit q → 0 [85,86]. Calculating
ω(q) is computationally expensive because increasingly larger
simulation cells are needed as q decreases. Resolving the
behavior of ω(q) at small q becomes feasible in terms of an
ML-IAP, which enables us to calculate the dynamics in very
large simulation cells and, hence, gather data for small q. The
longitudinal current of ions is defined as

λ(q, t ) =
∑

j

v jx(t )eiq.x j (t ), (9)

FIG. 6. Dispersion relation of aluminum at mass density of
2.7 g/cm3 and temperature of 0.5 eV (5802 K), 2.5 eV (29011 K),
and 5 eV (58022 K). The slope of the plot (red solid line) in the
hydrodynamic regime (small wave vector q) provides sound velocity
in the melted aluminum.

where q is the wave vector chosen along the x axis, which
depends on integer number n (n = 1, 2, 3, 4, . . .) and the sim-
ulation system length Lx. The longitudinal current correlation
spectrum

L(q, ω) = 1

2πN
lim

τ→∞
1

τ
|λ(q, ω)|2, (10)

is then calculated from the longitudinal current spectra, where

λ(q, ω) =
∫ τ

0
λ(q, t )e−iωt dt (11)

denotes the Fourier transform of λ(q, t ) and τ the simulation
time, which is truncated at a sufficiently large value in our
calculations. The peaks in L(q, ω) correspond to the collective
modes, which represent the maximum energy of the wave
mode, see Fig. S3 [67]. The dispersion relation of the lon-
gitudinal wave mode can then be obtained by plotting ω(q)
(the value at the peak) versus the wave vector q, as shown in
Fig. 6.

The sound velocity corresponds to the slope at small val-
ues for q (linear region). For aluminum at temperatures of
0.5 eV, 2.5 eV, and 5 eV, we determine the sound velocity as
6450 m/s, 8887 m/s, and 9818 m/s, respectively. These val-
ues are in agreement with the sound velocities of 6273 m/s
and 10365 m/s at 0.5 eV and 5 eV, respectively, obtained
previously from OFDFT [27].

2. Ion-ion structure factor

The dynamic ion-ion structure factor (DSF) is obtained
from density fluctuations [85,86] and is defined as

S(q, ω) = 1

2π

∫ ∞

−∞
F (q, t )e−iωt dt (12)

in terms of the intermediate scattering function

F (q, t ) = 1

N
〈n(q, t )n(−q, 0)〉 (13)

033162-6



TRANSFERABLE INTERATOMIC POTENTIAL FOR … PHYSICAL REVIEW RESEARCH 5, 033162 (2023)

FIG. 7. Static structure factor of aluminum at a mass density
of 2.7 g/cm3 and temperatures of 0.5 eV (5802 K) (top) and 5 eV
(58022 K) (bottom). We compare our results (blue curve) with the
DFT-MD (red curve) and OFDFT (green curve) results of White et al.
[27]. Our results are in excellent agreement with the results obtained
from DFT-MD.

from atomic density correlations 〈n(q, t )n(−q, 0)〉 obtained
from an ensemble average. The atomic density is calculated
from the atomic positions as

n(q, t ) =
∑

j

eiq.x j (t ). (14)

Finally, the initial value of the intermediate scattering function
yields the static structure factor (SSF)

S(q) = F (q, t = 0). (15)

Both the SSF and the DSF are measured in experiments, for
example, using neutron scattering or x-ray diffraction. Both
are used for the diagnostics of the temperature, density, and
ionization state in dense plasmas and WDM [87]. Rüter and
Redmer [88] have calculated the ion-ion structure factor for
warm dense aluminum using DFT-MD calculations. In this
work, we compute the DSF and the SSF by postprocessing
our MD data with the DYNASOR code [89].

First, we illustrate the SSF as a function of wave vector q
for temperatures of 0.5 eV (5802 K) and 5 eV (58022 K) in
Fig. 7 and compare our results with those from DFT-MD and
OFDFT [27]. Note the excellent agreement of our prediction
with the DFT-MD result at 0.5 eV (5802 K) and inaccuracies
of the OFDFT result in the main peak. This confirms the
abilities of our SNAP ML-IAP to interpolate accurately in
the range of training data. Furthermore, we observe excellent
agreement of our SNAP ML-IAP predictions with DFT-MD
also at 5 eV (58022 K) indicating the reliability of the SNAP
ML-IAP also outside the range of training data.

Finally, we illustrate the DSF at 5 eV (58022 K) for two
values of the wave vector q = 0.45 Å−1 and q = 0.96 Å−1 in

FIG. 8. Dynamic structure factor of aluminum at 2.7 g/cm3 and
5 eV (58022 K) for wave vectors q = 0.45 Å−1 (top) and q =
0.96 Å−1 (bottom). Our result (blue) is compared with the OFDFT
result of White et al. [27] (green curve) and the neutral pseudoatom
(NPA) model of Harbour et al. [90] (red curve).

Fig. 8. Similarly, we compare our results with results from
OFDFT [27] (green curve) and a neutral pseudoatom (NPA)
model [90] (red curve) and find qualitative agreement. We can
further assess the quality of our predictions by checking the
sum rules the DSF obeys [91]. To that end, we evaluate the
sum rule ∫ ∞

−∞
dωS(q, ω) = S(q) = F (q, 0), (16)

which states that the SSF is recovered from the DSF by
integration over the frequency domain. This is demonstrated
for temperatures of 0.5 eV (5802 K) and 5 eV (58022 K) in
Fig. S4 [67].

IV. CONCLUSIONS

Our study has resulted in the training of a single ML-IAP
using DFT-MD data and the SNAP methodology to model
the properties of aluminum in a wide range of conditions,
from ambient to WDM. Previous ML-IAPs have been trained
for specific temperature and pressure ranges. However, our
findings demonstrate that a single ML-IAP can yield reliable
and precise results across a broad temperature range.
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To evaluate the transferability of our ML-IAP, we com-
puted several material and transport properties, including
the ionic part of thermal conductivity, shear viscosity, self-
diffusion coefficient, sound velocity, and structure factor.
Our results for the thermal conductivity and shear viscos-
ity are consistent with previous findings from ML-IAPs
[36,37,76,77], although those ML-IAPs were specifically
trained for the tested temperature ranges. Regarding the self-
diffusion coefficient, our predictions agree well with reference
data from DFT-MD [82] and are in qualitative agreement with
less accurate results from OFDFT [82] and kinetic theory [83].
Furthermore, our ML-IAP enables the determination of the
sound velocity, which is otherwise difficult to compute using
DFT-MD calculations due to the requirement of large simu-
lation cells. We demonstrate these calculations for aluminum
at a broad temperature range and obtain qualitative agreement
with OFDFT results [27]. Lastly, we show that our ML-IAP
can predict the ion-ion structure factor with the same accuracy
as DFT-MD [27]. Overall, our results demonstrate the ability
of our ML-IAP to yield results in line with prior research
and, more importantly, its reliability and accuracy beyond the
training range.

Demonstrating the transferability of an ML-IAP across a
broad temperature range presents a significant advancement.
Utilizing transferable ML-IAPs reduces the computational re-
sources required to generate material properties for studying
matter under elevated temperatures and enables more com-
prehensive and accurate simulations of materials properties.
This will greatly support the interpretation of experimental
measurements of laser-driven and shock-compressed samples
at free-electron laser facilities worldwide. While we have
shown the transferability of our ML-IAP for temperature
ranges, a comprehensive ML-IAP that is useful for extended

simulations of properties in WDM requires transferability
across both pressure and temperature ranges. We plan to ad-
dress this challenge in our future work and further advance
our methodology.
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