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Spectral topology and its relation to Fermi arcs in strongly correlated systems
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Fermi gases and liquids display an excitation spectrum that is simply connected, ensuring closed Fermi
surfaces. In strongly correlated systems such as the cuprate superconductors, the existence of open sheets
of Fermi surface known as Fermi arcs indicate a distinctly different topology of the spectrum with no
equivalent in Fermi-liquid theory. Here, we demonstrate a generic mechanism by which correlation effects in
fermionic systems can change the topology of the spectrum. Using diagrammatic Monte Carlo simulations, we
demonstrate the existence of disconnected and multiply connected excitation spectra in the attractive Hubbard
model in the BCS-BEC crossover regime. These topologically nontrivial spectra are a prerequisite for Fermi
arcs.
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I. INTRODUCTION

Landau’s Fermi-liquid theory [1] is the standard model
through which we understand interacting electrons in normal
metals. In this paradigm, electronic states evolve adiabatically
with increasing interactions so that there remains a direct cor-
respondence between the states in a noninteracting Fermi gas,
and the quasiparticles of the interacting system. A key con-
sequence of this relationship is that the excitation spectrum
of the interacting system inherits the topology of the bands
associated with the noninteracting state. In the absence of gap-
closing points, the energy bands of Fermi gases are generally
simply connected sets, and so are consequently the spectra
of Fermi liquids. This, in turn, implies a Fermi surface that
is closed (this point also holds with nodes in the spectrum).
Strongly correlated systems often display phenomena that fall
decidedly outside of the Fermi-liquid regime. In the cuprates,
superconductivity is nucleated from a pseudogap state with
open sheets of Fermi surface, which persist over a wide range
of doping levels [2]. The physical origin of these Fermi arcs
remains highly contested.

It has been observed in the cuprates that superconducting
fluctuations persist above the critical temperature [3–5], and it
has been proposed that this fact may explain the origin of the
pseudogap state [6]. This in turn raises key questions about the
pairing regime, which also remains disputed: If the cuprates
are BCS-like, then the fluctuating region should be understood
in terms of a paired state without global phase coherence [7].
In the BEC limit, the electrons form bound pairs which give
rise to a bosonic normal liquid at temperatures far above Tc
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[8]. The onset of superconductivity would then occur as these
pairs condense at a much lower temperature. While these
two scenarios are often both referred to by the term “pre-
formed pairs,” they are remarkably different. Between these
two extrema lies an extensive BCS-BEC crossover regime
[9].

A directly opposing point of view is that preformed pairs
have no part in the emergence of Fermi arcs, and that the
pseudogap and paired states are instead antagonistic to each
other. Angle-resolved photoemission spectroscopy (ARPES)
imaging is claimed to show direct competition between super-
conductivity, and a distinctly different order parameter that is
associated with the pseudogap state [10,11]. A candidate for
this order parameter is provided by a breaking of translation
symmetry [12], which is observed in scanning tunneling mi-
croscopy (STM) imaging [13,14].

Theoretically predicting the existence of Fermi arcs in
model Hamiltonians is challenging due to a lack of reli-
able numerical techniques for strongly correlated fermions.
Nonetheless, recent variational Monte Carlo calculations sug-
gest that the pseudogap physics observed in the cuprates is
at least qualitatively captured by the single-band Hubbard
model. For Hubbard clusters up to 64 sites, Fermi arcs are
observed at a carrier concentration of 6.25%, and remnants
of these are present at 12.5% doping [15]. This may be
compared to the cuprates, where pseudogap physics persist
up to a carrier concentration of ∼20% [2,16]. The existence
of Fermi arcs in a simple model Hamiltonian such as the
Hubbard model is encouraging since it may indicate that this
is a generic phenomena.

A second theoretical challenge is to qualitatively explain
how Fermi-liquid theory fails in strongly correlated systems,
and connect this insight with the emergence of Fermi arcs.
Here, a key observation is that a simply connected excitation
spectrum does not permit open sheets of Fermi surface. This
relationship implies that the electronic state’s adiabatic depen-
dence on interaction strength must necessarily break down in
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FIG. 1. Relationship between spectral topology and Fermi arcs.
The multiply connected spectrum intersects the Fermi level on a
set of open and disconnected lines which constitute Fermi arcs. By
contrast, a simply connected spectrum must necessarily intersect the
Fermi level on a set of closed lines. This implies that a topologically
nontrivial spectrum is a prerequisite of Fermi arcs.

such a way that the connectivity of the spectrum changes (see
also Fig. 1).

In this paper, we discuss how strong interactions can give
rise to non-Fermi-liquid phases which are characterized by
band fractionalization [17]. Using the attractive-interaction
Hubbard model as an example, we demonstrate that that
the operators associated with these fractional bands exhibit
vanishing phase spaces in parts of the Brillouin zone, which
leads to disconnected or multiply connected excitation spec-
tra. These topologically nontrivial spectra are a fundamental
prerequisite for the existence of Fermi arcs.

II. BAND FRACTIONALIZATION AND SPECTRAL
TOPOLOGY

To illustrate the breakdown of Fermi-liquid theory, we
consider the attractive Hubbard model (AHM), which is given
by

H =
∑
〈i j〉σ

tc†
iσ c jσ +

∑
i

(Uni↓ni↑ − μni ), U < 0. (1)

Because of the interaction, the energy bands are generally split
into two subbands, [18], a phenomenon that is also referred to
as band fractionalization [17]. For a strong contact interaction,
these subbands are generally singlonlike and doublonlike,
respectively, prompting us to introduce the corresponding op-
erators and associated spinors:

c†
iσ = s†

iσ + d†
iσ , s†

iσ = c†
iσ (1 − niσ̄ ), d†

i = c†
iσ niσ̄ ,

�
†
iσ = [s†

iσ d†
iσ ], �iσ =

[
siσ

diσ

]
. (2)

Here, s† and d† are the singlon and doublon creation operators
while σ̄ = −σ . We can then define a “quasiparticle” (QP)
Green’s function based on the outer product of the spinors,

�σ (x2 − x1) = 〈Tτ�
†
iσ (x1) ⊗ �iσ (x2)〉, (3)

from which the ordinary electronic Green’s function is ob-
tained by the summation

Gσ (x) =
∑
αβ

�αβσ (x). (4)

In the atomic limit, the QP Green’s function is diagonal, with
a frequency space representation given by

�A
σ (ω) =

[
1+eμ

ZA

1
iω+μ

0

0 eμ+e2μ−U

ZA

1
iω+μ−U

]
. (5)

Here, the energy is for simplicity given in units of the tem-
perature (corresponding to the case of unit temperature). The
Green’s function (5) resembles that of a two-component sys-
tem, except that it is rescaled by two “quasiparticle weights.”
To pursue this analogy we introduce the weight W according
to

W =
[

1+eμ

ZA
0

0 eμ+e2μ−U

ZA

]
= w0σ0 + wzσz, (6)

where we note that (6) must satisfy

w0 � |wz|. (7)

In the limit wz → w0, the system is effectively Gutzwiller
projected, and doublons can be regarded as “forbidden.” In
this scenario, the doublon operators can be said to have a
vanishing phase space in the sense that they have a domain or
codomain which does not overlap with the subspace on which
we project. The same can be said abut the singlon operator in
the limit wz → −w0. In these cases, the doublon or singlon
parts do not contribute to the Green’s function, and thus not to
the spectrum either.

We may then express the atomic Green’s function (5) in
terms of a reweighted two-component system according to

�A
σ (ω) = W

iω − V
, V =

[
U

2
− μ

]
σ0 − U

2
σz, (8)

where V is the effective two-component Hamiltonian.
Next, we note that the tunneling term may be written

tc†
iσ c jσ = �

†
iσ K� jσ , K = t (σ0 + σx ). (9)

Thus, including the first correction of the strong-coupling
expansion [19], we obtain a Green’s function

�σ (ω) = �A
σ (ω) + �A

σ (ω)K (k)�A
σ (ω) + · · ·

= 1

iω − V − W K (k)
W. (10)

At this point, the effective two-component Hamiltonian He =
V + W K (k) is no longer diagonal, and the dispersion thus
mixes the singlon and doublon components. Additionally,
He is non-Hermitian, and does not generally exhibit an or-
thonormal eigenbasis. However, due to a combination of PT
symmetry and the condition (7), the eigenvalues remain real.

Due to the factor W , the spectral weights of the two sub-
bands are generally not equal, and one of them may even
vanish asymptotically. This points is central to the spectral
topology: If we conduct a strong-coupling expansion to higher
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FIG. 2. Spectra and equation of state for the attractive Hubbard model with U = −5|t |, at temperatures of (a)–(c) t/T = 1 and (d)–(i)
t/T = 4. (a)–(f) correspond to half filling, while (g)–(i) correspond to 〈n̂〉 ≈ 1.88. At high temperature, the spectrum (a) reveals a suppression
of the density of states at the Fermi level. The particle density (b) exhibits a minimum at k = (0, 0) with 〈n̂〉 ≈ 0.4 and a maximum at
k = (π, π ) with 〈n̂〉 ≈ 1.6. The momentum-resolved spectral density (c) taken along the dashed line in (b) reveals two subbands. Decreasing
the temperature, the density of states (d) vanishes at the Fermi level, implying that the system is gapped with respect to fermionic excitations.
The particle density (e) now has minima and maxima close to 0 and 2.0, respectively. The spectral density (f) reveals sharp families of
excitations with a spectral weight that is strongly dependent on momentum and almost vanishes in part of the Brillouin zone. Increasing the
particle density to 〈n̂〉 ≈ 1.88, the density of states (g) reveals a large peak that is doublonlike, and a much suppressed peak corresponding to
singlons. The peaks are well separated, and the density of states vanishes at ε ≈ 1.5t . The spectral density reveals a large doublonlike peak,
though the singlon peak has a presence mainly near k = (0, 0). This data were obtained using an expansion order O = 6.

order, then we will find that the QP weight W becomes mo-
mentum dependent. If the phase space for a subband operator
of the type (2) vanishes in part of the Brillouin zone, then
so does the corresponding spectral weight, implying that the
spectrum is no longer simply connected.

The principal mechanism behind this phenomenon tran-
spires from Eq. (2): In contrast to fermionic operators, the QP
operators effectively contain projections onto a subspace of
the Hilbert space. For a particle density satisfying 〈n(k)〉 = 0
we must have that the operators d†

k,σ , dk,σ both vanish when
acting on this state, implying that the corresponding compo-
nent of the QP Green’s function in Eq. (3) is zero, along with

the related spectral density. The same occurs for the singlon
pair S†

k,σ , Sk,σ when 〈n(k)〉 = 2.
Strong-coupling expansion by hand is however not feasible

beyond first order, and to explore this concept we have to
employ numerical techniques.

III. NUMERICAL TREATMENT

To test the preceding conjecture, we employ bold-line di-
agrammatic Monte Carlo simulations, specifically focusing
on the attractive Hubbard model in the BCS-BEC crossover
regime [20–23]. This method is based on the stochastic
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FIG. 3. Spectral weight of the singlonlike subband, obtained
from Eq. (16). At half filling and a temperature of t/T = 1 (a),
the weight is suppressed near k = (π, π ) and reaches a minimum
of ≈16%. Reducing the temperature (b), this minimum approaches
zero. Consequently, the set of points in momentum space where this
quasiparticle family has a finite spectral weight is now multiply con-
nected. Increasing the particle density to 〈n̂〉 ≈ 1.88 (c), the spectrum
retains a finite weight near k = (0, 0) but almost vanishes elsewhere,
thus becoming disconnected. The strong suppression of the spectral
weight at certain momenta can be understood from a vanishing phase
space of singlonlike excitations.

sampling of Feynman-type graphs [24], and is unbiased in the
sense that the only systematic source of error is truncation of
the series. For a convergent series, asymptotically exact results
are obtained directly in the macroscopic limit. To be able to
address systems with strong interactions we use a particular
formulation known as strong-coupling diagrammatic Monte
Carlo (SCDMC) [19,25–28], where the diagrammatic ele-
ments are connected vertices of propagating electrons that are
nonperturbative in U . The computational protocol employed
here is outlined in detail in Ref. [19].

In SCDMC, the expansion parameter is the hopping in-
tegral t . The principal observable that we compute is the
polarization operator of the hopping integral, here denoted
�t (ω, k). From the polarization operator, we obtain the
dressed hopping integral via the Bethe-Salpeter equation

t̃ (ω, k) = 1

t−1(k) − �t (ω, k)
. (11)

We expand in the dressed hopping t̃ , while retaining only the
skeleton diagrams. By iterating until convergence, we obtain
a self-consistent solution for t̃ which implicitly takes into
account certain classes of diagrams to infinite order.

The Green’s function of the interacting system is closely
related to the dressed hopping integral, and can be obtained
from the equation

G(ω, k) = 1

�−1
t (ω, k) − tk

. (12)

To the lowest order, the polarization operator is given by
the atomic-limit Green’s function, meaning that Eq. (10) is
reproduced. We conduct a self-consistent summation of all
diagrams to order 7 which permits us to assess convergence
properties of the series—for a discussion, see the Appendix.

We compute a discrete approximation for the spectrum
using a numerical analytical continuation protocol [29]: First,
we define a spectral reconstruction of the Green’s function and
a corresponding error metric according to

GR(τ, k) =
nmax∑
n=1

An(k)
e−εnτ

1 + eβεn
, τ < 0, (13)

�[k, {An(k)}] =
√

1

β

∫
dτ [G(τ, k) − GR(τ, k)]2. (14)

We use nmax = 121 as a compromise between accuracy and
computational cost. To obtain the best estimate for the spec-
tral function A(k), we minimize the error metric � through
a process of simulated annealing followed by a line-search
tecnhique: In the first stage, we use Monte Carlo to update
{An(k)} with an acceptance ration ∼e−κ�, while successively
increasing the inverse pseudotemperature κ . In the second
stage, we minimize � using Newton-Raphson. This reduces
the error only very slightly, but tends to result in a smoother
spectrum.

From the spectrum, we obtain a (discretized) estimate for
the density of states via the integral

DOS(εn) =
∫

dk
(2π )D

An(k). (15)

The normalization of Eq. (13) is such that the summations
over An and DOS(εn) are unity.

We consider the Hubbard model with an attractive contact
interaction given by U = −5|t |, at temperatures t/T = 1 and
t/T = 4. This parameter choice ensures that the attraction is
strong enough to suppress fermionic degrees of freedom near
the Fermi level. Stronger attraction would only enhance this
effect. We examine the cases of half filling and a particle
density of 〈n̂〉 ≈ 1.88. The results of our simulations are sum-
marized in Fig. 2.

At half filling and a higher temperature of t/T = 1, we
find that the density of states [Fig. 2(a)] has a minimum
at the Fermi level, though the system remains gapless. The
momentum-resolved particle density [Fig. 2(b)] attains min-
ima and maxima at ∼0.4 and ∼1.6. The spectral density
[Fig. 2(c)] exhibits two smeared subbands, with densities that
are visibly momentum dependent.

Reducing the temperature, the density of states [Fig. 2(d)]
vanishes at the Fermi level, indicating that the system is
gapped against fermionic excitations. The particle density ex-
trema [Fig. 2(e)] are now close to 0 and 2.0, respectively. The
spectral density [Fig. 2(f)] is sharply peaked, with a weight
that is strongly dependent on momentum.

If we also increase the particle density, then the upper
subband is strongly suppressed as a result [Fig. 2(g)]. The
system is now completely filled in a large fraction of the
Brillouin zone [Fig. 2(h)], and the lower subband carries most
of the spectral weight [Fig. 2(i)].
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The momentum-dependent spectral weights can be un-
derstood from the fact that the two subbands originate in
singlonlike and doublonlike degrees of freedom: For a suffi-
ciently strong attraction, the Hubbard model prefers to have
occupation numbers of 0 or 2. Singly occupied sites are
situated at high energy, implying that the upper subband is sin-
glonlike. At small momenta, k ≈ (0, 0), the particle density is
smaller, and the singlon operator has a substantial phase space
allowing for a high spectral density. Near k = (π, π ), the par-
ticle density approaches 2, meaning that the phase space for
the singlon operator vanishes, along with the spectral weight
of this subband. For the doublonlike component, the situation
is the opposite, with a vanishing spectral density when the
density is small.

To quantify the suppression of the spectral density, we
define the spectral weight of a subband according to

ρ(k) =
n=nmax∑
n=nmin

An(k), (16)

where the range of indices n should be taken to include the
entire subband, but nothing else. At a temperature of t/T = 4
and half filling, the system remains gapped so that we can
identify the upper subband with positive energies and the
lower subband with negative energies. Doping the system, the
two subbands are still well separated with the density of states
vanishing at ε ≈ 1.5t , suggesting we use this energy as the
dividing point. At the higher temperature, the two subbands
overlap. We can still calculate spectral weights based on ε = 0
as our dividing point, though this approximation may slightly
underestimate the spectral weight at its minimum, while over-
estimating it at the maximum.

The spectral weight of the singlonlike component is
shown in Fig. 3. At a temperature of t/T = 1 and half filling
[Fig. 3(a)], the singlonlike component is suppressed to ≈16%
at k ≈ (π, π ). At a temperature of t/T = 4 [Fig. 3(b)],
this minimum drops below 1%. The strong temperature
dependence is consistent with the notion of a vanishing phase
space for the singlon operator: At k = (π, π ), the system has
a preference for double occupation, and the singlon operator
can only act in the presence of thermal fluctuations. As the
temperature is reduced, these are exponentially suppressed
together with the spectral weight. Asymptotically, this results
in a family of quasiparticles which only has a finite spectral
weight in part of the Brillouin zone, and thus a multiply
connected spectrum. Increasing the particle density
[Fig. 3(c)], the spectral weight attains a maximum at
k = (0, 0) while asymptotically vanishing between these.
The result is a disconnected spectrum.

It should be noted that we do not reach the point where the
spectrum completely vanishes since we are limited to finite
temperatures. Diagrammatic Monte Carlo generally requires
that the series converges, and this is often not the case at
sufficiently low temperatures. Real condensed-matter systems
are also generally realized at finite temperature. However,
thermal fluctuations are exponentially suppressed with the
inverse temperature. If the relevant energy scale is large com-
pared to the temperature, then we can for all practical purposes
regard the systems as being in the asymptotic limit where
the spectral density vanishes in part of the Brillouin zone.

Once the spectrum has a nontrivial connectivity, there are no
topological obstacles to an intersection with the Fermi level
that is an open line in two dimensions (2D), as shown in Fig. 1,
or an open surface in 3D.

IV. CONCLUSIONS

In non-Fermi liquids, band fractionalization effectively
splits the electron energy into a distribution of quasiparticle
energies. The spectral weight of these subbands is determined
by the phase space of the corresponding operators, imply-
ing that it is generally momentum dependent. In strongly
correlated systems, this phase space may—to exponential
accuracy—vanish, creating voids in parts of the Brillouin zone
which change the topology of the excitation spectrum. This
effect is a prerequisite for Fermi arcs, and spectral topol-
ogy should therefore be regarded as an essential property of
strongly correlated phases.
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APPENDIX

To assess how truncation of the series affects the results,
we compare the density of states and spectral function for
the cases reported in the paper at different expansion orders.
In Fig. 4 we show the case of half filling and temperatures
t/T = 1 and t/T = 4 for expansion orders O = 5, 6, 7. At
the higher temperature, we observe that the DOS changes
very little, though a small correction at ε = 0 is visible. The
spectrum is qualitatively very similar, and we conclude that
the impart of truncation is very small.

At the lower temperature, we see some changes in the
shape of the DOS when increasing the order from 5 to 6,
though the system consistently remains gapped. The spectra
show a weight that does not completely vanish at O = 5, but
is strongly suppressed at higher orders. At O = 7, we begin to
see noise in the spectrum as a result of the computational cost
associated with expansions to high order. For this data set, we
can conclude that truncation of the series has a limited quan-
titative impact, but it does not affect any of the conclusions
derived in the paper.

In Fig. 5, we see the DOS and spectra for the doped case
at expansion orders O = 5, 6, 7. In this scenario, truncation of
the series has no impact visible to the naked eye, and we can
conclude that the result is virtually exact.

In conclusion, we find that the diagrammatic Monte Carlo
simulations reported do accurately capture the physics of the
attractive Hubbard model. The results are qualitatively not
affected by a truncation of the series, yet a small quantitative
uncertainty remains for one of the data sets.
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FIG. 4. Convergence of the series at half filling. The left column corresponds to an expansion order O = 5, the center corresponds to
O = 6, and the right corresponds to O = 7. (a)–(c) give the DOS at a temperature of t/T = 1, while (d)–(f) give the corresponding spectra.
(g)–(i) give the DOS at a temperature of t/T = 4, while (j)–(l) give the corresponding spectra. At the higher temperature, the corrections when
changing the expansion order are very small, though a slight shift in DOS at the Fermi level can be observed when comparing (a) O = 5 and
(b) O = 6. At the lower temperature, we do see a quantitative difference in DOS between (g) orders 5 and (h) 6 while the correction at (i) order
7 is smaller. The small peaks in the DOS near the Fermi level in (g) are reflected in a suppressed fractionalized subband visible in (j). At orders
6 and 7, this fractionalized subband vanishes.

033160-6



SPECTRAL TOPOLOGY AND ITS RELATION TO FERMI … PHYSICAL REVIEW RESEARCH 5, 033160 (2023)

FIG. 5. Convergence of the series in the strongly doped case. The density is 〈n̂〉 ≈ 1.88 and the temperature is t/T = 4. The left column
[(a), (d)] corresponds to an expansion order O = 5, the center column to O = 6, and the right columns to O = 7. The DOS [(a)–(c)] does
not change visibly with expansion order, and neither does the spectrum [(d)–(f)]. We can therefore conclude that the observables have
converged.
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