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State-of-the-art noisy digital quantum computers can only execute short-depth quantum circuits. Variational
algorithms are a promising route to unlock the potential of noisy quantum computers since the depth of the
corresponding circuits can be kept well below hardware-imposed limits. Typically, the variational parameters
correspond to virtual RZ gate angles, implemented by phase changes of calibrated pulses. By encoding the
variational parameters directly as hardware pulse amplitudes and durations, we succeed in further shortening
the pulse schedule and overall circuit duration. This decreases the impact of qubit decoherence and gate noise.
As a demonstration, we apply our pulse-based variational algorithm to the calculation of the ground state of
different hydrogen-based systems (H2, H3, and H4) using IBM cross-resonance-based hardware. We observe a
reduction in schedule duration of up to 5× compared to CNOT-based Ansätze, while also reducing the measured
energy. In particular, we observe a sizable improvement of the minimal energy configuration of H3 compared
to a CNOT-based variational form. Finally, we discuss possible future developments including error-mitigation
schemes and schedule optimizations, which will enable further improvements of our approach, paving the way
towards the simulation of larger systems on noisy quantum devices.

DOI: 10.1103/PhysRevResearch.5.033159

I. INTRODUCTION

Current quantum computers are noisy and are constituted
of qubits with finite coherence times. This bounds the depth
of the circuits that they can reliably execute. There is thus a
large interest in short-depth noise-resilient algorithms such as
the variational quantum algorithm (VQA) [1]. VQAs can be
applied to quantum chemistry [2–6], machine-learning [7–9],
and optimization [10] tasks. In a VQA, the expectation value
〈ψ (θ)|O|ψ (θ)〉 of an observable O is optimized by varying
the parameters θ of a trial variational state |ψ (θ)〉. Typically,
the variational state is prepared by a parameterized quantum
circuit, the Ansatz. For example, in quantum chemistry, |ψ (θ)〉
can be prepared with the unitary coupled cluster with singles
and doubles (UCCSD) Ansatz [11]. For combinatorial opti-
mization, the quantum approximate optimization algorithm
prepares a trial state by alternating applications of a cost-
function operator and a mixer operator [12–15]. However,
many Ansätze are often still too deep for execution on current
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quantum hardware [11,16]. This has spurred an interest to
generate variational states with more resource-efficient cir-
cuits [17–21]. In superconducting qubits [22–24], the circuit
instructions are translated into microwave pulses that manipu-
late the quantum information. For example, on IBM Quantum
systems, all circuits are broken down into the hardware-native
basis gates {X,

√
X ,CNOT, RZ (θ )}. Here, the X ,

√
X , and

CNOT gates are implemented by carefully calibrated pulses.
All the parameters of a circuit are therefore encoded in the
virtual-Z rotations RZ (θ ), i.e., zero-duration instructions that
only change the phase of subsequent pulses [25]. The du-
ration of the Ansatz is thus independent of the optimization
parameters θ.

The pulses implementing the native basis gate set are care-
fully calibrated a priori, a costly task typically done with
error-amplifying gate sequences [26] and sometimes optimal
control [27]. Quantum optimal control (OC) has a long his-
tory [28–30] and provides methods to create quantum states
[31,32] and gates [33–35], and control nonunitary dynamics
[36] such as a measurement process [37,38]. However, in
superconducting qubits, model inaccuracies make it difficult
to apply pulses generated through simulations [39]. One must
either improve the model [40] or resort to closed-loop optimal
control on the hardware [39]. In closed-loop optimal control,
a cost function, which can correspond to a gate fidelity, is
optimized by an algorithm that varies parameters in a pa-
rameterized pulse shape [27,34]. Similarly, in a VQA, the
expectation value of an observable is optimized by varying
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parameters in a parameterized quantum circuit which is ul-
timately lowered to pulses. Closed-loop optimal control and
VQAs can thus be viewed as the same task [41].

Currently, VQAs with the basis gate set {X,
√

X ,CNOT,
RZ (θ )} amount to optimizing phases, while OC optimizes
pulse parameters. Pulse-level control of cloud-based quantum
computers [42,43] enables a direct optimization of the pulse
parameters in the variational quantum eigensolver (VQE)
[44]. This has been explored in previous works, which we
briefly summarize. The authors of Ref. [45] show how to
optimize only the amplitude of pulses on cross-resonance
(CR) systems [46] to increase the accuracy of a binary clas-
sification. On the other hand the authors of Ref. [47] let the
variational algorithm change the amplitude and frequency of
the pulses. However, optimizing only pulse amplitudes and
not durations makes it impossible to mitigate decoherence by
adaptively shortening the pulse schedule. Indeed, this is what
has been proposed in Ctrl-VQE, where both the duration and
the amplitude of square pulses is optimized [48]. Numerical
simulations show that leakage outside of the computational
space can reduce the state preparation time in Ctrl-VQE and
improve results [49]. Finally, in Ref. [50], the authors study
a pulse-based variational Ansatz in which the duration of
two-qubit CR gates is optimized at a fixed amplitude. They
show numerical simulations that achieve chemical accuracy
on molecules that require up to four qubits and present hard-
ware results for H2 on two qubits.

In this work, we simultaneously optimize single-qubit
pulses as well as both the duration and the amplitude of the
CR pulses. Here we demonstrate a pulse-based VQE that opti-
mizes both duration and amplitude with systems that use up to
eight qubits. Furthermore, we perform the full VQE parameter
optimization on quantum hardware. This allows the optimizer
to capture T1- and T2-related tradeoffs that favor short and
intense pulses. For context, the largest VQE by qubit count on
hardware was done on 20 qubits with parameters optimized in
a noiseless simulation [6]. In addition, we discuss the imple-
mentation of advanced error mitigation in pulse-based VQAs,
which is tricky since the effect of the pulses is hard to capture.

In Sec. II, we review the dynamics of the CR gate and
existing connections to variational algorithms. In Sec. III, we
introduce the chemical systems that we study, namely, H2, H3,
and H4. Next, in Sec. IV, we study these systems on devices
with up to eight qubits. We discuss error mitigation in Sec. V
and conclude in Sec. VI.

II. CROSS-RESONANCE DYNAMICS AND VARIATIONAL
QUANTUM ALGORITHMS

Dispersively coupled fixed-frequency transmon qubits can
be entangled with the CR interaction [46,51,52]. Here, one
qubit, i.e., the control, is driven at the frequency of the other,
i.e., the target. The resulting effective Hamiltonian is

H̄cr = 1
2 (Z ⊗ B + I ⊗ C), (1)

where B = ωZI I + ωZX X + ωZY Y + ωZZZ and C = ωIX X +
ωIY Y + ωIZZ . Here, X , Y , and Z are Pauli matrices and I is
the identity. The coefficients ωi j are the strength of the CR
interaction. They depend on the properties of the qubits and
the drive strength [53]. To illustrate the dynamics of the cross-

FIG. 1. Dynamics of the cross-resonance gate. The states are
labeled according to |target, control〉. The simulation is done
(a), (b) with an echo and (c), (d) without an echo. In both cases,
the strength of the ωi j in Eq. (1) is measured on qubits (0, 1) of
ibm_lagos with Hamiltonian tomography [57]. The strength of the
cross-resonance terms without an echo is reported in Appendix E.
With an echo, we measure ωZX = 872(2) kHz, ωZY = 715(2) kHz,
ωZZ = −35(1) kHz, ωIX = 53(1) kHz, ωIY = −69(2) kHz, and
ωIZ = −35(1) kHz. The dashed line shows the population when only
the ZX term is retained.

resonance gate, we first measure the ωi j’s with Hamiltonian
tomography [46] implemented in QISKIT EXPERIMENTS. Next,
we simulate Eq. (1) with QISKIT DYNAMICS. The strongest
terms in H̄cr are ωZX and ωIX ; see Fig. 1. The CR interac-
tion is typically used to engineer a CNOT gate by eliminating
the non-ZX terms with an echo sequence and cancellation
tones [54]. The phase of the CR drive controls the relative
magnitude of the ωZX and ωZY coefficients. Simulations of
the time evolution under H̄cr and Hamiltonian tomography
show that the echo cancels the large ωIX term; see Fig. 1.
With or without an echo, the resulting entanglement is usable
in VQAs by replacing CNOT gates by CR tones with fixed
parameters, as done in Ref. [55]. Here, the resulting Ansätze
are parameterized by virtual-Z rotations.

The ωi j’s are nonlinear with drive amplitude [53], but the
rotation implemented by exp(−iτ H̄cr ) is linear in time τ . The
linearity in τ enables transpiler passes to create RZX (θ ) rota-
tions built from calibrated CNOT gates by scaling the duration
of cross-resonance pulses [56]. The resulting shorter pulses
reduce hardware errors in quantum approximate optimization
[16,56] and machine learning [9], which are both a form of
pulse-based VQA.

III. TEST SYSTEMS: APPLICATIONS
TO QUANTUM CHEMISTRY

In this work, we investigate pulse-based VQE on
hydrogen-based systems. We consider molecular hydrogen
H2, the triangular H3, and the rectangular H4 [58]; see Fig. 2.
The triangular H3 is highly frustrated and the rectangular H4

has strong correlations, making both systems interesting to
study. We model all the systems in the minimal Gaussian basis
set Slater-type orbital (STO)-3G. The fermionic problem is
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α0.9 Å

FIG. 2. Considered hydrogen-based systems. (a) For H2, we vary
the distance d . (b) For H3, we vary the angle α, and (c) for H4, we
consider the angle α = 40◦.

mapped to a Hamiltonian expressed as the linear combina-
tion, H = ∑

i αiPi. Here, the αi’s are coefficients and the Pi’s
are Pauli operators made of tensor products of single-qubit
Pauli matrices I , X , Y , and Z , e.g., Y ZY XXI . A parame-
terized circuit Ansatz creates a state |ψ (θ)〉 on the quantum
hardware. As a cost function, we minimize the energy, i.e.,
minθ〈ψ (θ)|H |ψ (θ)〉, in a closed loop with the hardware. To
reduce the number of quantum circuits to measure, we group
the Pauli operators {Pi} into qubitwise commuting groups.
This allows us to measure each group with a single basis
change before the final measurement.

In the STO-3G basis, each hydrogen atom requires two
qubits to model, i.e., one for each spin orbital. H2, the ex-
ception, is mapped to spin operators with the parity mapping
[59] and a reduction to two qubits, leveraging particle number
conservation, resulting in five Pauli terms. The H2 dissociation
curve is often studied as a benchmark for VQAs [2,17,50,60].
H3 has a triangular geometry and we map this fermionic sys-
tem to six qubits with the Jordan-Wigner transformation. The
resulting 62 Pauli terms are measured in 21 sets of qubitwise
commuting elements. Initially, we compute the dissociation
curve for the equilateral system using the classical full config-
uration interaction (full CI) method to find the bond distance.
We then study the dissociation curve of a more general isosce-
les conformation with two equal sides of the triangle fixed
at the 1.43 Å bonding distance of the equilateral H3. Here,
we vary the angle α between the two sides; see Fig. 2(b).
We map the rectangular H4 system to eight qubits with the
Jordan-Wigner transformation. The resulting 97 Pauli terms
are measured in 35 sets of qubitwise commuting elements. We
first find the bond distance of the square system by computing
the dissociation curve with full CI. The square H4 at the 0.9
Å equilibrium distance serves as a starting point to study a
rectangular H4 system with an angle α = 40◦ between the
two 1.8 Å fixed-length diagonals; see Fig. 2(c). In general,
the number of required qubits increases with the number of
atoms and size of the spin orbital basis set. By considering
only the chemically active orbitals of a molecule, e.g., with an
embedding scheme [61,62], the number of required qubits can
be reduced, which helps implement VQE on noisy quantum
hardware [11].

IV. PULSE-BASED VQA FOR HYDROGEN-BASED
SYSTEMS

We now study H2, H3, and H4 as described in Sec. III
on IBM Quantum cross-resonance-based hardware. We
compare CNOT-based and pulse-based Ansätze, which match
the qubit connectivity. The CNOT-based Ansatz is built from

q0 : RX (θ0) RZ (θ1)
CR (θ4, θ5)

0 RX (θ6) RZ (θ7)
CR (θ10, θ11)

0

q1 : RX (θ2) RZ (θ3)
1 RX (θ8) RZ (θ9)

1

q0 : √
X RZ (θ0 + π)

√
X RZ (3π) • √

X RZ (θ2 + π)
√

X RZ (3π)

q1 : √
X RZ (θ1 + π)

√
X RZ (3π)

√
X RZ (θ3 + π)

√
X RZ (3π)

(a)

(b)

FIG. 3. H2 Ansätze. (a) In the CNOT-based variational form, there
are four parameters in virtual-Z gates. (b) In the pulse-based varia-
tional form, there are 12 parameters.

the REALAMPLITUDE blueprint circuit in QISKIT [63] consisting
of CNOT gates sandwiched by RY(θ ) rotations, here decom-
posed to

√
X and RZ (θ ) gates.

The pulse level allows an arbitrary parametrization of the
controls. In the extreme case, each sample of the arbitrary
waveform generator is a control parameter to optimize. This
enables extremely short single-qubit gates without leakage,
but results in an optimization landscape with many param-
eters [27]. To make a control scheme practical, the number
of parameters to optimize must be kept reasonable [64]. We
therefore employ pulse-based Ansätze in which each single-
qubit gate is a derivative removal by adiabatic gate (DRAG)
pulse [65], indicated by RX (θ ), with an amplitude controlled
by the optimizer. This avoids the double

√
X decomposition,

shown in Fig. 3(a), sparing one pulse. The duration, standard
deviation, and DRAG parameter are obtained from the cal-
ibrated X gate of the backend. Entanglement is created by
cross-resonance tones, each implemented as a single Gaus-
sianSquare pulse, i.e., a flat-top pulse with Gaussian edges,
applied to the control qubit (0) at the frequency of the target
qubit (1). The standard deviation σ of the flanks is 64 dt with
each flank containing 2σ . The duration of a single sample of
the arbitrary waveform generator is dt = 0.222 ns. By con-
trast with Ref. [50], both the amplitude and duration of the CR
pulses are variational parameters and we do not introduce an
echo in the CR tones to keep them short. Crucially, the hard-
ware only accepts pulses with a duration that is a multiple of
16 samples and an amplitude ranging from −1 to 1. To satisfy
these conditions, we introduce parameter wrapping functions,
described in Appendix B. Any nonlinearity resulting from
changes in the pulse amplitude is dealt with by the optimizer.

A. Hydrogen molecule

We first run a VQE to find the ground state of H2 on
ibm_lagos on qubits 0 and 1. We compare the circuit-based
Ansatz in Fig. 3(a) to the pulse-based variational form in
Fig. 3(b) in their ability to approach the exact full CI energy
obtained in the chosen STO-3G molecular basis. Simula-
tions indicate that at least two CR pulses are needed for the
pulse-based Ansatz to converge; see Appendix A. Since the
amplitude in the CR pulse is a real parameter, we add a
virtual-Z gate before each CR gate to control the phase of the
cross-resonance drive.

The optimization is done with constrained optimiza-
tion by linear approximation (COBYLA) with 4096 shots
per circuit. Both the CNOT- and the pulse-based Ansätze
closely reproduce the energy; see Fig. 4. These results do
not make use of readout-error mitigation (REM) and are
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FIG. 4. Energy in H2. The golden dots show the CNOT-based
Ansatz. The blue stars show the pulse-based Ansatz. The black line
is the exact energy. The bottom panel shows the energy difference
�E between VQE and the exact diagonalization. The error bars
show an upper bound on the sampling error of the estimator; see
Appendix C. They are increased by a factor of two and markers are
slightly x-shifted for visibility purposes.

comparable to the non-readout-error-mitigated results in
Ref. [50]. The duration of our CNOT-based variational form,
shown in Fig. 5, is 3360 dt and the duration of the pulse-
based Ansatz is 928 ± 114 dt averaged over the considered
distances d . This corresponds to a difference in dura-
tion of 0.54 µs since dt = 0.222 ns. We do not expect the
pulse-based Ansatz to produce a significant gain over the
CNOT-based one. Indeed, (i) the noiseless CNOT-based Ansatz
exactly creates the ground state of H2, (ii) the 0.54 µs schedule
difference is small compared to the T1 and T2 times shown
in Appendix E, and (iii) the results are dominated by readout

0 706 1411 2117 2822 3528

3528

VZ(0.87) VZ(1.03)

VZ(0.15) VZ(1.39)

VZ(0.15)

VZ(1.39)

Pulse-based variational form, Duration: 896 dt
0 706 1411 2117 2822

System cycle time (dt)

D0

CNOT-based variational form, Duration: 3360 dt

D1

(a)

(b)
D0

D1
U0

U1

FIG. 5. Optimized pulse schedules for H2 at 0.2 Å. (a) CNOT-
based and (b) pulse-based Ansätze. The circular arrows indicate
zero-duration virtual-Z (VZ) gates. In the CNOT-based Ansatz, the
black virtual-Z gates are the only parameterized instructions. The
drive channels Di indicate single-qubit pulses on qubit i and the
control channels Uj indicate cross-resonance tones; see details in
Appendix E.

errors. Overall, even in this simple example, pulse-based VQE
delivers a shorter schedule than a CNOT-based VQE without
affecting performance. The next two sections show that this
trend generalizes: the shorter pulse-based VQE schedules out-
perform their CNOT counterparts.

B. Three hydrogen atoms

The H3 system is larger than the H2 molecule; it requires a
total of six qubits. We search for the ground state of H3 as a
function of the angle α on ibm_lagos with qubits 0–5. A direct
diagonalization of H3 reveals a ground state with only real
amplitudes at all considered angles. We therefore compare a
CNOT-based REALAMPLITUDE Ansatz, shown in Fig. 6(a), to a
pulse-based one with the same structure, shown in Fig. 6(b).
In both circuits, the ladder of two-qubit gates matches the
qubit connectivity of ibm_lagos; see Appendix E. For H3, we
focus on the depth-one CNOT-based variational form, which
has 12 parameters, since deeper Ansätze did not improve the
energy; see Appendix D. The pulse-based variational form has
a total of 22 optimization parameters: 12 single-qubit pulse
amplitudes, 5 CR durations, and 5 CR amplitudes. As with
H2, we use COBYLA with 4096 shots per circuit evaluation.

We first find the electronic energy for the angle α = 20◦
starting from a random guess for the variational parameters
θ . We then find the electronic energy in increments of 2◦ by
initializing the optimization from the best parameters of the
previous angle α. Next, we compute the energy by adding
the repulsion energy to the VQE-computed electronic energy.
The resulting energy of the pulse-based Ansatz is 33.0 ± 7.8%
closer, averaged over all angles, to the ideal minimum energy
than the CNOT-based one; see Fig. 7. Note that the phases of
the CR gates were not optimized. To find the angle αmin that
minimizes the energy of H3, we fit the measured energy to
fourth-order polynomials, shown as dashed lines in Fig. 7.
The pulse-based and CNOT-based approaches report an αmin of
30.1◦ and 36.4◦, respectively. Full CI yields an αmin of 29.3◦;
the pulse-based results are therefore more accurate than the
CNOT-based ones.

We repeat these measurements with readout-error mitiga-
tion implemented using the tensored measurement fitter in
QISKIT. Here, each CNOT-based and pulse-based VQE run is
initialized with the optimal parameters found without readout-
error mitigation for the corresponding Ansatz and angle α.
REM significantly reduces the errors; e.g., compare the blue
stars to the blue triangles in Fig. 7(a). With REM, the pulse-
based and CNOT-based VQE report an αmin of 27.7◦ and 38.2◦,
respectively. Furthermore, with REM, the pulse-based VQE
has a 52 ± 16% lower error with respect to the full CI compu-
tation than the CNOT-based Ansatz. Interestingly, we observe
that REM lowered the absolute difference between the VQE
and the full CI energy. However, it increased the deviation of
αmin with respect to the ideal 29.3◦ value as the fourth-order
polynomial overfits the data.

The pulse-based Ansatz has more parameters than its CNOT

counterpart, which may increase its expressivity. However,
the pulse-based VQE schedule is simpler than the CNOT one;
see Fig. 8. For example, the pulse-based Ansatz only has
12 single-qubit DRAG pulses. By contrast, the CNOT-based
schedule has 45 single-qubit DRAG pulses to decompose RY
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q0 : RY(θ0) • RY(θ6)

q1 : RY(θ1) • • RY(θ7)

q2 : RY(θ2) RY(θ8)

q3 : RY(θ3) • RY(θ9)

q4 : RY(θ4) RY(θ10)

q5 : RY(θ5) • RY(θ11)

q0 : RX(θ0)
CR (θ6, θ7)

0 RX(θ16)

q1 : RX(θ1)
1

CR(θ8, θ9)
0

CR(θ10, θ11)

0 RX(θ17)

q2 : RX(θ2)
1 RX(θ18)

q3 : RX(θ3)
1

CR(θ12, θ13)

0 RX(θ19)

q4 : RX(θ4)
CR(θ14, θ15)

1 RX(θ20)

q5 : RX(θ5)
1 0 RX(θ21)

(a) (b)

FIG. 6. H3 Ansätze. (a) CNOT-based Ansatz in which a layer of parameterized RY gates is applied before and after the CNOT gates. In total,
the variational form has 12 parameters. This circuit is transpiled to the {√X , RZ , CNOT} basis. (b) Pulse-based Ansatz with 22 parameters.
Each gate corresponds to a single pulse. The first and second parameters in the cross-resonance gates control the duration and amplitude,
respectively, of the GaussianSquare pulse.

gates, implement echoes [46], and fix the CNOT direction;
see Appendix E. Crucially, the duration of the schedule
of the optimized pulses is less than one-third of the dura-
tion of the CNOT-based schedule; see Fig. 7(c). After the

FIG. 7. Energy in H3. (a) Sum of the electronic energy, obtained
with VQE, and the repulsion energy of H3 without readout-error
mitigation (REM) (triangles) and with REM (circles and stars). The
CNOT-based and pulse-based Ansätze of Fig. 6 are labeled CNOT

and Pulse, respectively. The dashed lines are fourth-order fits. The
solid black line is the full CI solution. (b) Absolute difference with
respect to the ideal energy. (c) Schedule duration of the pulse-based
variational form, without REM and excluding measurement pulses,
expressed as a fraction of the CNOT-based variational form which
lasts 9184 dt , i.e., 2.04 µs. The error bars show an upper bound
on the sampling error of the estimator; see Appendix C. They are
increased by a factor of two and markers are slightly x-shifted for
visibility purposes.

optimization, the optimal CR pulses have an almost maximum
amplitude of 1.0 and are shorter than the pulses implementing
CNOT gates; compare the pulses on the control channels in
Figs. 8(a) and 8(b). This is consistent with mitigating de-
coherence. While, in general, short and intense pulses may
induce leakage, it is not necessarily harmful. Leakage can help
convergence, as observed in both simulations of pulse-based
VQE [49] and gate design with optimal control [66]. Our
results provide further evidence of the positive impact of short
and intense pulses.

C. Four hydrogen atoms

We now evaluate the energy of the H4 molecule as de-
scribed in Sec. III at an angle of α = 40◦ only. As for H3,
we use a REALAMPLITUDE Ansatz for the CNOT-based VQE.
The pulse-based Ansatz has the same two-qubit gate structure;
see Fig. 9. We compare a depth-one and a depth-two CNOT-
based Ansatz, and a depth-one pulse-based Ansatz, which
have 16, 24, and 40 parameters, respectively. For the pulse-
based Ansatz, we first optimize the amplitudes and durations
while keeping the phases θ8 to θ15 at zero. The optimiza-
tion is done on ibmq_mumbai with COBYLA and 4096
shots per circuit. The depth-two CNOT-based and depth-one
pulse-based Ansätze show a similar convergence profile; see
Fig. 10. The pulse-based Ansatz achieves a minimum energy
of −4.39 Hartree and the depth-two CNOT Ansatz achieves
−4.26 Hartree.

So far, we did not optimize the phases of the cross-
resonance drives in the pulse-based Ansatz. We therefore
optimize the phase shifts while keeping the pulse durations
and amplitudes fixed at the measured optimal values. The
initial value of the phases shifts, θ8, . . . , θ15, is chosen at
random. These phases impact the measured energy, as seen by
the decrease of the green curve in Fig. 10. With the optimized
phases, we measure an energy of −4.44 Hartree, i.e., a 1%
improvement over the pulse-based Ansatz without phases.

As for H3, the optimization favors short and intense pulse
schedules; see Fig. 11. Many of the pulses have near maxi-
mum amplitude, i.e., 1, and a short duration. This is confirmed
by inspecting the values of the pulse parameters during the
optimization. COBYLA quickly pushes up the amplitude of
the cross-resonance pulses that it requires and keeps the du-
ration small; see Fig. 12. The best pulse-based schedule is
only 20.6% of the duration of the best depth-two CNOT-based
schedule; see Fig. 11.
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FIG. 8. Optimized pulse schedules for H3 at α = 20◦. (a) and
(b) correspond to the CNOT-based and pulse-based schedules, respec-
tively. The cross-resonance pulses in (b) are not necessarily applied
on the same control channels as the CNOT gates in (a). In such a case,
the role of the control and target qubits is reversed. The numbers
indicate the amplitude of the pulse. The light and dark shades indi-
cate the real and imaginary part of the pulse envelope, respectively.
The green pulses in (a) correspond to rotary pulses. The dotted red
circle in (b) indicates pulses in the variational form whose amplitude
was set to zero by the optimizer. The control channel indexing is
discussed in Appendix E. The numbers above each pulse indicate the
amplitude of the pulse as a fraction of the maximum output voltage
of the arbitrary waveform generator.

q0 : RX(θ0) RZ(θ8)
CR(θ16, θ17)

0 RX(θ32)

q1 : RX(θ1) RZ(θ9)
1

CR(θ18, θ19)
0 RX(θ33)

q2 : RX(θ2) RZ(θ10)
1 RX(θ34)

...
...

. . .
...

q7 : RX(θ7) RZ(θ15) RX(θ40)

FIG. 9. H4 pulse-based Ansatz. The Ansatz has a total of 40
parameters. We first optimize the pulse amplitudes and durations,
i.e., 32 parameters, and then the remaining 8 phases in the RZ (θi )
gates.

V. ERROR MITIGATION

We did not use error mitigation to focus on the gains af-
forded by optimizing pulse parameters. Error mitigation may
improve these results. For example, scalable readout-error
mitigation, such as M3 [67], is easily applied to pulse-based
VQE. Crucially, other known error-mitigation methods must
be adapted to work with pulse-based VQE. We now dis-
cuss the challenges of performing dynamical decoupling [68],
Pauli twirling [69], probabilistic error cancellation [70], and
zero-noise extrapolation [71] in a pulse-based VQE.

Dynamical decoupling [72–74] suppresses non-Markovian
errors by adding pulses in the idle regions of a schedule. The

FIG. 10. Electronic energy of H4. The gray horizontal line shows
the minimum energy. The depth of the Ansatz is p. The bottom panel
corresponds to the region between the dashed horizontal lines. The
vertical gray line shows the point where we freeze the amplitudes
and duration, and optimize the phase.
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FIG. 11. Optimized pulse schedules for H4. The top and bottom
panels show the schedules of the depth-two CNOT- and pulse-based
Ansatz, respectively. For visualization purposes, we only show the
cross-resonance drives and omit the single-qubit pulses as well as
the rotary tones in the CNOT gates.

inserted pulses mitigate the effects of decoherence [68,75] and
cancel crosstalk [76,77] on transmon-based devices similar to
those used here. Dynamical decoupling pulses can be added
in pulse-based VQE [78] in the idle regions of the Ansatz.
This may be less beneficial in pulse-based VQE than circuit
VQE for three reasons. First, the pulse-based VQE sched-
ules are compact and have short idle regions, as exemplified
by Fig. 8. Second, idle regions change every iteration as

FIG. 12. Parameter optimization. The pulse parameters of the
cross-resonance pulses played on the channels U25, U31, and U42,
shown in Fig. 11, during the COBYLA optimization of H4. The
minimum duration of the GaussianSquare pulses is 256 samples due
to the Gaussian flanks.

pulse durations are optimized. Third, the errors that dynam-
ical decoupling suppress, e.g., crosstalk and leakage, are not
always detrimental in pulse-based VQE since they can help
convergence. Nonetheless, for larger problems with longer
idle delays, suppression of errors through a robust dynamical
decoupling sequence could provide a noticeable performance
improvement.

Pauli twirling [69] inserts Paulis in between noisy gates,
such as CNOTs and RZZ (θ ) gates [79,80], and commutes an
inverse of each Pauli through the noisy gates. This scheme
requires the user to know the ideal operation of the noisy gate
and may therefore be harder to implement in a pulse-based
VQE. For example, knowledge of the ideal cross-resonance
gate could be obtained with a fit of a model to Hamiltonian
tomography data. Similarly, in probabilistic error cancella-
tion, the noise model of layers of Pauli-twirled CNOT gates
is learned and corrected for in a quantum circuit by randomly
inserting Pauli gates to cancel the noise on average [70]. This
is harder to implement in pulse-based VQE since the noise
changes throughout the optimization as the pulse parameters
are varied.

In zero-noise extrapolation, an expectation value is mea-
sured several times with logically equivalent quantum circuits,
but with different noise levels [71]. The noiseless expectation
value is, in principle, recovered by extrapolating the noisy re-
sults to the zero-noise limit. The additional noise is introduced
by stretching the pulses that implement the single- and two-
qubit gates [81] or by gate folding [82–84]. Pulse stretching
is hard to implement, even in gate-based approaches, since it
requires intensive calibration and changes in pulse amplitude
may induce nonlinear changes in the noise. Pulse stretching
could be implemented with a large overhead in pulse-based
VQE by performing tomography of the individual pulses and
trying to reproduce the unitary part of the time evolution with
a stretched pulse with weaker amplitude and longer duration.
By contrast, gate folding may be easier to implement, either
by inserting delay instructions or by folding a pulse P accord-
ing to P − [RZ (−π )PRZ (π )P]n, with n ∈ N for systems in
which a negative amplitude pulse is the inverse of a positive
amplitude pulse under ideal circumstances.

VI. DISCUSSION AND CONCLUSION

We demonstrate on hardware that VQE delivers better
results when the pulse parameters such as duration and ampli-
tude are simultaneously optimized compared to CNOT-based
Ansätze. For instance, a pulse-based Ansatz finds that the
angle α that minimizes the energy of the H3 system is only
2.7% away from the full CI computation, while a CNOT-based
Ansatz measures a deviation of 24.2%. Crucially, we observed
that the pulse optimization favors short and intense pulses to
mitigate the effects of decoherence and energy relaxation.

Our experiments are carried out on cross-resonance-based
hardware. Pulse-based VQE is also applicable to other
architectures such as tunable couplers [85]. Crucially,
tunable couplers support a versatile range of interactions
such iSWAP, and controlled-phase generators [86] which
conserve particle number. Such exchangelike gates help
reduce the circuit depth of variational Ansätze [11,87].
We therefore expect that such an architecture may provide
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even better pulse-based Ansätze. Pulse-based VQE is also
applicable to other quantum computing architectures capable
of pulse-shaping and variational algorithms. For example,
trapped ions and Rydberg atoms are both amenable to optimal
control [88,89] and VQE [90,91]. We anticipate that such
systems will also benefit from the shorter schedules of
pulse-based VQE as long as they are fast enough.

Running variational algorithms on hardware is time con-
suming. This makes speed a key resource for quantum com-
puters [92]. At the time of writing, ibmq_mumbai reported
1800 circuit layer operations per second (CLOPS). Increasing
the CLOPS is key to make variational algorithms scalable.
Short-duration pulse-based Ansätze may also help increase the
CLOPS once run-time compilation and data transfer bottle-
necks are removed. Such reductions of quantum processing
time are similar to restless measurements which forego qubit
reset in calibration [26] and optimal control schemes [27,93].
Methods that reduce the number of shots, such as positive
operator valued measures [94,95], are compatible with pulse-
based VQE and may further reduce execution times.

The pulse-based variational forms shown here have shorter
schedules, but contain more parameters to optimize than
gate-based ones. This may make them more expressive, but
increases their optimization cost. Future work on pulse-based
VQE will need to scale up these variational forms, while
keeping their parameter numbers reasonable and retaining
an adequate expressiveness. We leave it to future work to
investigate the expressiveness and number of parameters
in pulse-based VQE in a study akin to existing research
for circuit-based Ansätze [96]. Methods such as adaptive
derivative-assembled pseudo-trotter ansatz variational quan-
tum eigensolver (ADAPT-VQE) which grow the variational
form one operator at a time may be modified and applied to
pulse-based VQEs [19,97]. Algorithms such as wavefunction
adapted Hamiltonian through orbital rotation (WAHTOR) that
exploit symmetries in the Hamiltonian by molecular orbital
rotations could also be adapted to pulse-based Ansätze [60].
Furthermore, adapting state-of-the-art error-mitigation meth-
ods to pulse-based VQE requires more research, as discussed
in Sec. V.

In summary, we showed a pulse-based Ansatz inspired by
hardware constraints. Our results demonstrated that pulse-
based variational forms are a viable way to reduce schedule
duration in hardware-native Ansätze to fight decoherence and
increase the accuracy of VQE. The quality of our results is
still beyond chemical accuracy. As for conventional CR-based
approaches, accurate results are only possible through the im-
plementation of error-mitigation schemes. The combination
of pulse-based VQE and error mitigation will be the subject
of future studies. These may also include the investigation of
pulse-shaping methods that are closer to chemistry-inspired
Ansätze such as the unitary coupled cluster approach [98].

ACKNOWLEDGMENTS

This research was supported by the NCCR MARVEL, a
National Centre of Competence in Research, funded by the
Swiss National Science Foundation (Grant No. 205602). This
research has received funding from the European Union’s
Horizon 2020 research and innovation program under the

Marie Skłodowska-Curie Grant Agreement No. 955479. IBM,
the IBM logo, and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trade-
marks of IBM or other companies. The current list of IBM
trademarks is available (see [99]).

APPENDIX A: NUMERICAL SIMULATIONS
OF CROSS-RESONANCE PULSE-BASED VQE

We simulate pulse-based VQE with both QISKIT AER and
QISKIT DYNAMICS. The pulse-based Ansatz, e.g., Fig. 6(b), has
custom CR instructions, each encapsulating a GaussianSquare
pulse as a schedule. Before simulating the quantum circuit in
QISKIT AER, we run a transpiler pass that identifies any CR
instructions with a pulse schedule. When such an instruction
is found, we attach to it a unitary matrix obtained from a
QISKIT DYNAMICS simulation. This simulation solves the time
evolution of a two-qubit system only, with a Hamiltonian
given by Eq. (1). The coefficients of H̄cr are measured on the
hardware with QISKIT EXPERIMENTS [57].

We now consider the hydrogen molecule starting from the
0.74 Å bond distance. We run a noiseless VQE for each point
on the curve with COBYLA and the QASM SIMULATOR in
QISKIT with 8192 shots. The variational parameters θ in each
optimization are initialized with the optimal parameters of
the nearest considered bond distance, with the exception of
d = 0.74 Å for which random parameters were chosen. We
compare a REALAMPLITUDE depth-one CNOT-based variational
wave function to two pulse-based variational forms, with and
without RZ rotations before the cross-resonance gates. More-
over, each pulse-based variational form is studied at depths
one and two; see Fig. 13.

The energy obtained from the depth-one pulse-based
Ansatz shows that a single cross-resonance pulse is not suf-
ficiently expressive; see blue markers in Fig. 13. Indeed, a
depth-two pulse-based Ansatz, i.e., two cross-resonance tones,
is required to get energies close to the full CI dissociation
curve; see red circles in Fig 13. Furthermore, adding RZ gates
to control the phase of the cross-resonance tones allows us
to recover almost all of the system’s correlation energy; see
the red stars. The CNOT-based Ansatz directly engineers the
ground state of H2.

APPENDIX B: PULSE PARAMETER WRAPPING

QISKIT PULSE allows users to manipulate quantum comput-
ers at the level of pulses by specifying schedules of pulses
[42,43]. The pulses must satisfy hardware-imposed require-
ments. First, the complex-valued pulse amplitude is expressed
as a fraction of the maximum output voltage of the arbitrary
waveform generator (AWG) and must therefore be restricted
to the interval [−1, 1]. Second, the duration of a pulse, ex-
pressed in the number of AWG samples, must be a multiple of
16 to be loaded in the AWG memory. Third, the duration must
be kept large enough to prevent the width of the flat top from
being negative; see Fig. 14(a). To impose these constraints, we
introduce the concept of a parameter wrapper. In a pulse-based
variational form, the optimizer optimizes the parameters θi.
However, the parameters used to construct the pulses are the
output of functions that wrap θi, i.e., fi(θi ). The amplitude
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FIG. 13. Simulated H2 dissociation curves. The total energy is
plotted against the distance between the two H atoms. The yellow
triangles correspond to the CNOT-based Ansatz. The circles and stars
correspond to the pulse-based wave function without and with the RZ

rotations, respectively. The black and green lines represent the full CI
and Hartree-Fock energies, respectively. The bottom panel shows the
absolute energy difference between the VQE simulations and the full
CI energy.

is restricted to the interval [−1, 1] by a sinusoidal function;
see Fig. 14(c). The duration is restricted to the interval [256,
1040] samples by a sinusoidal function whose codomain is
restricted to multiples of 16. The lower bound ensures that the
width does not become negative, and the upper bound, loosely

FIG. 14. Example of wrapper functions. (a) GaussianSquare
pulse with duration f0(θ0) and amplitude f1(θ1). (b) Duration wrap-
per that relates the optimization parameter θ0 to the pulse duration
through a sinusoidal function vertically discretized to multiples of
16. The minimum duration is set to 256 samples, which corresponds
to a width of 0. (c) Amplitude wrapper that relates the optimization
parameter θ1 to the amplitude of the pulse through a sinusoidal
function.

FIG. 15. VQE on H3 with different depths. The inset shows the
structure of the entangler that was repeated p times with p + 1 layers
of parameterized RY (θ ) gates. The bond distance is 1.43 Å and the
angle is 40◦. The solid lines and shaded areas show the mean and
standard deviation, respectively, of three runs. The dashed black line
shows the best run, which was a depth-one run.

chosen based on the strength of ωZX , prevents the pulse from
becoming too long.

APPENDIX C: STATISTICAL ERROR BOUND

Here we derive an upper bound for the worst-case sta-
tistical sampling error εmax of the energy expectation values
shown as error bars in Figs. 4 and 7. We partition the Hamil-
tonian H of each hydrogen system into M groups of mutually
qubitwise commuting Pauli terms,

H =
M∑

i=1

mi∑
j=1

ci jPi j . (C1)

Here, mi is the number of Pauli terms in group i, Pi j is
the jth Pauli in group i, and ci j are coefficients. The num-
ber of shots used to estimate the Paulis in group i is ni =
4096 ∀ i = 1, . . . , M. Since every group is estimated indepen-
dently, the total variance ε2 of the estimator of 〈H〉 is the sum
of the standard errors of every group. We can thus compute
the following bound:

ε2 =
M∑

i=1

1

ni
Var

⎡
⎣

mi∑
j=1

ci jPi j

⎤
⎦ (C2)

=
M∑

i=1

1

ni

mi∑
j, j′=1

ci jci j′Cov[Pi j, Pi j′ ] (C3)

�
M∑

i=1

1

ni

mi∑
j, j′=1

|ci jci j′ |
√

Var[Pi j]Var[Pi j′ ] (C4)

�
M∑

i=1

1

ni

mi∑
j, j′=1

|ci jci j′ |. (C5)

We used the Cauchy-Schwarz inequality and the fact that
Var[Pi, j] � 1. The standard error of the estimator for any state
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TABLE I. Strength of the terms in the effective cross-resonance model for ibm_mumbai and ibmq_mumbai. All numbers are in kHz and
were measured with a single Gaussian square pulse with unit amplitude.

ibm_lagos ibmq_mumbai

Qubits ωZX ωZY ωZZ ωIX ωIY ωIZ Qubits ωZX ωZY ωZZ ωIX ωIY ωIZ

(0, 1) 872(2) 705(2) −6(2) −839(2) −584(2) 14(2) (12, 13) −930(1) −637(2) 93(1) −214(1) −143(2) 6(1)
(1, 2) −1803(2) −1056(4) 7(3) −490(2) −244(4) −49(3) (13, 14) 1481(1) 294(4) 23(2) −765(1) −170(4) −74(2)
(1, 3) −2430(3) 858(10) −88(8) 4168(3) −1459(10) −124(8) (14, 16) 520(1) −450(2) −53(2) −589(1) 533(2) −140(2)
(3, 5) 194(1) 641(1) −48(1) 47(1) 70(1) 39(1) (16, 19) 768(1) −295(2) 53(1) −341(1) 131(2) −19(1)
(5, 4) −383(4) 1660(1) −99(2) −89(4) 364(1) 83(2) (19, 22) −1078(1) 734(2) 137(2) −83(1) 68(2) −64(2)

(22, 25) −1110(1) −509(2) 4(2) 396(1) 181(2) −40(2)
(25, 26) 631(2) 467(3) 1(2) 1228(2) 917(3) −20(2)

is thus upper bounded by

εmax =
√√√√

M∑
i=1

1

ni

mi∑
j, j′=1

|ci, jci, j′ |. (C6)

APPENDIX D: ADDITIONAL DATA FOR THE THREE
HYDROGEN ATOMS

Here, we present additional data on the H3 system. We in-
vestigate the effect of the depth of the CNOT-based variational
form on the measured energy. The data, made of nine hard-
ware runs, with three at each depth p ∈ {1, 2, 3}, are acquired
on ibm_lagos. Each run has a different initial point chosen
uniformly in the interval [0, π ]6(p+1). Under these settings,
we observe that the best results are obtained with a depth-one
Ansatz; see Fig. 15. Ansätze with depth p > 1 did not result in
a lower energy than p = 1. This may be due to the COBYLA
optimizer getting stuck in local minima or due to the added
noise of the deeper circuits. Error-mitigation methods may
help to overcome the added noise, while methods that progres-
sively build up the Ansatz may help tackle local minima [97].
The jobs took a total of 71 ± 9, 102 ± 2, and 99 ± 0 minutes
of classical and quantum compute time, for depths one, two,
and three, respectively, as reported by ibm_lagos. Each circuit
was executed with 4096 shots.

FIG. 16. Coupling map of ibm_lagos. The numbers attached to
each qubit represent the T1 and T2 times as reported by the backend.
The top and bottom numbers of each edge indicate the error of the
CNOT gate and its duration, respectively.

APPENDIX E: HARDWARE

We now describe the hardware on which the data were
gathered. The H2 molecule and the H3 system were both run
on the seven-qubit IBM Quantum device ibm_lagos, whose
coupling map is shown in Fig. 16 and Table I. Here, the CNOT

gates are implemented with echoed cross-resonance pulses.
Since calibration is time consuming, the backends only cali-
brate one CNOT gate for each pair of coupled qubits (i, j). This
CNOT gate is referred to as hardware native. The CNOT gate
in the reverse direction ( j, i) is implemented with additional
single-qubit pulses and the hardware-native CNOT gate. The
CNOT-based and pulse-based variational forms in the main text
sometimes differ in the control channels on which they apply
CR pulses, despite the fact that the CNOT and CR gates are ap-
plied on the same qubit pair (i, j). This is because the desired
CNOT gate may not be hardware native. For convenience, we
summarize the configuration of the control channels as (i, j):
Uk, where Uk is the control channel which drives qubit i, the
control, at the frequency of qubit j, the target. On ibm_lagos,
the control channel configuration is (0, 1): U0, (1, 0): U1,
(1, 2): U2, (2, 1): U4, (1, 3): U3, (3, 1): U5, (3, 5): U6,
(5, 3): U8, (4, 5): U7, and (5, 4): U9.

The H4 system was run on the linearly coupled qubits
12, 13, 14, 16, 19, 22, 25, and 26 of the 27-qubit system
ibmq_mumbai. The properties of these qubits are summarized
in Fig. 17 and Table I.

FIG. 17. Qubits of ibmq_mumbai to run H4. The numbers at-
tached to each qubit represent the T1 and T2 times as reported by
the backend. The top and bottom numbers of each edge indicate the
error of the CNOT gate and its duration, respectively.

033159-10



PULSE VARIATIONAL QUANTUM EIGENSOLVER ON … PHYSICAL REVIEW RESEARCH 5, 033159 (2023)

[1] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,
D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta et al., Quantum
optimization using variational algorithms on near-term quantum
devices, Quantum Sci. Technol. 3, 030503 (2018).

[2] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero,
J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter
et al., Scalable Quantum Simulation of Molecular Energies,
Phys. Rev. X 6, 031007 (2016).

[3] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[4] P. J. Ollitrault, S. Jandura, A. Miessen, I. Burghardt,
R. Martinazzo, F. Tacchino, and I. Tavernelli, Quan-
tum algorithms for grid-based variational time evolution,
arXiv:2203.02521.

[5] M. Motta and J. E. Rice, Emerging quantum computing algo-
rithms for quantum chemistry, WIREs Comput. Mol. Sci. 12,
e1580 (2022).

[6] T. E. O’Brien, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla,
W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin et al.,
Purification-based quantum error mitigation of pair-correlated
electron simulations, arXiv:2210.10799.

[7] V. Havlicek, A. D. Corcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[8] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S.
Woerner, The power of quantum neural networks, Nat. Comput.
Sci. 1, 403 (2021).

[9] A. Melo, N. Earnest-Noble, and F. Tacchino, Pulse-efficient
quantum machine learning, arXiv:2211.01383.

[10] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[11] P. Kl. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G.
Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer
et al., Quantum algorithms for electronic structure calculations:
Particle-hole Hamiltonian and optimized wave-function expan-
sions, Phys. Rev. A 98, 022322 (2018).

[12] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F.
Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo
et al., Quantum approximate optimization of nonplanar graph
problems on a planar superconducting processor, Nat. Phys. 17,
332 (2021).

[13] G. C. Santra, F. Jendrzejewski, P. Hauke, and D. J.
Egger, Squeezing and quantum approximate optimization,
arXiv:2205.10383.

[14] E. Pelofske, A. Bärtschi, and S. Eidenbenz, Quantum annealing
vs. QAOA: 127 qubit higher-order Ising problems on NISQ
computers, in High Performance Computing, edited by A.
Bhatele, J. Hammond, M. Baboulin, and C. Kruse (Springer
Nature, Cham, 2023), pp. 240–258.

[15] S. H. Sack and D. J. Egger, Large-scale quantum approximate
optimization on non-planar graphs with machine learning noise
mitigation, arXiv:2307.14427.

[16] J. Weidenfeller, L. C. Valor, J. Gacon, C. Tornow, L. Bello, S.
Woerner, and D. J. Egger, Scaling of the quantum approximate
optimization algorithm on superconducting qubit based hard-
ware, Quantum 6, 870 (2022).

[17] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M.
Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient

variational quantum eigensolver for small molecules and quan-
tum magnets, Nature (London) 549, 242 (2017).

[18] I. G. Ryabinkin, T.-C. Yen, S. N. Genin, and A. F. Izmaylov,
Qubit coupled cluster method: A systematic approach to quan-
tum chemistry on a quantum computer, J. Chem. Theor.
Comput. 14, 6317 (2018).

[19] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
An adaptive variational algorithm for exact molecular simula-
tions on a quantum computer, Nat. Commun. 10, 3007 (2019).

[20] J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Whaley,
Generalized unitary coupled cluster wave functions for quan-
tum computation, J. Chem. Theory Comput. 15, 311 (2019).
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