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Renormalization theory of disordered contact processes with heavy-tailed dispersal
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Motivated by long-range dispersal in ecological systems, we formulate and apply a general strong-disorder
renormalization group (SDRG) framework to describe one-dimensional disordered contact processes with heavy-
tailed (such as power law, stretched exponential, and log-normal) dispersal kernels, widely used in ecology. The
focus is on the close-to-critical scaling of the order parameters, including the commonly used density, as well as
the less known persistence, which is nonzero in the inactive phase. Our analytic and numerical results obtained
by SDRG schemes at different levels of approximation reveal that the more slowly decaying dispersal kernels
lead to faster-vanishing densities as the critical point is approached. The persistence, however, shows an opposite
tendency: the broadening of the dispersal makes its decline sharper at the critical point, becoming discontinuous
for the extreme case of power-law dispersal. The SDRG schemes presented here also describe the quantum
phase transition of random transverse-field Ising chains with ferromagnetic long-range interactions, the density
corresponding to the magnetization of that model.
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I. INTRODUCTION

The contact process (CP) [1,2] is a stochastic lattice model
with widespread use in epidemic spreading and population
dynamics. It consists of two kinds of competing local pro-
cesses running on binary state variables attached to each
site: Active sites can either spontaneously become inactive
or activate nearby inactive sites. In the context of population
dynamics, these processes can be interpreted as the extinc-
tion of local populations at habitat patches represented by
the sites of the lattice and the colonization of empty habitat
patches, respectively. In the area of statistical physics, the
interest in this model is due to its nonequilibrium (absorbing)
phase transition [3], which falls into the universality class
of directed percolation (DP) [4,5], and which can be inter-
preted as an extinction transition in the context of population
dynamics. Although the CP in its simplest form, i.e., with
uniform transition rates and colonization of nearest-neighbor
sites only, gives a correct account of the extinction transition,
it is inadequate for the purpose of modeling real populations
for at least two reasons. First, the conditions of living and
reproduction may not be uniform in habitat patches, i.e., the
environment is heterogeneous. This can be taken into account
in the CP by considering random, site-dependent colonization
and extinction rates. This kind of quenched disorder in the
CP has been thoroughly studied by the strong-disorder renor-
malization group (SDRG) method [6,7] as well as by Monte
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Carlo simulations [8–10], revealing a striking impact in low
dimensions not only on the critical behavior of the CP but
also on the off-critical dynamics. The former is controlled,
at least for sufficiently strong disorder [11], by a so-called
infinite-disorder fixed point (IDFP) [6,7,14], at which dynam-
ical scaling relations involve the logarithm of time rather than
the time itself [8]. Here, the critical behavior is universal, i.e.,
independent of the form of disorder. The off-critical relaxation
is characterized by nonuniversal power laws [15] analogous
to Griffiths-McCoy singularities of random quantum magnets
[16]. Second, there is a large body of observations in ecology
about dispersal processes, especially for the pollen or seed
dispersal of various plant species [17–23]. The most rele-
vant characteristic of this process is the so-called dispersal
kernel [19], which is the probability density of dispersal dis-
tance. According to measurements, typically it has a heavy
tail, i.e., it is not confined by an exponential function. As
fitting functions to measured dispersal kernels as well as in
theoretical modeling, various probability density functions
are used, although the underlying mechanism leading to a
particular heavy-tailed dispersal kernel is in general not clar-
ified. Focusing on heavy-tailed ones, the probability densities
widely used in the ecology literature can be categorized
into three classes concerning their tails at large distances l .
These are the power law (PL), p(l ) ∼ l−α , with α > 0, the
stretched exponential (SE), p(l ) ∼ e−const la

, with 0 < a < 1,
and the log-normal (LN), p(l ) ∼ e−const (ln l )2

, probability den-
sity functions. In the homogeneous CP with a PL dispersal
kernel, field-theoretical renormalization group [24] and nu-
merical simulations [25] revealed the following scenario of
the critical behavior [26], which is common also for phase
transitions in long-range equilibrium systems such as the Ising
and O(N) models [27–31]. For α > αSR(d ), where αSR(d )
is some dimension-dependent threshold, the long-range
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dispersal is irrelevant, and the model remains in the short-
range DP universality class. For αMF(d ) < α < αDP(d ), the
critical exponents vary continuously with α, whereas for α <

αMF(d ), where αMF(d ) = 3
2 d for d < 4, the critical behavior

obeys mean-field theory. This means that among the types of
dispersal kernels used in ecology, only the PL type is able
to change the universality class of the extinction transition;
the other two (SE and LN) are irrelevant in this respect.
This is, however, not the case for the disordered CP. Recent
SDRG studies have revealed that the disordered CP with a PL
dispersal kernel has a finite-disorder fixed point (FDFP) for
any value of the exponent α in the extensive regime α > d
[32–34]. Here, as has also been confirmed by Monte Carlo
simulations, at least in the non-mean-field regime α > 3

2 d
of the homogeneous model, where weak disorder is relevant
according to the Harris criterion [15,33,35], the logarithmic
dynamical scaling characteristic of an IDFP is replaced by
power laws, although with nontrivial corrections. Further-
more, even a SE type of dispersal kernel has been shown
to be able to change the IDFP of the short-range model to
a different type of long-range IDFP [36,37]. This occurs if
a < ψSR, where ψSR is the exponent appearing in the dynam-
ical relationship ln τ ∼ ξψSR between the timescale and the
lengthscale of the corresponding short-range model.

In this paper, we consider one-dimensional disordered
contact processes with different types of heavy-tailed dis-
persal kernels. We provide a general recipe for constructing
an asymptotic SDRG theory which describes the large-scale
behavior of the model for a general form of heavy-tailed
dispersal kernel. We then revisit the PL and SE classes stud-
ied earlier, as well as the enhanced power-law tail, p(l ) ∼
e−const (ln l )α with α > 1, a generalization of the LN tail, which
has not been considered so far. We complete earlier studies on
PL and SE dispersal kernels by investigating the active phase
close to the critical point and studying the vanishing of the
stationary density. As an alternative order parameter, we also
discuss the behavior of the persistence probability in the inac-
tive phase [38]. We find that the functional forms appearing in
critical scaling relations, including that of the vanishing of the
order parameters, are determined by the tail of the dispersal
kernel. In addition to the asymptotic theory, we also study
more complete variants of the SDRG method numerically,
and we compare it with the mainly analytic results of the
asymptotic SDRG theory. Our results show that the heavier
the dispersal kernel’s tail is, the more rapidly the order pa-
rameter tends to zero on approaching the extinction threshold.
Interestingly, the persistence follows an opposite tendency:
broader dispersal kernels make its transition sharper. The for-
mer feature may be relevant for ecological modeling in the
presence of an environmental gradient [39], where the depen-
dence of the density on the control parameter transforms to an
explicit coordinate dependence along the gradient direction.

The paper is organized as follows. In Sec. II, SDRG treat-
ments at different levels of approximation are formulated
for the CP with a general form of heavy-tailed dispersal
kernel. The way to calculate the density and persistence or-
der parameters within the SDRG approach is also outlined.
The detailed derivations of various master equations are pre-
sented in Appendixes A and B. In Sec. III, the machinery of

renormalization developed in the previous section is applied
to particular forms of dispersal kernels with a focus on the
close-to-critical scaling of order parameters. The analysis is
performed mainly at the highest level of approximation, but
lower level numerical schemes are also applied. Finally, the
results obtained for the order parameters are discussed in
Sec. IV.

II. THE SDRG APPROACH OF THE CONTACT PROCESS

The quenched disordered contact process is a continuous-
time Markov process with two kinds of local transitions,
which occur randomly and independently. Active sites be-
come inactive with site-dependent, quenched rates μn, which
are drawn independently from some as yet unspecified distri-
bution. Active sites can also activate other inactive sites, and
we assume for the sake of simplicity that the attempt rate λ of
this process depends only on the distance l between the source
and target sites. The function λ(l ) tends to zero in the limit
l → ∞; otherwise, its functional form is kept general at this
point. Up to a global factor, which can be used as a control
parameter of the extinction transition, it is nothing but the
dispersal kernel. For technical reasons (to avoid unambiguity
in the order of decimations) we also assume that the sites
are located on a line randomly, so that the distance between
neighboring sites is an independent, continuous (quenched)
random variable. We assume, furthermore, that the large-l tail
of the distribution of l is upper-bounded by an exponential
function.

A. The full SDRG scheme

The SDRG method for the one-dimensional CP with
nearest-neighbor dispersal was formulated and analyzed in
Ref. [6]. By this procedure, blocks of sites containing the
largest transition rate are consecutively replaced by smaller
blocks, thereby gradually reducing the number of degrees of
freedom, as well as the rate scale �, which is set by the actual
largest rate. If the largest rate is an activation rate, � = λn,n+1,
provided that the adjacent deactivation rates are much smaller,
μn, μn+1 � �, the sites n and n + 1 are clustered and treated
as a single degree of freedom. Its effective deactivation rate is
obtained perturbatively in leading order as

μ̃ = κ
μnμn+1

�
, (1)

with κ = 2. If the largest rate is a deactivation rate, � = μn,
and λn−1,n, λn,n+1 � �, then site n, being almost always in-
active, is eliminated, leaving behind a direct activation rate
between sites n − 1 and n + 1. This is obtained again by
perturbation calculation in leading order as

λ̃n−1,n+1 = λn−1,nλn,n+1

�
. (2)

B. Approximative nearest-neighbor schemes

The difficulty regarding long-range dispersal within the
SDRG method is that, due to the all-to-all connection, the
elimination of a site renormalizes all remaining transition
rates. To keep the model of one-dimensional structure and
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thereby analytically tractable, simplified SDRG schemes were
introduced in Refs. [32,36].

1. The first nearest-neighbor scheme

The first step in a series of approximations is that the
long-range interaction (activation) between clusters is taken
into account when, in the course of the SDRG procedure, they
become directly adjacent. In other words, at any stage of the
procedure, only the interactions between neighboring clusters
(being the most relevant) are kept, while those between farther
neighbors are dropped. Thereby the one-dimensional structure
is restored, and to distinguish this approximation from others,
we will call it the first nearest-neighbor (NN1) scheme. Here,
if the largest rate is an activation rate between clusters Cn

and Cn+1, � = λn,n+1, a new cluster Cñ = Cn ∪ Cn+1 is formed
with an effective deactivation rate given in Eq. (1). At the same
time, the activation rate between Cñ and Cn+2 is modified to

λñ,n+2 = λn+1,n+2 +
∑

i∈Cn, j∈Cn+2

λ(li j ), (3)

and, similarly, the activation rate to Cn−1 will be λn−1,ñ =
λn−1,n + ∑

i∈Cn−1, j∈Cn+1
λ(li j ). If the largest rate is � = μn,

cluster Cn is deleted and the new activation rate between
cluster Cn−1 and Cn+1 will be

λ̃n−1,n+1 = λn−1,nλn,n+1

�
+

∑
i∈Cn−1, j∈Cn+1

λ(li j ). (4)

This scheme was applied numerically for the SE dispersal
kernel in Ref. [36].

2. The second nearest-neighbor scheme

The next step toward analytic tractability is that the acti-
vation rate between neighboring clusters is approximated by
the long-range activation rate between the closest constituents
of the clusters, which is λ(lnm), where lnm denotes the distance
between them. This approximation becomes more accurate for
more rapidly decreasing dispersal kernels; for the worst case,
i.e., the PL dispersal kernel, the error made by this approxima-
tion has been estimated a posteriori, showing that it affects the
power of multiplicative logarithmic corrections to dynamical
scaling relations [32,33]. This level of approximation will be
called the second nearest-neighbor (NN2) scheme. Here, the
renormalized system is described by three sets of parameters:
the activation rates λ(ln,n+1), or equivalently the distances
ln,n+1 between adjacent clusters, and the deactivation rate μn

and width wn of clusters. In the case � = λ(ln,n+1), the rule in
Eq. (1) is then extended with the transformation of lengths

w̃ = wn + ln,n+1 + wn+1, (5)

while for � = μn we have simply

l̃ = ln−1,n + wn + ln,n+1. (6)

3. The third nearest-neighbor scheme

The next approximation can be performed only if the
μ-decimation events are much more frequent than the λ-
decimations, which is valid in the following cases. First, it
is valid in the inactive phase and at the critical point, at late
stages of the renormalization. Second, it is also valid in the

active phase, close to the critical point, at late stages but only
until the renormalization trajectory (see later) is close to the
critical one. The SE model is an exceptional case, as will be
discussed later in Sec. III C. Here, this scheme is invalid in
the active phase and at the critical point, and it is applicable
only in the inactive phase. Under the above restrictions, the
width wn of clusters will be small compared to the spacings
ln between them, and it can be neglected. This means that the
variables wn together with the rule in Eq. (5) are dropped,
and we are left with two sets of variables, namely ln,n+1 and
μn. Decimation of a λ rate is described by Eq. (1) as before,
whereas, in the case of a μ-decimation, Eq. (6) reduces to

l̃ = ln−1,n + ln,n+1. (7)

This renormalization scheme will be called the third nearest-
neighbor (NN3) scheme.

4. Summary of SDRG schemes

The different approximations involved in the hierarchy of
SDRG schemes presented so far for the CP with long-range
dispersal can be summarized as follows. In the full SDRG
method, all interactions between the clusters are taken into
account at any stage of the renormalization. In the NN1
scheme, only the interactions between adjacent clusters are
kept. In addition to this, in the NN2 scheme, the interaction
between adjacent clusters is approximated by the interaction
between their closest constituent sites, and the contributions
of other pairs of sites are dropped. Finally, in addition to all
these approximations, the spatial extension of clusters is also
neglected in the NN3 scheme. This latter scheme is valid only
with the limitations described in Sec. II B 3.

C. Handling of the problem about κ > 1

Before analyzing the NN2 and NN3 schemes, we mention
that the above SDRG schemes, with the only modification
being κ = 1 in Eq. (1), describe the random transverse-field
Ising chain with long-range ferromagnetic couplings λ(l )
[32]. A κ parameter exceeding 1, as in the case of the CP,
makes a further complication of the method. The generated
rate μ̃ may happen to be greater than �, making the variation
of � nonmonotonic in the course of the renormalization. As
these events are of vanishing probability when an IDFP is
approached, the simplest way to circumvent this problem is to
choose κ = 1 [40]. This is, however, not justified for the PL
dispersal kernel, which is described by an FDFP rather than an
IDFP [32]. Nevertheless, as was shown in Ref. [38], the case
κ = 2 can also be analytically treated within the NN3 scheme
of the PL and SE dispersal kernels, leading to modified flow
equations compared to the κ = 1 case. The key point of this
treatment is that a generated rate μ̃ for which μ̃ > � is im-
mediately decimated by a μ-decimation step. This two-step
composite decimation will be referred to as an anomalous
λ-decimation, to distinguish it from normal λ-decimations for
which μ̃ < �. In deriving the NN3 scheme for general forms
of dispersal kernels, we will therefore not restrict ourselves to
κ = 1.

Concerning these anomalous λ-decimations, one could
complain that the perturbative decimation rule in Eq. (1)
containing the prefactor κ is correct only if μn, μn+1 � �,
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whereas for anomalous decimations, for which μn, μn+1 ∼ �,
it is not justified. But to construct an analytically tractable
scheme, one needs to use a uniform decimation rule, i.e., that
in Eq. (1) with a constant prefactor κ irrespective of how well
the conditions of perturbative treatment are fulfilled. In such a
scheme, which contains the asymptotically correct, constant
prefactor κ , the handling of (rare) anomalous decimations
(although these are strongly approximative) is technically
necessary.

D. Master equation for rate distributions

We have seen in the previous section that, in the NN3
scheme, we have two sets of variables: {ln}, which are per-
fectly correlated with the rates λn through the function λ(l ),
and the deactivation rates {μn}. If these variables are indepen-
dent random variables in the initial model, they remain so over
the course of the SDRG procedure, therefore it is sufficient
to characterize the renormalized system at some rate scale
� by the distributions G�(μ) and F�(l ). When � changes,
these distribution also change and one can derive a master
equation governing their evolution during the SDRG proce-
dure. The details are presented in Appendix A. For the sake of
simplicity, we will assume in the following analytic treatment
that both λn and μn are distributed initially in the same range
(0,�0). Later, in the numerical analysis, this restriction will
be relaxed. Rather than using the original variables �, μ, and
l , it is expedient to use the logarithmic rate scale

	 = ln(λ0/�), (8)

where λ0 is a constant rate, appearing in the dispersal kernel,
and the following reduced variables:

β = ln(�/μ) (9)

and

ζ = l

λ−1(�)
− 1. (10)

In the latter, λ−1 denotes the inverse function of the dispersal
kernel, so λ−1(�) is just the lower edge of the distribution
of spacings l between clusters at scale �. This is the point
at which the form of the dispersal kernel becomes an issue,
and for technical reasons we also introduce the characteristic
function of the dispersal kernel,

�(	) = ln[λ−1(�)], (11)

and its derivative �′ ≡ d�
d	

. In terms of these new variables,
the rule of λ-decimations in Eq. (1) transforms to

β̃ = βn + βn+1 − B, (12)

where B = ln κ , while the rule of μ-decimations in Eq. (7) can
be written as ζ̃ = ζn−1,n + ζn,n+1 + 1. A complete treatment
of the latter rule with the additive positive constant 1 is diffi-
cult, as it leads to nonanalyticity in the distribution of ζ ; see
Ref. [41] and references therein. Nevertheless, we will see that
the distribution of ζ variables is broadening over the course of
the renormalization for all cases in the domain of validity of
the NN3 scheme, therefore we may drop the constant term and
write

ζ̃ = ζn−1,n + ζn,n+1. (13)
As it is derived in Appendix A, the decimation rules in
Eqs. (12) and (13) lead to the following master equations in
terms of the probability densities g	 (β ) and f	 (ζ ):

∂g	 (β )

∂	
= ∂g	 (β )

∂β
+ g	 (β )[g0 − f0�

′ p	] + f0�
′
∫ β+B

0
g	 (β ′)g	 (β − β ′ + B)dβ ′, (14)

∂ f	 (ζ )

∂	
= �′(ζ + 1)

∂ f	 (ζ )

∂ζ
+ f	 (ζ )[ f0�

′ p	 − g0 + �′] + [g0 + �′ f0(1 − p	 )]
∫ ζ

0
f	 (ζ ′) f	 (ζ − ζ ′)dζ ′, (15)

where g0(	) ≡ g	 (0), f0(	) ≡ f	 (0), and p	 is the prob-
ability of normal λ-decimations (for which μ̃ < �); see
Appendix A for details. These equations have a one-parameter
solution of a simple form:

g	 (β ) = g0e−g0β, (16)

f	 (ζ ) = f0e− f0ζ , (17)

in which the dependence on 	 enters through the functions
g0(	) and f0(	). Using this, the probability of normal λ-
decimations can readily be evaluated to yield

p	 = e−g0B(1 + g0B). (18)

Substituting Eqs. (16) and (17) into the master equations, we
obtain the following flow equations for g0 and f0:

g′
0 = −�′ f0g0e−g0B, (19)

f ′
0 = − f0[g0 − �′ + f0�

′(1 − p	 )]. (20)

We stress, however, that Eqs. (17) and (20) are not valid for
the SE dispersal kernel outside of the inactive phase.

E. Order parameters

Having derived the flow equations for parameters charac-
terizing the distribution of rates, we turn to the question of
how the dynamical and stationary properties of the model can
be inferred from the SDRG solution. First, we introduce the
ratio r of the frequencies of λ-decimations to μ-decimation,
which is given by

r = f0�
′

g0 + f0�′(1 − p	 )
. (21)

It tends to zero (infinity) in the inactive (active) phase, and it
is therefore useful for locating the critical point in numerical
SDRG analyses. At the critical point, its behavior depends on
the concrete form of the dispersal kernel.
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The relationship between the timescale t = 1/� and the
lengthscale l = 1/n, where n is the fraction of sites not yet
decimated up to scale �, is also related directly to g0 and f0.
By an infinitesimal change of 	, n changes as

dn

n
= −[g0 + f0�

′(2 − p	 )]d	, (22)

which leads, by integration, to the relationship

l = l0e
∫

[g0+ f0�
′(2−p	 )]d	. (23)

1. Density of active sites

A widely used order parameter of the phase transition of
the CP is the global density of active sites in the stationary
state [3]. More generally, one is interested in the dependence
of the global density on time when the process is initiated from
a nonstationary state, most frequently from a fully active state.
Within the SDRG theory, a given site is active at time t if
it has not been eliminated yet by a μ-decimation event until
scale � = 1/t ; otherwise, it is inactive. The global density is
thus given by the survival probability ρb(	) of sites under the
SDRG procedure in the above sense. In addition to bulk sites
in an infinite system, we can also consider the local density at
the first (surface) site of a semi-infinite system, which is thus
given by the survival probability ρs(	) of the first site. Flow
equations for ρb(	) and ρs(	) can be obtained by using the de-
compositions ρb(	) = ∫

s(b)
	 (β )dβ and ρs(	) = ∫

s(s)
	 (β )dβ,

where the integrands are the probabilities that a given bulk
or surface site, respectively, survived the μ-decimations up
to scale 	 in a cluster having a β variable in the range
[β, β + dβ]. As is derived in Appendix B, they obey the
following master equations:

∂s(i)
	 (β )

∂	
= ∂s(i)

	 (β )

∂β
− ni f0�

′
[

s(i)
	 (β )

−
∫ β+B

0
s(i)
	 (β ′)g	 (β − β ′ + B)dβ ′

]
, (24)

with i = b, s and ns = 1, nb = 2.
The solutions of these equations are of the form

s(s)
	 (β ) = ρs(	)g0e−g0β, (25)

s(b)
	 (β ) = [u(	) + v(	)g0β]g0e−g0β, (26)

containing the unknown functions u(	) and v(	), which have
the initial values u(	0) = 1 and v(	0) = 0, and which add up

to the bulk survival probability, ρb(	) = u(	) + v(	). Substi-
tuting Eqs. (25) and (26) into the master equations yields the
following flow equations for the surface order parameter:

ρ ′
s(	) = −ρs(	)[g0 + f0�

′(1 − p	 )], (27)

and for the components of the bulk order parameter:

u′ = u[−g0 − f0�
′e−g0B + 2 f0�

′(p	 − 1)]

+ v
[
g0 + f0�

′g2
0e−g0BB2], (28)

v′ = u f0�
′e−g0B + v[−g0 + 2 f0�

′(p	 − 1)]. (29)

Comparing Eq. (27) with Eq. (20), we find that [ln(ρs)]′ =
[ln( f0)]′ − �′, therefore the surface density is related to the
parameter f0 as

ρs(	) = f0(	)

f0(0)
e−�(	)+�(0) = const × f0(	)e−�(	). (30)

2. Local persistence

An alternative order parameter of the CP is the local
persistence, which has attracted much attention in the DP uni-
versality class [37,38,42–47]. It is defined as the probability
that a site that was initially inactive has not been activated up
to time t . Here, the density of active sites in the initial state is
assumed to be less than 1; an alternative is that all but one site
are active initially. The persistence in the stationary state, as
opposed to the local density, is nonzero in the inactive phase
and zero in the active phase. In the SDRG approach, an ini-
tially inactive site (the μ rate of which is set to zero to prevent
it from being eliminated) remains persistent until it is merged
into a cluster by a λ-decimation next to it [38]. Furthermore,
within the nearest-neighbor SDRG schemes, a given bulk
site can lose its persistence either by a λ-decimation on its
left-hand side or on its right-hand side, and these events oc-
cur independently. Consequently, the probability πb(	) that
a bulk site remains persistent up to the scale 	 is related
to that of the surface site of a semi-infinite system πs(	) as
πb(	) = [πs(	)]2. Thus, it is sufficient to consider the surface
persistence πs(	). Setting the μ rate of the first site to zero,
we note that πs(	) is the probability that the first bond has
not been eliminated by a λ-decimation up to the scale 	. It is
apparent that πs(	) is dual to the survival probability ρs(	) of
the first site, and its fixed-point value can thus be formally
regarded as a “reversed” order parameter, which becomes
nonzero in the inactive phase. Decomposing πs(	) by the ζ

variable as πs(	) = ∫
q	 (ζ )dζ , we can write the following

master equation for q	 (ζ ) (for details, see Appendix B):

∂q	 (ζ )

∂	
= �′(1 + ζ )

∂q	 (ζ )

∂ζ
+ �′q	 (ζ ) − [g0 + f0�

′(1 − p	 )]

[
q	 (ζ ) −

∫ ζ

0
q	 (ζ ′) f	 (ζ − ζ ′)dζ ′

]
. (31)

The solution of this equation can be found in the form q	 (ζ ) =
πs(	) f0e− f0ζ , which leads to the following flow equation for
πs(	):

π ′
s(	) = −πs(	) f0�

′. (32)

Comparing this equation with Eq. (19), we find that
[ln(πs)]′ = [ln(g0)]′eg0B. This does not provide a strictly lin-
ear relationship like the analogous formula in Eq. (30).
Nevertheless, in the limit g0 → 0, we still have an asymptotic
proportionality, πs ∼ g0, the exponential factor giving only
corrections to this.
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FIG. 1. Flow diagram of the CP with PL dispersal kernel by
the NN3 scheme. The red solid line is the critical trajectory ending
at the critical fixed point (1,0). The blue dotted lines and the green
broken lines correspond to the inactive and active phase, respectively.

III. ANALYSIS OF THE FLOW EQUATIONS

Next, we will analyze the SDRG flow equations obtained
in the previous section. Although we presented the SDRG
description by allowing anomalous λ-decimations occurring
if κ > 1, they turn out to give at most subleading corrections
at IDFPs, while for the PL dispersal kernel, which is described
by an FDFP, they modify the coefficient of the leading term of
f0(	); see Ref. [37] for details. Therefore, we will analyze
the flow equations by setting κ = 1, leading to B = 0 and
p	 = 1, which greatly simplifies the analysis. Note that this
is precisely the SDRG theory which describes the random
transverse-field Ising model. Thus we have the following set
of flow equations:

g′
0 = −�′ f0g0, (33)

f ′
0 = − f0[g0 − �′], (34)

u′ = −u[g0 + f0�
′] + vg0, (35)

v′ = u f0�
′ − vg0, (36)

where Eq. (34) is invalid for the SE dispersal kernel out-
side of the inactive phase. Note that the first two of these
equations constitute an autonomous subsystem. The bulk and
surface (density) order parameter are given by ρb = u + v and
ρs = const × f0e−�, respectively, whereas the persistence is
πs = const × g0.

A. General features

First, we discuss the properties of the flow diagrams and
the scaling of order parameters which are generally valid for
all types of heavy-tailed dispersal kernels, and then we con-
sider the specialities separately. The flows of the parameters
g0 and f0 for the PL, SE, and LN dispersal kernels can be
seen in Figs. 1, 4, 8.

Three kinds of trajectories can be distinguished. First, they
can end up at some point of the horizontal axis, g0 = const,
f0 = 0. Approaching such fixed points, the decimation ra-
tio in Eq. (21) tends to zero; thus, this line of fixed points

describes the inactive phase. From the dynamical relationship
in Eq. (23), we obtain that the limiting value g0(∞) is the in-
verse of the dynamical exponent, g0(∞) ≡ 1

z , which enters in
the relationship between lengthscale and timescale, �−1 ∼ lz.
This line of fixed points ends at g0 = 0, except for the PL case,
for which it ends at g0 = 1

α
.

Concerning the density order parameter, we obtain from
Eq. (34) by setting g0 = 1

z at late 	 scales that, at the surface,
it decays to zero as

ρs(	) ∼ e− 1
z 	, (37)

while from Eqs. (35) and (36) by neglecting f0�
′ we obtain

in the bulk the asymptotic decay

ρb(	) ∼ 1

z
	e− 1

z 	 (38)

irrespective of the form of the dispersal kernel. Setting 	 to
ln(t/t0) in these forms, where t0 is some nonuniversal constant
of time dimension, we obtain an algebraic time dependence of
the surface and bulk densities, with a logarithmic correction in
the latter case,

ρs(t ) ∼ t− 1
z , (39)

ρb(t ) ∼ t− 1
z ln(t/t0). (40)

This slow decay is caused by rare-region effects [48] and is
analogous to the Griffiths-McCoy singularities in quantum
magnets [15,16].

The surface persistence πs in this phase remains nonzero
at the fixed points, and tends to zero as the end point of the
line of fixed points is approached, except for the PL model,
for which it remains nonzero also at this point.

The other class of trajectories, followed by an initial de-
crease of f0, tends to the point (g0 = 0, f0 = ∞). In these
cases, the decimation ratio tends to infinity, showing that these
trajectories correspond to the active phase of the model. From
Eq. (34) we can see that f0 
 const × e�, thus the surface
density order parameter ρs = const × f0e−� (just as the bulk
one ρb 
 v) tends to different nonzero limiting values for each
such trajectory. The persistence in this phase tends to zero as
πs = const × g0 ∼ e−const×e�

, the form of which thus depends
on the dispersal kernel.

These two classes of trajectories are separated by the crit-
ical trajectory ending at the critical fixed point. The behavior
of the order parameters at and near this fixed point will be
discussed for each type of dispersal kernel separately.

B. Power-law dispersal kernel

For the PL dispersal kernel, the activation rate decreases
with the distance as

λ(l ) = λ0l−α. (41)

The characteristic function and its derivative are thus � =
	/α and

�′ = 1

α
, (42)

respectively. We mention that the flow equations of g0 and
f0 for α = 1 are of Kosterlitz-Thouless type and appear in
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TABLE I. Summary of the asymptotic scaling behavior of the bulk density ρb, the surface density ρs, and the surface persistence πs for
three different dispersal kernels. The dynamical relationship between the lengthscale l and timescale t at the critical point is also shown. ρb(t ),
ρs(t ), and πs(t ) denote the asymptotic time dependence at the critical point, which, for the PL and the SE model, has also been derived earlier
in Refs. [33,36,37]. ρb(�), ρs(�), and πs(�) denote the off-critical behavior in the limit � → 0+ (active phase) for the densities and � → 0−

(inactive phase) for the persistence. The constants appearing here are defined in the text.

Dispersal kernel Stretched exponential (SE) Log-normal (LN) Power law (PL)

λ(l ) λ0e−bla (
a < 1

2

)
λ0e−b(ln l )2

λ0l−α
(
α > 3

2

)
critical fixed point IDFP IDFP FDFP

dynamical scaling l ∼ (
ln t

t0

)1/a
l ∼ eB(ln t

t0
)1/2

ln t
t0

l ∼ (
t
t0

)1/α(
ln t

t0

)2

ρb(t )
(

ln t
t0

)−xb/a
e−B(ln t

t0
)1/2+c

(
ln t

t0

)1/4 (
t
t0

)−1/α

ρs(t )
(

ln t
t0

)−xs/a
e−B(ln t

t0
)1/2(

ln t
t0

)−1/2
( t

t0
)−1/α ( ln t

t0
)
−2

πs(t )
(

ln t
t0

)−1 (
ln t

t0

)−1/2 1
α

+ 2
(

ln t
t0

)−1

ρb(�) �βb e−B(ln �)2+c| ln �| e−c/
√

�

ρs(�) �βs e−B(ln �)2−2 ln | ln �| �e−c/
√

�

πs(�) (−�)
1
γ [ln(−�)]−2 1

α
+ O[(−�)1/2]

the SDRG treatment of other models as well [49–51]. The
trajectories are given by the equations

f0 = αg0 − ln(αg0) − 1 + �, (43)

where � = 0 corresponds to the critical line; see the flow
diagram in Fig. 1. Close to the critical fixed point, the 	-
dependence of the parameters is g0 = 1

α
+ 2	−1 + O(	−2)

and f0 = 2α2	−2 + O(	−3). We mention that for the more
general case of κ � 1, the latter is modified to f0 =
2α2κ1/α	−2 + O(	−3) [37]. The surface and bulk density
order parameter for large 	 along the critical line are given
by

ρs ∼ f0e−� ∼ 	−2e− 1
α
	, (44)

ρb ∼ e− 1
α
	, (45)

respectively. The latter can be shown not to be affected by
the parameter κ in the general case κ � 1. The surface per-
sistence at the critical line tends to a nonzero limit as πs ∼
g0 = 1

α
+ 2	−1 + O(	−2). Replacing in all these relations 	

with ln(t/t0), we obtain the asymptotic dependence of order
parameters on time at the critical point (see Table I).

Let us turn to the question of how the order parameters
behave outside of but close to the critical point. As a reduced
control parameter, we can use the deviation � of one of the
initial parameters g0 or f0 from the critical line. Due to the
form of the equations of trajectories, � remains constant dur-
ing the renormalization. In the inactive phase (� < 0), πs ∼
g0 → const = 1

z . Since the critical trajectory is quadratic at
the fixed point, we have 1

z − 1
α

= 1
α

(2|�|)1/2 + O(�), and
the deviation of the persistence from its critical value is thus
O(|�|1/2).

In the active phase (� > 0), the dependence of the density
order parameter on � can be obtained by the following ar-
gument. From Eqs. (33) and (34) we obtain 	 = α

∫
[αg0 −

ln(αg0) − 1 + �]−1d ln g0 + const. Moving along a close-to-
critical trajectory, there is a large contribution 	c ∼ �−1/2 to
this integral at the saddle point αg0 = 1, beyond which the
density order parameter saturates to its limiting value. Up to

this crossover scale 	c, the order parameter follows the critical
scaling given in Eqs. (44) and (45). Substituting 	c ∼ �−1/2

into these equations, we obtain

ρs(�) ∼ �e− c√
� , (46)

ρb(�) ∼ e− c√
� , (47)

as � → 0, with c denoting a nonuniversal constant.
Numerical results on the bulk density order parameter

obtained with the NN1 scheme and by the numerical integra-
tion of the NN3 flow equations (33)–(36) are in agreement
with Eq. (47). We applied the NN1 scheme with κ = 1 and
used a uniform distribution of μ rates in the range [0,1]
and equidistant sites, i.e., the nearest-neighbor activation rates
were initially λ0. A periodic boundary condition was used, and
the renormalization was carried out up to two clusters, starting
with different sizes L. First, we determined the location of
the critical point λc by considering the size dependence of the
decimation ratio r(L) at the last step, which was calculated
by performing the renormalization of 107 random samples
for each L. In the inactive (active) phase, r(L) tends to zero
(infinity), while at the critical point it tends to zero, according
to Eqs. (21) and (23), in leading order as r(L) ∼ (ln L)−2.
As can be seen in Fig. 2, we obtain in this way the estimate
λc = 0.190(5). Next, we calculated the bulk density order
parameter ρb(L) at the final stage of the renormalization by av-
eraging over random samples (2500 in number for the largest
L). The variation of ρb(L) with the reduced control parameter
� = λ0 − λc for different sizes is shown in Fig. 3. As can be
seen in the figure, the saturation value of the bulk density order
parameter follows the law in Eq. (47) well.

C. The stretched exponential dispersal kernel

The SE dispersal kernel is of the form

λ(l ) = λ0e−bla
(48)

with positive constants a and b. As was argued in Ref. [36],
this type of dispersal kernel is relevant, i.e., it changes
the universality class from the short-range one if a < 1/2.
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FIG. 2. Dependence of the ratio of frequencies of λ and μ dec-
imations on the size, obtained numerically by the NN1 scheme for
the PL dispersal kernel with α = 3. The straight line is a guide to the
eye.

The characteristic function is � = −a ln b + a ln 	, and its
derivative is

�′ = a	−1, (49)

where we have introduced a ≡ 1/a. As was mentioned be-
fore, a pure exponential distribution of ζ solves the master
equation only in the inactive phase for large 	, thus Eq. (34)
is not valid outside of this phase. Nevertheless, Eq. (33) alone
fixes the leading term of g0 and f0 at the critical line for large
	 [36], which are g0 
 C	−1 and f0 
 a. The constant C can
be determined by requiring the dynamical relationship to be
la ∼ 	, which is dictated by the form of the dispersal kernel.
Using Eq. (23), we obtain then C = a − 1. The leading terms
of g0 and f0 determine those of the order parameters at the
critical point. We obtain for the surface and bulk density order
parameters

ρs(	) ∼ 	−xsa, (50)

ρb(	) ∼ 	−xba, (51)
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FIG. 3. The bulk density order parameter of the CP with a PL
kernel with α = 3, plotted against the reduced control parameter for
different system sizes. The data were obtained by the NN1 scheme.
The arrow in the inset indicates λc.
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FIG. 4. Hypothetical flow diagram for the SE dispersal kernel
with a = 1/3 obtained by Eqs. (33) and (53). Initially 	 = 	0 = 1,
f0(1) = 1, and g0(1) is used as a control parameter, having the
critical value gc = 4.541 69 . . . . The red solid line is the critical
trajectory ending at the critical fixed point (0, 1/3). The blue dotted
lines and the green broken lines correspond to the inactive and active
phase, respectively.

respectively, with xsa = a − 1 and xba = a − 1
2 −

√
a − 3

4

[36], whereas the surface persistence scales as

πs(	) ∼ 	−1 (52)

at the critical point [37].
Unfortunately, the variation of the order parameters with

� is not determined solely by the leading terms, but also the
next-to-leading one in f0 is needed. Equation (33) implies
the corrections are of the form g0 = (a − 1)	−1 + g1	

−γ . . .

and f0 = a + f1	
−γ−1 . . . , with the constants fulfilling γ =

f1

g1

1−a
a2 but otherwise leaving them unspecified. To fix these

constants, the missing flow equation would be needed. An
obvious problem with Eq. (34) is that it enforces a wrong
prefactor to the leading term of g0, g0 
 a	−1. We can naively
correct this fault of Eq. (34) by writing a hypothetical flow
equation

f ′
0 = − f0[g0 − (a − 1)	−1]. (53)

This does not affect the critical scaling of order parameters
with 	, which is solely determined by Eq. (33), but it fixes
the unknown constants in the correction terms and provides a
prediction for the off-critical behavior of the order parameters.
These, as we will see, are close to the estimates obtained by
the numerical analysis of the NN2 scheme. In the sequel, we
will therefore analyze the hypothetical flow equations. The
flow diagram constructed by numerical integration of these
equations can be seen in Fig. 4. The trajectories can be shown
to be given by the equations

a f0 − ln(a f0) = g0	 − (a − 1) ln(g0	) + const. (54)

Note that, as opposed to the trajectories of the PL model in
Eq. (43), these equations explicitly contain 	. Using that, at
the critical fixed point f0 = 0 and g0	 → a − 1, the criti-
cal trajectory is given by a f0 − 1 − ln(a f0) = g0	 − a + 1 −
(a − 1) ln g0	

a−1 .
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For the exponent γ appearing in the next-to-leading term
in g0(	) and f0(	) at criticality, we obtain

γ = √
a − 1. (55)

Thus, in general, the functions g0(	) and f0(	) are nonana-
lytic functions of 1/	 at the critical fixed point. The exponent
γ determines the shape of the critical trajectory near the fixed
point through

f0(	) − a ∼ gγ

0 . (56)

The following considerations about the off-critical behavior
of the order parameters are accurately supported by numer-
ical analyses of the hypothetical flow equations. Let us first
consider the persistence in the inactive phase (� < 0), which
is proportional to the fixed-point value 1

z of g0. As can be
seen in the flow diagram in Fig. 4, a slightly off-critical
trajectory with |�| � 1 will stay close to the critical one
up to some g∗

0(�), beyond which a crossover occurs and the
trajectory breaks down rapidly. We may then assume that, up
to the crossover, the vertical deviation from the critical trajec-
tory remains essentially O(|�|), whereas in the subsequent
part of the trajectory g0 hardly changes and we may write
g∗

0(�) ∼ 1
z(�) . Using the shape of the critical trajectory in

Eq. (56), we obtain finally

πs(�) ∼ 1

z(�)
∼ |�| 1

γ (57)

as � → 0.
Next, let us consider the density order parameter in the ac-

tive phase (� � 0). We assume again that there is a crossover
scale 	∗(�) within which the decrease of the order parameter
essentially follows Eqs. (50) and (51) valid at criticality, and
beyond which it saturates to a finite limiting value. Further-
more, we assume that the crossover value g∗

0(�) ∼ 1/	∗(�)
scales with � in the same way as below the critical point,
g∗

0(�) ∼ �
1
γ . Using Eqs. (50) and (51), this results in the

dependence of the order parameter on � close to the critical
point:

ρs(�) ∼ �βs , (58)

ρb(�) ∼ �βb, (59)

with the surface and bulk order-parameter exponents

βs = xs

aγ
= √

a − 1, (60)

βb = xb

aγ
= 2a − 1 − √

4a − 3

2
√

a − 1
, (61)

respectively. The variation of these exponents with the param-
eter a is shown in Fig. 5.

We have confronted the prediction of the hypothetical
NN3 scheme about the vanishing of the bulk density order
parameter with numerical analyses of the NN1 and NN2
schemes. The details of the numerical calculations with the
NN1 scheme were the same as described for the PL dispersal
kernel. For the NN2 scheme, the μ rates were drawn from
a uniform distribution with the support [0.1,1.1], while the
initial distances between adjacent sites were uniformly dis-
tributed in [0.9,1.1]. The location of the critical point was

 0
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 0  0.1  0.2  0.3  0.4  0.5

1/
β b

   
 1

/β
s

a

•

•1/βb
1/βs

FIG. 5. The reciprocal order-parameter exponents obtained by
the hypothetical flow equations of the CP with SE dispersal kernel,
plotted against a. The red and green dots indicate the order-parameter
exponents βb = 3−√

5
2 and βs = 1 of the short-range model, respec-

tively [6].

determined by calculating the decimation ratio r(L) at the last
step of the renormalization and using that, at the critical point,
r(L) → a

1−a . The variation of the bulk density order parameter
with the control parameter in the active phase is shown for
a = 1/3, 1/4, and 1/5 in Figs. 6 and 7. As can be seen, the
slope of data obtained by the NN2 scheme in the linearized
plots, which is the bulk order-parameter exponent βb, is close
to the prediction in Eq. (59) obtained by the hypothetical
flow equations, the relative differences being 4%. Figure 6(b)
shows that the long-range interactions between interior sites
of neighboring clusters, which are taken into account in the
NN1 scheme, bring considerable corrections to the small-�
behavior obtained by the NN2 scheme, appearing as a slow
change of the local slopes with decreasing �.

D. The log-normal dispersal kernel

The enhanced power-law dispersal kernel is given by

λ(l ) = λ0e−b(ln l )a
, (62)

with constants b > 0 and a > 1. Here, the initial distribu-
tion of distances is restricted to the range l � 1. Note that
a = 1 is just the PL dispersal kernel, and a = 2 represents
the LN dispersal kernel. The characteristic function is thus
�(	) = B	a, having a derivative

�′ = Ba	a−1, (63)

where we introduced the constants a = 1/a and B ≡ b−a.
The flow diagram obtained by the numerical integration of
Eqs. (33) and (34) for the LN dispersal kernel (a = 2) is
shown in Fig. 8. For this model, we could not find the equa-
tions of trajectories. Nevertheless, the asymptotic dependence
of g0 and f0 on 	 along the critical trajectory can be deter-
mined:

g0(	) = Ba	−1+a + a	−1 + O(	−1−a), (64)

f0(	) = 1 − a

Ba
	−a + B−2	−2a + O(	−3a). (65)
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FIG. 6. The variation of the bulk density order parameter with
the control parameter for the SE dispersal kernel with a = 1/3. The
data were obtained numerically by the NN2 scheme (a) and by the
NN1 scheme (b). The solid line has a slope βb = √

2/2 = 0.707 . . .

as predicted by the hypothetical flow equations. The red dot in the
insets indicates the critical value of the control parameter, which is
λc = 3.7632(5) (a) and λc = 0.5145(5) (b).

Thus, the decimation ratio in Eq. (21) tends to zero according
to

r(	) 
 a − 1

B
	−a (66)

as the critical fixed point is approached, and the dynamical
relationship, as follows from Eq. (23), is of the form

l ∼ eB	a
	. (67)

Substituting the asymptotic forms of g0 and f0 into Eqs. (35)
and (36), we obtain for the surface and bulk density order
parameter for large 	 along the critical trajectory

ρs(	) ∼ e−B	a
	−a, (68)

ρb(	) ∼ e−B	a+c	a/2
, (69)

where c = 2
√

B(a − 1), while for the surface persistence we
have in leading order

πs(	) ∼ g0(	) ∼ 	−1+a. (70)

Next, we turn to the question of how the order parameters
depend on the control parameter close to the critical point,
and we focus on the case of the LN dispersal kernel, a = 2.
The results of a numerical analysis of the flow equations show
that the fixed-point value 1/z(�) of g0 in the inactive phase
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FIG. 7. The variation of the bulk density order parameter with
the control parameter for the SE dispersal kernel with a = 1/4
(a) and a = 1/5 (b). The data were obtained numerically by the
NN2 scheme. The solid line has a slope βb = 7−√

13
2
√

3
= 0.979 . . .

(a) and βb = 9−√
17

4 = 1.219 . . . (b) as predicted by the hypotheti-
cal flow equations. The red dot in the insets indicates the critical
value of the control parameter, which is λc = 2.8605(5) (a) and
λc = 2.337(1) (b).

(� � 0) does not relate to � in a power-law fashion, but
the slightly off-critical trajectories are repelled much more
strongly from the critical one. As is shown in the upper inset of
Fig. 9, the numerically determined fixed-point values 1/z(�)
accurately follow the law

1

z(�)
∼ (ln |�|)−2. (71)

Thus, the surface persistence vanishes in this phase according
to πs ∼ (ln |�|)−2 as � → 0.

Concerning the density order parameter in the active phase
(� � 0), we assume again the existence of a crossover scale
	∗ within which the flow is almost critical and beyond
which the order parameter essentially saturates. Furthermore,
we assume that the corresponding crossover parameter g∗

0 ∼
[	∗]−1+a deviates from the critical curve in the same way as
in the inactive phase, i.e., g∗

0 ∼ (ln �)−2. For a = 2, we have
then 	∗(�) ∼ (ln �)4, which can be substituted into Eqs. (68)
and (69) to yield for the variation of surface and bulk density
order parameters with �

ρs(�) ∼ e−B(ln �)2−2 ln | ln �|, (72)

ρb(�) ∼ e−B(ln �)2+c| ln �|, (73)
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FIG. 8. Flow diagram of the CP with a LN dispersal kernel
(a = 2, b = 1) in the NN3 scheme. Initially 	 = 	0 = 1, f0(1) = 1,
and g0(1) is varied. The red solid line is the critical trajectory ending
at the critical fixed point (0,0). The blue dotted lines and the green
broken lines correspond to the inactive and active phase, respectively.

respectively, as � → 0. The slightly off-critical order pa-
rameters obtained by the numerical integration of the flow
equations are in agreement with these asymptotic forms, as
shown in Fig. 9.

IV. DISCUSSION

We have studied in this paper disordered one-dimensional
contact processes with heavy-tailed dispersal, focusing on
the behavior of order parameters near the critical point. We
formulated a general renormalization framework valid for the
dispersal kernels used in ecological studies, and after a se-
ries of approximations we obtained an analytically tractable
asymptotic theory. The functional forms of the variation of
different order parameters with the control parameter found
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FIG. 9. Variation of order parameters with the reduced con-
trol parameter obtained by the NN3 scheme of the LN model
with a = 2 and b = 1. Initially 	 = 	0 = 1, f0(1) = 1, while � =
gc − g0(1) is used as a reduced control parameter, where gc =
0.785 660 168 019 . . . is the critical value of g0(1). The upper and
lower insets show the surface persistence and density, in a linearized
plot according to Eqs. (71) and (72), respectively. The slope of the
straight line in the upper inset is −2. The main figure shows the bulk
order parameter, linearized according to Eq. (73).

in this work, as well as their dynamical scaling at the critical
point, partially known from earlier works [33,36,37], are sum-
marized in Table I. Concerning the density order parameter,
our findings can be summarized qualitatively as follows: the
broader the dispersal is, the faster is the vanishing of the
density as the critical point is approached. For the most rapidly
decaying dispersal kernel, namely the stretched exponential
one, λ(l ) ∼ e−bla

, the density vanishes algebraically with the
control parameter, ρ(�) ∼ �β . Decreasing a, i.e., making
the dispersal kernel broader and broader, the order-parameter
exponent β increases monotonically, starting from its short-
range value at a = 1/2 to infinity, thus the vanishing of the
density becomes less and less singular. For the log-normal
distribution kernel, which decays more slowly than any SE
function, the density vanishes as an enhanced power law with
�, thus the order-parameter exponent is formally infinite. For
the most slowly decaying PL dispersal kernel, the density
vanishes even more rapidly, following an exponential function
of 1/

√
�, again with an infinite β exponent.

In addition to the density, we also considered the persis-
tence, which can be regarded as an order parameter becoming
nonzero in the inactive phase. We have found that the broad-
ening of the dispersal kernel has an opposite effect on the
persistence compared to the density: it makes the vanish-
ing of the persistence sharper. For the SE dispersal kernel,
the persistence vanishes algebraically, and decreasing a, i.e.,
broadening the dispersal, the order-parameter exponent de-
creases monotonically from its short-range value at a =
1/2 toward zero. For the LN dispersal kernel, the persis-
tence exhibits a logarithmic singularity with a formally zero
order-parameter exponent. Finally, for the even more slowly
decaying PL dispersal kernel, the persistence will have a dis-
continuity at the critical point.

As we already noted, the validity of the SDRG method
for arbitrarily weak disorder is not rigorously known for the
nearest-neighbor CP [11]. This problem is also inherited by
the CP with heavy-tailed dispersal studied in this paper. We
stress that even in the range of validity of the SDRG ap-
proach, the results obtained by the method are expected to
be valid only asymptotically, beyond a disorder-dependent
crossover scale which increases with decreasing strength of
disorder.

As mentioned in the Introduction, spatially extended eco-
logical systems are frequently affected by an environmental
gradient, which can be modeled by a linear variation of the
local control parameter with the position in some direction. In
such systems at low gradients, the local density is essentially
determined by the local control parameter, thus the depen-
dence of the density in a gradient-free system on the control
parameter (studied in this paper) appears here as a variation
of the local density with the coordinate along the gradient
direction. In this context, our results imply that a broader
dispersal leads to a faster decline of the local density with the
position along the direction of the gradient.

It is worth mentioning that the renormalization theory
presented in this paper also describes the zero-temperature
quantum phase transition of random transverse-field Ising
chains with ferromagnetic long-range couplings of strength
λ(l ) [32]. The order parameters ρb and ρs analyzed here
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correspond in that model to the bulk and surface magnetiza-
tion, respectively.

As further directions of this research, it would be desir-
able to find the missing elements in the analytic description
of the model with SE and LN dispersal kernels, to extend
the investigations to more realistic two-dimensional systems,
and to confront the predictions of the renormalization the-
ory about the order-parameter scaling obtained in this work
with Monte Carlo simulations. These are left for future
research.
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APPENDIX A: MASTER EQUATION FOR RATES

Staying within the NN3 scheme, let us denote the distribu-
tion of rates at scale � by P�(μ) and R�(λ). We assume that
the scale is infinitesimally shifted from � to � + d�, and we
write down how the distribution P�(μ) changes. Let us first
consider the change of the normalization of P�(μ). Due to
the shrinking of the support, it decreases by P�(�)|d�|. In
addition to this, it is also affected by λ-decimations occurring
with a probability R�(�)|d�|. By such an event, two μ rates
are eliminated and a new one is generated, thus the net balance
is −1. If, however, the generated μ̃ is greater than �, i.e.,
an anomalous λ-decimation event occurs, it will be imme-
diately eliminated by a subsequent μ-decimation, resulting
in a net balance of −2. Denoting the probability of normal
λ-decimation events by s� = Prob(μ̃ < �), the normaliza-
tion changes in total to 1 − P�(�)|d�| − R�(�)|d�|[s� + 2

(1 − s�)]. For the distribution of μ, we can write

P�+d�(μ) = {P�(μ) + R�(�)|d�|[−2P�(μ) + I (μ)]}

× 1

1 − P�(�)|d�| − R�(�)|d�|(2 − s�)
.

(A1)

Here, the first term in the brackets on the right-hand side
describes the loss of eliminated μ rates; the second term,
I (μ), denotes the distribution of generated ones; and the last
factor restores the normalization of P�+d�(μ). This leads to
the differential equation

∂P�(μ)

∂�
= [R�(�)s� − P�(�)]P�(μ) − R�(�)I (μ). (A2)

Now we reformulate this equation by using 	 instead of �,
and using the reduced variables, β and ζ , the distributions of
which are denoted by g	 (β ) and f	 (ζ ), respectively. As can
be seen from Eq. (12), I (μ) becomes a convolution in terms
of β, and we are led in a straightforward way to Eq. (14).

Next, we formulate a master equation for f	 (ζ ), start-
ing from the distribution F	 (l ) of distance variables l . This
changes by μ-decimations, in which two l variables are
deleted and a new one is generated, as well as by anoma-
lous λ-decimations, which are followed by an immediate
μ-decimation. This latter decimation will be slightly differ-
ent from μ-decimations in that the generated new distance
variable in total will contain also the length variable λ−1(�)
decimated in the first part of the anomalous λ-decimation,
l̃ = ln−1,n + ln,n+1 + λ−1(�). In terms of ζ , we have then ζ̃ =
ζn−1,n + ζn,n+1 + 2, thus the additive constant is 2 instead of
1. Nevertheless, as we argued in the main text, in the domain
of validity of the NN3 scheme, the constant terms can be
neglected, therefore the difference between the two types of
decimations is irrelevant. When the logarithmic rate scale is
shifted from 	 to 	 + d	, the distribution F	 (l ) changes as
follows:

F	+d	 (l ) = {F	 (l ) + d	[g0 + f0�
′(1 − p	 )][−2F	 (l ) + (F	 ∗ F	 )(l )]} 1

1 − [ f0�′(2 − p	 ) + g0]d	
. (A3)

Here, the second term on the right-hand side describes the
elimination of two l variables and a generation of a new
one, having a distribution (F	 ∗ F	 )(l ) = ∫ l

λ−1(�) F	 (l ′)F	 (l −
l ′)dl ′. Such events occur by μ-decimations and by anomalous
λ-decimations with probabilities g0d	 and f0�

′(1 − p	 )d	,
respectively. The last factor is again for keeping the distribu-
tion normalized. Equation (A3) can be recast as a differential
equation

∂F	 (l )

∂	
= F	 (l )[ f0�

′ p	 − g0]

+ [ f0�
′(1 − p	 ) + g0](F	 ∗ F	 )(l ).

Rewriting this equation in terms of the reduced variable ζ , we
arrive ultimately at Eq. (15).

APPENDIX B: MASTER EQUATION
FOR ORDER PARAMETERS

1. Density

Let us define σ
(i)
	 (μ)dμ as the probability that a given bulk

(i = b) or surface (i = s) site has survived the μ-decimations
up to scale 	 and it is part of a cluster having a deactivation
rate in the range [μ,μ + dμ]. When 	 is shifted to 	 + d	,
it will change due to λ-decimations on two sides (one side) of
the containing cluster for bulk (surface) sites. The probability
of λ-decimations is ni f0�

′d	 with ns = 1, nb = 2, so we can
write

σ
(i)
	+d	

(μ) = σ
(i)
	 (μ) + ni f0�

′d	
[ − σ

(i)
	 (μ) + I (μ)

]
, (B1)

where the first term in the brackets is the loss term
while the second one is the gain given by I (μ) =∫∫

σ
(i)
	 (μ1)P�(μ2)δ(μ − κ

μ1μ2

�
)dμ1dμ2. Note that, as
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opposed to P�(�) and R�(�), σ
(i)
	 (μ) is not normalized to

1 [the norm being Si(	)], therefore no compensation factor
needs to be included in Eq. (B1). Moreover, no further care
has to be taken of anomalous λ-decimations (with μ̃ > �)
since the generated μ̃ is in this case outside of the support of
σ

(i)
	 (μ) and is thus automatically attributed to the losses of

Si(	). Equation (B1) can be recast as the differential equation

∂σ
(i)
	 (μ)

∂	
= −ni f0�

′[σ (i)
	 (μ) − I (μ)

]
. (B2)

Rewriting this in terms of s(i)
	 (β ), we obtain Eq. (24).

2. Persistence

We define Q	 (l )dl as the probability that the bond next to
the first site of a semi-infinite system has not been eliminated

by a λ-decimation up to scale 	 and its length variable lies
in the range [l, l + dl]. When 	 is shifted to 	 + d	, Q	 (l )
changes by μ-decimations of the second site, which have
a probability g0d	, as well as by anomalous λ-decimations
of the second bond occurring with a probability f0�

′(1 −
p	 )d	. We can then write down the following differential
equation:

∂Q	 (l )

∂	
= −[g0 + f0�

′(1 − p	 )]

×
[
Q	 (l ) −

∫ l

λ−1(�)
Q	 (l ′)F�(l − l ′)dl ′

]
. (B3)

Using the reduced variable ζ instead of l , this can be reformu-
lated as Eq. (31).
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