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We propose a variational quantum eigensolver (VQE) for the simulation of strongly correlated quantum
matter based on a multiscale entanglement renormalization ansatz (MERA) and gradient-based optimization.
This MERA quantum eigensolver can have substantially lower computation costs than corresponding classical
algorithms. Due to its narrow causal cone, the algorithm can be implemented on noisy intermediate-scale
quantum (NISQ) devices and still describe large systems. It is particularly attractive for ion-trap devices with
ion-shuttling capabilities. The number of required qubits is system-size independent and increases only to a
logarithmic scaling when using quantum amplitude estimation to speed up gradient evaluations. Translation
invariance can be used to make computation costs square-logarithmic in the system size and describe the
thermodynamic limit. We demonstrate the approach numerically for a MERA with Trotterized disentanglers
and isometries. With a few Trotter steps, one recovers the accuracy of the full MERA.
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I. INTRODUCTION

The complexity of quantum many-body systems makes
it a formidable challenge to understand the properties of
quantum matter, in particular in strongly correlated regimes
where perturbative approaches fail. Hence, powerful classi-
cal simulation techniques like quantum Monte Carlo [1–4]
and tensor networks states (TNSs) [5–10] have been devel-
oped. A strength of TNS techniques is that they are also
applicable for frustrated quantum magnets and fermionic
systems [11–15], where quantum Monte Carlo is ham-
pered by the negative-sign problem [16,17]. These classes of
systems include candidate spin liquid materials [18–22], frac-
tional quantum Hall physics [23,24], and high-temperature
superconductors [25,26].

Consider a lattice system with N sites, each associated with
a site Hilbert space of dimension d such that the total Hilbert
space has dimension dN . The idea of TNSs is to approximate
the many-body state by a network of partially contracted
tensors. The tensors may carry physical indices that label site
basis states and additional bond indices of dimension χ which
are contracted with corresponding indices of other tensors.
The structure of the network and the required bond dimension
χ are adapted to the entanglement structure in the system.
Typically, the more entangled a system is, the larger χ needs
to be in order to achieve a desired approximation accuracy. To
approximate the ground state of a given model Ĥ by a TNS
|�〉, one minimizes the energy 〈�|Ĥ |�〉/‖�‖2 with respect
to the tensor elements. The beauty of the approach is that
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computation costs for optimization steps are reduced from ex-
ponential in N to polynomial in N . In particular, they are linear
in N for matrix product states (MPSs) [5,6,27–29], projected
entangled pair states (PEPS) [7,8,30–32], and the multiscale
entanglement renormalization ansatz (MERA) [9,33]. For ho-
mogeneous MERAs, one can reduce the cost to O(log N ) and
even access the thermodynamic limit N → ∞. However, the
classical computation time may scale with a high power of
the bond dimension χ . While it is only O(χ3) for MPSs in
one-dimensional (1D) systems [6,28], it is O(χ7...9) for 1D
MERAs [34], O(χ10...12) for 2D PEPS [35,36], and O(χ16...28)
for 2D MERAs [37,38]. Hence, practicable χ are usually
rather small, which limits the approximation accuracy.

In this work, we propose and analyze a hybrid quantum-
classical variational eigensolver [39] to overcome these
limitations, where many-body ground states are approximated
by adapted MERA states and (small) quantum computers
are employed to efficiently execute tensor contractions. In
this context, MERAs have four advantages over other TNSs:
(i) MERAs can be applied for systems with any number of
spatial dimensions, (ii) all tensors are unitary or isometric,
which allows for a rather direct implementation on quantum
computers, (iii) MERA expectation values for local operators
depend only on narrow causal cones such that they can be
evaluated exactly and large systems can be simulated on noisy
intermediate-scale quantum (NISQ) devices, and (iv) sets of
MERAs are closed which implies that optimizers always exist
[40]. Also, MERA optimizations are not hampered by barren
plateaus [41,42].

Quantum algorithms using MPSs for 1D systems were
recently suggested in Refs. [43–47]. Two prominent quantum-
computing platforms are superconducting qubits [48,49] and
ions in electromagnetic traps [50,51]. Ion-trap systems with
qubit-shuttling capabilities [52–54] are particularly interest-
ing for the quantum MERA scheme.
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FIG. 1. TMERA structure and implementation. (a) Expectation value 〈�|ĥi|�〉 for a homogeneous binary 1D MERA |�〉 with T = 3
layers. The MERA consists of disentanglers (boxes) and isometries (triangles). Contraction lines between the tensors correspond to renormal-
ized site vector spaces with dimension χ . The shaded region indicates the causal cone for a two-site operator ĥi. The cone has width three,
i.e., contains at most three renormalized sites in each layer. Only causal-cone states like |�i〉, associated with ĥi, need to be generated on the
quantum computer. (b) Isometries can be realized as unitaries where some input qubits are initialized in a reference state like |0〉 (open circles).
Such |0〉 qubits can be moved in and others (filled circles) can be moved out of the quantum register or reset after applying the layer-transition
maps. (c) A Trotter structure with t steps is imposed on each MERA tensor, making it a circuit of two-qubit gates. Here t = 3 and χ = 16, i.e.,
q = 4 qubits per contraction line. (d) Each Trotter gate can be implemented using CNOTs and single-qubit rotations or, equivalently, single and
two-qubit rotations. The specified Pauli operators generate the corresponding rotations (1), and σ̂ refers to a general single-qubit rotation.

II. MERA ADAPTED FOR QUANTUM COMPUTERS

A MERA [9,33] is a hierarchical TNS motivated by the
real-space renormalization group [55–57]: In each renormal-
ization step τ = 1, . . . , T , unitaries with small spatial support
are applied to disentangle the system to some extent, before
isometries are applied in order to map a block of b sites
into a new renormalized site. In the process, states that are
not important for the representation of the ground state are
discarded. With a branching ratio of b, this process ends with
one or a few renormalized sites after T ∼ logb N steps, and the
resulting few-site problem can be solved exactly. While the
physical site Hilbert spaces have dimension d , Hilbert spaces
of renormalized sites have dimension χ . Seen in reverse, the
renormalization group scheme defines a many-body state |�〉.
This state is a MERA with bond dimension χ . It consists of T
layers, each comprising the unitary disentanglers and isome-
tries of a renormalization step. Optimizing the tensor elements
to minimize the energy expectation value E = 〈�|Ĥ |�〉, one
obtains a ground-state approximation.

In principle, it is straightforward to prepare a MERA |�〉
on quantum computers. Assume χ = 2q such that every renor-
malized site corresponds to q qubits. A disentangler that acts
on n (renormalized) sites is a χn × χn unitary acting on nq
qubits. It can be decomposed into a circuit of O(4nq ) single-
qubit and CNOT gates [58–60]. An isometry that maps n sites
into m > n can be implemented as a unitary acting on nq
qubits and (m − n)q additional ones initialized in state |0〉.
It requires O(2(n+m)q) single-qubit and CNOT gates [61].

For simplicity, we assume a Hamiltonian Ĥ = ∑
ĥi with

finite-range interaction terms ĥi. As exemplified in Fig. 1(a),
many tensors cancel in expectation values 〈�|ĥi|�〉 due to
their isometric property. The causal cone of ĥi comprises
all tensors that can influence the expectation value, and we

define |�i〉 as the corresponding causal-cone TNS such that
〈�|ĥi|�〉 = 〈�i|ĥi|�i〉. For a binary 1D MERA, disentanglers
act on n = 2 sites, and the cost to evaluate 〈�i|ĥi|�i〉 would
scale in q as O(42q). Hence, the cost for the evaluation of an
energy gradient would scale as O(44q = χ8). This is only a
modest improvement over the scaling O(χ9) of the classical
computation time. As discussed in Appendix A, the differ-
ences are generally more pronounced in higher dimensions.
As an example, the quantum and classical gradient evaluation
costs for the 2D 2 × 2 �→ 1 MERA of Ref. [37] scale as
O(48q = χ16) and O(χ28), respectively. In any event, one also
needs to account for the required number of measurement
samples in the quantum case, and the quantum computational
complexity can be reduced drastically by imposing further
structure on the MERA.

III. TROTTERIZED TENSORS

There are many options for substructures. Here we choose
to impose a Trotter structure on the MERA tensors. In particu-
lar, they shall consist of t Trotter steps, each comprising local
unitary gates that act on, say, two nearest-neighbor qubits;
see Fig. 1(c). For tensors that act on n (renormalized) sites,
each Trotter step consists of O(nq) local gates. For a Trot-
terized MERA (TMERA) with T layers, the measurement
of a local expectation value 〈�i|ĥi|�i〉 then requires O(T t )
time on the quantum computer. We will see that, using trans-
lation invariance, the measurement of the energy gradient
requires O(T 2t2nq) time. As we will also see in benchmark
simulations, the local unitary gates approach identities when
increasing the number t of Trotter steps. This establishes a
connection to Trotterization as used in time evolution prob-
lems [62–65].
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Recently Refs. [66] and [67] appeared. The first studies
the expressiveness of TMERAs numerically; the second is an
experimental demonstration, measuring critical correlations in
preoptimized TMERAs with bond dimension χ = 4 using an
ion-trap system.

IV. HYBRID OPTIMIZATION ALGORITHM

In classical computations, MERA states are optimized
by evaluating the so-called environment for each tensor and
updating tensors one by one [68]. On a quantum computer,
we can measure only observables, and the tensor environment
is not accessible. The hybrid algorithm works as follows. The
Trotter gates can be written as small circuits, parametrized
through the angles θ = (θ1, θ2 . . . ) of rotations

R̂σ̂ (θ ) := e−iθσ̂ /2 = 1 cos
θ

2
− iσ̂ sin

θ

2
(1)

with respect to Hermitian unitary operators σ̂ like the Pauli
matrices {1, σ̂ x, σ̂ y, σ̂ z} or tensor products thereof. A stan-
dard choice is depicted in Fig. 1(d). It comprises three CNOT

gates, one σ̂ z and two σ̂ y single-qubit rotations, as well as
four general single-qubit gates [69,70]. The number of angles
per Trotter gate agrees with dim SU(4) = 15 and reduces to
nine angles when exploiting the unitary gauge freedoms in
the TMERA. The energy gradient ∂θE can be evaluated by
measuring

∂θ j E = 1
2 [E (θ j + π/2) − E (θ j − π/2)], (2)

where all angles except for θ j are kept fixed [71–73]. A
derivation is given in Appendix C. The energy can now
be minimized by a gradient-based algorithm like L-BFGS
[74,75].

In experiments two-qubit gates are typically much more
costly than single-qubit gates. For ion-trap and superconduct-
ing systems, Refs. [76–79] specify typical single-qubit gate
times of ∼10 µs and ∼30 ns, respectively, whereas two-qubit
gates require ∼100 µs and 200 ns, respectively. The CNOT
parametrization [Fig. 1(d)] of the Trotter gates has the draw-
back that CNOT gates require two-qubit rotations with large an-
gles. In the ion-trap and superconducting systems, CNOT is im-
plemented using an effective Ising σ̂ α ⊗ σ̂ α interaction with
rotation angle θ = π/2 [79–82]. A better choice is then the
canonical (CAN) parametrization in Fig. 1(d) that comprises
three native σ̂ α ⊗ σ̂ α rotations (α = x, y, z) and four general
single-qubit rotations [83,84]. The benchmark simulations,
discussed below, show that the occurring two-qubit angles for
this parametrization are rather small. Furthermore, we find
that the optimization actually works best in a parametrization-
free fashion. Such a Riemannian quasi-Newton method on
quantum circuits is described in Appendix C 2.

V. TRANSLATION INVARIANCE

For translation-invariant systems, the interaction terms ĥi

are translates of the same operator ĥ. Correspondingly, we
can reduce the number of variational parameters. A homoge-
neous MERA has translation-invariant layers, i.e., each layer
consists of repeating identical groups of tensors. A binary

1D MERA, for example, is then characterized by a single
disentangler and a single isometry for each layer. For a het-
erogeneous system, the derivatives (2) can be evaluated by
measuring expectation values for all terms hi that have the
tensor of angle θ j in their causal cone. In total, this requires
O(NT = N logb N ) measurements. With translation invari-
ance, this can be reduced to O(T ) by either using classical
random bits or introducing auxiliary qubits: For the 1D case
illustrated in Fig. 1, there are two unitary transition maps
ÛL and ÛR. Either of them has to be applied to progress in
the preparation of the causal-cone state |�i〉 from layer τ to
τ − 1. The specific sequence depends on the location i of
the interaction term. In order to evaluate the energy density
e := 1

N 〈�|Ĥ |�〉 = 1
N

∑
i〈�i|ĥi|�i〉 for the entire system at

once, we can replace ÛL,R by their convex combination such
that we obtain the state on layer τ − 1 as

ρ̂ (τ−1) = 1
2 (ÛL ρ̂ (τ )Û †

L + ÛR ρ̂ (τ )Û †
R ). (3)

For experiments, such quantum channels can be imple-
mented by randomly selecting ÛL or ÛR in each transition.
Practically, this constant reprogramming of the hardware in
gradient evaluations can be slow. So, alternatively, the chan-
nels can be lifted to fixed unitary evolutions on a larger
Hilbert space [85,86]. For Eq. (3), adding a single auxiliary
qubit per layer is sufficient. Initializing it in the state (|0〉 +
|1〉)/

√
2 and applying ÛL or ÛR conditioned on the auxiliary

qubit realizes the channel (3). Appendix B gives details on
the efficient realization of layer-transition maps for various
MERAs.

Homogeneous MERAs are necessarily defined with pe-
riodic boundary conditions. Let the linear system sizes
Lx, Ly, . . . be large enough such that the causal cone of any
local interaction term ĥi does not close upon itself along
any of the spatial dimensions. Then, repeating the MERA
tensor network in any spatial direction (Lα �→ nLα) with ac-
cordingly adapted boundary conditions defines families of
homogeneous MERAs, which all have the same energy den-
sity e. In particular, the results capture the thermodynamic
limit N → ∞.

VI. QUBIT RESETS AND ION SHUTTLING

An attractive feature of the proposed quantum-classical
TMERA algorithm is that, while we can simulate large sys-
tems, at any stage, only a system-size-independent number of
qubits need to be acted upon with the unitary gates. When
evaluating observables or gradients, as we progress from layer
to layer, only the qubits inside the causal cone need to be in the
quantum register. These are, e.g., 4q qubits for 1D binary and
ternary MERAs, and 14q qubits for the 2D 2 × 2 �→ 1 MERA
of Ref. [37]. In every layer transition, some contraction lines
(groups of q qubits) leave the causal cone. The same number
of (new) qubits, initialized in state |0〉, are needed to realize
the isometries of the next MERA layer. When space efficiency
is the highest priority, one can reset the qubits [89–93] that exit
the causal cone to |0〉 for reuse. Auxiliary qubits can be reset
as well. When one wants to minimize execution times, one can
employ quantum amplitude estimation (QAE) [94,95] in the
gradient evaluations. For a preparation |�i〉 = Ûi|0, . . . , 0〉
of the causal-cone state, QAE requires application of powers
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(a) (b)

FIG. 2. Benchmark simulations. The plots show the convergence and accuracy of energy densities e for the transverse Ising model (4) using
homogeneous modified binary MERAs with T = 6 layers and bond dimension χ = 8 (q = 3). Panel (a) shows the convergence at g = 1.25
for TMERAs with t = 2, starting from the product state with state e−i π

8 σ̂ z
e−i π

8 σ̂ y | ↑ 〉 on every site. In first optimization phases, disentanglers
are removed (set to 1), i.e., Trotterized tree tensor networks (TTNs) [87,88] are optimized. The resulting state is used to initialize the TMERA
optimization. (b) Energy accuracy of optimized TMERAs and MERAs with full tensors (fMERAs) as a function of the field strength g. Local
minima are avoided by scanning from g = 1.25 to g = 0.75 and back. Especially in the paramagnetic phase (g > 1) and at the critical point
g = 1, the accuracy of the fMERA is recovered with only t = 2 Trotter steps per tensor.

(Ûi )m. In this case, one cannot employ the (nonunitary) mid-
circuit qubit resets. While the total number of required qubits
is then logarithmic in the system size, still, only causal-cone
qubits need to reside in the quantum register, and the others
can be moved to a quantum memory. In ion-trap systems,
this can be accomplished by shuttling as demonstrated in
Refs. [52–54].

VII. BENCHMARK SIMULATIONS AND SCANNING

To demonstrate and benchmark TMERAs, we simulate the
1D transverse-field Ising model

Ĥ = −
∑

i

σ̂ x
i σ̂ x

i+1 + g
∑

i

σ̂ z
i . (4)

It has a critical point at g = 1 with the paramagnetic phase for
g > 1 and the ferromagnetic phase for g < 1. Figure 2 shows
results for homogeneous TMERAs with the modified binary
network structure [34], using an L-BFGS optimization. The
TMERA energy densities e are compared to the exact infinite-
system value e∞

gs . The left panel shows the convergence for
g = 1.25, which quickly reaches a high accuracy. The right
panel shows TMERA accuracies for 0.75 � g � 1.25. Lo-
cal minima are avoided through scanning, i.e., starting at
g = 1.25, g is lowered in steps, and the converged TMERA
of the previous step is used to initialize the optimization of
the next. Upon reaching g = 0.75, we start scanning back to
g = 1.25. The numerical results confirm that a few Trotter
steps t are sufficient to reach accuracies comparable to the full
(non-Trotterized) MERA. In particular, t = 2 gives already
excellent results for χ = 23.

For the experimental implementation, the Trotter gates can
be expressed in the CAN representation. Figure 3 shows dis-
tributions of the rotation angles in the converged TMERA at
different g. They are peaked at small angles. This remains true
even for the critical point g = 1. The fact that most angles

are small implies that these quantum gates can be executed
quickly or at correspondingly higher fidelity.

VIII. COMPUTATION COST AND ACCURACY

Exploiting translation invariance, the O(T tq) components
(2) of the energy gradient can be evaluated by preparing the
corresponding causal-cone states, which costs O(T t ) time,
and then projectively measuring the local interaction term
ĥ. With Ns samples per term, the statistical error of the
gradient and, hence, the achievable energy accuracy scale
as ε ∝ 1/

√
Ns. Thus, the quantum cost for each TMERA

optimization step is O(T 2t2q/ε2). Using QAE [94,95], the
cost reduces to O(T 2t2q log(1/ε)/ε) while increasing the cir-
cuit depth by a factor O(1/ε). Our simulations show that
the error ε decreases according to a power law ε ∼ (t2q)−α .

FIG. 3. Angle distributions in converged TMERAs. Trotter gates
can be parametrized in the canonical (CAN) form based on four
single-qubit rotations and three Ising-interaction gates (XX , YY , and
ZZ). All angles are found to be peaked around 0, which is favorable
for the experimental realization. The plots show angle distributions
for converged TMERAs from Fig. 2 with t = 2 Trotter steps.
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For fixed q, ε decreases until reaching the accuracy of
the MERA with full tensors (fMERA) of bond dimension
χ = 2q. Upon approaching the saturation, one should in-
crease q. The fMERA computation cost also follows a power
law O(T χ r ) = O(ε−r/β ), where exponent r is determined
by the contraction cost and exponent β by the relation be-
tween χ and accuracy ε. For 1D MERAs, model-dependent
exponents β ≈ 3.8, . . . , 6.8 have been reported [34]. In
simulations of the critical bilinear-biquadratic spin-1 chain
[96–100] with modified binary MERAs (r = 7), we find that
the QAE cost O(ε−1−1/α ) is already lower than the classical
fMERA cost O(ε−r/β ), providing a polynomial advantage; see
Appendix A 5. As the exponent r for the classical fMERA
cost is very large for higher-dimensional systems (r � 16),
the quantum algorithm should substantially outperform the
classical simulations for models in � 2 spatial dimensions.
It is numerically very expensive to determine the scaling
exponents for higher-dimensional systems, and further inves-
tigations on this subject are needed.

IX. DISCUSSION

The presented TMERA quantum eigensolver allows for the
approximation of many-body ground states with a system-size
independent number of qubits, and it can substantially outper-
form classical MERA simulations. The Appendices provide
details on the computational complexity for different MERA
network structures (Appendix A), the realization of layer-
transition maps for homogeneous TMERAs (Appendix B),
optimization methods (Appendix C) including a Riemannian
version of the L-BFGS algorithm, and the influence of differ-
ent Trotter gate parametrizations (Appendix D).

Reference [101] discusses DMERAs, which are a special
type of TMERAs, where the number of Trotter steps D in each
layer is directly linked to the width ∼2D of the causal cone.
The TMERAs that we consider here have more structure,
which allows one to tune these quantities independently, and
the imposed structure admits a more direct comparison with
the typical MERAs used in classical simulations. The opti-
mization based on the simultaneous perturbation stochastic
approximation (SPSA), suggested in Ref. [101], is consider-
ably less efficient because the energy derivative is evaluated
only along random directions in the high-dimensional search
space. Our gradient-based approach and the described utiliza-
tion of translation invariance can be applied for any TMERA,
including DMERAs. Conversely, the robustness to noise as
analyzed in Ref. [101] also applies generally to TMERAs.

The decomposition of the MERA tensors into layers of
nearest-neighbor Trotter gates is natural but not necessary.
In future research, one could explore other network topolo-
gies to leverage, e.g., the all-to-all connectivity of ion-trap
systems [102,103] and to increase the expressiveness of
TMERAs at fixed cost. One could also consider other gate
types, especially those that are naturally available in promi-
nent quantum-computing architectures. An example are mul-
tiqubit Mølmer-Sørensen gates [104,105]. For an implemen-
tation on present-day devices, small two-qubit rotation angles
are desirable. Hence, it will be interesting to explore how
the angles and the TMERA accuracy are affected by adding
large-angle penalty terms to the energy functional. See the
follow-up paper Ref. [106] for further analysis of TMERAs.
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APPENDIX A: COMPUTATIONAL COMPLEXITY
FOR 1D AND 2D MERA

Let us discuss the quantum computational complexity for
different TMERAs in one and two dimensions and compare to
the corresponding classical simulation costs. Figure 4 shows
the considered MERA networks: the 1D binary MERA, a
modified 1D binary MERA [34], the 1D ternary MERA, a 2D
2 × 2 �→ 1 MERA [37], and a 2D 3 × 3 �→ 1 MERA [68]. We
use the following labels:

(1) b denotes the MERA branching ratio.
(2) T denotes the number of layers.
(3) τ = 1, . . . , T labels layers with layer τ = 1 acting

on the physical sites, i.e., τ increases in the renormalization
direction.

(4) χ = 2q denotes the bond dimension with q being the
corresponding number of qubits per renormalized site.

(5) A denotes the cross section of the causal cone for local
operators, defined as the maximum number of renormalized
sites inside the causal cone at any layer interface (τ → τ ± 1).

(6) t denotes the number of Trotter steps for each tensor in
TMERA (or an upper bound).

For heterogeneous MERA, the total number of sites is
denoted by N and assumed to be ∼bT .

1. Classical time complexity

The costs for optimizing MERAs on classical computers
are determined by the cost of computing the so-called envi-
ronment of a tensor. This is in turn determined by the cost
of applying a renormalization step (τ �→ τ + 1) to a local
interaction term or, equivalently, for propagating a reduced
density matrix inside the causal cone in the preparation di-
rection (τ �→ τ − 1). In each step, one needs to contract the
tensors of disentanglers and isometries and trace out sites
that leave the causal cone. The costs for these operations,
which one obtains by optimizing the contraction sequence, are
given in Table I. Generally speaking, it is favorable to have a
narrow causal cone, which explains why the classical costs
for the 1D modified binary and ternary MERAs are smaller
than those of the plain binary MERA. On the other hand,
for a given bond dimension χ , the binary MERA can encode
more entanglement than the other two 1D MERA types and
generally achieves higher accuracy.

The costs shown in Table I refer to one evaluation of the
global energy gradient on a classical computer, or equiva-
lently, a single update of all tensors in the Evenbly-Vidal
algorithm [68]. For a homogeneous MERA, this cost, like the
number of different tensors, is linear in T . For heterogeneous
MERAs, the total number of tensors and the cost are propor-
tional to

∑T
τ=1 bτ ∼ N . The table shows the classical costs

for MERAs with full tensors (fMERAs) because, on classical
computers, there is not much to gain by exploiting the Trotter
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FIG. 4. 1D and 2D MERA tensor networks. Panels (a)–(c) each show three layers of a 1D MERA, where the preparation direction
(decreasing τ ) is upwards and causal cones for local operators are indicated: (a) the 1D binary MERA, (b) a modified 1D binary MERA
[34], and (c) the 1D ternary MERA. Panels (d) and (e) each show one layer of a 2D MERA, where we progress in the preparation direction
(decreasing τ ) from left to right. (d) For the shown 2D 2 × 2 �→ 1 MERA [37], isometries map renormalized sites (crosses) into blocks of
2 × 2 sites (dots) before disentanglers are applied to shifted 2 × 2 site blocks. (e) For the shown 2D 3 × 3 �→ 1 MERA [68], isometries map a
renormalized sites (crosses) into blocks of 3 × 3 sites (dots) before one applies 4-site and two 2-site disentanglers.

structure of TMERA tensors unless one is willing to introduce
approximations.

2. Quantum computation time complexity

For the hybrid quantum-classical TMERA algorithm, the
width of the causal cone is not as decisive for the computation
costs. It determines primarily the number of qubits that need
to be simultaneously in the interaction zone of the computer.
Also, the specific network structure inside the cone, which
influences the classical contraction costs, does not affect the
scaling of the quantum computation costs. As discussed in

Sec. III, the quantum costs for evaluating the TMERA expec-
tation value of a local interaction term ĥi is proportional to tT .
For translation-invariant systems and homogeneous TMERA,
the expectation value of the entire Hamiltonian Ĥ = ∑

i ĥi can
in fact be measured in one go, i.e., with time O(tT ). As there
are N = O(qtT ) different Trotter gates, one needs O(q(tT )2)
time to measure the energy gradient.

For heterogeneous TMERAs, there are N = O(qtN ) dif-
ferent Trotter gates with O(qtN/bτ ) located in layer τ . To
measure the gradient with respect to one Trotter gate in layer
τ , we need to measure the O(bτ ) expectation values for

TABLE I. Computational complexity. For the five 1D and 2D MERA network structures shown in Fig. 4, this table states the number of
qubits needed for the variational quantum eigensolver and compares the time complexity for the quantum measurement of energy gradients
to the evaluation in the classical algorithms. Columns 2 and 3 show the branching ratio b and the cross section A of the causal cone for
local operators like the considered Hamiltonian interaction terms. Columns 4 and 5 show the number of qubits needed in the quantum
processor register and the number of additional auxiliary qubits (per layer) needed to avoid circuit reprogramming in the gradient evaluations
for homogeneous MERAs. Columns 6–8 concern homogeneous MERAs. Column 6 shows the classical computation times for fMERAs, which
agree with those for TMERAs as, on a classical computer, the Trotter structure of tensors does not admit substantial gains. Columns 7 and 8
show the quantum computation times for TMERAs and fMERAs. Columns 9 and 10 show the classical and the quantum computation times
for heterogeneous TMERAs.

Properties Number of qubits Times, homogeneous Times, heterog.

MERA type b A Register Auxiliary Classical Quantum F-quantum Classical Quantum

1D binary 2 3 4q 1 O(29qT ) O(q(tT )2) O(28qT 2) O(29qN ) O(q(tT )2N )
1D mod. binary 2 2 3q 2 O(27qT ) O(q(tT )2) O(28qT 2) O(27qN ) O(q(tT )2N )
1D ternary 3 2 4q 2 O(28qT ) O(q(tT )2) O(28qT 2) O(28qN ) O(q(tT )2N )
2D 2 × 2 �→ 1 4 3 × 3 14q 2 O(228qT ) O(q(tT )2) O(216qT 2) O(228qN ) O(q(tT )2N )
2D 3 × 3 �→ 1 9 2 × 2 15q 4 O(216qT ) O(q(tT )2) O(220qT 2) O(216qN ) O(q(tT )2N )
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all local interactions terms that it affects. Hence, one needs∑T
τ=1 O(tT bτ qtN/bτ ) = O(q(tT )2N ) time for the gradient

measurement of heterogeneous TMERAs.
The comparison to the classical computation costs (Ap-

pendix A 1) is not trivial. In particular, one needs to take
into account how many measurement samples are needed to
reach a certain accuracy ε. As described in Sec. VIII, the
comparison can be done by expressing the bond dimension
χ as well as qt2 in terms of ε. For critical models, they are
related by power laws. The comparison for a specific model is
discussed in Appendix A 5.

The classical component of the hybrid TMERA eigen-
solver controls the gradient evaluation and steers the gradient-
based energy minimization. Its time complexity is always
subleading to the quantum time complexity: For a TMERA
with N different Trotter gates, the classical component oper-
ates on a vector space of dimension O(N ). The classical time
complexity for one iteration of gradient descent or L-BFGS is
just O(N ).

Although it is much less efficient than TMERAs, one can
also optimize fMERAs using a quantum computer. A disen-
tangler that acts on n renormalized sites can be decomposed
exactly into a circuit of O(22nq) single-qubit and CNOT gates
[58–60]. An exact representation of an isometry that maps n
sites into m > n requires O(2(n+m)q) single-qubit and CNOT

gates [61]. The time cost for the energy gradient measurement
of a homogeneous fMERA is then obtained by squaring the
largest number of gates per tensor and multiplying by T 2.

3. Quantum space complexity with resets

Concerning the quantum space complexity, we have to
distinguish two settings. In the first, qubits corresponding to
renormalized sites that leave the causal cone are reset to the
reference state |0〉 in order to reuse them for the implemen-
tation of isometries in the next layer transition τ �→ τ − 1.
The distribution of measurement results in the evaluation of
energy gradients and local observables like 〈�i|ĥi|�i〉 is the
same with and without such midcircuit resets. Qubit rests can
be implemented through a projective measurement followed
by a subsequent π rotation conditioned on the measurement
result or through driven-dissipative reset schemes [89–93].

The number of qubits needed in the register is primarily
determined by the cross section A of the causal cone. More
precisely, from the sequence of contractions inside each layer
of the causal cone, one can determine how many renormalized
sites (groups of q qubits) are needed at any point in time. One
can reduce this number by not insisting on parallel execution
of gates, but shifting the MERA tensors of a layer-transition
map temporally so that some qubits can already be reset
before the application of further gates. The results for the
considered MERA networks are shown in Table I.

As discussed in Sec. V, a major computation time re-
duction for the homogeneous MERAs is achieved by taking
appropriate convex combinations of the layer-transition maps
like ÛL and ÛR such that the energy density for the full
(infinite) system is obtained in one go. This can be done
either with classical randomness or, if one wants to avoid
the corresponding reprogramming of pulse sequences in the
experimental evaluation of gradients, by introducing auxiliary

qubits. In the latter approach, the number of required auxiliary
qubits per MERA layer is proportional to log2 of the number
of transition maps. The auxiliary qubits are also amenable to
qubit rests.

4. Quantum space complexity without resets

The experimental evaluation of observables and energy
gradients can be made more time efficient using quantum am-
plitude estimation (QAE) [94,95]. For the preparation |�i〉 =
Ûi|0, . . . , 0〉 of a causal-cone state, QAE requires applica-
tion of powers (Ûi )m. In this approach, one cannot employ
the resetting of qubits that leave the causal cone, because
subsequent factors Ûi will again act on them. Without the
resets, every layer transition τ �→ τ − 1, requires (b − 1)Aq
new qubits, initialized in the reference state |0〉 in order to
realize the isometries. For a TMERA with T layers, one then
needs a total of

∼(b − 1)AqT (A1)

qubits, i.e., a number that grows logarithmically in the total
system size N . In ion-trap systems, one can use shuttling
[52–54] to move currently used qubits in and out of the quan-
tum register.

5. Comparison of time complexities for critical spin-1 chains

To directly compare the time complexities of the classical
fMERA and the quantum-classical TMERA algorithms, one
has to take into account the number of measurement samples
needed in each optimization step of the TMERA algorithm.
As discussed in Sec. VIII, the required number of samples
scales with the energy accuracy ε. Employing QAE [94,95],
the total time complexity per iteration is O(t2q log(1/ε)/ε).
The time complexity per iteration for a classical fMERA sim-
ulation is O(χ r ) = O(2rq), where the exponent r depends on
the MERA type as shown in Table I.

Figure 5 provides numerical results for the bilinear-
biquadratic spin-1 chain [96–100]

Ĥ =
∑

i

[cos ϑ (Ŝi · Ŝi+1) + sin ϑ (Ŝi · Ŝi+1)2] (A2)

at the critical Uimin-Lai-Sutherland point ϑ = π/4. We
choose this model because it corresponds to a conformal
field theory with central charge c = 2 [107] and, hence, fea-
tures significant entanglement. The figure shows the energy
accuracy ε as a function of the classical fMERA and quantum-
classical TMERA computation cost per iteration. In both
cases, the energy accuracy follows a power law with a mod-
erate polynomial advantage for TMERAs. For the TMERA
curves with fixed q, ε decreases until reaching the accuracy
of the fMERA with bond dimension χ = 2q. In practical
simulations, one should hence increase q upon approaching
the saturation, in order to follow the power-law decay as
indicated by the dashed lines. The fMERA computation cost
can be written as O(χ r ) = O(ε−r/β ), where the factor 1/β in
the exponent captures the relation between bond dimension χ

and accuracy ε. As the exponent r is very large (r � 16) for
2D MERAs, the quantum-classical TMERA algorithm will
substantially outperform the classical fMERA simulations for
models in � 2 spatial dimensions.
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FIG. 5. Comparison of classical and VQE time complexities.
Double-logarithmic plot of the energy accuracy ε as a function of
the total time complexity per iteration for the quantum-classical
TMERA algorithm (lower-left legend) and the corresponding clas-
sical fMERA simulation (upper-right legend) applied to the critical
bilinear-biquadratic spin-1 model (A2). We use homogeneous modi-
fied binary MERAs with T = 6 layers. For the TMERA curves, the
number of Trotter steps t is gradually increased at fixed q = 2 and 3,
respectively. For the fMERA curve, the bond dimension χ = 2q in-
creases by one from point to point. In both cases, ε and the (optimal)
cost are related by a power law as indicated by dashed lines. The data
suggests a polynomial advantage of the TMERA algorithm.

APPENDIX B: LAYER-TRANSITION MAPS FOR
HOMOGENEOUS MERA

Let us discuss in more detail, how classical sampling or
auxiliary qubits can be employed to realize convex combina-
tions of layer-transition maps in the preparation. In this way,
the spatially averaged A-site density matrices of homogeneous

TMERAs can be prepared on the quantum computer in O(tT )
time. Hence, the energy density or a component of the energy
gradient can be obtained in O(tT ) time.

1. 1D binary MERA

This case was already discussed shortly in Sec. V. For the
1D binary MERAs, local operators have causal cones of width
A = 3. The sequence of layer-transition maps ÛL and ÛR for
the causal cone of sites

Ai := {i, . . . , i + A − 1} (B1)

on the physical lattice can be deduced from the binary repre-
sentation i1i2i3 . . . of i with iτ ∈ {0, 1}, where i1 is the least
significant bit. For the choice shown in Figs. 4(a) and 6(a),
iτ = 0 or 1 means that we progress from layer τ to layer τ − 1
by applying transition map ÛL ≡ Û0 or ÛR ≡ Û1, respectively.
Specifically, the causal-cone state for sites Ai reads

|�i〉 = Ûi1 · · · ÛiT (|T 〉⊗A), (B2)

where state |T 〉 for a single renormalized site defines the so-
called top tensor of the MERAs. Here and in the following,
we do not explicitly denote the τ dependence of the layer-
transition maps and use the convention that operators act on
the A active sites in the causal cone and the remaining inactive
sites are left untouched as indicated in Fig. 6(b).

For quantities like the energy density, we wish to evaluate
the spatial average ρ̂ = 1

N

∑
i ρ̂i of the reduced density matri-

ces ρ̂i := TrA⊥
i
|�i〉〈�i| for the blocks of sites Ai. The partial

trace is over the inactive sites (outside the causal cone) and
will not be denoted explicitly in the following. Starting from
ρ̂ (T ) := (|T 〉〈T |)⊗A, we can recursively define

ρ̂ (τ−1) = 1

2

∑
iτ

Ûiτ ρ̂
(τ )Ûiτ

† (B3a)

FIG. 6. Layer transition maps. (a) The 1D binary MERA has causal-cone width A = 3 and two layer-transition maps ÛL and ÛR. Panel
(b) gives an example for the sequence of transition maps in a particular causal cone, here in correspondence with Fig. 4(a). For the binary
MERA, the sequence can be determined from the binary representation of the index (four least significant digits shown) with 0 corresponding
to ÛL and 1 to ÛR. (c) The 1D ternary MERA has A = 2 and three transition maps ÛL , ÛC , and ÛR. (d) The 1D modified binary MERA has
A = 2, and one needs to distinguish even and odd bonds. Transition maps ÛL and ÛR map from even to odd bonds, ÛC from an even to an even
bond, and Ûo from an odd to an even bond. (e) The 2D 2 × 2 �→ 1 MERA [37] has A = 3 × 3 and four layer-transition maps ÛT L , ÛT R, ÛBL ,
and ÛBR. The renormalized causal-cone sites A(τ )

i that the maps act on are indicated by crosses, the sites that leave the causal cone during or
after the map are indicated by empty circles, and the sites A(τ−1)

i that remain in the causal cone after the preparation step are indicated by filled
circles. The layer-transition maps differ in the positions of the latter.
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such that

ρ̂ (0) = 1

2T

∑
i1,... ,iT

Ûi1 · · · ÛiT ρ̂ (T )ÛiT
† · · · Ûi1

† = ρ̂. (B3b)

ÛL and ÛR are related to each other by a site permutation.
Hence, the quantum channel (B3a) can be implemented

through a Stinespring dilation [85,86] with a single auxiliary
qubit per layer. The auxiliary qubit is initialized in the state
(|0〉 + |1〉)/

√
2 and used for a controlled site permutation

such that, after tracing out the auxiliary qubit, one obtains the
channel (B3a).

Alternatively, one can use classical random numbers.
Selecting in each layer transition ÛL or ÛR with equal prob-
ability also implements the channel (B3a). Mathematically,
this scheme is completely equivalent to the approach using
auxiliary qubits and results in the same distribution of mea-
surement results in the evaluation of observables and energy
gradients: Whether one prepares states |�1〉 and |�2〉 with
50:50 probability or prepares (|�1〉 ⊗ |0〉 + |�2〉 ⊗ |1〉)/

√
2

with an auxiliary qubit, the probability to observe outcome
i associated with projector P̂i is in both cases (〈�1|P̂i|�1〉 +
〈�2|P̂i|�2〉)/2. Experimentally, the measurements need to be
repeated until reaching a required accuracy ε. Practically,
the approach using classical sampling involves a reprogram-
ming of the experimental pulse generator hardware for each
new sequence of transition maps. If this reprogramming is
slow, the scheme with auxiliary qubits may be preferable as
it employs the same quantum circuit in every measurement
iteration.

2. 1D ternary MERA

We can proceed along the same lines for the 1D ternary
MERAs. The only modifications are due to, now, having
the three transition maps ÛL ≡ Û0, ÛC ≡ Û1, and ÛR ≡
Û2 shown in Fig. 6(c). Correspondingly, we now use the
ternary representation i1i2i3 . . . of the site index i with
iτ ∈ {0, 1, 2} and replace the prefactors 1/2 in Eqs. (B3)
by 1/3. For the Stinespring dilation, we now require
two auxiliary qubits per layer, which are, for example,
initialized in the state (|0, 0〉 + |1, 0〉 + |0, 1〉)/

√
3 to per-

form the controlled site permutations that relate the three
unitaries Ûiτ .

3. 2D 2 × 2 �→ 1 MERA

Also the 2D 2 × 2 �→ 1 MERAs can be treated similarly.
Now we use binary representations x1x2x3 . . . and y1y2y3 . . .

for the x and y coordinates of site i on the square lat-
tice with xτ , yτ ∈ {0, 1}. There are four layer-transition maps
ÛT L ≡ Û0,0, ÛT R ≡ Û1,0, ÛBL ≡ Û0,1, ÛBR ≡ Û1,1, where ÛT L

corresponds to the causal cone continuing along the inner
(top-left corner) 3 × 3 square indicated in Fig. 6(e). The layer-
transition channel reads

ρ̂ (τ−1) = 1

4

∑
xτ ,yτ

Ûxτ ,yτ
ρ̂ (τ )Û †

xτ ,yτ
. (B4)

Its Stinespring dilation can be implemented with two auxil-
iary qubits, each initialized in (|0〉 + |1〉)/

√
2, to realize the

controlled site permutations that relate the maps Ûxτ ,yτ
to each

other. The first auxiliary qubit can be used to permute rows of
sites and the second to permute columns of sites on the inner
4 × 4 square in Fig. 6(e).

4. 1D modified binary MERA

The cases of the 1D modified binary MERAs and the 2D
3 × 3 �→ 1 MERAs are a bit more involved.

First, note that the layer-transition channel (B3a) for the
(unmodified) 1D binary MERAs can also be explained as
follows: Let A(τ )

i denote the block of renormalized sites
{i, . . . , i + A − 1} after τ renormalization steps, i.e., at the
interface of layers τ and τ + 1; A(0)

i agrees with the block
Ai of physical sites in Eq. (B1). Let ρ̂

(τ )
i denote the re-

duced density matrix for A(τ )
i , constructed from all MERA

tensors in the causal cone of A(τ )
i , which ranges from layer

τ + 1 to the final layer T . Given all density matrices ρ̂
(τ )
i

for layer τ , we want to compute those for layer τ − 1. The
density matrices ρ̂

(τ−1)
j and ρ̂

(τ−1)
j+1 for the two blocks A(τ−1)

j

and A(τ−1)
j+1 whose causal cones contain A(τ )

i are obtained

by conjugating ρ̂
(τ )
i with the appropriate layer-τ transition

maps

ρ̂
(τ−1)
j = ÛLρ̂

(τ )
i Û †

L and ρ̂
(τ−1)
j+1 = ÛRρ̂

(τ )
i Û †

R . (B5)

Now the spatially averaged density matrix ρ̂ (τ−1) =
bτ−1

N

∑
j ρ̂

(τ−1)
j is obtained by averaging over all sites i in

layer τ and the two corresponding sites in layer τ − 1. Thus,
we recover Eq. (B3a).

The 1D modified binary MERA with A = 2 can be ad-
dressed similarly. In this case, not all bonds are equivalent.
Depending on whether we are on an even or an odd bond, we
apply either one of the three layer-transition maps ÛL, ÛC, ÛR

or the map Ûo, respectively, as shown in Fig. 6(d). While ÛL

and ÛR move the causal cone from an even to an odd bond,
ÛC maps from an even to an even bond, and Ûo maps from an
odd to an even bond. Let ρ̂ (τ )

e denote the bond density matrix
averaged over all even bonds for layer τ and ρ̂ (τ )

o the average
over all odd bonds. Then the same considerations as above
lead to the layer transitions

ρ̂ (τ−1)
e = 1

2

(
ÛC ρ̂ (τ )

e Û †
C + Ûoρ̂

(τ )
o Û †

o

)
, (B6a)

ρ̂ (τ−1)
o = 1

2

(
ÛLρ̂ (τ )

e Û †
L + ÛRρ̂ (τ )

e Û †
R

)
. (B6b)

For the evaluation of energy densities and gradients
we want to prepare the spatially averaged density matri-
ces ρ̂ (0)

e and ρ̂ (0)
o for even and odd bonds of the physical

lattice.
To realize this in the approach using auxiliary qubits, we

can first introduce an additional flag qubit in the register of the
quantum computer which indicates whether we are on an even
or odd bond, i.e., progressing in the preparation direction, we
want to prepare the states

ρ̂ (τ ) := 1
2

(|0〉〈0| f ⊗ ρ̂ (τ )
e + |1〉〈1| f ⊗ ρ̂ (τ )

o

)
. (B7)
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For these, the layer-transition channel reads

ρ̂ (τ−1) = 1

2

4∑
k=1

L̂k ρ̂
(τ )L̂†

k with

L̂1 = |0〉〈0| f ⊗ ÛC, L̂2 = |0〉〈1| f ⊗ Ûo,

L̂3 = |1〉〈0| f ⊗ ÛL, L̂4 = |1〉〈0| f ⊗ ÛR. (B8)

It can be implemented by a Stinespring dilation that employs
two auxiliary qubits per layer as specified in the second row
of Table I.

APPENDIX C: GRADIENT EVALUATION AND
RIEMANNIAN OPTIMIZATION

The goal of the variational quantum eigensolver is to
minimize the energy expectation value E = 〈�|Ĥ |�〉 over
a TMERA variety {|�〉}, where the TMERA is character-
ized by the network structure, bond dimensions, and the
tensor Trotterization as previously discussed. This minimiza-
tion can be carried out by evaluating energy gradients and
employing them in gradient descent methods or, preferably,
quasi-Newton methods like the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [74,75].

1. Gradients in the CNOT and CAN parametrizations

In the CNOT and CAN parametrizations, the Trotter gates
are expressed in terms of single- and two-qubit rotations
R̂σ̂ (θ ) = e−iθσ̂ /2 [Eq. (1)]. The rotation angles θ parametrize
the TMERA variety. To compute the energy derivative for one
of these angles, we can write the energy expectation value in
the form

E (θ ) = Tr
(
Â[R̂†

σ̂ (θ ) ⊗ 1⊥]B̂[R̂σ̂ (θ ) ⊗ 1⊥]
)
, (C1)

where the Hermitian operators Â and B̂ comprise the remain-
ing tensors of 〈�|, |�〉, and the Hamiltonian. For brevity of
notation, in the following we will drop the “⊗1⊥”, which
indicates that R̂σ̂ (θ ) acts only on a subspace corresponding
to one or two qubits. The derivative is

∂θE (θ ) = i

2
Tr

(
ÂR̂†

σ̂ (θ )[σ̂ , B̂]R̂σ̂ (θ )
)
. (C2)

For the Hermitian and unitary operators σ̂ , R̂σ̂ (±π
2 ) = (1 ∓

iσ̂ )/
√

2 and, hence,

i[σ̂ , B̂] = R̂†
σ̂

(
π

2

)
B̂R̂σ̂

(
π

2

)
− R̂†

σ̂

(
− π

2

)
B̂R̂σ̂

(
− π

2

)
.

(C3)
such that Eq. (2) follows. In this way, the gradient can be
evaluated on the quantum computer by measuring energy
expectation values [71–73].

For homogeneous TMERAs, the same rotation occurs mul-
tiple times as tensors are repeated in the translation-invariant
MERA layers. Applying the product rule, this just means that
the derivative ∂θE will contain one term for each occurrence
of the rotation R̂(θ ). This sum can be evaluated efficiently as
described in the main text and Appendix B.

With the gradient in hand, one can apply standard imple-
mentations of gradient descent or quasi-Newton methods like
L-BFGS.

2. An alternative Riemannian version of the optimization

Instead of employing an explicit parametrization of the
Trotter gates, one can formulate the problem as a minimiza-
tion over the manifold

M := U(4)×N (C4)

formed by the product of the unitary groups for the N Trotter
gates of the TMERA. For homogeneous TMERAs, repeated
gates are counted once. This Riemannian approach turns out
to have somewhat improved convergence properties as dis-
cussed in Appendix D. Note that one can take unitary gauge
freedoms on the inputs of the Trotter gates into account and
consider quotient groups U(4)/(U(2) × U(2)). For the sim-
plicity of notation, we stick to the full U(4) in the following.

For the optimization, we can regard M as embedded in the
Euclidean space

E = End(C4)×N � R32N , (C5)

which is the space of the Trotter gates without the unitarity
constraint. Let u ∈ M ⊂ E denote the vector that contains
the matrix elements of all gates and E (u) = 〈�(u)|Ĥ |�(u)〉
the energy functional. To apply gradient-based optimization
algorithms in this setting, we need to compute the deriva-
tive ∂uE (u), project it onto the tangent space Tu of M at
u to obtain the gradient direction, construct retractions for
line search, and vector transport to be able to sum gradient
vectors from different points on the manifold. This is the
program of Riemannian optimization as discussed generally
in Refs. [108,109] and recently demonstrated for MERAs in
Refs. [110,111].

In the following, consider a single unitary û ∈ U(n), with
n = 4 for the considered Trotter gates, and we employ the Eu-
clidean metric (real part of the Hilbert-Schmidt inner product)

(û, û′) := Re Tr(û†û′). (C6)

The extension to the product manifold M is straightforward.
As in Eq. (C1), let us write the energy expectation value in the
form

E (û) = 〈�(û)|Ĥ |�(û)〉
= Tr

(
Â[û† ⊗ 1⊥]B̂[û ⊗ 1⊥]

)
, (C7)

where “⊗1⊥” indicates that û only acts on an n-dimensional
subspace. Then the energy gradient in the embedding space
End(Cn) is

d̂ = 2 Tr⊥(B̂[û ⊗ 1⊥]Â), (C8)

where Tr⊥ is the partial trace over the subspace that û does
not act on. The gradient d̂ fulfills ∂εE (û + εŵ)|ε=0 = (d̂, ŵ)
for all ŵ. An element ŵ of the tangent space Tû for U(n) at
û needs to obey (û + εŵ)†(û + εŵ) = 1 + O(ε2), i.e., û†ŵ +
ŵ†û = 0. So û†ŵ needs to be skew-Hermitian and, hence,

Tû = {iûη̂ | η̂ = η̂† ∈ End(Cn)}. (C9)

The Riemannian energy gradient ĝ for the manifold U(n) at û
is obtained by projecting d̂ onto the tangent space such that
(ŵ, ĝ) = (ŵ, d̂ ) for all ŵ ∈ Tû. This gives

ĝ = (d̂ − ûd̂†û)/2 ∈ Tû. (C10)
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For a line search on the manifold, we need a retraction, i.e.,
a curve r̂û,p̂(τ ) on the manifold that starts from û = r̂û,p̂(0) in
direction p̂ = ∂τ r̂û,p̂(τ )|τ=0 ∈ Tû. We use

r̂û,p̂(τ ) := eτ p̂û†
û ∈ U(n). (C11)

For quasi-Newton methods, we also need to compute differ-
ences of Riemannian gradients from different points on the
manifold, specifically, for two points on a retraction. This is
accomplished by vector transport, i.e., a map between the two
corresponding tangent spaces. We use

T̂û,p̂(τ )ŵ := eτ p̂û†
ŵ for ŵ ∈ Tû, τ ∈ R. (C12)

This gives an element of the tangent space at r̂û,p̂(τ ) and
T̂û,0ŵ = ŵ. The vector transport is isometric in the sense
that (T̂û,p̂(τ )ŵ, T̂û,p̂(τ )ŵ′) = (ŵ, ŵ′) for all p̂, ŵ, ŵ′ ∈ Tû and
τ ∈ R.

In analogy to Eq. (2), the Riemannian gradient (C10) can
be obtained on the quantum computer by measuring energies
of TMERAs where one Trotter gate is modified: The tangent
space Tû is a real n2-dimensional vector space, and we can
choose a basis {iûσ̂ j | j = 1, . . . , n2} with Hermitian unitaries
σ̂ j , i.e., σ̂ j = σ̂

†
j and σ̂ 2

j = 1. With (σ̂ j, σ̂k ) = δ j,kn, we can

expand the energy gradient in the form ĝ = i
∑n2

j=1 α j ûσ̂ j/n
and evaluate the expansion coefficients α j using the energy
expectation values (C7),

α j = (ĝ, iûσ̂ j ) = (d̂, iûσ̂ j ) = Re Tr(id̂†ûσ̂ j )

= −i Tr
(
Â[σ̂ j ⊗ 1⊥, (û† ⊗ 1⊥)B̂(û ⊗ 1⊥)]

)

= E

(
ûR̂σ̂ j

(
− π

2

))
− E

(
ûR̂σ̂ j

(
π

2

))
. (C13)

For the third line, we have used Eq. (C3) and R̂σ̂ (θ ) =
e−iθσ̂ /2.

To minimize TMERA energies, we can employ a
Riemannian version of the L-BFGS algorithm. For the fol-
lowing, we return to the global optimization problem on the
product manifold (C4) with the embedding space (C5), vec-
tors u ∈ M comprising the matrix elements of all Trotter
gates, and the Euclidean metric (u, u′) = Re(u†u′). Similarly,
gradients ĝ, retractions r̂, and so on are now written in a vec-
torized form. In the Newton method, one generates a sequence
of points u1, u2, . . . ∈ M that converges quadratically fast to
a minimum of E (u). In each step one obtains a second-order
model of E (u) using the Riemannian gradient gk and the
inverse Hessian Hk at uk . The vector pk := −Hkgk ∈ Tuk that
points from uk to the minimum of the quadratic model is used
for an inexact line search, and one chooses the next point
uk+1 = ruk ,pk

(τk ) on the corresponding line (retraction curve)
with τk ∈ R such that the Wolfe conditions are obeyed. The
latter require that both the function value and the gradient
norm decrease sufficiently, where, in the Riemannian version,
one rather considers the energy derivatives in the search direc-
tion. The BFGS algorithm [74,108] modifies this procedure,
avoiding the costly evaluation of the Hessian. Instead, one
updates a positive definite approximation H̃k ∈ End(Tuk ) of
the inverse Hessian. H̃k+1 is determined by requiring that the
gradient of the new quadratic model at uk+1, evaluated at
uk , should agree with the actual gk . This is equivalent to the
secant equation sk = H̃k+1yk with sk := Tkτk pk and the gra-
dient change yk := gk+1 − Tkgk , which are both elements of
the tangent space Tuk+1 as Tk := Tuk ,pk

(τk ) denotes the vector
transport. From the solution space of the secant equation, one
chooses the matrix H̃k+1 that is closest to H̃k in a suitable

Algorithm 1. Riemannian version of the L-BFGS algorithm to minimize (T)MERA energies, adapted from Ref. [108]. The optimization
is started at a point u0 ∈ M and stopped when the gradient norm falls below ε. For the approximation H̃k of the inverse Hessian, � vector pairs
(si, yi ) with i = k − �, . . . , k − 1 are kept in memory. The constants c1 and c2 enter the Wolfe conditions.
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metric. Specifically, the BFGS update reads

H̃k+1 = VkH̃kV
†

k + ρksks†
k (C14)

with Vk := (1 − ρksky†
k )Tk and ρk := 1/(yk, sk ). Finally, the

L-BFGS algorithm [74,108] avoids the increasing cost of op-
erating with H̃k by keeping the � most recent triples (ρk, sk, yk )
in memory and computing an approximation of the inverse
Hessian from them in each iteration.

The Riemannian L-BFGS algorithm that we employ,
adapted from Ref. [108], is shown in Algorithm 1. Note that,
for numerical stability, after every retraction (C11), it may be
necessary to project the resulting point onto the manifold in
order to avoid the accumulation of small numerical errors. For
example, this can be done by a singular value decomposition
for every Trotter gate and setting all singular values to one.
If this is done, the finite numerical precision for the vector
transport (C12) should have negligible effects, i.e., need not
be corrected.

The (classical) computation costs for each iteration of the
Riemannian L-BFGS algorithm are linear in the total number
N of Trotter gates and linear in the number � of retained
terms (rank of H̃k). The latter does not need to be scaled with
the problem size, and we choose � = 9 in all computations.
Retractions (C11), vector transport (C12), and so on can be
applied separately for every Trotter gate, each corresponding
to 2n2 entries of the full u vector with n = 4. The cost is hence
indeed O(n3�N ) = O(N ).

APPENDIX D: DIFFERENT TROTTER-GATE
PARAMETRIZATIONS AND XX TMERAS

The CNOT and CAN parametrizations for the Trotter gates
of the TMERA are equivalent to the parametrization-free rep-
resentation as U(4) unitaries, and, up to an irrelevant phase
factor, one can transform between the parametrizations as
described in Refs. [70,83]. This equivalence is tested and

FIG. 7. Optimization and scanning with different parametriza-
tions. Starting from a product state at g = 1.25, we scan forth and
back on the interval 0.75 � g � 1.25, minimizing the MERA energy
density e for the 1D transverse-field Ising model with the L-BFGS
algorithm. This is done for homogeneous modified binary MERAs
with T = 6 layers and bond dimension χ = 2q = 8. The TMERA
tensors consist of t = 2 Trotter steps, and XX TMERAs are simu-
lated once with two and once with six XX Trotter steps per tensors.

confirmed by optimizing TMERAs for the 1D transverse-
field Ising model (4) while scanning forth and back on the
parameter interval g ∈ [0.75, 1.25]. Starting at g = 1.25, the
optimization was initialized by a product state with |φ〉 =
R̂σ̂ z ( π

4 )R̂σ̂ y ( π
4 )R̂σ̂ z ( π

4 )|0〉 on every site. Figure 7 shows the
accuracies of the energy densities e during the scanning pro-
cedure for TMERAs in the CNOT and CAN parametrizations
as well as the parametrization-free form (“Riemannian”). The
results are compared to the corresponding fMERA optimiza-
tion. The Euclidean L-BFGS algorithm [74,75] was employed
for the TMERA in the CAN and CNOT parametrizations
and the Riemannian L-BFGS algorithm, as discussed in
Appendix C 2, was employed for the parametrization-free
TMERA and fMERA. In all cases, the L-BFGS param-
eters were chosen as ε = 10−12, � = 9, c1 = 0.1, and
c2 = 0.9.

Although different TMERA parametrizations show differ-
ing energies in the early stages of the scanning procedure, they
quickly converge. Without scanning, the parametrization-free
TMERA is somewhat favorable. The explicit parametriza-
tions in terms of rotation angles are more prone to getting
stuck in local minima, whereas the local minima and saddle
points for the parametrization-free form are entirely due to
the structure of the TMERA manifold and the Hamiltonian.
For random initial states, the parametrization-free form shows
better convergence than the CNOT and CAN forms. As a sim-
ple example, note that the product state |0〉⊗N is a stationary
point in the energy landscape of the transverse Ising model (4)
in the CAN parametrization. The data in Fig. 2 were obtained
by Riemannian optimization.

FIG. 8. XX Trotterization. Left: In the TMERAs considered so
far, tensors are Trotterized into regular circuits of general two-qubit
Trotter gates ∈ U(4). For 1D systems, one Trotter step consists of
such gates applied on all odd bonds and then on all even bonds (or
vice versa). In the CAN parametrization, each U(4) Trotter gate is
realized by a sequence of two single-qubit gates, followed by three
Ising rotations generated by σ̂ α ⊗ σ̂ α , and two final single-qubit
gates. In every Trotter step, causal cones widen by at most four sites.
Right: In the XX TMERA, layers of single-qubit gates alternate with
layers of σ̂ x ⊗ σ̂ x Ising gates on even and odd bonds, respectively.
One XX Trotter step contains two layers of Ising gates. In terms of
the number of Ising gates, one U(4) Trotter step corresponds to three
XX Trotter steps. For the latter, causal cones grow correspondingly
faster.
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For the 1D TMERAs, we chose the Trotter circuit of each
tensor to consist of steps with U(4) gates on all odd qubit
bonds and all even qubit bonds, alternatingly, as shown in
Fig. 1(c) and in the left panel of Fig. 8. The goal of this
choice is to admit the generation of entanglement between
any pair of qubits in a few Trotter steps. However, in the
CNOT and CAN parametrizations, each Trotter gate features
three elementary two-qubit gates; CNOT and σ̂ α ⊗ σ̂ α Ising
rotations with α = x, y, z, respectively. We have explored a
different Trotterization approach, where layers of generic
single-qubit gates alternate with XX Ising rotations. One XX

Trotter step contains two layers of XX Ising rotations on odd
and even bonds, respectively. For the same computational
cost, characterized by the total number of two-qubit Ising
rotations, causal cones in the XX Trotterization of the MERA
tensors grow substantially faster than in the U(4) Trotteriza-
tion. However, the benchmark simulations in Fig. 7 show no
enhanced approximation accuracy. The energies for six XX
Trotter steps per MERA tensor converge to approximately the
same values as the energies for two U(4) Trotter steps per
tensor. Improvements along these lines are a topic for future
work.

[1] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Quantum Monte Carlo simulations of solids, Rev. Mod. Phys.
73, 33 (2001).

[2] M. Suzuki, S. Miyashita, and A. Kuroda, Monte Carlo simula-
tion of quantum spin systems. I, Prog. Theor. Phys. 58, 1377
(1977).

[3] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo
with directed loops, Phys. Rev. E 66, 046701 (2002).

[4] N. V. Prokof’ev and B. V. Svistunov, Polaron Problem by
Diagrammatic Quantum Monte Carlo, Phys. Rev. Lett. 81,
2514 (1998).

[5] R. J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9,
650 (1968).

[6] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[7] H. Niggemann, A. Klümper, and J. Zittartz, Quantum phase
transition in spin-3/2 systems on the hexagonal lattice-
optimum ground state approach, Z. Phys. B 104, 103 (1997).

[8] F. Verstraete and J. I. Cirac, Renormalization algorithms for
quantum-many body systems in two and higher dimensions,
arXiv:cond-mat/0407066 (2004).

[9] G. Vidal, Entanglement Renormalization, Phys. Rev. Lett. 99,
220405 (2007).

[10] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[11] T. Barthel, C. Pineda, and J. Eisert, Contraction of fermionic
operator circuits and the simulation of strongly correlated
fermions, Phys. Rev. A 80, 042333 (2009).

[12] P. Corboz and G. Vidal, Fermionic multiscale entanglement
renormalization ansatz, Phys. Rev. B 80, 165129 (2009).

[13] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac,
Fermionic projected entangled pair states, Phys. Rev. A 81,
052338 (2010).

[14] P. Corboz, G. Evenbly, F. Verstraete, and G. Vidal, Simulation
of interacting fermions with entanglement renormalization,
Phys. Rev. A 81, 010303(R) (2010).

[15] C. Pineda, T. Barthel, and J. Eisert, Unitary circuits for
strongly correlated fermions, Phys. Rev. A 81, 050303(R)
(2010).

[16] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical
simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[17] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum Monte Carlo
Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[18] L. Balents, Spin liquids in frustrated magnets, Nature
(London) 464, 199 (2010).

[19] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[20] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G.
Saito, Spin Liquid State in an Organic Mott Insulator with a
Triangular Lattice, Phys. Rev. Lett. 91, 107001 (2003).

[21] F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, S.
Ohira-Kawamura, C. Baines, Y. Shimizu, K. Kanoda, I.
Watanabe, and G. Saito, Magnetic and non-magnetic phases
of a quantum spin liquid, Nature (London) 471, 612 (2011).

[22] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,
M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle
et al., Proximate Kitaev quantum spin liquid behaviour in a
honeycomb magnet, Nat. Mater. 15, 733 (2016).

[23] H. L. Stormer, D. C. Tsui, and A. C. Gossard, The fractional
quantum Hall effect, Rev. Mod. Phys. 71, S298 (1999).

[24] R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.
Bunin, and D. Mahalu, Direct observation of a fractional
charge, Nature (London) 389, 162 (1997).

[25] J. G. Bednorz and K. A. Müller, Possible high-Tc superconduc-
tivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986).

[26] A. J. Leggett, What DO we know about high Tc? Nat. Phys. 2,
134 (2006).

[27] M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely cor-
related states on quantum spin chains, Commun. Math. Phys.
144, 443 (1992).

[28] S. Rommer and S. Östlund, A class of ansatz wave functions
for 1D spin systems and their relation to DMRG, Phys. Rev. B
55, 2164 (1997).

[29] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[30] T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y.
Akutsu, Self-consistent tensor product variational approxi-
mation for 3D classical models, Nucl. Phys. B 575, 504
(2000).

[31] M. A. Martín-Delgado, M. Roncaglia, and G. Sierra, Stripe
ansätze from exactly solved models, Phys. Rev. B 64, 075117
(2001).

[32] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac,
Criticality, the Area Law, and the Computational Power of

033141-13

https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1143/PTP.58.1377
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevLett.81.2514
https://doi.org/10.1063/1.1664623
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1007/s002570050425
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevA.80.042333
https://doi.org/10.1103/PhysRevB.80.165129
https://doi.org/10.1103/PhysRevA.81.052338
https://doi.org/10.1103/PhysRevA.81.010303
https://doi.org/10.1103/PhysRevA.81.050303
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1038/nature08917
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevLett.91.107001
https://doi.org/10.1038/nature09910
https://doi.org/10.1038/nmat4604
https://doi.org/10.1103/RevModPhys.71.S298
https://doi.org/10.1038/38241
https://doi.org/10.1007/BF01303701
https://doi.org/10.1038/nphys254
https://doi.org/10.1007/BF02099178
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/S0550-3213(00)00133-4
https://doi.org/10.1103/PhysRevB.64.075117


QIANG MIAO AND THOMAS BARTHEL PHYSICAL REVIEW RESEARCH 5, 033141 (2023)

Projected Entangled Pair States, Phys. Rev. Lett. 96, 220601
(2006).

[33] G. Vidal, Class of Quantum Many-Body States That Can Be
Efficiently Simulated, Phys. Rev. Lett. 101, 110501 (2008).

[34] G. Evenbly and G. Vidal, Quantum criticality with the multi-
scale entanglement renormalization ansatz, arXiv:1109.5334
(2011).

[35] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Clas-
sical Simulation of Infinite-Size Quantum Lattice Systems in
Two Spatial Dimensions, Phys. Rev. Lett. 101, 250602 (2008).

[36] R. Orús and G. Vidal, Simulation of two-dimensional quantum
systems on an infinite lattice revisited: Corner transfer matrix
for tensor contraction, Phys. Rev. B 80, 094403 (2009).

[37] L. Cincio, J. Dziarmaga, and M. M. Rams, Multiscale
Entanglement Renormalization Ansatz in Two Dimensions:
Quantum Ising Model, Phys. Rev. Lett. 100, 240603 (2008).

[38] G. Evenbly and G. Vidal, Entanglement Renormalization in
Two Spatial Dimensions, Phys. Rev. Lett. 102, 180406 (2009).

[39] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[40] T. Barthel, J. Lu, and G. Friesecke, On the closedness and
geometry of tensor network state sets, Lett. Math. Phys. 112,
72 (2022).

[41] T. Barthel and Q. Miao, Absence of barren plateaus and scal-
ing of gradients in the energy optimization of isometric tensor
network states, arXiv:2304.00161 (2023).

[42] Q. Miao and T. Barthel, Isometric tensor network optimiza-
tion for extensive Hamiltonians is free of barren plateaus,
arXiv:2304.14320 (2023).

[43] F. Barratt, J. Dborin, M. Bal, V. Stojevic, F. Pollmann, and
A. G. Green, Parallel quantum simulation of large systems on
small NISQ computers, npj Quantum Inf. 7, 79 (2021).

[44] J.-G. Liu, Y.-H. Zhang, Y. Wan, and L. Wang, Variational
quantum eigensolver with fewer qubits, Phys. Rev. Res. 1,
023025 (2019).

[45] M. Foss-Feig, D. Hayes, J. M. Dreiling, C. Figgatt, J. P.
Gaebler, S. A. Moses, J. M. Pino, and A. C. Potter, Holo-
graphic quantum algorithms for simulating correlated spin
systems, Phys. Rev. Res. 3, 033002 (2021).

[46] A. Smith, B. Jobst, A. G. Green, and F. Pollmann, Crossing a
topological phase transition with a quantum computer, Phys.
Rev. Res. 4, L022020 (2022).

[47] E. Chertkov, J. Bohnet, D. Francois, J. Gaebler, D. Gresh,
A. Hankin, K. Lee, D. Hayes, B. Neyenhuis, R. Stutz et al.,
Holographic dynamics simulations with a trapped-ion quan-
tum computer, Nat. Phys. 18, 1074 (2022).

[48] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum sys-
tems, Nature (London) 451, 664 (2008).

[49] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

[50] J. I. Cirac and P. Zoller, Quantum Computations with Cold
Trapped Ions, Phys. Rev. Lett. 74, 4091 (1995).

[51] R. Blatt and D. Wineland, Entangled states of trapped atomic
ions, Nature (London) 453, 1008 (2008).

[52] M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Leibfried, V.
Meyer, J. Beall, J. Britton, J. Hughes, W. Itano, B. Jelenković
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