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Foresight and relaxation enable efficient control of nonlinear complex systems
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There exist numerous effective techniques for influencing linear systems to desired outcomes, but control of
general nonlinear complex systems remains an open problem. One promising technique, which exploits our deep
understanding of linear systems, involves linearizing at the current position and then applying linear optimal
control to move the system to a local target from which it should be easier to reach the desired final state.
However, nonlocal trajectories are often required to influence linear systems even to local targets, meaning that
local linearization-based strategies can lead to inefficient jagged trajectories with high path length and large
control energy cost. To address these limitations, here we propose an alternative control strategy with two
innovations. The first is avoiding fixation on varying local targets. Instead, we exercise foresight by consistently
planning a complete route to the final target, moving a short distance along the planned route, and then updating
the plan according to the new local conditions. The second refinement, which we term relaxation, discourages
overinvestment in control strategies which are optimal according to the linearization at the current point but could
be inefficient according to dynamical conditions encountered at later times. We evaluate our strategy on complex
systems from neuroscience and statistical mechanics, showing that our innovations substantially increase the
success rate of control for a given path length or energy expenditure, and that these advantages persist as system
size increases.

DOI: 10.1103/PhysRevResearch.5.033138

I. INTRODUCTION

Nonlinear differential equations coupled over complex
networks can describe a wide range of important systems,
including ecosystems [1], societies [2], metabolisms [3], and
our own brains [4]. Because nonlinear complex systems such
as these significantly impact human well being, there has been
substantial interest in how they can be controlled [5–8]. While
there exists a powerful suite of techniques for controlling
linear systems, nonlinear control remains relatively undevel-
oped [9–12]. To control important systems towards better
outcomes, we need versatile methods of nonlinear control.

One of the most popular means to investigate control of
complex systems is to focus on linear dynamics upon complex
topologies [13–23], or on a global linear approximation to the
true nonlinear dynamics [24,25]. These studies have unveiled
important impact of topological structure on system control-
lability and energy cost of control, yet such approaches could
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be undermined by differences between linear and nonlinear
systems [26,27]. There also exist methods which perform well
in specific nonlinear contexts: the macroscopic states of some
systems can be determined by fixing the state of a fraction
of all nodes [28], another nonlinear control strategy can be
applied when discontinuous perturbations can be applied to
state variables [29], and feedback control can be an effective
option for dissipative dynamical systems [30–32]. Here we
focus on a promising local linearization-based strategy [17]
involving a sequence of control inputs designed to minimize
energy in driving the local linearization of the system to a
nearby state from which it should be easier to reach the final
target. Limitations of this approach arise because influencing
systems to arbitrarily close local targets can require nonlocal
control trajectories [33]. This invalidates the initial linear ap-
proximation and, as we will show, can lead to long, jagged
trajectories and high control energy.

We propose two innovations to overcome the current lim-
itations of local linearization-based control. The first of these
is avoiding fixation on varying local targets. Instead, we use
foresight and consistently plan a complete trajectory to the fi-
nal target based on the linearization at the current point, apply
control designed to advance an increment along this trajectory,
and then evaluate the new local conditions before updating
the planned route. The second is relaxation, which involves
recognizing that the linearized system may be different at
each point. Relaxation entails delaying energy expenditure
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in directions which are currently unfavorable but which may
be favorable according to the linearization at a future state.
We apply our methods to complex systems from neuroscience
and statistical mechanics, showing that across a wide range of
conditions, our innovations substantially increase the rate of
control success for a given path length or energy expenditure.
Example code is available in Ref. [34].

II. BACKGROUND

In this section we introduce basic linear control theory and
its application to nonlinear systems via local linearization.

A. Control of nonlinear systems

Consider a controlled nonlinear system evolving according
to

ẋ(t ) = f (x(t )) + B · u(t ), (1)

where x(t ) ∈ Rn is the state of the system, f : Rn → Rn is a
nonlinear vector field, u(t ) ∈ Rm is the control signal, B is
the n × m control matrix, and t is time. Given initial state
xI and desired final state xF , we seek a control signal u :
[tI , tF ] → Rm such that the governing equation (1) and initial
state x(tI ) = xI lead to the final state x(tF ) = xF . A system
is controllable when such a control signal u exists for any
choice of initial point xI , final point xF , initial time tI , and
final time tF > tI . Control signals u : [tI , tF ] → Rm preferably
correspond to low control times tF − tI , low path lengths

L =
∫ tF

tI

‖ẋ(t )‖dt,

and low energies

E =
∫ tF

tI

‖u(t )‖2dt .

In these expressions, ‖·‖ represents the Euclidean norm.

B. Control of linear systems

A controlled linear system evolves according to

ẋ(t ) = A · x(t ) + b + B · u(t ), (2)

where A is the n × n system matrix, and b ∈ Rn is a constant
vector. Controllability of this system depends on the rank of
the symmetric controllability Gramian for control over the
time interval tI ′ � t � tF ′, which is given by

W =
∫ tF ′

tI ′
eA(tF ′−τ )BBT eAT (tF ′−τ )dτ. (3)

The system is controllable if and only if the Gramian W is
invertible, and in this case there exists an infinite number of
control signals u which can achieve the desired conditions
x(tI ′) = xI

′ and x(tF ′) = xF
′ while also satisfying the govern-

ing equation (2). The particular control signal u : [tI ′, tF ′] →
Rm which minimizes the energy E is given by [10]

u(t ) = BT eAT (tF ′−t )W −1 · (xF
′ − gF

′), (4)

where

g(t ) = eA(t−tI ′ ) · xI
′ +

∫ t

tI ′
eA(t−τ )dτ · b (5)

is the free trajectory, which arises under Eq. (2) when u = 0,
and gF

′ = g(tF ′). This control signal requires energy

E = (xF
′ − gF

′)T · W −1 · (xF
′ − gF

′). (6)

In practice, the control Gramian W and free trajectory g are
usually determined by direct numerical integration of Eqs. (3)
and (5), but this is computationally costly. As we explain in
the Appendix, we instead employ the algebraic results pre-
sented in Ref. [35] to determine these quantities exactly and
without numerical integration.

C. Control via linearization

Local linearization allows us to apply well-understood lin-
ear control methods to nonlinear systems. The linearization of
Eq. (1) at x = xI

′ is Eq. (2) with

A = ∂ f
∂x

(xI
′), b = f (xI

′) − A · xI
′, (7)

where ∂ f
∂x (xI

′) is the Jacobian of f at x = xI
′. To apply control

for the linearization at xI
′ = x(tI ′) with target position xF

′ at
time tF ′ we utilize the control input u given by Eq. (4) in
the definition of a controlled nonlinear system provided by
Eq. (1). This is represented by the system

ẋ(t ) = f (x(t )) + BBT · v(t ),

v̇(t ) = −AT · v(t ),
(8)

with initial condition

x(tI
′) = xI

′,

v(tI
′) = eAT (tF ′−tI ′ )W −1 · (xI

′ − gF
′), (9)

for which u = BT · v is the control input given by Eq. (4).

D. Local control strategies

The strategy of local linearization gave rise to the locally
optimal control strategy (LOCS) [10], which involves a chain
of steps of energy-minimising optimal control for the lin-
earization at the current position, seeking each iteration to
move closer to the desired final state xF . Because applica-
tion of LOCS to a given nonlinear system requires tuning
weight parameters based on prior knowledge of the system,
we present two natural simplifications.

Energy-incrementing LOCS (EILOCS). Each iteration of
EILOCS uses a fixed time increment �t = tF ′ − tI ′ and en-
ergy no more than a fixed increment �E . At the start of each
iteration i we choose an immediate target xF

′ based on the
current state xI

′ = xi−1, where the first current state is x0 = xI .
If the energy

�EF = (xF − gF
′)T · W −1 · (xF − gF

′) (10)

required to reach the final target xF according to the lineariza-
tion at the current state xi−1 satisfies �EF � �E then the
initial target xF

′ is set to the final target xF . Otherwise, the
intermediate target is chosen as

xF
′ = gF

′ +
√

�E

�EF
(xF − gF

′), (11)
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FIG. 1. We compare three control strategies based on local lin-
earization. Iteration number i of three control strategies based on
following the optimal trajectory x̂ according to the linearization at the
current state xI

′ = xi−1. For simplicity, in this figure, we assume the
time at the start of iteration i is tI

′ = 0. [(a),(b)] Local control strate-
gies representing simplifications of the established locally optimal
control strategy (LOCS). (a) Energy-incrementing LOCS (EILOCS)
seeks to use energy up to �E in a time step �t to move directly
towards the final target xF from the destination gF = g(�t ) of the
uncontrolled trajectory g. The pictured energy ellipsoid comprises
all states which, according to the local linearization, can be reached
in time �t using energy �E . This includes the immediate target
xF

′ = x̂(�t ), where x̂ is the trajectory of the controlled linearized
system. Applying the control signal leading to x̂ in the linear system
leads to the trajectory x, which after time �t reaches xi = x(�t ),
which will be the starting point of the next iteration. (b) Distance-
decrementing LOCS (DDLOCS) seeks to move up to distance �d
in a time step �t to move directly in a straight line towards the final
target xF from the current state xI

′ = xi−1. (c) The proposed control
strategy, arc length incrementation targeting endpoint (ALITE), aims
to follow an optimal trajectory x̂ with target x̂(�t ) equal to the final
target xF . It seeks to follow this trajectory, not for the complete time
�t , but only for arc length �s and time �t ′.

which is the point where the energy ellipsoid defined by
Eq. (6) intersects the straight line from gF

′ to xF . We then
apply optimal control for the linearization at the current state
xi−1 with target xI

′. This brings the system to the new current
state xi and the end of iteration i. An iteration of EILOCS, for
the case �EF > �E , is illustrated in Fig. 1(a).

Distance-decrementing LOCS (DDLOCS). Each iteration
of DDLOCS uses a fixed time increment �t = tF ′ − tI ′ and
aims to bring the state up to distance decrement �d closer to
the final target xF . At the start of each iteration i, if the final
target xF is within distance �d of the current state xi−1 then
we make the final target xF our immediate target xF

′, i.e., we
set xF

′ = xF . Otherwise, we choose as our immediate target
xF

′ the point

xF
′ = xi−1 + �d

xF − xi−1

‖xF − xi−1‖ , (12)

which is distance �d along the straight line from the current
state xi−1 to the final target xF . We then apply optimal control
for the linearization at the current state xi−1 with target xF

′,
which brings the system to the new current state xi and the

end of iteration i. Figure 1(b) depicts an iteration of DDLOCS
when ‖xF − xI‖ > �d .

III. METHODS

In this section we present our proposed innovations to local
linearization-based control of nonlinear complex systems, and
describe our methods for comparing control strategies.

A. Foresight

Now we outline a way to incorporate global planning into
control strategies without compromising the versatility of the
local linearization approach. We exercise foresight by seeking
to advance along the optimal control trajectory towards the
final target according to the linearization at the current point,
but only for a small distance �s. After trying to cover this
short distance, we identify the optimal control trajectory to-
wards the final target based on the updated current position,
and follow that instead.

Arc length incrementation targeting endpoint (ALITE). In
each iteration we consider optimal control for the linearization
at the current state xi−1 with target equal to the final target
xF . We then determine the length of time �t ′ after which the
trajectory x̂ of the system linearized at the current state xi−1

under optimal control with target xF will have traveled fixed
arc length increment �s, i.e., �t ′ such that

�s =
∫ tI ′+�t ′

tI ′
‖ ˙̂x(t )‖dt .

Optimal control for the linearization at the current state xi−1

with target xF is then applied for time �t ′, which brings the
system to the new current state xi at time tI ′ + �t ′, and the end
of iteration i. An iteration of ALITE is sketched in Fig. 1(c).

Figure 1 illustrates the main differences between ALITE
and (EI/DD)LOCS. (1) From each distinct system state xI

′,
LOCS aims for a different local target xF

′, while ALITE
consistently seeks the final target xF . (2) Under LOCS, control
trajectories are determined by system displacements such as
xF

′ − gF
′ or xF

′ − xI
′, which can be problematic when small

displacements require nonlocal trajectories taking the system
outside the region of validity of the local linearization. In
contrast, ALITE considers distance along the predicted trajec-
tory, and so can more effectively maintain validity of a linear
approximation.

B. Relaxation

Here we indicate how an innovation we term relaxation can
enhance control of nonlinear systems. Equation (10) reveals
that the energy �EF required to reach the final target xF can
be estimated based on linearization about the current state as

�EF =
n∑

j=1

y j
2

μ j
w j · (xF − gF

′),

where μ1 � μ2 � . . . � μn and w1,w2, . . . ,wn are the
eigenvalues and corresponding orthornormal eigenvectors
of the symmetric real Gramian matrix W and, for j =
1, 2, . . . , n, y j = (xF − gF

′)T · w j is the projection in the di-
rection of w j of the difference xF − gF

′ between the final
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target xF and the system’s destination gF
′ under free evolution.

If μn � μ1 then the predicted cost of moving the system in
the direction of w1 is substantially greater than that of moving
the system in direction wn.

Relaxation involves recognizing that the system is nonlin-
ear and the Gramian W is constantly evolving. Therefore, at a
later time it may be more energetically favorable to influence
the system in the direction of the current wn. We avoid inef-
ficient outlay of effort as simply as possible, by replacing the
initial condition Eq. (9) with

v(tI
′) = eAT (tF ′−tI ′ )(W + piμ̄I )−1 · (xI

′ − gF
′), (13)

where I is the n × n identity matrix, μ̄ = 1
n

∑n
j=1 μ j is the

mean of the eigenvalues of the Gramian [36] W , and pi � 0
is the perturbation parameter in iteration i. The choice pi =
0 corresponds to control without relaxation, while pi → ∞
corresponds to free evolution, without control. The initial
condition Eq. (13) is equivalent to employing optimal control
for the current state with target

gF
′ + W (W + piμ̄I )−1 · (xI

′ − gF
′)

= gF
′ +

n∑
j=1

μ j

μ j + piμ̄
y jw j,

which would incur energy cost

�E ′
F =

n∑
j=1

μ j

(μ j + piμ̄)2
y j

2.

The two preceding equations illustrate how relaxation reduces
energy cost by delaying effort to influence the system in
directions which currently appear energetically unfavorable.
The further the distance between the final target xF and the
state xi−1 at the start of iteration i, the more remaining op-
portunity for variation the Gramian W will tend to have, and
the larger the perturbation parameter pi should be. Hence, the
perturbation parameter pi is chosen as

pi = 2r
‖xF − xi−1‖
‖xF − xI‖ ,

where r is a constant we call the relaxation.
In Fig. 2 we illustrate control with and without relaxation

for a five-dimensional neuronal system, which we will intro-
duce in Sec. III C 1, and which has been slightly simplified
such that its adjacency matrix W = (wi j ) is unweighted, with
wi j ∈ {0, 1}. We use ALITE to move the system from the
initial point xI = (−5.50,−3.50,−3.50,−5.50,−3.50)T to
the final target xF = (5.50, 3.50, 3.50, 5.50, 3.50)T . If we use
only the small value of relaxation r = 10−6 then the system
makes many sharp changes in the controlled variable x3 as its
state moves from xI to xF , increasing the total path length
and energy cost. As the relaxation parameter r increases,
the trajectory shortens and smooths, requiring lower control
energy and exhibiting changes which are less abrupt.

In Fig. 3, considering the same slightly simplified neuronal
system and relaxation r = 10−4, we illustrate the limitations
of EILOCS and DDLOCS which ALITE was developed to
overcome. The strategies EILOCS and DDLOCS involve
choosing a local target, but navigation to this nearby point

FIG. 2. Relaxation delays energy expenditure in directions which
are currently energetically unfavorable. Using ALITE to drive a
system from initial point xI to final target xF while controlling x3 and
x5. As the relaxation parameter r increases, the trajectory shortens
and smooths, requiring changes in direction which are less sudden,
and lower control energy. The color bar shows, at each point along
the trajectory, the energy consumed so far.

can require a repetitively arching and nonlocal trajectory [33]
requiring a substantial outlay of energy. Over successive it-
erations these build into an inefficient jagged path and high
total energy cost. In contrast, by consistently planning and

FIG. 3. Controlling the system towards local targets can in-
duce oscillations which ALITE can avoid. Using control methods
EILOCS, DDLOCS, and proposed strategy ALITE to drive a system
from initial point xI to final target xF while controlling x3 and x4.
The color bar shows, at each point along the trajectory, the energy
consumed so far. Inset: A portion of the trajectories arising under
EILOCS and DDLOCS. We consider EILOCS with energy incre-
ment �E = 105, which allows clear visualisation.
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following an iteratively updated route to the final target, the
proposed ALITE strategy can avoid this limitations, providing
a smoother path and allowing lower energy expenditure.

C. Evaluation

In this section we delineate our approach for comparing
different control strategies.

1. Considered systems

We evaluate our control strategy using two models. Draw-
ing from neuroscience, we consider bistable neuronal systems
[37] defined by

dxi

dt
= −xi + s tanh (xi ) +

N∑
i, j=1

wi j tanh(x j ),

where xi describes the state of node i, which represents a
local cluster of neurons, W = (wi j ) is the weighted adjacency
matrix in which wi j is the weighting of the edge from j to
i, and s = 1.5 (g = 2.0) describes the strength of coupling
within (between) clusters. From statistical mechanics we take
diffusive spin systems [28] governed by

dxi

dt
= xi(xi + Q)(P − xi ) + g

N∑
i, j=1

wi j (x j − xi ),

where P = 5 and Q = 1 represent spin states.
These differential equations are coupled over random but

fixed directed weighted networks (for examples see Supple-
mental Material (SM) [38], Fig. S1). In each network, 40%
of edges (i, j) are bidirectional, with wi j = w ji, and the
remainder are unidirectional, with either wi j = 0 or w ji =
0. Because self-dynamics appear elsewhere in the govern-
ing equations, diagonal terms are set to zero; wii = 0, i =
1, 2, . . . , n. Unless stated otherwise, nonzero weights wi j are
drawn independently from a Gaussian distribution with mean
zero and standard deviation 0.2.

2. Control parameters

The considered control methods employ a total of five
parameters: relaxation r, time increment �t , energy increment
�E , distance increment �d , and arc length increment �s.
These are chosen to facilitate fair comparison of different
methods. The time interval for EILOCS and DDLOCS is
�t = �t0, where the time increment �t0 can be thought of
as an estimate of the time required to move �d closer to the
final target. For ALITE, the initial choice of time increment
depends on distance to the final target according to �t =
�t1 =

√
‖xF −xI ‖

�d �t0, but is updated each iteration to reflect the
remaining distance to the final target, according to

�t =
√

‖x(t ) − xI‖
‖xF − xI‖ �t1. (14)

Distance and arc length increments are set equal, �s = �d .
We choose �d = �s = 0.1. For neuronal systems we use

�t0 = 10−2, and for spin systems we use �t0 = 10−3. When
using EILOCS, for neuronal systems we employ �E = 106

unless stated otherwise, and for spin systems we choose

�E = 107. These constitute favorable choices for each con-
trol method (see SM [38], Fig. S2). Relaxation r will be
chosen to maximise the success rate for each combination of
control strategy and type of dynamical system.

3. Scope

We consider the rate of success in controlling from one
stable fixed point xI to a distinct stable fixed point xF . The
five-dimensional neuronal system exhibits four stable fixed
points, and we consider all twelve ordered pairs of distinct
stable fixed points; for the five-dimensional spin system we
identified twelve fixed points, and evaluate performance from
twenty randomly chosen ordered pairs of distinct fixed points
(for a list of the fixed points considered for each of these
systems, see SM [38], Table S1). More generally, for a sys-
tem with ν fixed points, among its ν(ν − 1) ordered pairs of
fixed points we consider min{ν(ν − 1), 20} randomly chosen
ordered pairs of fixed points.

To reduce computational burden, for each ordered pair
(xI , xF ) and for each control dimension m = 1, 2, . . . , n we
restrict ourselves to a single control set C = {c1, c2, . . . , cm},
where each control set C corresponds to the diagonal control
matrix B = (bi j ) for which bii = {1 i ∈ C

0 i /∈ C. This control set
is the subset of {1, 2, . . . , n} of length m which maximises
the minimum eigenvalue μn of the Gramian matrix W at
the initial point xI when we take tF ′ − tI ′ = �t0. This con-
stitutes a reasonable strategy for choosing control sets of a
particular dimension (see SM [38], Fig. S3), but numerous
other approaches exist [11,16,19]. We consider the minimum
eigenvalue-maximising control set {c1, c2, . . . , cm} only when
it provides structural controllability [39]; otherwise no control
set of length m is considered.

Control is considered successful when it brings the system
within Euclidean distance dmax = 10−3 of the final target xF

within 104 iterations. The control attempt is also terminated
if a recurrence is detected, which we consider to take place
when the current state is within 10−5�t ′�d of a previous
state, where �t ′ is the system time which passes in an iter-
ation, i.e., the increase in the time variable t in the defining
differential equations. ALITE is more sensitive than EILOCS
or DDLOCS to the choice of dmax (see SM [38], Fig. S4).

IV. RESULTS AND DISCUSSION

In this section, we show how the control strategies in-
troduced above perform in controlling different systems. In
Fig. 4 we show how the rate of successful control, energy cost,
and required arc length vary with relaxation r for systems of
n = 5 nodes. For each system and control method, the rate
of success peaks for r > 0 [Figs. 4(a) and 4(d)]. For most
combinations of system and control strategy, for a wide range
of values of the relaxation r, the success rate is substantially
higher than is the case without relaxation, i.e., for r = 0.
These patterns demonstrate the value of relaxation in local
linearization-based control of nonlinear complex systems. For
the neuronal system, the highest success under DDLOCS is
92%, while EILOCS and the proposed method ALITE can
achieve 100% control success. For the spin system, the highest
success under EILOCS, DDLOCS, or ALITE is 71%. When
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FIG. 4. Relaxation can increase the rate of success while de-
creasing the required control energy and arc length. Rate of success,
arc length, and control energy versus relaxation r for control meth-
ods EILOCS and DDLOCS, and proposed strategy ALITE. For
(a)–(c) neuronal system, and (d)–(f) spin system, variation with
relaxation r of [(a),(d)] success rate; [(b),(e)] required control en-
ergy E ; and [(c),(f)] arc length L. For fair comparison, (b), (c),
(e), and (f) the mean across pairs of fixed points for which control
was successful for all considered control strategies and rates of
relaxation r.

we consider the neuronal (spin) system, the largest values
of r for which peak success occurs are r = 10−4, 10−5, and
10−2 (r = 10−7, 10−7, and 10−3) for EILOCS, DDLOCS,
and ALITE respectively, and it is these values we use in
subsequent control experiments. For each system and control
strategy, energy and arc length requirements at the optimal
relaxation are consistently less than for r = 0 [Figs. 4(b),
4(c), 4(e), and 4(f)]. More generally, energy and arc length
tend to decrease as relaxation r grows, although path length
under ALITE can exhibit a slight increase around the largest r
considered. Across a wide range of values of the relaxation r,
ALITE requires energy and arc length substantially less than
EILOCS or DDLOCS.

To gain further understanding of how energy and path
length efficiency vary with control strategy, in Fig. 5 we con-
sider, for each system and each control method, how the rate
of success varies with the maximum energy, path length or
time we can afford to expend in controlling the system. After
a short interval of low energies and path lengths for which
performance can be similar, EILOCS and DDLOCS require
orders of magnitude more resources to match the performance
of ALITE. For example, to achieve 45% success for neuronal
(spin) dynamics, ALITE requires about 100 units (1000 units)

FIG. 5. The proposed control strategy decreases the energy and
path length required for successful control. Rate of success for con-
trol methods EILOCS and DDLOCS and proposed strategy ALITE.
For (a)–(c) neuronal system; and (d)–(f) spin system, success vs
required: [(a),(d)] energy; [(b),(e)] arc length; and [(c),(f)] control
time.

of energy while EILOCS and DDLOCS require about 3 × 106

and 107 units (3 × 106 and 3 × 107 units) respectively. The
advantages of ALITE in terms of path length are similar
to those for energy, but differences in required control time
are less. Perhaps counterintuitively, the method EILOCS can
sometimes achieve control success with energy less than the
energy increment �E . This requires that according to the
linearization at xI , navigation to the final point xF within a
single-time increment �t requires energy less than �E .

We have demonstrated that both relaxation and ALITE are
valuable for controlling model systems of dimension n = 5
from both neuroscience and statistical mechanics. Now we
show that the advantages of our innovations extend to higher
dimension. In Fig. 6 we show how the rate of successful
control depend on the total number n of neurons in the system
and on the number m of neurons which are accessible to
control. As system size increases from n = 1 up to n = 20
neurons, the rate of success under EILOCS and DDLOCS
fluctuates at around 60% [Fig. 6(a)]. The proposed strategy
ALITE maintains a higher rate of success, which fluctuates
at about 70%. For systems of n = 20 neurons, the proposed
strategy ALITE allows success when controlling fewer nodes
than EILOCS or DDLOCS. ALITE can achieve over 50% suc-
cess when controlling only six neurons, and achieves a perfect
rate of success as long as 12 or more neurons are controlled
[Fig. 6(d)]. In contrast, EILOCS and DDLOCS require access
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FIG. 6. The proposed control strategy increases success rate
across a range of system sizes and controllability conditions. Rate
of success for neuronal system controlled using EILOCS, DDLOCS,
and proposed method ALITE. Rate of success vs: (a) total number
of nodes n; and (b) number of controlled nodes for fixed system size
n = 20. In (b) we show the mean over five independently generated
networks. For fair comparison, (b), (c), (e), and (f) show the mean
across control between pairs of fixed points for which control was
successful for all control strategies at the considered value of n [m].

to 10 neurons to guarantee at least 50% success, and do not
achieve 100% success unless all 20 neurons are controlled.
Across a wide range of values of system size n or control
dimension m, ALITE requires energy and arc length substan-
tially less than EILOCS or DDLOCS [Figs. 6(b), 6(c), 6(e),
and 6(f)]. This finding is corroborated by Fig. 7, which shows

FIG. 7. The proposed control strategy decreases the energy and
path length required for successful control of higher-dimensional
systems. Rate of success for control methods EILOCS and DDLOCS
and proposed strategy ALITE in controlling a system of n = 20 neu-
rons. Rate of success achieved within maximum allowed: (a) energy;
and (b) arc length.

how the rate of success varies with the maximum energy,
path length, or time we can afford to expend in controlling
a system of n = 20 neurons. The figure reveals that at this
higher system size, ALITE has even clearer advantages in
terms of energy and path length than were apparent for n = 5
(see Fig. 5). ALITE can also be used to influence a system of
n = 200 neurons via direct access to only half of these entities
(see SM [38], Fig. S4).

V. CONCLUSIONS

Methods for controlling networked nonlinear systems are
needed to improve the outcomes from important real-world
complex systems. A promising approach, based on seeking
nearby points based on linearization at the current point, is
undermined by the fact that trajectories which move a system
to a local target are not necessarily local. In this paper, we
propose a method of control by local linearization which
mitigates this issue by: (1) Exercising foresight by avoiding
fixation on varying nearby targets and instead using local
conditions to plan a complete route to the final target; and (2)
accommodating the changing energy landscape via an inno-
vation we term relaxation, which delays energy expenditure
in directions which are currently energetically unfavorable
but which may be convenient from a later system state. By
considering complex systems from neuroscience and statisti-
cal mechanics and with a range of system sizes, we showed
that our innovations substantially increase the efficiency of
control via local linearization in terms of path length or energy
expenditure.

The ALITE method was developed with utility in mind.
As a control strategy based on local linearization, ALITE can
be applied wherever derivatives of the governing dynamics
can be calculated or estimated numerically. To plan its next
iteration, our control strategy utilizes only the linearization at
the current point; information which may be easier to access
than the global nonlinear dynamics or even the exact nonlinear
dynamics in a local region. Control is open loop within each
iteration, requiring only a measurement of each state rather
than a continuously applied feedback loop, which will make
it easier to implement ALITE in real time. The smoother and
shorter trajectories provided by ALITE and relaxation will
help to keep the system bounded in a region in which it is well
understood and avoid wild excursions to mysterious territories
in which the utilized dynamical model is less valid. This is
in contrast to other forms of local linearization-based control
such as EILOCS and DDLOCS. ALITE and relaxation also
facilitate the reduction in control energy which is a recurring
goal in control theory. Furthermore, relaxation mitigates com-
putational challenges and could help to improve numerical
controllability.

A valuable direction for future research would be apply-
ing ALITE to search for fundamental patterns and scaling
laws in the controllability properties of nonlinear complex
systems [40,41]. We have shown that relaxation is an effective
method of controlling path length, but it is somewhat indi-
rect. Therefore, it would be useful to implement and explore
versions of ALITE which plan trajectories by minimizing ob-
jective functions representing, not only energy, but also other
important properties such as path length. Temporal network
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variation which is predictable and independent of system state
corresponds to advantages for control [18,21], but our consis-
tent reliance on local system properties implies uncertainty,
which can challenge control strategies [42]. Our addition of a
relaxation term provided a simple way to ameliorate this un-
certainty, but more sophisticated control strategies could arise
from combining knowledge of variation in local linearizations
with the stochastic temporal network control framework of
Ref. [42].
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APPENDIX: FAST CALCULATION OF CONTROL
GRAMIAN AND FREE TRAJECTORY

In this Appendix we illustrate how the control Gramian
W and free trajectory g can be determined rapidly, exactly,
and without numerical integration, based on the results of
Ref. [35]. The control Gramian W given by Eq. (3) can be
written as

W =
∫ tF ′−tI ′

t ′
I

e−A′sQeA′T sds,

where A′ = −AT and Q = eA(tF ′−tI ′ )BBT eAT (tF ′−tI ′ ) is a sym-
metric matrix. Hence, by Eqs. (1.2) and (2.2) of Ref. [35],
the Gramian W is given by

W = F3
T G3,

where

eC1 =
(

F2 G2

O F3

)
, C1 =

(−A′T Q
O A′

)
,

F2, G2, F3 are n × n matrices, and O is the n × n zero matrix.
To determine the final state gF

′ of the free trajectory g we
must compute the integral which appears in Eq. (5) at the final
time tF . As long as A is invertible we have∫ tF ′

tI ′
eA(t−τ )dτ = A−1(I − eA(tI −t ) ),

where I is the n × n identity matrix. The integral can also be
calculated while avoiding matrix inversion by expressing it as∫ tF ′

tI ′
eA(tF −τ )dτ =

∫ tF ′−tI ′

0
eAsds.

Equations (1.1) and (2.1) of Ref. [35] therefore imply∫ tF ′

tI ′
eA(tF −τ )dτ = G3

where

eC2 =
(

F3 G3

O F4

)
, C2 =

(
A I
O O

)
.
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