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Polaritonic ultrastrong coupling: Quantum entanglement in the ground state
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The ultrastrong coupling between the elementary excitations of matter and microcavity modes is studied
in a fully analytical quantum-mechanical theoretical framework. The elementary excitation could be phonons,
excitons, plasmons, etc. From the diagonalization of the Hamiltonian, we obtain the ground state of the polariton
Hamiltonian. The ground state belongs to the Gaussian class. Using the Gaussian property, we calculate
the quantum entanglement in the ground state. We use two different measures for quantum entanglement—
entanglement entropy and the logarithmic negativity parameter—and obtain rather simple analytical expressions
for the entanglement measures. Our findings show that the amount of quantum entanglement in the ground state
is quite significant in the ultrastrong-coupling regime. It can be obtained from the measurement of the polariton
frequencies.
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I. INTRODUCTION

The behavior of matter interacting with cavity fields is
known to produce distinct characteristics from that in free
space [1–3]. This is because the interaction parameter g can
have values in the weak-coupling range, or strong or even
ultrastrong range. While the strong-coupling regime has been
thoroughly investigated, the ultrastrong coupling is attracting
intense attention now [4,5]. In the case of a qubit interact-
ing with a cavity, the ultrastrong coupling g/ω, say, about
0.5 or more, is yet to be realized. In such cases, parametric
interactions have been suggested to reach the ultrastrong-
coupling regime [6–8]. The situation is different for a large
collective system interacting with cavity fields as here one can
take advantage of the effective enhancement of the coupling
by

√
N factor [9]. Such an enhancement factor has facili-

tated the observation of strong coupling, even when g was
in the weak-coupling range [10–12]. Several recent works
have successfully observed an ultrastrong-coupling regime as
the density of the elementary excitations was in the range of
solid-state densities. Some of these recent experiments are
for phonon polaritons in cavities containing hexagonal boron
nitride (hBN) [13], plasmon polaritons [14,15], excitonic sys-
tems [16–20], and two-dimensional (2D) electron gas [21].
The possibility of novel photochemistry in cavities under ul-
trastrong coupling has been investigated [22]. The cavity-free
ultrastrong coupling was also realized using metamaterials
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[23,24]. A typical experimental observation consists of the
observation of the transmission spectra and the polaritonic
splitting of the spectra—the splitting is of the order of g,
which is about 30–70% of the bare frequency of the cavity
which is supposed to be on resonance with the frequency of
the elementary excitation in the solid-state material. All this
can be explained in classical calculations of transmission from
a layered medium [25].

At a quantum level, the elementary excitations are coupled
to the radiation field modes and the Hamiltonian is diagonal-
ized to find the new quasiparticles, i.e., polaritons [26–28].
The transmission spectrum basically probes the separation
between the frequencies of two polaritons, though it has to be
borne in mind that the observed separation would also depend
on the reflection and transmission properties of the mirrors
forming the cavity. This latter aspect has not been fully ad-
dressed. In this paper, we study the quantum entanglement
which is present in the ground state of the Hopfield Hamilto-
nian. We derive the ground state which belongs to the class
of Gaussian states. We then use two different entanglement
measures—entanglement entropy [29] and the logarithmic
negativity parameter [30,31]. The quantum entanglement in-
creases as g/ω increases. There is no quantum entanglement
in the limits of weak and strong couplings as g/ω � 1. The
magnitude of entanglement is given in terms of the polariton
frequencies and thus experimental study of the transmission
spectra can be used to assess the amount of entanglement.

II. POLARITONS IN ULTRASTRONG COUPLING

In the following, we will consider a microcavity fully
filled with hBN, where the ultrastrong phonon-photon cou-
pling was demonstrated [13]. And our theory can also be
applied to other systems such as exciton polaritons and
plasmon polaritons in the ultrastrong-coupling regime. The
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transmission spectrum can be measured at normal incidence,
where a polaritonic splitting shows that the light couples with
the in-plane transverse-optical (TO) phonon of hBN, which
takes place perpendicular to the direction of propagation. Thus
we consider ultrastrong coupling of two harmonic oscillators:
the normal incidence Fabry-Pérot microcavity mode with en-
ergy ωc, and the TO phonon mode with energy ω0 (we set
h̄ = 1). The behavior of the system can be described by the
Hopfield Hamiltonian, which reads [32]

Ĥ = ωc
(

1
2 + â†â

) + ω0
(

1
2 + b̂†b̂

)
+ �(â† + â)(b̂† + b̂) + G(â† + â)2, (1)

where â and b̂ are the microcavity and TO phonon anni-
hilation operators, respectively, and � is the vacuum Rabi
energy. The third term in Eq. (1) contains the antiresonant
or counter-rotating part, which cannot be omitted in the
ultrastrong-coupling regime. The fourth term, which is called
the diamagnetic term, originates from the quadratic electro-
magnetic vector potential term A2 of the light-matter minimal
coupling. Any quasiresonant transition gives a contribution to
the coefficient G, but in this paper, we omit the effect of other
transitions; then, G = �2/ω0 [5]. The vacuum Rabi energy
for the phonon polaritons being considered can be written as
[26]

� = g

√
ω0

ωc
, (2)

where g is called coupling strength in this paper.
Given that Ĥ in Eq. (1) is quadratic in mode operators,

the phonon-cavity polaritonic transition energies ω± can be
obtained by two-mode Hamiltonian diagonalization (details in
the Appendix),

ω2
+ = ω2

0 + 2�
√

ωcω0 tan
θ

2
,

ω2
− = ω2

0 − 2�
√

ωcω0 cot
θ

2
,

(3)

where θ = arctan( ωc(4G+ωc )−ω2
0

4�
√

ωcω0
) + π

2 , (0 < θ < π ), and ω+ >

ω−. The polariton energies ω± coincide with the classical bulk
dielectric dispersion law [33],

ε(ω) = c2k2

ω2
= ε∞ + 4ε∞g2

ω2
0 − ω2

, (4)

where ε(ω) is the dielectric function of hBN, k is the wave
vector, and ωc = kc/

√
ε∞. The quantity ε∞ is the value of

ε(ω) at very large values of ω compared with ω0.
The diagonalized Hamiltonian of the system can be written

in a simple form,

Ĥ = ω−
(

1
2 + Â†

−Â−
) + ω+

(
1
2 + Â†

+Â+
)
, (5)

where the phonon-cavity polariton normal modes, i.e., the new
quasiparticle annihilation operators, can be introduced as

Â− = −1

2
cos

θ

2

(
μ + 1

μ

)
â + 1

2
sin

θ

2

(
ν + 1

ν

)
b̂

− 1

2
cos

θ

2

(
μ − 1

μ

)
â† − 1

2
sin

θ

2

(
ν − 1

ν

)
b̂†, (6)

Â+ = 1

2
sin

θ

2

(
ν + 1

ν

)
â + 1

2
cos

θ

2

(
μ + 1

μ

)
b̂

+ 1

2
sin

θ

2

(
ν − 1

ν

)
â† − 1

2
cos

θ

2

(
μ − 1

μ

)
b̂†, (7)

with defined variables μ = √
ω−/ωc and ν = √

ω+/ωc. To
obtain this form of canonical transformation, we also use the
simple relation ω−ω+ = ωcω0, which can be derived from
Eq. (4). And we can also write Â± in terms of quadratures,
√

2Â− = − cos
θ

2

(
μx1 + 1

μ

∂

∂x1

)
+ sin

θ

2

(
1

ν
x2 + ν

∂

∂x2

)
,

(8)
√

2Â+ = sin
θ

2

(
νx1 + 1

ν

∂

∂x1

)
+ cos

θ

2

(
1

μ
x2 + μ

∂

∂x2

)
,

(9)

where the Hermitian quadrature operators in the system are
defined as x̂1 = â+â†√

2
, p̂1 = â−â†√

2i
, x̂2 = b̂+b̂†√

2
, and p̂2 = b̂−b̂†√

2i
.

Note that from Eq. (1), one has relations ˙̂x1 = ωc p̂1, ˙̂x2 =
ω0 p̂2, and from commutation relations [x̂i, p̂ j] = iδi j , one has
p̂ j = −i ∂

∂x j
.

III. GROUND STATE

Now we consider the ground Fock state |0Â− , 0Â+〉 of the
two-mode system with energy ω0,0 = ω−+ω+

2 . From Eq. (4),
(ω+ + ω−)2 = (ωc + ω0)2 + 4g2, and thus ω0,0 > ωc+ω0

2 . The
ground state possesses virtual photons because our Hamil-
tonian does not conserve the number of photons. Since
it is the vacuum of polariton excitations, Â−|0Â− , 0Â+〉 =
0, Â+|0Â− , 0Â+〉 = 0, and the ground-state wave function

0,0(x1, x2) = 〈x1, x2|0Â− , 0Â+〉, we can obtain first-order dif-
ferential equations,[

− cos
θ

2

(
μx1 + 1

μ

∂

∂x1

)
+ sin

θ

2

(
1

ν
x2 + ν

∂

∂x2

)]

× 
0,0(x1, x2) = 0, (10)[
sin

θ

2

(
νx1 + 1

ν

∂

∂x1

)
+ cos

θ

2

(
1

μ
x2 + μ

∂

∂x2

)]

× 
0,0(x1, x2) = 0. (11)

Thus the normalized two-mode Gaussian wave function in the
ground state in quadrature space can be calculated by solving
those equations,


0,0(x1, x2) = 1√
π

exp

[
−1

2

(
ax2

1 + bx2
2 + 2cx1x2

)]
, (12)

with real coefficients

a = μ2 cos2 θ

2
+ ν2 sin2 θ

2
, b = 1

μ2
cos2 θ

2
+ 1

ν2
sin2 θ

2
,

(13)

and

c = ω+ − ω−
2
√

ωcω0
sin θ = 2�

ω− + ω+
, (14)
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FIG. 1. Coefficient c in the Gaussian wave function plotted
against the bare cavity energy ωc with ω0 = 169.1 meV and different
values of g.

where we use the simple relation ω2
+ − ω2

− =
4�

√
ωcω0/ sin θ , which can be derived from Eq. (3). The

coefficient c directly affects the entanglement and we plot
it as a function of the bare cavity energy ωc in Fig. 1
for the phonon frequency ω0 = 169.1 meV of hBN and
different coupling strength g. Since c �= 0, the two-mode
wave function 
0,0(x1, x2) �= f1(x1) f2(x2), where f1[ f2] is a
function of x1[x2] alone. Thus we find that the ground state
of our system is inseparable or entangled. Clearly, to have
significant entanglement, g cannot be too small. For weak
coupling, i.e., g → 0, the polariton normal modes go back to
the cavity mode and phonon mode, and we can expect that the
amount of entanglement decreases to zero. The entanglement
in the Hopfield Hamiltonian can be traced back to the
presence of the terms �(â†b̂† + âb̂), which become important
only in the ultrastrong-coupling limit. In quantum optics
terms, such terms correspond to two-mode squeezing with
the property that two modes are entangled [34]. The terms
�(â†b̂ + âb̂†) correspond to the “beam-splitter” Hamiltonian
and these do not lead to any entanglement. The Ĥ of Eq. (1)
is a combination of two types of terms leading to a more
complex nature of entanglement.

We can also calculate the first excited states in quadrature
space,


1,0(x1, x2) = A†
−
0,0(x1, x2)

=
√

2

(
−μ cos

θ

2
x1 + 1

ν
sin

θ

2
x2

)

0,0(x1, x2),

(15)


0,1(x1, x2) = A†
+
0,0(x1, x2)

=
√

2

(
ν sin

θ

2
x1 + 1

μ
cos

θ

2
x2

)

0,0(x1, x2),

(16)

with one-polariton excitation. 
1,0(x1, x2) is the wave func-
tion for the lower polariton, while 
0,1(x1, x2) represents the
upper polariton.

IV. QUANTITATIVE MEASURES OF ENTANGLEMENT

A. Entanglement entropy

For a general pure bipartite quantum state, the von
Neumann entropy of either of the subsystems serves as
entanglement entropy to measure the degree of quan-
tum entanglement, and it can be proved that they have
the same value. For our system, the ground-state den-
sity operator is ρ̂ = |0Â− , 0Â+〉〈0Â− , 0Â+ |. Since it is a pure

state, the entropy of the bipartite state, S(â, b̂) = 0, and
the entropies of the reduced density matrices, S(â) = S(b̂),
are the same [35]. The ground state is Gaussian and hence
the state of each mode will be a mixed Gaussian state which
has a Gaussian Wigner function in quadrature space,

W (x, p) = 1

2π
√

αβ − γ 2
exp

(
−1

2

αx2 + βp2 − 2γ xp

αβ − γ 2

)
,

(17)

where the variance α = 〈p̂2〉, β = 〈x̂2〉, γ = 1
2 〈x̂ p̂ + p̂x̂〉, with

no displacements, i.e., 〈x̂〉 = 〈p̂〉 = 0. Then the expression for
entropy of a reduced density operator of either mode can be
written as [35,36]

S = kB[(σ + 1) ln (σ + 1) − σ ln σ ], (18)

where kB is the Boltzmann constant and

σ = (αβ − γ 2)1/2 − 1
2 . (19)

In our ground state,

〈
x̂2

1

〉 = 〈
p̂2

2

〉 = b

2
,

〈
x̂2

2

〉 = 〈
p̂2

1

〉 = a

2
,

1

2
〈x̂1 p̂1 + p̂1x̂1〉 = 1

2
〈x̂2 p̂2 + p̂2x̂2〉 = 0, (20)

and, using the simple relation ab = 1 + c2 which can be de-
rived from Eqs. (13) and (14), it is obvious that parameter σ =
1
2 (

√
c2 + 1 − 1) = sinh2( r

2 ), where we let c = sinh r. Thus,
the entanglement entropy can be written in a form that merely
depends on c,

S/kB =
√

c2 + 1 ln

√
c2 + 1 + 1

c
+ ln

c

2

= cosh r ln

(
coth

r

2

)
+ ln

(
sinh r

2

)
. (21)

If the coupling strength g → 0, then, since σ → 0, we find the
entanglement entropy S → 0. The entanglement entropy as a
function of the bare cavity energy ωc is presented in Fig. 2 for
the phonon frequency ω0 = 169.1 meV of hBN and different
coupling strength g. With increasing coupling strength, we get
the increased entanglement entropy as expected.

B. Logarithmic negativity parameter

The Peres-Horodecki separability criterion to determine
whether bipartite continuous variable states are separable
was presented by Simon [37], and for a two-mode Gaussian
state determined by variance matrix V , the criterion is sim-
ply an inequality obeyed by a complete set of Sp(2, R) ⊗
Sp(2, R) invariants for V . The elements of variance matrix V
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FIG. 2. Entanglement entropy S/kB plotted against the bare cav-
ity energy ωc with ω0 = 169.1 meV and different values of g.

are given by

Vi j = 1
2 tr(ρ̂{ξ̂i, ξ̂ j}), (22)

where there is no displacement, and four-dimensional vector
ξ̂ = (x̂1, p̂1, x̂2, p̂2) for our two-mode system. The variance

matrix has the form V = (
A C

CT B
), and the invariants are the

numbers det A, det B, det C, and det V . For a pure Gaussian
state, det V = 1

16 , and det A + det B + 2 det C = 1
2 [30].

The Peres-Horodecki separability criterion states that a
separable density operator under the partial transpose neces-
sarily goes into a non-negative operator, and the logarithmic
negativity parameter is simply a quantitative version of the
criterion that quantifies how much the new density operator
deviates from being a non-negative matrix.

Two symplectic eigenvalues of the covariance matrix V
associated with its density operator under the partial transpose
can be derived [30,38],

ν̃± =
√

�̃(V ) −
√

�̃(V )2 − 4 det V

2
, (23)

where �̃(V ) = det A + det B − 2 det C. Equivalent to the cri-
terion presented by Simon, ν− < 1

2 is a necessary and
sufficient condition for two-mode Gaussian states to be entan-
gled. In our ground state, the Sp(2, R) ⊗ Sp(2, R) invariants
are calculated,

det A = det B = 1
4 (1 + c2), det C = − 1

4 c2, (24)

and thus �̃(V ) = 1
2 + c2,

ν̃− = 1
2 (

√
c2 + 1 − c) = 1

2 e−r . (25)

Since our coefficient c > 0, and then ν̃− < 1
2 , the ground-

state wave function is entangled. When the coupling strength
g → 0, i.e., c → 0, we have ν̃− = 1

2 ; then the state becomes
separable. The logarithmic negativity EN (ρ) is used to mea-
sure the amount of quantum entanglement,

EN (ρ) = max[0,− log2(2ν̃−)]. (26)

The logarithmic negativity as a function of the bare cavity
energy ωc is presented in Fig. 3 for ω0 = 169.1 meV of hBN
and different coupling strength g. The trend of logarithmic

FIG. 3. Logarithmic negativity EN (ρ ) plotted against the bare
cavity energy ωc with ω0 = 169.1 meV and different values of g.

negativity is very similar to entanglement entropy and we
can reach the same conclusion: for weak coupling, there is
almost no entanglement and we can obtain a large amount
of entanglement in the ultrastrong regime of phonon-cavity
interaction.

V. CONCLUSIONS

In the experiment, we can measure polariton energies ω±
from the transmission spectrum. Then, by matching with
Eq. (3) and applying our theory model, we can determine
the coupling strength of our system, and coefficient c can
be easily found by Eq. (14). Since the entanglement entropy
and logarithmic negativity are exclusively determined by the
coefficient c, we can make a possible quantitative measure
of quantum entanglement in the ground state following these
procedures. Note that we have not considered the effects of
temperature on quantum entanglement since we are working
with frequencies of the order of 0.1 eV and above, as the
number of thermal photons is much less than 1. The average
number of thermal photons, say, at room temperature 300 K
and at frequency 0.1 eV, is about 0.021. The situation is
different at microwave frequencies where temperatures much
smaller than a Kelvin are needed. And it should be noted that
we do not discuss entanglement in the first excited states.
These states exhibit entanglement despite not being in the
ultrastrong-coupling regime.

While our theory model is centered around phonon polari-
tons in cavities, it can be extended to other types of polaritons.
Applying our conclusion to exciton polaritons is possible [16],
but it is important to note that normal incidence should be
assumed, i.e., the incidence angle θ must be set to zero. We
should also neglect spatial dispersion; then the expression

for the vacuum Rabi energy becomes � = ω0

√
πχω0

ωcε∞
, where

χ represents the coupling constant between the photon and
exciton oscillators [26,28,33]. The relation between g and χ

can be established, which is given by g = ω0

√
πχ

ε∞
. Another

example of applying our theory is plasmon polaritons. As
explored in a recent study [15], the vacuum Rabi energy �

is independent of the energy of the cavity mode ωc. Then we
can modify the interaction parameter in our theory, i.e., make
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� = g. This modification leads to the same conclusion that the
quantum entanglement entropy in the ground state increases
with the coupling strength.
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APPENDIX: TWO-MODE HAMILTONIAN
DIAGONALIZATION

We first write the Hamiltonian of Eq. (1) in terms of
quadratures,

Ĥ = 1
2 pT T−1p + 1

2 xT Vx, (A1)

where x = (x̂1, x̂2)T , p = ( p̂1, p̂2)T , and

T−1 =
(

ωc 0
0 ω0

)
, V =

(
ωc + 4G 2�

2� ω0

)
(A2)

are the kinetic and potential matrices, and are both symmetric.
The canonical equation of motion can be deduced as∑

j

Ti j ¨̂x j +
∑

j

Vi j x̂ j = 0, (A3)

which is a homogeneous system of linear ordinary differ-
ential equations with constant coefficients. Assume x̂ j (t ) =
x̂ j (0) exp(−iωt ), ω is real, and ω > 0; then,∑

j

(Vi j − ω2Ti j )x̂ j = 0, (A4)

which is an eigenvalue problem. To have nontrivial solutions,
the determinant

det(T−1V − ω2I) = aω4 + bω2 + c = 0, (A5)

with the coefficients

a = 1, b = −(
ω2

c + ω2
0 + 4Gωc

)
,

c = ω2
cω

2
0 − 4�2ωcω0 + 4Gωcω

2
0. (A6)

When G � �2/ω0, we find the roots,

ω2
+ = ω2

0 + 2�
√

ωcω0 tan
θ

2
,

ω2
− = ω2

0 − 2�
√

ωcω0 cot
θ

2
, (A7)

where θ = arctan( ωc(4G+ωc )−ω2
0

4�
√

ωcω0
) + π

2 , (0 < θ < π ), and ω+ >

ω−. If G = �2/ω0,

b = −(
ω2

c + ω2
0 + 4g2

)
, c = ω2

cω
2
0, (A8)

which makes the eigenequation (A5) the same as the classical
bulk dielectric law given by Eq. (4).

The eigenvectors a−, a+ for T−1V satisfy T−1Va± =
ω2

±a±, and they compose a 2 × 2 matrix A,

A = (a−, a+). (A9)
We can prove that aT

+Ta− = 0 along with ω+ �= ω−. To nor-
malize the eigenvectors, for a−, the normalization factor

N2
− = ω−aT

−Ta−, (A10)

and the normalized vector

a′
− = 1

N−
a− = 1√

ω−

(
− √

ωc cos
θ

2
,
√

ω0 sin
θ

2

)T

. (A11)

For a+, the normalization factor

N2
+ = ω+aT

+Ta+, (A12)

and the normalized vector

a′
+ = 1

N+
a+ = 1√

ω+

(√
ωc sin

θ

2
,
√

ω0 cos
θ

2

)T

. (A13)

Thus, the normalized matrix

A′ =
⎛
⎝−

√
ωc
ω−

cos θ
2

√
ωc
ω+

sin θ
2√

ω0
ω−

sin θ
2

√
ω0
ω+

cos θ
2

⎞
⎠. (A14)

We define the new Hermitian quadrature operators Ŷ1, Ŷ2, P̂1,
P̂2,

Y = A′−1x, P = A′T p, (A15)

where Y = (Ŷ1, Ŷ2)T , P = (P̂1, P̂2)T , and we can prove that the
commutator of the new quadrature operators [Ŷi, P̂j] = iδi j ,
and the Hamiltonian can be diagonalized as

Ĥ = 1

2
PT �P + 1

2
YT �Y, (A16)

where

� =
(

ω− 0
0 ω+

)
. (A17)

By defining the new modes Â j = Ŷj+iP̂j√
2

, Â†
j = Ŷj−iP̂j√

2
, we can

obtain the diagonalized Hamiltonian form given by Eq. (5),
and the relation given by Eqs. (6) and (7) between the new
modes and the old modes.
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