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Frozen spin ratio and the detection of Hund correlations
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We propose a way to identify strongly Hund-correlated materials by unveiling a key signature of Hund
correlations at the two-particle level. The defining feature is the sign of the response of the frozen spin ratio (the
long-time local spin-spin correlation function divided by the instantaneous value) under variation of electron
density. The underlying physical reason is that the sign is closely related to the strength of charge fluctuations
between the dominant atomic multiplets and higher-spin ones in a neighboring charge subspace. It is the pre-
dominance of these fluctuations that promotes Hund metallicity. The temperature dependence of the frozen spin
ratio can further reveal a non-Fermi-liquid behavior and thus the Hund metal states. We analyze both degenerate
and nondegenerate multiorbital Hubbard models and corroborate our argument by taking doped La2CuO4 and
LaFeAsO as representative material examples, respectively, of Mott and Hund metals. Our proposal should be
applicable to systems with non-half-filled integer electron fillings and their doped cases provided the doping
drove the electron density toward the half filling.
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I. INTRODUCTION

Understanding physical properties of a given system is
largely dictated by a “reference frame” that inherits the char-
acteristics of a relevant physical picture or a simple model.
In strongly correlated materials, bad metal behavior has com-
monly been associated with Mott physics. In such a frame,
large effective Coulomb repulsion is responsible for slowing
down electron motion by penalizing double occupancy of
electrons on the same site [1]. A widely accepted material
example pertaining to this category is cuprates, which dis-
play several intriguing phases including superconductivity as
a function of doping [2–4].

In some multiorbital materials such as ruthenates and Fe-
based superconductors (FeSCs), on the other hand, the nature
of their correlated metallic phases is far from the conventional
Mott paradigm [5–7]. In this respect, it has been emphasized
over many years that Hund coupling J is a new route to strong
correlations with the dawn of the concept of Hund metal
[5–43]. A key notion here is that a sizable J impedes the for-
mation of long-lived quasiparticles by suppressing the screen-
ing of local spin moments [9,12,13,15,20–24,36–38,42].

A central question at this stage is the following: What
are the hallmarks of Hund physics distinctive from Mott
physics? The question also concerns whether they can be
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experimentally measurable. The difficulty lies in the fact that
strong correlations in multiorbital materials cannot solely be
attributed to J; in some sense, the influences of J and U
are intertwined with each other [11,15]. Furthermore, the ad-
ditional energy scales (e.g., crystal-field splitting) add more
complexity to this problem.

In this paper, we identify direct manifestations of Hund
correlations at the two-particle level. To this end, we propose
a two-particle quantity, which we call the frozen spin ratio, Rs.
It is defined as the long-time local spin-spin correlation func-
tion divided by the instantaneous value [see Eq. (2) below].
Specifically, we argue that the sign of the response of R−1

s
under variation of electron density n is the key defining feature
to classify two regimes of Mott and Hund correlations in the
most relevant parameter range. The underlying physical rea-
son is that the sign is closely related to the strength of “Hund
fluctuations”: ferromagnetic charge fluctuations between the
dominant atomic multiplets and higher-spin ones in a neigh-
boring charge subspace [see Fig. 1(a)]. It is the predominance
of these fluctuations that impedes screening of local spin
moments and promotes Hund metallicity [13,15,22].

II. MODELS AND METHOD

We consider M-orbital (M � 2) Hubbard models with on-
site Coulomb interactions. The local part of our Hamiltonian
is given by

Hloc =U
∑

η

nη↑nη↓ +
∑

η<η′,σσ ′
(U ′ − Jδσσ ′ )nησ nη′σ ′

+ J
∑
η �=η′

(d†
η↑d†

η′↓dη↓dη′↑ + d†
η↑d†

η↓dη′↓dη′↑)

+
∑
η,σ

(εη − μ)nησ , (1)
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FIG. 1. (a) Schematic illustration of two different charge fluctuations on a site having |N = 3, S = 1/2〉 as the atomic ground state multiplet
when M = 2. Non-Hund fluctuations (left paths with an energy cost E |2,0〉

0 forming singlet |N = 2, S = 0〉) and Hund fluctuations (right paths
with an energy cost E |2,1〉

0 forming triplet |N = 2, S = 1〉) are depicted. Colored arrows represent spin moments. (b) R−1
s plotted against

decreasing electron density n for a three-degenerate-orbital (M = 3) model at U = 3.5. The red horizontal double arrow below the x axis
indicates a range of filling in which ∂R−1

s /∂ p > 0 for J/U = 0.05 and ∂R−1
s /∂ p < 0 for J/U = 0.25. The system is particle-hole symmetric

about n = 3. (c) The diagram differentiating Mott and Hund systems for M = 2 and U = 2.5. Here, n = M + 1 − p = 3 − p. The solid lines
with symbols denote the region above (below) which ∂R−1

s /∂ p < 0 (∂R−1
s /∂ p > 0) for three different values of �.

where d†
ησ (dησ ) is the electron creation (annihilation) oper-

ator for orbital η, η′ ∈ {1, 2, . . . , M} and spin σ, σ ′ ∈ {↑,↓}.
nησ = d†

ησ dησ is the electron number operator. εη is the onsite
energy level of orbital η and μ is the chemical potential.
U (U ′) denotes the intraorbital (interorbital) Coulomb re-
pulsion. We set U ′ = U − 2J following the convention. For
the kinetic part of our Hamiltonian, we mainly consider an
infinite-dimensional Bethe lattice with an equal half band-
width D for each nonhybridized orbital. D is used as the
energy unit. As a proof of concept, we present results for
La2CuO4 and LaFeAsO using ab initio model parameters.
The models are solved using the dynamical mean-field theory
(DMFT) [44,45] by employing the hybridization-expansion
continuous-time quantum Monte Carlo algorithm as an im-
purity solver [46,47].

III. MOTT VERSUS HUND SYSTEMS IN TERMS
OF THE FROZEN SPIN RATIO

A. Frozen spin ratio Rs

The central quantity we investigate is the frozen spin ratio
Rs, which is defined as

Rs ≡ C

(
τ = 1

2T

)/
C(τ = 0), (2)

where C(τ ) ≡ 〈Sz(τ )Sz(0)〉 is the local spin-spin correla-
tion function with Sz(τ ) = ∑

η nη↑(τ ) − nη↓(τ ) (τ : imaginary
time; τ � 0) being the local spin operator. T is temperature.
On general grounds, C(τ ) decays over τ [τ � 1/(2T )] due
to the dynamical nature of spin moments. For an isolated
atom having local moments, however, Rs = 1 because C(τ ) =
C(0) for the entire range of τ . In a Fermi-liquid (FL) limit
where the dynamical screening becomes very effective, on the
other hand, C(τ ) → 0 at long times τ (or T → 0), namely
at τ � 1/TK (TK: the Kondo temperature below which the
local moments are screened and long-lived quasiparticles are
formed) [23,48], resulting in Rs → 0. Thus Rs should take

an appreciable value well above TK. We will examine Rs at
T = 0.02, unless otherwise specified.

Note that Rs is a measure of the degree of spin screening,
not the magnitude of local spin moments, and is normal-
ized, Rs ∈ [0, 1] lying in between two extreme limits of a
low-temperature fully screened regime (Rs → 0) and the un-
screened local moment (Rs → 1). We will also use R−1

s as well
as Rs. Hence, R−1

s is reduced down toward unity (not zero) as
the system moves toward the local moment regime.

B. Identification of Mott and Hund systems

We begin with the archetypal case: a three-degenerate-
orbital model (M = 3 and ε1 = ε2 = ε3). Figure 1(b) presents
R−1

s plotted against decreasing electron density n for two dif-
ferent values of J/U . Most notably, one can identify that, near
the typical “Hund-metal electron filling” n = M + 1 [15], R−1

s
exhibits a “V-shape” behavior in the small J/U case, whereas
it is monotonically decreasing for the large J/U . Thus, while
∂R−1

s /∂ p > 0 for small J/U , ∂R−1
s /∂ p < 0 for large J/U by

hole doping p to n = M + 1. The same behavior occurs for
n = M − 1 provided the electron is doped (not shown). In
general, the dichotomy of R−1

s can also emerge for any non-
half-filled integer electron fillings. Throughout the paper we
will focus on “near M + 1” densities, namely n = M + 1 − p
(0 � p < 0.5). Note that the dichotomy between small and
large J/U regimes does not appear for p < 0 or large p
(p → 1) by which the system gets too close to the half filling
as shown in Fig. 1(b). Thus, our proposal cannot be applicable
to these cases; more discussion can be found in Appendix F
on the applicability of ∂R−1

s /∂ p in identifying Hund systems.
The behavior of R−1

s in the small J/U case can be natu-
rally understood from Mott physics by which the correlation
strength gets mitigated as the system moves away from an in-
teger filling. As a consequence, Kondo screening of local spin
becomes more effective (i.e., enhancement of R−1

s ) by doping
(either electron or hole) an integer-filled system as shown in
Fig. 1(b). On the other hand, this picture fails to explain the
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FIG. 2. Hole doping dependence of (a) R−1
s and (b) Js (mul-

tiplied by D/V 2) for M = 2, � = 0.5, and U = 2.5. The electron
density n is given by n = 3 − p. We used E |N,S〉

k s obtained from the
DMFT solutions for the evaluation of Js.

observed behavior of R−1
s in the large J/U case. Furthermore,

since J drives the system away from a Mott insulator at
n = M + 1 [15], we infer that strong Hund correlations dis-
tinctive from Mott physics are manifested by ∂R−1

s /∂ p < 0.
Importantly, this characteristic feature is identified in various
other cases; see Appendices A–C. “Mott systems” hereafter
refer to not only Mott insulators but also correlated metals
governed by Mott physics. Note that we do not focus on the
question of how correlated the system is in this paper. In order
to do so, one can investigate the well-established physical
quantities such as quasiparticle weight, spectral functions, and
dc/optical conductivities.

To highlight the generality of the above observation, we
present a diagram in Fig. 1(c) indicating the regions of Mott
and Hund physics dominant correlations as determined by
the sign of ∂R−1

s /∂ p for a two-orbital (M = 2) model using
three different values of on-site energy-level splitting � (� ≡
ε1 − ε2). Figure 1(c) demonstrates that the characteristic of
Mott systems (∂R−1

s /∂ p > 0) becomes pronounced for small
J/U and large �, whereas that putatively of the Hund system
(∂R−1

s /∂ p < 0) becomes pronounced for large J/U and small
�. This behavior is consistent with the common notion that �

suppresses Hund physics.
A useful insight can be obtained by examining the Kondo

coupling for spin, namely Js, as derived from the Schrieffer-
Wolff (SW) transformation [13,20,22,49]. While various Jis
are coupled through scaling equations, by neglecting cross
terms between Kondo couplings it is only Js (Kondo coupling
for spin) that determines TK [20,22]. With this idea in mind,
we argue that the observed behavior, namely the negative
response of R−1

s (i.e., ∂R−1
s /∂ p < 0), features strong Hund

fluctuations which reduce Js and TK.
Let us examine Js for M = 2, which roughly reads Js ∼∑
k,N∈{2,4},S O(V 2/E |N,S〉

k ); see Appendix D for the derivation.

Here, V is the bath-impurity hybridization strength. E |N,S〉
k

(E |N,S〉
k > 0) denotes an excitation energy from |3, 1/2〉 to

the excited atomic multiplet |N, S〉. The subscript k (k ∈
{0, 1, . . .}) refers to the kth lowest eigenvalue in the corre-
sponding |N, S〉 subspace. Figures 2(a) and 2(b) present R−1

s
and Js as a function of p. Interestingly, we find qualitatively
the same behavior of R−1

s and Js; see Appendix E for more
data.

To understand the above observation, we consider the re-
sponse of Js upon density change. To mimic the effect of
a small increase in p, let us consider a situation where μ is
slightly decreased by dμ (dμ > 0), i.e., μ → μ − dμ, which
leads to Js → Js − (∂Js/∂μ)dμ to the first order. The lead-
ing contribution to the change in Js, namely −(∂Js/∂μ)dμ,
is given by (Appendix D)

−
(

∂Js

∂μ

)
dμ ≈ −1

2

V 2dμ(
E |2,1〉

0

)2 + f (�/J )
V 2dμ(
E |2,0〉

0

)2 , (3)

where f (�/J ) = 1/[{
√

1 + (�/J )2 − �/J}2 + 1] and
0 < f (�/J ) < 1. E |2,1〉

0 − E |2,0〉
0 = √

J2 + �2 − 3J; refer to
Table II. Here we emphasize that the first term associated
with Hund fluctuations [Fig. 1(a)] is negative definite, thereby
playing a major role in the decrease of Js by hole doping.
Thus predominance of the first term suppresses spin-Kondo
screening by reducing Js, which in turn enhances the Hund
metallicity. On the other hand, the second term, which is
positive, features the effect of � and promotes the screening.
Since the second term is enhanced by �, it can be seen
that large � masks the effect of Hund fluctuations, which is
qualitatively consistent with what we have seen in Figs. 1(c)
and 2. The role of J here is twofold: J (i) drives the system
away from a Mott insulator [15] and (ii) enhances the Hund
fluctuations by reducing E |2,1〉

0 compared to E |2,0〉
0 [36].

Therefore, the decrease of Js upon density change and
concomitantly suppressed spin-Kondo screening is a genuine
effect of J , not by the proximity to a Mott insulator.

In contrast to Js, however, other relevant couplings in
generic SU(2) ⊗ SU(M ) models increase with p [22], evolv-
ing in such a way to promote Kondo screening as detailed in
Appendix D. We thus ascribe the negative response of R−1

s in
Hund systems to the effect of strong Hund fluctuations.

It should be noted, at this point, that the doping dependence
of R−1

s does not tell whether a system at a given temperature
is a non-Fermi liquid. It only indicates whether the electron
correlation of the system is governed by Hund physics or
not. This limitation leads us to further look at the temperature
dependence of Rs to uncover the nature of a metallic state as
detailed below.

C. Non-Fermi-liquid behavior

Having established that the sign of ∂R−1
s /∂ p is a useful

indicator to identify Hund systems, we monitor the temper-
ature dependence of Rs to tell whether a given system at a
low temperature follows the FL behavior. In the FL regime at
low temperatures, C(1/2T ) scales as T 2 [8,44,50,51] and the
instantaneous value, C(0), becomes basically T independent.
Thus, Rs should concomitantly exhibit the T 2 dependence. In
contrast, in a local moment regime or a Mott insulator, Rs is
T independent. To illustrate this argument, we look at the T
dependence of Rs divided by T (Rs/T ) presented in Figs. 3(a)
and 3(b) for both Mott and Hund systems. We also look at the
imaginary part of the local self-energy at the lowest Matsubara
frequency, Im	(iω0), which exhibits T -linear scaling in the
FL regime as demonstrated in Ref. [52].

We find from Figs. 3(a) and 3(b) that both Mott and Hund
systems exhibit the FL behavior, namely Im	(iω0) ∝ T [52],
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FIG. 3. (a), (b) Temperature dependence of Im	(iω0),
C(1/2T )/T , and Rs/T obtained from a two-degenerate-orbital
model of n = 2.9 for (a) a Mott system (U = 3 and J/U = 0.05;
∂R−1

s /∂ p > 0) and (b) a Hund system (U = 3 and J/U = 0.25;
∂R−1

s /∂ p < 0). The solid lines are guides to the eye to indicate
the FL behavior. (c) Characteristic features of Mott and Hund
systems at low temperatures for the systems with n = M + N − p
(0 � p < 0.5) electron densities, where N is a nonzero positive
integer. These features also hold for the cases of n = M − N + p.

at low temperatures. Interestingly, indeed, C(1/2T )/T ∝ T
and Rs/T ∝ T (or, equivalently Rs ∝ T 2), below which the
FL behavior sets in. We note that a Hund metal, if one defines
this state as a non-FL, can be identified as a Hund system
(∂R−1

s /∂ p < 0) lying in a regime in which the exponent α of
Rs ∝ T α is close to neither 0 nor 2. A summary of our analysis
so far is presented in Fig. 3(c).

D. Relations of Rs to other quantities: The quasiparticle weight
and the spin-orbital separation

Since TK ∼ Z (Z: the quasiparticle weight or the inverse
of the quasiparticle-mass enhancement within DMFT) [23],
the behavior of ∂Z/∂ p should follow ∂R−1

s /∂ p in degenerate-
orbital systems. Indeed, the boundary determined by ∂Z/∂ p
below the FL coherence temperature is almost the same as
that determined by ∂R−1

s /∂ p at intermediate temperatures as
presented in Fig. 4(a). Note also that Z corresponds to the
inverse of the mass enhancement mb/m∗ (mb is the noninter-
acting band mass) within the DMFT.

We now compare the Mott-Hund boundary based on the
signs of ∂R−1

s /∂ p and ∂Z/∂ p with that obtained by the on-
set temperatures of screening of orbital and spin degrees
of freedom. These two temperatures, namely T onset

orb for or-
bital and T onset

spin for spin, are defined as the temperatures
below which the Curie law of local moments starts to get
violated and Kondo screening sets in [24]. Strong Hund
physics in (nearly) degenerate-orbital models at p = 0 is cap-
tured by the separation of these two temperatures, namely
T onset

orb > T onset
spin [23,24,36,38]. With this idea in mind, we here

monitor the ratio T orb
onset/T spin

onset as a function of J/U for a

FIG. 4. (a) The diagram differentiating Mott and Hund systems
for a two-degenerate-orbital (M = 2) model. U = 3 and n = M +
1 − p = 3 − p. The solid (dashed) line with filled (empty) squares
denotes the region above which ∂R−1

s /∂ p < 0 (∂Z/∂ p < 0). The
narrow orange area where ∂R−1

s /∂ p < 0 and ∂Z/∂ p > 0 is an in-
termediate region between Mott and Hund systems. We used a lower
simulation temperature for the calculations of Z (T = 0.005) than
for R−1

s (T = 0.02). (b) The ratio of T orb
onset to T spin

onset as a function of
J/U for the same model at p = 0. The vertical solid (dashed) line
denotes the “Mott–Hund boundary” for p = 0 determined by the sign
of ∂R−1

s /∂ p (∂Z/∂ p).

two-degenerate-orbital (M = 2) model at n = M + 1 = 3 and
U = 3. Specifically, we first evaluate the local orbital/spin
susceptibilities: χo/s = ∫ 1/T

0 dτ {〈Oo/s(τ )Oo/s(0)〉 − 〈Oo/s〉2},
where Oo(τ ) = ∑

σ n1σ (τ ) − n2σ (τ ) for orbital and Os(τ ) =∑
η nη↑(τ ) − nη↓(τ ) for spin. Then, we estimate T orb/spin

onset for
each J/U value by fitting the high-T data to the following
formula: χo/s ∝ 1/(T + T orb/spin

onset ). Our result is presented in
Fig. 4(b).

Interestingly, we find that the boundary based on the signs
of ∂R−1

s /∂ p and ∂Z/∂ p is in good agreement with that by
T orb

onset/T spin
onset [Fig. 4(b)]. We can understand it by investigating

the Kondo couplings. In the regime of J � U , Ji � J J=0
i

because Ji/V 2 = J J=0
i /V 2 + O(J/U 2) + O(J2/U 3) + · · · .

Here, J J=0
i refers to the Kondo couplings when J/U =

0. In this case, the relation Jo � Js (Jo: Kondo cou-
pling for orbital) holds under renormalization group flow,
whereby T orb

onset/T spin
onset � 1 as discussed in Ref. [36]. Notably,

since J � U here, Hund fluctuations which give rise to
∂R−1

s /∂ p < 0 and ∂Z/∂ p < 0 are largely masked by non-
Hund fluctuations which favor ∂R−1

s /∂ p > 0 and ∂Z/∂ p >

0. Thus, for degenerate-orbital models at p → 0, we obtain
∂R−1

s /∂ p > 0 and ∂Z/∂ p > 0 for the same J/U range in
which T orb

onset/T spin
onset � 1. Note, however, that the applicability

of our criterion based on the sign of ∂R−1
s /∂ p is not limited to

degenerate-orbital models at integer fillings. Thus, the crite-
rion is particularly useful in situations where multiple partially
filled orbitals are nondegenerate.

IV. PROOF OF A CONCEPT: CUPRATES
o AND FE-BASED SUPERCONDUCTORS

To corroborate the validity of our proposal, we address
two representative Mott and Hund materials. To this end, we
solve a two-orbital model (eg orbitals; M = 2) for La2CuO4

and a five-orbital model (M = 5) for LaFeAsO using ab initio
parameters. For La2CuO4, we use parameters for a two-orbital
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FIG. 5. (a, b) Doping dependence of the inverse of quasiparticle
mass enhancement (mb/m∗) and R−1

s in (a) La2CuO4 and (b) FeSCs.
Experimental estimates of mb/m∗ are taken from the Drude weights
(obtained by integrating the optical conductivity data up to a cut-
off frequency c) [55–57] for (a), and the Sommerfeld coefficients
[16,58–64] for (b). Theoretical estimates are obtained at T = 116 K.
(c, d) The calculated T dependence of Rs/T for (c) 0.2-hole doped
La2CuO4 and (d) 0.2-hole doped LaFeAsO.

model as derived in Ref. [53]; see Table 1 and Table S15 in
Ref. [53]. We take only onsite Coulomb interactions for the
model. For LaFeAsO, we use in-plane hopping amplitudes
listed in Table IV in Ref. [54]. For two-body terms, U , U ′,
and J values of U = 2.53, U ′ = 1.756, and J = 0.387 eV
are adopted for Eq. (1) by parametrizing onsite Coulomb
interaction elements listed in Table VIII of Ref. [54]. We
take two-dimensional lattices using in-plane hoppings for both
systems and use 80 × 80 k points in the first Brillouin zone.
In their undoped (p = 0) forms, they both possess M + 1 elec-
trons. Our main interest is the filling dependence of the inverse
of the quasiparticle-mass enhancement mb/m∗ and R−1

s .
Let us first address the case of La2CuO4 which is a Mott

insulator at p = 0. Note first that our DMFT calculations
using ab initio parameters correctly capture the Mott insu-
lating phase at p = 0, namely mb/m∗ of dx2−y2 vanishes and
R−1

s � 1 [Fig. 4(a)]. As p increases (increasing hole doping),
the correlation strength gets gradually reduced, which is also
corroborated by the Drude weights of optical conductivity
measurements [55–57] [Fig. 5(a)]. This is the typical behavior
of Mott systems. Furthermore, the monotonic increment of
both mb/m∗ and R−1

s at least up to p = 0.3 implies that Hund
physics is not realized in La2CuO4 in this range of electron
density. This result is a direct consequence of a sizable �

between the two eg orbitals (�/J � 4.73 [53]), which sup-
presses significantly the Hund fluctuations by favoring large
orbital polarization.

We now turn to the case of FeSCs, which have been high-
lighted over many years as material realizations of Hund metal
[15]. While basically the same features are expected for the
entire family, we take LaFeAsO for simplicity. The upper
panel of Fig. 5(b) presents the calculated mb/m∗ from the
Sommerfeld coefficient ratio (γb/γ

∗) in comparison with the
available experimental data for hole doped BaFe2As2 [58–64].
Here γb and γ ∗ are band theory and DMFT (or specific heat)
estimates, respectively. Specifically, mb/m∗ = γb/γ

∗ using a
formula: γb/γ

∗ = ∑
η Ab,η/

∑
η AηZ−1

η where Ab,η and Aη,
respectively, are the density of states of orbital η at the Fermi
level obtained from the band theory and the DMFT [45].
Note that the formula is strictly valid in a FL regime, so our
calculated γb/γ

∗ should not be taken seriously as quantitative
estimates.

Both theoretical and experimental mb/m∗ displayed in
Fig. 5(b) clearly demonstrate that the correlation strength
increases with hole doping p in FeSCs, which is in sharp
contrast to the case of La2CuO4. The doping dependence of
R−1

s further supports the behavior. Based on our scheme, this
characteristic feature of R−1

s , namely ∂R−1
s /∂ p < 0, corrobo-

rates that FeSCs are governed by strong Hund fluctuations.
Looking at the T dependence of Rs [Figs. 5(c) and 5(d)],

both La2CuO4 and LaFeAsO at 0.2-hole doping deviate
clearly from the FL behavior (Rs/T ∝ T ; solid lines are
guides for the eye) down to T � 58 K. Considering that the
critical temperature Tc below which the superconductivity
emerges is Tc ≈ 40 K in La0.8Sr0.2CuO4 and in some FeSCs
like Ba0.6K0.4Fe2As2 [65], the non-FL behavior may be rele-
vant for the emergence of the superconductivity at this doping.

V. POSSIBLE EXPERIMENTAL PROBES

We now discuss possible experiments to detect Rs, which
requires us to measure both short-time (τ = 0) and long-time
(τ = 1/2T ) local spin-spin correlation functions. Although
some subtleties exist, one can resort to x-ray emission or ab-
sorption spectroscopy and inelastic neutron scattering (INS).
The x-ray techniques can measure the instantaneous local spin
moments, μloc = √

3C(0), by probing the local fluctuations in
the femtosecond scale as discussed in the context of FeSCs
[66–68]. INS, on the other hand, can probe the long-time (or
low-energy) fluctuations by effectively measuring the imagi-
nary part of the dynamical spin susceptibility, Imχ (k, ω) (k,
crystal momentum; ω, real frequency), with the assumption
that orbital moments are quenched [14,28]. Using the follow-
ing relation,

C(τ ) =
∫

dk
∫ ∞

−∞
dω

e−ωτ

1 − e− ω
T

Imχ (k, ω), (4)

the long-time value C(1/2T ) can be approximated to the local
part of Imχ (k, 0), namely Imχloc(ω = 0). This is because
Imχ (k, 0) is the dominant contribution to the ω integration
when τ = 1/2T due to a characteristic structure of the kernel
in Eq. (4) [69]. The combination of these two spectroscopies
hopefully provides a way to estimate Rs.

If we rely on the quasiparticle weight Z for the experi-
mental identification of Hund correlations instead of using
Rs, any probes that can measure the mass enhancement are
relevant. As we have already noticed from Figs. 5(a) and 5(b),
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the Drude weight of optical conductivity and the Sommerfeld
coefficient of specific heat are standard techniques to estimate
mb/m∗, provided mb is given by the band theory. Furthermore,
angle-resolved photoemission spectroscopy enables us to ex-
tract the orbital dependent contributions, (mb/m∗)η. Assisted
by these experimental techniques, it is feasible to estimate the
sign of ∂Z/∂ p.

VI. DISCUSSION

We finally remark on the related open questions. While
our approach based on the sign of ∂R−1

s /∂ p should be valid
in most of the transition-metal compounds to which the
Kanamori (or Slater) type of local interaction [Eq. (1)] is rel-
evant, its applicability to materials with more complicated in-
teractions remains to be resolved. It is also worth investigating
the effect of interorbital hopping, which plays a crucial role in
Mott metal-to-insulator transitions in non-degenerate-orbital
systems [70–72]. Nonlocal electron correlations and possi-
ble symmetry-breaking transitions affect the low-temperature
physics and thus may influence our picture. We expect, how-
ever, that measuring Rs should not be hindered by the latter
if the measurement is done above the transition temperature.
Further studies are required to clarify these issues.
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APPENDIX A: Z AND R−1
s FOR A TWO-DEGENERATE-

ORBITAL MODEL ON A BETHE LATTICE

Figure 6 displays additional data for Z vs p and R−1
s

vs p at three different values of U . Here, Z = (1 −
∂Im	(iωn)/∂ωn|ωn→0+)

−1
where 	(iωn) is the local self-

energy on the imaginary frequency axis; see, e.g., Fig. 6(b).
We fitted a fourth-order polynomial to the self-energies in the
lowest six imaginary frequency points, following Refs. [6,36].

One can notice from Fig. 6 that the value of J/U above
which ∂Z/∂ p < 0 and ∂R−1

s /∂ p < 0 increases as U is in-
creased; the Mott behavior becomes predominant even up to a
fairly large value of J/U . Thus, the effect of J gets weakened
as U is increased. A rationale behind this phenomenon can
be drawn from the generic form of Kondo couplings obtained
via the Schrieffer-Wolff transformation of multiorbital im-
purity models, which read Ji/V 2 = J J=0

i /V 2 + O(J/U 2) +
O(J2/U 3) + · · · [Eqs. (D13)–(D15)]. Thus, at a regime of
J � U , Ji � J J=0

i by which the effect of Hund coupling J
on Jis becomes largely suppressed.

APPENDIX B: Z AND R−1
s FOR A

TWO-DEGENERATE-ORBITAL MODEL
ON A SQUARE LATTICE

In the main text, we mainly focus on an infinite-
dimensional Bethe lattice with semielliptical density of states
(DOS) in order to focus on generic features rather than mate-
rial specific ones. In realistic lattices such as a square lattice,
a van Hove singularity (vHS) can exist near the Fermi level.
This singularity features a divergence in the DOS [Fig. 7(d)],
largely affecting the strength of electron correlations by ef-
fectively suppressing low-energy hopping processes; see, e.g.,
Refs. [6,29,32,39] for related discussions. Thus, one may ask
whether this vHS has any effects on the signs of ∂Z/∂ p and
∂R−1

s /∂ p.
Figure 7 presents Z and R−1

s as a function of p for a
square lattice with nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping amplitudes, t = 0.25 and t ′ =
0.08, respectively. Namely, the kinetic part of our Hamil-
tonian for the square lattice reads HK = −t

∑
〈i j〉,σ d†

iσ d jσ −
t ′ ∑

〈〈i j〉〉,σ d†
iσ d jσ , where 〈i j〉 and 〈〈i j〉〉 denote, respectively,

the NN and NNN sites. Here, D = 1 and U = 2.5. The results
of the Bethe lattice are also plotted for comparison. While
the correlation strength itself is enhanced in the square lattice
rather than in the Bethe lattice due to the presence of the
vHS near the Fermi level, qualitatively the similar behavior
is observed for both Z and R−1

s : ∂Z/∂ p and ∂R−1
s /∂ p change

their signs from plus to minus by J/U or by p.

APPENDIX C: R−1
s FOR A Three-DEGENERATE-ORBITAL

MODEL ON A BETHE LATTICE

A three-degenerate-orbital model has served as a prototyp-
ical system for Hund metal physics [11,15]. Here, unlike the
cases of two-degenerate-orbital models, J lifts degeneracy of
the ground state atomic multiplets even when p = 0, whereby
J strongly enhances the correlation strength by forming a large
composite spin moment [9,11,15]. As can be clearly seen from
Fig. 8, the overall shape of R−1

s gradually changes from “V
shape” to a monotonic behavior as J increases.

At any rate, for the p > 0 side, ∂R−1
s /∂ p changes its

sign by J as is discussed for two-orbital models; see Fig. 8.
Note here that very low-T calculations are required to reach
the coherence temperature below which the long-lived quasi-
particles are formed in three-orbital models [15,48], which
is computationally demanding for our DMFT calculations
adopting a continuous-time quantum Monte Carlo algorithm.
Hence, Z may not be a good measure of the correlation
strength even for the lowest temperature practically accessible
within our computation scheme. We thus present only R−1

s in
Fig. 8.

APPENDIX D: KONDO COUPLINGS FROM THE
SCHRIEFFER-WOLFF TRANSFORMATION

Here, we derive Kondo couplings by applying the canon-
ical SW transformation to a relevant impurity model. We
follow the strategy depicted in Refs. [13,20,22].

Note first that the original lattice model is mapped onto an
auxiliary impurity model in DMFT. Let us thus write down
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FIG. 6. (a) Z and R−1
s as a function of p for a two-degenerate-orbital model on a Bethe lattice at three different values of U (U = 2, 3,

and 4). The electron filling n corresponds to n = 3 − p for all the cases. We used a higher simulation temperature for the calculation of R−1
s

(T = 0.02) than for Z (T = 0.005) so that 〈Sz(τ )Sz(0)〉|τ=1/(2T ) � 0. (b) The self-energy on the imaginary frequency axis Im	(iωn) obtained
from DMFT. Left: U = 4 and J/U = 0.1 at p = 0. Right: U = 3 and J/U = 0.25 at p = 0.3.

the impurity Hamiltonian with SU(2)spin ⊗ SU(M )orbital sym-
metry:

Himp = Hloc + Hbath + Hhyb, (D1)

where

Hloc = U
∑

η

nη↑nη↓ +
∑

η<η′,σσ ′
(U ′ − Jδσσ ′ )nησ nη′σ ′

+ J
∑
η �=η′

d†
η↑d†

η′↓dη↓dη′↑ +
∑
η,σ

(εη − μ)nησ , (D2)

Hbath =
∑
kησ

εkηψ
†
kησψkησ , (D3)

Hhyb =
∑
ησ

V ψ†
ησ dησ + H.c. (D4)

Here, ψ† (ψ) is the creation (destruction) operator for bath
states. U ′ = U − J . We will later get back to the form of
Eq. (1) which includes the pair-hopping term and U ′ = U −
2J for Hloc.

Our goal is, by integrating out valence fluctuations, to
construct an effective Kondo model for low-energy physics:

Heff = Hint + Hbath, (D5)

where Hint is given by the SW transformation:

Hint = − Pn0 Hhyb

{ ∑
i

Pn0+1
i

En0+1
i

+
∑

i

Pn0−1
i

En0−1
i

}
HhybPn0

= −
∑

i,{η},{σ }

V 2

En0+1
i

ψ†
η1σ1

ψη2σ2 Pn0 dη3σ3

× Pn0+1
i d†

η4σ4
Pn0δη1η3δη2η4δσ1σ3δσ2σ4

−
∑

i,{η},{σ }

V 2

En0−1
i

ψη1σ1ψ
†
η2σ2

Pn0 d†
η3σ3

Pn0−1
i dη4σ4

× Pn0δη1η3δη2η4δσ1σ3δσ2σ4 , (D6)

with Pn0 being the projector to the atomic ground state mul-
tiplet (with eigenvalue εn0 ) in charge N = n0 subspace of
Eq. (D2). Pn0±1

i project onto the atomic multiplets of Eq. (D2)
having eigenvalues of ε

n0±1
i in charge n0 ± 1 subspaces. The

subscript i is the index for labeling different multiplets.
En0±1

i ≡ ε
n0±1
i − εn0 refers to the charge excitation energy.
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FIG. 7. The density of states, Z vs p, and R−1
s vs p for (a)–(c) an infinite-dimensional Bethe lattice and (d)–(f) a two-dimensional square

lattice with NN and NNN hopping amplitudes, t = 0.25 and t ′ = 0.08, respectively, for two degenerate orbitals. D = 1, U = 2.5, and n =
3 − p for both lattices. The vertical dashed lines in (a) and (d) denote the Fermi level for p = 0. We used a higher simulation temperature for
the calculations of R−1

s (T = 0.02) than for Z (T = 0.005) so that 〈Sz(τ )Sz(0)〉|τ=1/(2T ) � 0.

Now, we use the following relation, which holds for
SU(M ) symmetry:

δilδk j = 1

M
δi jδkl + 1

2

∑
α

τα
i jτ

α
kl , (D7)

where τ is the generator of the SU(M ) symmetric group,
namely τα corresponds to Pauli matrices (σα) for M = 2, and
to Gell-Mann matrices for M = 3. We hereafter use the Ein-
stein summation convention for simplicity. Inserting Eq. (D7)
into Eq. (D6) for both spin and orbital leads to the following

form of Hint:

Hint = Jpψ
†
ησ ψησ + JsS

αψ†
ησ

(
σα

σσ ′

2

)
ψησ ′ + JoT αψ†

ησ

×
(

τα
ηη′

2

)
ψη′σ + JSOSαT βψ†

ησ

(
σα

σσ ′

2

τ
β

ηη′

2

)
ψη′σ ′ .

(D8)

Sα = d†
ησ (σα

σσ ′/2)dησ ′ and T β = d†
ησ (τβ

ηη′/2)dη′σ are the spin
and orbital operators for impurity degrees of freedom.
Jp, Js, Jo, and JSO are Kondo couplings for potential
scattering, spin, orbital, and spin-orbital terms, which are

FIG. 8. R−1
s as a function of hole doping p at T = 0.02 for a three-degenerate-orbital model on a Bethe lattice at (a) U = 3, (b) U = 3.5,

and (c) U = 4. n = 4 − p.
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TABLE I. Eigenstates and eigenvalues of Eq. (D2) with ε1 = ε2 = 0 obeying SU(2)spin ⊗ SU(2)orbital symmetry. The first entry in a ket of
an eigenstate is a state of orbital 1 and the second is of orbital 2.

Index Eigenstate N S Sz Eigenvalue

1 |0, 0〉 0 0 0 0
2 |0, ↑〉 1 1/2 1/2 −μ

3 |↑, 0〉 1 1/2 1/2 −μ

4 |0, ↓〉 1 1/2 −1/2 −μ

5 |↓, 0〉 1 1/2 −1/2 −μ

6 |↑, ↑〉 2 1 1 U − 2J − 2μ

7 (|↑, ↓〉 + |↓, ↑〉)/
√

2 2 1 0 U − 2J − 2μ

8 |↓, ↓〉 2 1 −1 U − 2J − 2μ

9 |↑↓, 0〉 2 0 0 U − 2μ

10 (|↑, ↓〉 − |↓, ↑〉)/
√

2 2 0 0 U − 2μ

11 |0, ↑↓〉 2 0 0 U − 2μ

12 |↑↓, ↑〉 3 1/2 1/2 3U − 3J − 3μ

13 |↑, ↑↓〉 3 1/2 1/2 3U − 3J − 3μ

14 |↑↓, ↓〉 3 1/2 −1/2 3U − 3J − 3μ

15 |↓, ↑↓〉 3 1/2 −1/2 3U − 3J − 3μ

16 |↑↓, ↑↓〉 4 0 0 6U − 6J − 4μ

given by

Jp〈φ0|IS ⊗ IT |φ0〉 = − V 2

2M

{
〈φ0|dησ Pn0+1

i d†
ησ |φ0〉

En0+1
i

− 〈φ0|d†
ησ Pn0−1

i dησ |φ0〉
En0−1

i

}
, (D9)

Js〈φ0|Sα ⊗ IT |φ0〉 = −V 2

M
σα

σσ ′

{
〈φ0|dησ ′Pn0+1

i d†
ησ |φ0〉

En0+1
i

− 〈φ0|d†
ησ Pn0−1

i dησ ′ |φ0〉
En0−1

i

}
, (D10)

Jo〈φ0|IS ⊗ T β |φ0〉 = −V 2

2
τ

β

ηη′

{
〈φ0|dη′σ Pn0+1

i d†
ησ |φ0〉

En0+1
i

− 〈φ0|d†
ησ Pn0−1

i dη′σ |φ0〉
En0−1

i

}
, (D11)

JSO〈φ0|Sα ⊗ T β |φ0〉 = −V 2σα
σσ ′τ

β

ηη′

{
〈φ0|dη′σ ′Pn0+1

i d†
ησ |φ0〉

En0+1
i

− 〈φ0|d†
ησ Pn0−1

i dη′σ ′ |φ0〉
En0−1

i

}
. (D12)

Here, |φ0〉 denotes the atomic ground state multiplet in the charge n subspace. Since the first term in Eq. (D8) is irrelevant for
dynamics of local moments [20,22], we discard Jp from our discussion.

While the discussion below is valid for any SU(2) ⊗ SU(M ) models, let us focus on the case of two orbitals (M = 2) with
n0 = 3. For generic SU(2) ⊗ SU(M ) cases, refer to Ref. [20]. Eigenstates and eigenvalues of Eq. (D2) are listed in Table I. We
have the freedom to choose |φ0〉, α, and β to evaluate Eqs. (D10)–(D12). Hence, for convenience, |φ0〉 = |↑,↑↓〉 and α = β = 3.
Kondo couplings are now given by

Js = V 2

2

(
2

En0+1
16

− 2

En0−1
6

+ 1

En0−1
7

+ 1

En0−1
10

+ 2

En0−1
11

)
= V 2

2

(
2

E |4,0〉
0

− 1

E |2,1〉
0

+ 3

E |2,0〉
0

)
, (D13)

Jo = V 2

2

(
2

En0+1
16

+ 2

En0−1
6

+ 1

En0−1
7

+ 1

En0−1
10

− 2

En0−1
11

)
= V 2

2

(
2

E |4,0〉
0

+ 3

E |2,1〉
0

− 1

E |2,0〉
0

)
, (D14)

JSO = 2V 2

(
2

En0+1
16

+ 2

En0−1
6

− 1

En0−1
7

− 1

En0−1
10

+ 2

En0−1
11

)
= 2V 2

(
2

E |4,0〉
0

+ 1

E |2,1〉
0

+ 1

E |2,0〉
0

)
, (D15)

where the subscript i of En0±1
i (≡ ε

n0±1
i − ε

n0
13) refers to the in-

dex of the eigenstate in Table I. In the second equalities of the
above equations, we rewrite terms using E |N,S〉

k , which denotes
the excitation energy from the ground state |3, 1/2〉 to the ex-
cited atomic multiplet |N, S〉. The subscript k (k ∈ {0, 1, . . .})

refers to the kth lowest eigenvalue in the corresponding |N, S〉
subspace. We henceforth restrict ourselves to a region where
E |N,S〉

k > 0 and p > 0.
We now consider responses of these couplings due to

changes in filling. To mimic the effect of a small increase in
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TABLE II. Eigenstates and eigenvalues of Eq. (1) with U ′ = U − 2J and ε1 = ε2 = 0. The first entry in a ket of an eigenstate is a state of
orbital 1 and the second is of orbital 2.

Index Eigenstate N S Sz Eigenvalue

1 |0, 0〉 0 0 0 0
2 |0, ↑〉 1 1/2 1/2 −μ

3 |↑, 0〉 1 1/2 1/2 −μ

4 |0, ↓〉 1 1/2 −1/2 −μ

5 |↓, 0〉 1 1/2 −1/2 −μ

6 |↑,↑〉 2 1 1 U − 3J − 2μ

7 (|↑, ↓〉 + |↓, ↑〉)/
√

2 2 1 0 U − 3J − 2μ

8 |↓,↓〉 2 1 −1 U − 3J − 2μ

9 (|↑, ↓〉 − |↓, ↑〉)/
√

2 2 0 0 U − J − 2μ

10 (|↑↓, 0〉 − |0, ↓↑〉)/
√

2 2 0 0 U − J − 2μ

11 (|↑↓, 0〉 + |0, ↓↑〉)/
√

2 2 0 0 U + J − 2μ

12 |↑↓, ↑〉 3 1/2 1/2 3U − 5J − 3μ

13 |↑, ↑↓〉 3 1/2 1/2 3U − 5J − 3μ

14 |↑↓, ↓〉 3 1/2 −1/2 3U − 5J − 3μ

15 |↓, ↑↓〉 3 1/2 −1/2 3U − 5J − 3μ

16 |↑↓,↑↓〉 4 0 0 6U − 10J − 4μ

p, let us consider a situation where μ is slightly decreased by
dμ (>0), i.e., μ → μ − dμ. The concomitant changes in Jis
are given by

−
(∂Js

∂μ

)
dμ

= V 2

2

{
− 2(

E |4,0〉
0

)2 − 1(
E |2,1〉

0

)2 + 3(
E |2,0〉

0

)2

}
dμ, (D16)

−
(∂Jo

∂μ

)
dμ

= V 2

2

{
− 2(

E |4,0〉
0

)2 + 3(
E |2,1〉

0

)2 − 1(
E |2,0〉

0

)2

}
dμ, (D17)

−
(∂JSO

∂μ

)
dμ

= 2V 2

{
− 2(

E |4,0〉
0

)2 + 1(
E |2,1〉

0

)2 + 1(
E |2,0〉

0

)2

}
dμ. (D18)

When J = 0, E |2,1〉
0 is equal to E |2,0〉

0 . Since E |4,0〉
0 is larger

than E |2,1〉
0 for the hole doped side, Eqs. (D16)–(D18) are

all positive, implying that all the Kondo coupling constants
evolve in a way to weaken the correlation strength. When
J > 0 and p > 0, on the other hand, E |2,1〉

0 is smaller than the
other E |N,S〉

i s. In this case, Eqs. (D16)–(D18) are controlled
mainly by the terms related to E |2,1〉

0 . Thus, we arrive at the
following relations for J > 0:

−
(∂Js

∂μ

)
dμ ≈ −1

2

V 2(
E |2,1〉

0

)2 dμ for spin, (D19)

−
(∂Jo

∂μ

)
dμ ≈ 3

2

V 2(
E |2,1〉

0

)2 dμ for orbital, (D20)

−
(∂JSO

∂μ

)
dμ ≈ 2

V 2(
E |2,1〉

0

)2 dμ for spin-orbital. (D21)

The above relations indicate that only Js decreases due to
Hund fluctuations as p is increased. In contrast, Jo increases
with p, favoring the screening of orbital degrees of freedom,
which is consistent with the enhanced spin-orbital separation
by p for a finite J in three-orbital models [22,23].

Having evidenced that the sign of −(∂Js/∂μ)dμ is influ-
enced by J , we now consider Eq. (1) with U ′ = U − 2J for
Hloc. In this case, only SU(2) symmetry of spin is retained.
Using eigenstates and eigenvalues listed in Tables II and III,
we get the following relations for Js:

Js = V 2

2

(
2

E |4,0〉
0

− 1

E |2,1〉
0

+ 2

E |2,0〉
0

+ 1

E |2,0〉
1

)
for � = 0,

(D22)

Js = V 2

2

(
2

E |4,0〉
0

− 1

E |2,1〉
0

+ 2J2

(a + b)2 + J2

1

E |2,0〉
0

+ 1

E |2,0〉
1

+ 2(a + b)2

(a + b)2 + J2

1

E |2,0〉
2

)
for � > 0, (D23)

where a ≡ −� and b ≡ √
J2 + �2. Applying the same pro-

cedure used for getting Eq. (D19) for J > 0 results in

−
(∂Js

∂μ

)
dμ ≈ −1

2

V 2(
E |2,1〉

0

)2 dμ for � = 0, (D24)

−
(∂Js

∂μ

)
dμ

≈ −1

2

V 2(
E |2,1〉

0

)2 dμ + 1{√
1 + (�/J )2 − �/J

}2 + 1

× V 2(
E |2,0〉

0

)2 dμ for � > 0. (D25)

Equation (D25) above is the same as Eq. (3).
Finally, we briefly discuss the case of M = 2 and n0 = 2

with Eq. (1) being Hloc. We set |φ0〉 = |↑,↑〉 and α = 3. Using

033134-10



FROZEN SPIN RATIO AND THE DETECTION OF HUND … PHYSICAL REVIEW RESEARCH 5, 033134 (2023)

TABLE III. Eigenstates and eigenvalues of Eq. (1) with U ′ = U − 2J , ε1 = �/2, and ε2 = −�/2. a ≡ −� and b ≡ √
J2 + �2. The first

entry in a ket of an eigenstate is the state of orbital 1 and the second is of orbital 2.

Index Eigenstate N S Sz Eigenvalue

1 |0, 0〉 0 0 0 0
2 |0,↑〉 1 1/2 1/2 −�/2 − μ

3 |↑, 0〉 1 1/2 1/2 �/2 − μ

4 |0,↓〉 1 1/2 −1/2 −�/2 − μ

5 |↓, 0〉 1 1/2 −1/2 �/2 − μ

6 |↑, ↑〉 2 1 1 U − 3J − 2μ

7 (|↑,↓〉 + |↓, ↑〉)/
√

2 2 1 0 U − 3J − 2μ

8 |↓, ↓〉 2 1 −1 U − 3J − 2μ

9 a+b√
(a+b)2+J2

|↑↓, 0〉 − J√
(a+b)2+J2

|0, ↓↑〉 2 0 0 U − √
J2 + �2 − 2μ

10 (|↑,↓〉 − |↓, ↑〉)/
√

2 2 0 0 U − J − 2μ

11 J√
(a+b)2+J2

|↑↓, 0〉 + a+b√
(a+b)2+J2

|0, ↓↑〉 2 0 0 U + √
J2 + �2 − 2μ

12 |↑↓, ↑〉 3 1/2 1/2 3U − 5J + �/2 − 3μ

13 |↑,↑↓〉 3 1/2 1/2 3U − 5J − �/2 − 3μ

14 |↑↓, ↓〉 3 1/2 −1/2 3U − 5J + �/2 − 3μ

15 |↓,↑↓〉 3 1/2 −1/2 3U − 5J − �/2 − 3μ

16 |↑↓, ↑↓〉 4 0 0 6U − 10J − 4μ

eigenstates and eigenvalues listed in Tables II and III, we
arrive at

Js = V 2

(
1

E |3,1/2〉
0

+ 1

E |1,1/2〉
0

)
for � = 0, (D26)

Js = V 2

2

(
1

E |3,1/2〉
0

+ 1

E |3,1/2〉
1

+ 1

E |1,1/2〉
0

+ 1

E |1,1/2〉
1

)
for � > 0, (D27)

where E |N,S〉
k (k ∈ {0, 1, . . .}) in this case denotes the excita-

tion energy from |2, 1〉 to the excited atomic multiplet |N, S〉.
The change of Js under μ → μ − dμ is given by

−
(∂Js

∂μ

)
dμ = V 2

{
1(

E |1,1/2〉
0

)2 − 1(
E |3,1/2〉

0

)2

}
dμ for �= 0,

(D28)

−
(∂Js

∂μ

)
dμ =V 2

{
1(

E |1,1/2〉
0

)2 + 1(
E |1,1/2〉

1

)2 − 1(
E |3,1/2〉

0

)2

− 1(
E |3,1/2〉

1

)2

}
dμ for � > 0. (D29)

As E |1,1/2〉
k < E |3,1/2〉

k for p > 0, Eqs. (D28) and (D29) are
always positive. Note that −(∂Js/∂μ)dμ � 0 irrespective of
J and � for p � 0, which is in sharp contrast to the case of
n0 = 3.

APPENDIX E: Js AND R−1
s AS A FUNCTION OF p FOR

TWO-ORBITAL MODELS ON A BETHE LATTICE

Figure 9 displays Js and R−1
s as a function of p for two-

orbital models on a Bethe lattice with � � 0. Although Js

is a bare Kondo coupling which will be scaled via renormal-

ization group flow, the behavior of Js as a function of p is
qualitatively consistent with that of R−1

s .

APPENDIX F: ∂R−1
s /∂p AND ITS RELATION TO Js FOR

THE CASES OF p < 0 AND p = 1 − ε

Our criterion based on the sign of ∂R−1
s /∂ p cannot distin-

guish Mott and Hund correlations for the negative p (p < 0)
and very large p of p = 1 − ε (ε is an arbitrarily small positive
number) by which the system is close to half filling. To un-
derstand these cases, let us focus on a two-degenerate-orbital
model with U ′ = U − 2J in Eq. (D2).

1. The case of p < 0

This case is exactly the same as the “electron doping” x
(x > 0) to a system of n = M + 1 = 3 electron filling. For this
filling, Kondo coupling for the spin degree of freedom, Js, is
given by Eq. (D13). We now consider response of Js due to
electron doping x. To mimic the effect of a small increase in x,
let us consider a situation where μ is slightly increased by dμ

(dμ > 0), i.e., μ → μ + dμ. As a consequence, Js → Js +
(∂Js/∂μ)dμ. Thus, the concomitant change in Js is given by

(
∂Js

∂μ

)
dμ = V 2

2

{
2(

E |4,0〉
0

)2 + 1(
E |2,1〉

0

)2 − 3(
E |2,0〉

0

)2

}
dμ.

(F1)

When J = 0, E |2,1〉
0 is equal to E |2,0〉

0 . Furthermore, since
E |4,0〉

0 is smaller than E |2,1〉
0 for the electron doped side,

Eq. (F1) is positive. This means that Kondo screening for
spin becomes more effective by electron doping, and thereby
correlation strength is reduced. Thus, ∂R−1

s /∂x < 0. This con-
clusion is actually consistent with our physical intuition that
Mott physics is weakened by doping an integer-filled system.
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FIG. 9. Js (multiplied by D/V 2) and R−1
s as a function of p for generic two-orbital models on a Bethe lattice at three different values of

�: � = 0 (leftmost), 0.5 (middle), and 0.8 (rightmost). U = 2.5 and n = 3 − p for all the cases. We used E |N,S〉
k s obtained from the DMFT

solutions for the evaluation of Js.

When J is large, E |2,1〉
0 is much smaller than E |2,0〉

0 . This
observation leads us to the following expression:(

∂Js

∂μ

)
dμ � V 2

2

{
2(

E |4,0〉
0

)2 + 1(
E |2,1〉

0

)2

}
dμ. (F2)

As in the case of J = 0, Js also increases by electron doping.
Thus, we expect ∂R−1

s /∂x < 0 even for the case of large J .
To conclude our discussion on the case of p < 0, we can

confirm from the analysis of Js that spin screening becomes
more effective upon doping no matter how large J is. Phys-
ically, this is because the case of p < 0 (or, equivalently,
electron filling of n = M + 1 = 3 + p) is the doping by which
the “Hund fluctuations” (ferromagnetic charge fluctuations
between the dominant atomic multiplets and higher-spin ones
in a neighboring charge subspace, i.e., the term containing
E |2,1〉

0 ) are weakened. Thus, our criterion based on the sign
of ∂R−1

s /∂ p is not applicable to this case.

2. The case of p = 1 − ε (ε is an arbitrarily
small positive number)

This case is exactly the same as the “electron doping”
x (x > 0) to a system of n = M = 2 electron filling (half

filling). Kondo coupling for spin is given by Eq. (D26). To
mimic the effect of a small increase in x, let us consider a
situation where μ is slightly increased by dμ (dμ > 0), i.e.,
μ → μ + dμ. As a consequence, Js → Js + (∂Js/∂μ)dμ.
Thus, the concomitant change in Js is given by

(
∂Js

∂μ

)
dμ = V 2

{
1(

E |3,1/2〉
0

)2 − 1(
E |1,1/2〉

0

)2

}
dμ. (F3)

Since E |3,1/2〉
0 < E |1,1/2〉

0 on the electron doped side, Eq. (F3)
is always positive irrespective of J . This is because the role of
doping in this case is to reduce the weight of the high-spin
multiplet, namely |2, 1〉, which is responsible for realizing
Hund metal physics. Our criterion measures how large the
effect of the high-spin “half-filled” multiplet (i.e., |2, 1〉 for
M = 2) is on the low-energy physics while the system is far
away from half filling. Since |2, 1〉 already dominates the
atomic states, it is not surprising at all that our proposal is
inapplicable to this case.
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