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Topological phases have been reported on self-similar structures in the presence of a perpendicular magnetic
field. Here, we present an understanding of these phases from a perspective of spectral flow and charge
pumping. We study the Harper-Hofstadter model on self-similar structures constructed from the Sierpinski
gasket. We numerically investigate the spectral flow and the associated charge pumping when a flux tube is
inserted through the structure and the flux through the tube is varied adiabatically. We find that the nature of
the spectral flow is qualitatively different from that of translationally invariant noninteracting systems with
a perpendicular magnetic field. We show that the instantaneous eigenspectra can be used to understand the
quantization of the charge pumped over a cycle, and hence to understand the topological character of the system.
We show the correspondence between the local contributions to the Hall conductivity and the spectral flow of
the edgelike states. We also show that the edgelike states can be approximated by eigenstates of the discrete
angular-momentum operator, their chiral nature being a consequence of this.
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I. INTRODUCTION

The study of topologically nontrivial phases is an important
research area in condensed matter physics. In the context of
noninteracting systems, these phases are well understood and
classified in the presence of translational symmetry [1–9].
Also, in the absence of translational symmetry, topologically
nontrivial phases have been reported in amorphous solids and
quasicrystalline systems which retain the notion of a well-
defined bulk and edge [10–12]. These phases are identified
by the presence of their signature robust edge states and are
characterized by respective topological invariants.

In recent years, the study of topologically nontrivial phases
in systems which lack the notion of a well-defined bulk and
edge, has gained interest. Self-similar structures like finite
truncations of the Sierpinski carpet and the Sierpinski gasket
have been studied in the presence of a uniform perpendic-
ular magnetic field [13–16]. Also, generalized two-orbital
Bernevig-Hughes-Zhang models have been studied on such
structures [17,18]. Several nontrivial phases have been re-
ported in such systems. These phases seem to be identified
with the presence of gapless edgelike states which are chiral
in nature and are localized around each of the intrinsic holes
present in these structures. Also, the Hall conductivity in such
phases is shown to be quantized and robust to small disorders.

Although, topological phase diagrams of some well-known
models on self-similar structures are present in the literature,
only a limited microscopic understanding of such phases is
available at present. For example, in the case of self-similar
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structures, understanding of these topologically nontrivial
phases in terms of winding of the eigenstates over some
manifold, analogous to the winding of the Bloch states in the
k space for translationally invariant noninteracting systems,
is not present at the moment. Given the lack of an eigen-
state winding perspective for self-similar structures, we use
the perspective of adiabatic charge pumping in this paper to
understand the emergence of topology in self-similar systems
and the quantization of real-space indices. Adiabatic pumping
in translationally invariant noninteracting systems has been
thoroughly studied. These systems form multiple magnetic
bands (or Landau levels in the continuum case) when sub-
jected to a perpendicular magnetic field. When additional flux
is threaded through the system using a thin long solenoid,
some states flow across the band gap from one band to another.
The Chern number can be expressed as the number of such
states flowing across the band gap. However, it is presently
unclear if it is possible to directly translate these ideas and
results over to the case of self-similar systems.

From our study, we find that the nature of the spectral flow
is qualitatively different from that of translationally invariant
noninteracting systems with perpendicular magnetic field. In
this case, the spectral flow happens throughout the eigen-
spectra as opposed to the case with translationally invariant
systems where spectral flow is observed across the band gap.
We find that the position of the flux tube plays an important
role in determining the states undergoing spectral flow. We
show that the charge pumped is quantized in the adiabatic
limit, irrespective of the position of the flux tube. We show
that the instantaneous eigenspectra can be used to understand
the quantization of the charge pumped over a cycle, mak-
ing it a diagnostic tool to study the topological character of
self-similar systems. We also explicitly calculate the local
Hall conductivity of the system. We show the correspondence
between the local contributions to the Hall conductivity and
the spectral flow of the edgelike states. We also show that
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FIG. 1. (a) SG-3 with g = 7 and (b) SG-4 with g = 7. For the
calculation of the real-space Chern number using Eq. (3), we choose
a subsection of the system and divide it into three partitions. The
partitions are shown with red, green, and blue and the projectors onto
these partitions are labeled A, B, and C, respectively.

the edgelike states can be isolated from its degenerate group
of states by tuning the flux through the flux tube and find
that they can be approximated by eigenstates of the discrete
angular-momentum operator, their chiral nature being a con-
sequence of this.

This paper is organized in the following way. In Sec. II, we
define the system by defining the model and the self-similar
structures which are studied in this paper. In Sec. III, we de-
scribe the adiabatic charge pumping in the system by showing
the instantaneous eigenspectra and by describing the quanti-
zation of the associated charge pumping. In Sec. V, we study
the properties of individual edgelike states. In Sec. IV, we
calculate the Hall conductivity, show its local contributions,
and show its topological character by showing its quantization
and robustness to disorder. Finally, we present a summary and
discuss the outlook of this paper in Sec. VI.

II. THE SETUP

We aim to study noninteracting spinless fermions on self-
similar structures in the presence of a uniform magnetic field.
The structures we consider are embedded in two dimensions
and the magnetic field is perpendicular to the embedding
surface. In this paper, we consider two different discretizations
of the Sierpinski gasket (SG), namely, SG-3 and SG-4. These
structures are constructed by discretizing the recursive genera-
tion scheme of the SG. Finite truncations of such structures are
said to be of generation g if the recursion scheme is truncated
after the gth iteration. The detailed construction of these struc-
tures is mentioned in Ref. [18]. Examples of finite generation
of SG-3 and SG-4 are shown in Fig. 1. We choose to primarily
look at these two structures because of the relatively slow
growth in the system size N as a function of the generation g.
For example, N = 3g for SG-3 and N = (3g + 3)/2 for SG-4,
whereas N = 8g for a self-similar structure constructed from
the Sierpinski carpet. This makes it comparatively easier to
numerically access higher generations and reach closer to the
limiting fractional dimension for SG-3 and SG-4.

The Hamiltonian for the system is the Harper-Hofstadter
Hamiltonian given by

H = −
∑
< jk>

e−iθ jk c†
j ck + H.c., (1)

FIG. 2. Density of states and the real-space Chern number for
(a) SG-3, N = 36 and, (b) SG-4, N = (37 + 3)/2. The density of
states, ρE , is computed using Eq. (2) with ε = 10−3 and the Chern
number is computed using Eq. (3).

where j, k are the labels for the sites positioned at �r j and �rk ,

<> denotes the nearest neighbors, and θ jk = (1/φ0)
∫ �r j

�r j
A ·

dl denotes the Peierls phase with the flux quantum φ0 =
h/e. Here, A is the associated magnetic vector potential.
For all the numerics, we have used the Landau gauge, A =
(0, Bx, 0). We have parametrized the magnetic strength by
B = 2πφ/(

√
3a2/4), where a is the distance between nearest-

neighbor sites and 2πφ is the flux piercing through the
smallest triangles of the structures. We have used the KWANT
package to numerically generate the system and plot single-
particle wave functions [19].

To study the spectrum, we look at the normalized density
of states ρE , which is given by

ρE (E ) =
∑

n

1

N
δ(E − En)

=
∑

n

1

Nπ
lim
ε→0

ε

(E − En)2 + ε2
, (2)

where N is the total number of eigenstates and n denotes
the index of each eigenstate. We also calculate the real-space
Chern number for different fillings using Kitaev’s prescription
given by

C(P) = 12π i(Tr(APBPCP) − Tr(APCPBP)), (3)

where A,B,C are the projections onto the three partitions
shown in Fig. 1 and P = ∑

n∈occ |n〉〈n| is the projector onto
the set of occupied eigenstates. The normalized density of
states and the Chern numbers as a function of the magnetic
field are shown in Fig. 2. It is immediately clear from Fig. 2
that most of the spectrum has a very low ρE . This is sig-
nificantly different from the Hofstadter butterfly on lattices
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with open boundary conditions which have well-defined bulk
regions (high ρE ) and edge regions (low ρE ) in the spectrum.
Moreover, for both SG-3 and SG-4, almost the entire region
with low ρE is characterized by C = ±1 and all states in these
regions are edgelike states. A few examples of such edgelike
states can be found in Refs. [13,17,18].

III. ADIABATIC CHARGE PUMPING

We insert an infinitely long, thin solenoid through a given
point (x0, y0). The flux, 2πϕ, through the solenoid is then var-
ied adiabatically from 0 to 2π . We are interested in studying
the response of the system to the change in flux. To study
that, it is important to study the many-body ground state
of the system. Since the flux is pumped adiabatically and
the Hamiltonian is noninteracting in nature, the many-body
ground state of the system at a given instant is the Slater
determinant of the occupied single-particle eigenstates of the
instantaneous Hamiltonian, H (ϕ), with a dynamical and a
geometric phase factor. So, we first take a look at the single-
particle eigenstates and eigenvalues of H (ϕ). For the rest of
the numerics in the text, given a state |ψ〉 = ∑

j ψ j |r j〉, the
localization is shown by computing the normalized on-site
density, ρ j = |ψ j |2/max(|ψ j |2).

A. Instantaneous spectrum and spectral flow

The form of the Hamiltonian H (ϕ) is the same as in Eq. (1),
except that an additional Peierls phase, θ̃ jk = (e/h)

∫ �rk

�r j
Aϕ · dl,

gets added to each bond due to the flux tube. Here Aϕ is the
vector potential due to the flux tube, and for the numerical
computations, it is taken to be Aϕ = (0, ϕ/r, 0) in cylindrical
coordinates. The spectrum of H (ϕ) at ϕ = 0 and ϕ = φ0 are
identical as the Hamiltonian returns to itself, up to a gauge
transformation. In fact, the spectrum is periodic in ϕ with a
period of φ0. But for ϕ �= nφ0, n ∈ Z , the spectrum of the
Hamiltonian changes, in general, resulting in the flow of the
energy of individual eigenstates. We track the flow of the en-
ergies of the eigenstates as a function of ϕ. We say that a given
state has undergone a spectral flow if the state does not return
back to the same initial energy as ϕ is changed from 0 to φ0.

Figure 3 shows the spectral flow of the Harper-Hofstadter
model on SG-3. We would like to highlight the fact that the
spectral flow here is qualitatively different from that of the
Harper-Hofstadter model on a two-dimensional lattice. In the
case of a two-dimensional lattice, spectral flow is observed
across the band gap. The states in the bulk undergoing spectral
flow move in energy (up or down depending on the Chern
number), from one band to the next band, across the gap. The
edge states, which lie entirely in the gap, undergo spectral flow
in the opposite direction to that of the bulk states [shown in
Fig. 4(a)]. In contrast, in the case of SG-3, spectral flow is
observed almost throughout the entire spectrum (in the low
ρE regions). Here, the states undergoing spectral flow go from
one group of degenerate states with low degeneracy in the low
ρE region to another, as opposed to one band to another or one
high ρE region to another. This qualitative difference in the
spectral flow is also observed for other self-similar structures
as shown in Fig. 4.

FIG. 3. Spectral flow for SG-3, N = 37 with φ/φ0 = 0.3. (a) The
flow of the eigenstates as a function of ϕ/φ0 for a part of the
spectrum. (b) Zoomed-in version of the spectral flow highlighting
the nature of the flow. (c) The localization of different edgelike states
corresponding to different spectral flows (computed at ϕ/φ0 = 0.2).
The colored dots in (b) represent the points at which the states in (c),
marked with corresponding colors, were computed. The position of
the flux tube is marked by a red crosshair on the plots in (c).

The states in the low ρE regions of the spectrum can be
qualitatively grouped into four groups [Fig. 3(b)]: (I) the
states which flow up in energy (positive spectral flow),
(II) states which flow down in energy (negative spectral flow),
(III) states with almost no change in energy, but are degenerate
at ϕ = 0 with states undergoing spectral flow, and (IV) states
with almost no change in energy and are not degenerate at
ϕ = 0 with states undergoing spectral flow. We find that the
states in group I are edgelike states localized on the sites
forming a loop which encloses the flux tube. The states in
group II are edgelike states localized on the outermost triangle
on SG-3. The states in groups III and IV, which do not undergo
a spectral flow, are also edgelike states but they are localized
on sites forming loops which do not enclose the flux tube. We
find that the real-space localization is more or less the same
for all states belonging to a given group, for low values of
ϕ and sufficiently away form the point of avoided crossings.
This means that the states retain their edgelike localization
away from the avoided crossings during the spectral flow.
The representative real-space localization of the states in the
above-mentioned groups, for a given position of the flux tube,
are shown in Fig. 3(c) for these four groups. Close to the
avoided crossings, the hybridization between the states be-
longing to different groups increases as they come closer in
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FIG. 4. Comparison of the spectral flow of the Harper-Hofstadter
model in self-similar structures to that in a square lattice. In each
column, the top panel shows the position of the flux tube with
respect to the structure under consideration, and the bottom panel
shows the corresponding spectral flow. (a) The spectral flow in a a
29×29 square lattice with open boundary conditions (N = 841 sites).
(b), (c) The spectral flow in two other self-similar structures, not
originating from the Sierpinski gasket, with Hausdorff dimensions
ln(7)/ln(3) (N = 74 sites) and ln(8)/ln(3) (N = 84 sites), respec-
tively. For the square lattice, the spectral flow is observed across
the band gap. In contrast, in self-similar structures, there is no
well-defined notion of bands and associated gaps. The nature of
the spectral flow for these structures is similar to that of the SG-3
(Fig. 3); all eigenstates in the low ρE region of the spectra enclosing
the flux tube undergo spectral flow.

energy. This results in deviation in the real-space localization
of these states from what is shown in Fig. 3(c).

The extent of hybridization is also dependent on the lo-
calization of the states; states localized nearby in real space
hybridize strongly in the absence of any symmetry. Here,
the states belonging to different groups are edgelike states,
localized on sites immediately enclosing triangles of differ-
ent generations. Hence, away from the avoided crossings,
the extent of hybridization is not significant. This has been
checked by fidelity computations, shown in the Fig. 5. Fidelity
is defined as Fn,m = 〈ψn(ϕ)|ψm(ϕ − δϕ)〉, where |ψn(ϕ)〉 and
|ψm(ϕ)〉 are instantaneous eigenstates of the Hamiltonian
(H (ϕ)|ψn(ϕ)〉 = En(ϕ)|ψn(ϕ)〉), labeled by labels n, m such
that n > m ⇒ En � Em. A high value of Fn,m ≈ 1 means
that the state |ψm(ϕ − δϕ)〉 flows to |ψn(ϕ)〉 without sig-
nificant hybridization when the flux ϕ is changed by an
amount δϕ.

Why certain states undergo spectral flow and certain states
do not can be understood from their localization. For states
belonging to groups I and II, the states are always localized on
a closed loop enclosing the flux tube. Hence, they are sensitive
to flux (Aharonov-Bohm effect) and undergo spectral flow. On

FIG. 5. Fidelity computations for avoided crossings. Fidelity is
defined here as Fn,m = 〈ψn(ϕ)|ψm(ϕ − δϕ)〉. For the numerics, we
have chosen δϕ = 0.01φ0 and N = 37. (a) Part of the instantaneous
spectrum when the flux tube is placed inside one of the triangles
of the second generation [shown in Fig. 3(c)]. The flow of two
particular states, one of them being primarily localized on the sites
immediately enclosing the triangle of the second generation and the
other being localized on the sites of the outermost triangle of the SG,
are marked in blue and green. (b), (c) The fidelity of these two states
as a function of ϕ. Large dips in Fn,n and a correspondingly large
peak in Fn,n−1 (Fn,n+1) are seen when the highlighted states come
close in energy with another state localized on far-off sites. These
indicate that the state |ψn〉 has flowed to |ψn−1〉 (|ψn+1〉) without
any significant hybridization. On the other hand, shallow dips in Fn,n

and a correspondingly small peak in Fn,n−1 (Fn,n+1) are seen when
the highlighted states come close in energy to a state localized on
sites relatively close to the highlighted states. These indicate avoided
crossings with significant hybridization.

the other hand, the states which belong to groups III and IV are
localized on loops which do not enclose the flux tube. Hence,
the vector potential of the flux tube can be effectively gauged
out, resulting in these states being insensitive to the flux. As
a result, they do not show spectral flow. This becomes further
clear from Fig. 6 where we show the change in the spectral
flow by changing the position of the flux. Clearly, a state
localized on a given loop only undergoes spectral flow when
the flux tube is enclosed within the loop. Also, for a bunch
of degenerate edgelike states localized on different loops, the
flux tube breaks the degeneracy if enclosed by one of the
loops, resulting in spectral flow of only the state enclosing
the flux tube (Fig. 8).

There are a few other states in the spectra which we have
not discussed in detail in this paper. These states belong to
the very few high ρE regions in the spectra. In terms of
localization, they are predominantly bulklike in nature. Also,
they do not show a clear spectral flow, owing to the high ρE

around them.
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FIG. 6. Change in the spectral flow due to the change in the
position of the flux tube for SG-3 (N = 36, φ/φ0 = 0.3). (a)–(c) A
portion of the spectral flow for three different positions of the flux
tube. The position of the flux tube is marked by a red crosshair
in the SG-3 diagrams at the top of the respective columns. A few
typical states which are localized on sites enclosing holes of differ-
ent generations are chosen and their spectral flows are highlighted
with different colors. (d) The localization of these typical states
(ϕ/φ0 = 0.2). To mark the correspondence, we have put circles of
respective colors on the top-left corner of each of the localization
plots. The black dashed line shows the position of the Fermi energy,
EF = 0.03. The figure shows that only the edgelike states enclosing
the flux tube undergo spectral flow.

B. Charge transport from the instantaneous spectrum

Let us consider a case where we have filled our system to
a certain Fermi energy, EF (dashed black line in Fig. 6). At
ϕ = nφ0 : n ∈ Z , let us denote the set of states with positive
spectral flow (group I in Sec. III A) as {|ψ p

m〉} with energies
{Em}, and the set of states with negative spectral flow (group II
in Sec. III A) as {|ψn

m′ 〉} with energies {Em′ }. Here, m, m′ are
the labels for the eigenstates localized on sites immediately
enclosing a single triangle of a given generation of SG-3, such
that their energies are ordered increasingly (Em < Em+1 for all
m). Now, let us assume EF is such that Em < EF < Em+1 and
Em′−1 < EF < Em′ for some m, m′.

When we vary the flux adiabatically by a unit through the
flux tube, the Hamiltonian returns back to itself (up to a gauge
transformation), but the states undergoing spectral flow do not
return back to themselves. In the beginning of the pumping cy-
cle, ψ p

m, ψn
m′−1 were occupied and ψ p

m+1, ψn
m′ were empty.

During the pumping cycle, the filled state ψ p
m gets pushed up

in energy across EF and flows to ψ p
m+1, and the empty state

ψn
m′ flows down in energy across the EF to ψn

m′−1. As a result

of this spectral flow, at the end of the pumping cycle, ψ p
m+1

is filled and ψn
m′−1 is empty. This spectral flow is observed

for all m, m′ such that Em and Em′ are away from the gaps
(regions with zero ρE ) in the energy spectrum at ϕ = 0. And
as long as EF is away from these gaps, exactly one state with
positive spectral flow and one state with negative spectral flow
cross the Fermi energy during the pumping cycle. Now, as
pointed out earlier in the previous subsection, ψn

m′∀m′ are
localized on the sites on the outermost triangle and ψ p

m∀m
are localized on the closest sites enclosing the flux tube. So,
when a unit flux is pumped, a single state localized on the
outermost sites of SG-3 is emptied and a single state localized
near the flux tube gets filled, effectively pumping a unit charge
radially from the outermost loop to the loop closest to the flux
tube. The mathematical details corresponding to the above
arguments can be found in Appendix A.

We want to highlight the local nature of the radial charge
transport happening in this case. From the instantaneous spec-
trum Figs. 6(a)–6(c), it is clear that edgelike states, localized
on sites immediately enclosing different triangles of SG-3,
undergo spectral flow and cross the Fermi energy as the
position of the flux tube is changed. As described in the
previous paragraph, only these states which flow across the
Fermi energy contribute to the radial charge transport as a
result of adiabatic pumping. So, given the position of the flux
tube and the Fermi energy, it is possible to exactly determine
which edgelike states are contributing to the transport. Also,
the position of the flux tube can be used as a tuning parameter
to selectively pump particles from sites immediately enclosing
a particular triangle to the outermost triangle. In Sec. IV, we
also compute the local Hall conductivity in a slightly different
setting, which also reveals the local nature of the transverse
charge transport in greater detail.

IV. LOCAL HALL CONDUCTIVITY AND ITS
ROBUSTNESS TO DISORDER

In this section, we study local contributions to the Hall
conductivity, following the approach of Ref. [20]. Specif-
ically, we look at the Hall response of the system when
the system is subjected to a step-function electric poten-
tial. To do this, we consider a horizontal cross section at
some y = y0 and raise the potential of the system be-
low this cross section by −V0. Such a potential can be
treated in a time-dependent gauge, A(t) = (0,−A(t )δ(y −
y0), 0), where A(t ) = V0t . The time-dependent Hamiltonian
then becomes H (t ) = eiA(t )ϑ (y0 )He−iA(t )ϑ (y0 ), where ϑ (y0) =∑

j θ (y j − y0)|r j〉〈r j |. Now, working in the adiabatic limit,
we look at the transverse current across a vertical cross sec-
tion at some x = x0. For a noninteracting finite system in
the above-mentioned setting, it has been shown that the site-
resolved Hall-conductivity, σxy(r), can be expressed as a local
Chern marker in the adiabatic limit [20]. We highlight here the
main ideas leading to this result in the context of our system.
The details of the calculation can be found in Ref. [20] and
references therein.

Given that we are interested in the adiabatic limit, we
use the adiabatic Hamiltonian, K (t ) = i[ṖI , PI ], to gen-
erate the time evolution. Here, PI is the instantaneous
projection operator onto the occupied states defined as
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PI = ∑
En<EF

|n(t )〉〈n(t )|, where H (t )|n(t )〉 = En|n(t )〉. With
the adiabatic Hamiltonian, the instantaneous projection oper-
ator satisfies the von Neumann equation:

∂t PI (t ) = −i[K, PI ]. (4)

Given the form of H (t ), it is clear that PI =
eiV0tϑ (y0 )Pe−iV0tϑ (y0 ), and hence K (t ) = Ȧ(Pϑ (y0)Q +
Qϑ (y0)P), where P = PI (t = 0) and Q = 1 − P. The
adiabatic transverse current operator, Jx(t ), can be obtained
from the rate of change of the number of particles present in
one side of the vertical cross section using the instantaneous
von Neumann equation as Jx(t ) = i[K (t ), ϑ (x0)], where
ϑ (x0) = ∑

j θ (x j − x0)|r j〉〈r j |. The site-resolved current
operator can be defined as

JA
x (r j, t ) = 1

2

{
δ j, JA

x (t )
}
, (5)

where δ j = |r j〉〈r j |. So, the site-resolved adiabatic current,
〈JA

x (r j, t )〉 = Trr j (PI JA
x (r j, t )), is then given by〈

JA
x (r j, t )

〉 = iȦTrr j (Pϑ (x0)Qϑ (y0)P) + H.c. (6)

Now, identifying Ȧ = −E , we get the expression for Hall
conductivity, σxy = 〈JA

x (r j, t )〉/E , as

σxy(r j ) = 2ImTrr j (Pϑ (x0)Qϑ (y0)P). (7)

The local Chern marker is then defined as C(r j ) =
2πσxy(r j ). This has been referred to as the crosshair marker
in Ref. [20] due to the fact that the horizontal line at y = y0

and x = x0 appear as a crosshair. An important thing to note
here is that the local Chern marker defined above is not unique
for a given system as the way to define the site-resolved
adiabatic current is not unique. The definition given in Eq. (5)
is one simple way to define such a local quantity. Instead, the
quantity which is physically relevant is the sum of the local
Chern marker over some given region. This is because the sum
of the local Chern marker over a region can be expressed as
the Hall conductivity which is derived from the total current
leaking from that given region. The current leaking from that
given region is defined as the rate of change of particles over
the region and does not have ambiguity in its definition as
opposed to the site-resolved adiabatic current.

Figures 7(a)–7(d) show the adiabatic site-resolved Hall
conductivity calculated for our system. For the purpose of
comparing to the charge-pumping picture, we have kept the
same Fermi energy for these computations as that for the
charge pumping computations. We find that there are two
significant local contributions to σxy, one positive and one
negative, as

∑
j σxy(r j ) = 0 due to the conservation of the

particle number over the entire system. Fixing the cross sec-
tion (y = y0) across which the potential difference is applied,
when we change the cross section (x = x0) across which the
transverse current is calculated, we find numerically that the
positive contributions to σxy come only from the sites close to
the position of the crosshair. More specifically, we find that,
given a position of the crosshair, the positive contributions to
σxy come only from the sites which enclose the crosshair as
long as the crosshair is not inside one of the smallest triangles
of the structure. The negative contribution comes solely from
the sites on the outermost triangle of SG-3. What this suggests
is that, as long as we are away from the smallest possible trian-

FIG. 7. (a)–(d) Site-resolved Hall conductivity, σxy, for the
Harper-Hofstadter model on SG-3 with N = 37 for EF = 0.03. The
dashed horizontal line represents the cross section across which the
potential difference is applied. The dashed vertical line represents
the cross section across which the current has been calculated. The
sum over local Hall conductivity, C = ∑

r∈P 2πσxy(r), where P
denotes the set of sites which immediately enclose the crosshair, are
mentioned on the plots up to four decimal places. (e) Variation of the
local sum of Hall conductivity, C, as a function of disorder strength
W for different positions R of the crosshair as in (a)–(d), calculated
for the Harper-Hofstadter model with on-site Anderson disorder on
SG-3 with N = 37 for EF = 0.03. Averaging has been done with
Nw = 200 disorder realizations. The error bars on the plot show the
statistical standard deviation of C over the disorder realizations.

gles of the structure, the contribution to the transverse current
comes primarily from the sites which immediately enclose the
crosshair or, in other terms, from the edgelike states which
are localized on the sites enclosing the triangle containing
the crosshair. This shows the correspondence between the
local contribution to the Hall conductivity and the local nature
of the transverse charge transport in this system mentioned in
Sec. III B.

The local Chern marker essentially serves as a local de-
construction of Kitaev’s real-space Chern number given in
Eq. (3). The major contribution to Kitaev’s real-space Chern
number comes from the region where the three partitions
touch each other [21]. Away from the triple contact point, the
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contribution to Kitaev’s real-space Chern number decreases
exponentially and hence is insensitive to the exterior of the
union of the three partitions for large enough partitions. As a
result, Kitaev’s real-space Chern number can be expressed as
C(P) = 2π iTr([Pϑ (x0)P, Pϑ (y0)P]) when x0, y0 are chosen
as the coordinates of the triple contact point, as mentioned
in Eq. (128) of Ref. [21]. This is also the expression for
the Hall conductivity as shown in Ref. [22]. However, this
is nothing but the negative of the sum of the local Chern
marker over the sites present in a large enough region around
the triple contact point. Given that Kitaev’s real space Chern
number is expressed as a trace over sites of a region, it does
not provide information about the local nature of the Hall
transport. Hence, it does not tell us which single-particle states
would undergo spectral flow. However, the information about
the local nature of the Hall transport is captured by the local
Chern marker, revealing the correspondence between the local
contribution to the Hall conductivity and the local nature of
the spectral flow as mentioned in the previous paragraph.

To see the quantized nature of the charge transport, we
look at the sum of the local Chern marker over the sites in
the proximity of the crosshair. More specifically, we look at

C =
∑
r j∈P

2πσxy(r j ), (8)

where P denotes the set of sites which immediately enclose
the smallest triangle containing the crosshair. We consider
this quantity as it is physically relevant and tells about the
net charge leaking from the region containing the sites in P .
This can be expressed as the change in the projector over the
occupied states, traced over the given region when the Hamil-
tonian is taken in a cycle [20–22]. Hence, this quantity would
be quantized if the change in the projector has support only in
the region we trace over. In this system, we find that the value
of C is closely quantized to 1, as mentioned in the plots in
Figs. 7(a)–7(d), suggesting again that significant contribution
to the radial current comes from the edgelike states localized
on sites in P .

To see the topological nature of the charge transport, we
perturb the Hamiltonian slightly by adding small on-site
disorder. The new disordered Hamiltonian is then given by

Hdis = H +
∑

j

ε jc
†
j c j, (9)

where ε j is a random number with a uniform distribution
over the interval [−W/2,W/2]. For a given Fermi energy, we
compute σxy(r j ) for various disorder realizations of the same
disorder strength W . We find that, for W �= 0, the contribution
to σxy now not only comes from the sites in P but also spreads
over to few other sites in the proximity of P . This spread
increases initially as we increase W until the states become
Anderson localized and σxy(r j ) goes to zero. To quantify this
spread and study the robustness to disorder, we then look at
how C, averaged over several disorder realizations, changes
as a function of disorder strength W . The result is shown in
Fig. 7(e).

We find that up to W ≈ 0.2, the value of C is pretty well
quantized and robust to disorder. As we keep increasing W ,
the average value of C starts decreasing and the standard

FIG. 8. The figure shows the degeneracy between edgelike states
of SG-3 (N = 37) at φ = 0.3φ0, highly localized on sites immedi-
ately enclosing triangles of the second generation, being lifted when
the flux through the tube, ϕ, is changed from 0 to 0.07φ0. (a) The
localization of a single eigenstate from a bunch of triply degenerate
edgelike states at ϕ = 0. Upon increasing ϕ to ϕ = 0.07φ0, the
degeneracy breaks. One of the states, shown in (b), is lifted up in
energy. The other two remain at the same energy as ϕ = 0, one of
which is shown in (c).

deviation, shown as error bars in Fig. 7(e), starts increasing.
The initial decrease in the average value of C is a consequence
of the increase of the contribution to σxy coming from the sites
not present in P . The standard deviation can be considered
as an indicator of the amount of variation of the contribution
to σxy is coming from the sites not present in P , which are
found to be random in nature. This spread can be understood
by the fact that in the presence of weak disorder, the edgelike
states start to lose their property of being primarily localized
on the sites in P . It is natural to ask if there is a better
quantization at higher W by redefining C to take into account
the contributions of a few additional layers of sites apart form
those in P to σxy. However, for this structure, there is no
natural way to determine how to select sites to define a layer
of sites and how many additional layers of sites to take into
account. Also, because of the nonuniformity in the spread of
the edgelike states to the nearby sites in the presence of weak
random disorder, it is not clear how to determine a length scale
by quantifying their loss of localization.

V. PROPERTIES OF EDGELIKE STATES

Pumping flux through a flux tube at a given position not
only makes it possible to determine how the states contribute
to the transport but it also makes it possible to numerically
study each edgelike state individually. The edgelike state lo-
calized on sites immediately enclosing triangles of a given
generation are usually degenerate in energy as there are often
multiple triangles of a given generation in SG-3. One exam-
ple is shown in Fig. 8(a), where three states are degenerate
because there are three triangles of the second generation.
The number of triangles of a given generation increases ex-
ponentially with the generation. So, it becomes hard to isolate
a single edgelike state localized on the sites immediately
enclosing a single triangle of high enough generation. Now,
by positioning the flux tube in a given triangle, the energy of
the edgelike state localized on sites enclosing that particular
triangle increases as we pump flux through the tube (grouped
into group I in Sec. III A). The energy of the remaining degen-
erate partners of that edgelike state does not change with flux
as they localize on sites which do not enclose the flux tube
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FIG. 9. Localization of a single edgelike state at different values
of ϕ. The color bar shows log10(ρ j ). The values of ϕ in the plots
are given in units of φ0 and the values of the ϕs for this figure are
chosen as such to remain significantly away from the avoided cross-
ing points. We see that the weight of the eigenstate on sites not in P
(defined in Sec. V) is at least three orders of magnitude less than that
of the sites in P . ϕ = 0.2φ0 is a special case where the edgelike state
is completely localized on the sites in P .

(grouped into group IV in Sec. III A). One such instance of
degeneracy breaking is shown in Figs. 8(b) and 8(c).

Now that we are able to break the degeneracy, we can study
the properties of a single edgelike state. An edgelike state on
SG-3, by definition, is highly localized on the sites immedi-
ately enclosing a triangle of a given generation (Fig. 9). Let
us denote the set of such sites by P . Notice that the sites
in P , together with the bonds with their respective nearest
neighbors in P , form a ring and hence they can be indexed
linearly from 1 to NP , where NP is the total number of sites
in P . Now, given an edgelike state, |ψ p

m〉 = ∑
j ψ

m
j |r j〉, we

construct a state |ψm〉 = ∑
r j∈P ψm

j |r j〉. |ψm〉 is easy to study
due to its one-dimensional nature and can be considered a
good approximation for |ψ p

m〉 for large system sizes.
The exact expression of the edgelike states is gauge de-

pendent. So to study |ψm〉, we first transform to a different
gauge where the Hamiltonian, H , becomes translationally in-
variant on the sites in P . The gauge transformation is given
by c†

j → e−i j c†
j , where 1 = 0,  j = ∑n= j

n=2 θn−1,n − ( j −
1)2π�/NPφ0 for j ∈ {2, 3, . . . , NP}, where 2π� is the total
flux threaded through the area enclosed by the sites in P .
Let us call this the translationally invariant gauge. Let the
transformed state be denoted by |ψ ′

m〉 = ∑
j ψ

′m
j |r j〉. We do

a Fourier transform, ψm
κ = ∑

j ei2πκ j/NPψ ′m
j , to go into the

angular momentum basis. We find that, for a given m, ψm
κ

has two sharp peaks at κ and NP/2 + κ , (one peak being
significantly greater than the other) for some value of κ = κ0

(Fig. 10), as long as we are sufficiently away from an avoided
crossing. The peaks change from κ0 → κ0 + 1 and NP/2 +
κ0 → NP/2 + κ0 + 1 as the flux, ϕ/φ0, is changed from 0 to
1 [Fig. 10(a)]. Moreover, we also find that the position of the
peaks changes linearly as we change m [Fig. 10(b)]. These
features are reminiscent of eigenstates of a particle on an
NP -polygon with a flux threaded through it or, in other words,
eigenstates of the discretized angular momentum operator

FIG. 10. The variation in Fourier amplitudes of edgelike states,
ψm

κ vs κ , for different values of ϕ and different values of m. In this
case, N = 37 and NP = 96. (a) ψm

κ vs κ for a single edgelike state
(m = 10). As ϕ/φ0 is varied from 0 to 1, the peaks at κ = 24 and
NP/2 + κ = 72 shift by one unit to κ = 25 and NP/2 + κ = 73.
(b) ψm

κ vs κ for different edgelike states which are primarily localized
on the sites in P . The insets in both (a) and (b) show how strongly
the states are localized on the sites in P . The states whose Fourier
components are shown are marked with red on the instantaneous
spectra. In both (a) and (b), the values of ψm

κ have been normalized
such that

∑
κ |ψm

κ |2 = 1.

[23]. In fact, these properties are captured by approximating
|ψ ′

m〉 ≈ |ψ̃m〉 = ψm
κ0

|κ0〉 + ψm
κ0+NP/2|κ0 + NP/2〉, where |κ0〉

and |κ0 + NP/2〉 are eigenstates of the discretized angular
momentum operator with eigenvalues κ0 and κ0 + NP/2, re-
spectively. |ψ̃m〉 also captures the chiral nature of the edgelike
states as shown in Fig. 11.

For a given magnetic field parameterized by φ, there are
some special values of the flux ϕ for which an edgelike state
can be completely localized on the sites in P (for example,
ϕ = 0.2φ0 in Fig. 9). For such values of ϕ, the edgelike state
exactly becomes an eigenstate of the discretized angular mo-
mentum operator in the translationally invariant gauge. This
shows that the flux through the flux tube can also be used as
a tuning parameter to completely localize an edgelike state on
a ring and host exact eigenstates of the angular momentum
operator on SG-3. The details of the condition which must
be satisfied to generate such an edgelike state are given in
Appendix B.

VI. SUMMARY AND OUTLOOK

In this paper, we have studied the adiabatic charge pump-
ing and transport of noninteracting fermions on self-similar
structures generated from the SG. We consider the Harper-
Hofstadter Hamiltonian on SG-3 and SG-4, with an additional
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FIG. 11. Time evolution under the action of (a) the approx-
imate time evolution operator and (b) the exact time evolution
operator, projected onto a given energy window (Emin, Emax). The
initial state is localized on a site in P . The exact time evo-
lution operator, projected onto the energy window, is given by
U (t ) = ∑

Emin<En<Emax
exp(−iEnt )|n〉〈n|, where |n〉 is the set of

single-particle eigenstates of the Hamiltonian H , with energy En.
The approximate time evolution operator is given by Ũ (t ) =∑

Emin<Ẽn<Emax
exp(−iẼnt )|ñ〉〈ñ|. |ñ〉 = |ψ̃n〉 for edgelike states local-

ized primarily on P , where ψ̃n is the approximation of the state using
its first largest two Fourier components as mentioned in Sec. V, and
|ñ〉 = |n〉 otherwise. Ẽn = 〈ñ|H |ñ〉. Note that, at t = 0, both U and
Ũ act as a projection operator onto the set of states in the energy
window. Comparing (a) and (b), we find that the chiral nature of the
edgelike states is well captured by the approximate states mentioned
in Sec. V. For this calculation, we have taken N = 37, NP = 96,
Emin = −0.3 and Emax = 0.

flux tube to adiabatically pump the charge. Since the systems
are noninteracting and we are interested in the case where the
pump works in the adiabatic limit, we study their respective
instantaneous eigenspectra. For SG-3, we find that, for a given
position of the flux tube, all edgelike states throughout the
instantaneous spectrum, which are localized on sites enclos-
ing the flux tube, undergo spectral flow. This is qualitatively
different from the spectral flow in the case of translationally
invariant noninteracting systems where spectral flow is ob-
served across the band gaps. Changing the position of the
flux tube results in a change of the set of edgelike states
undergoing spectral flow. We have found similar results for
SG-4 which we have not shown here.

We find that the local nature of the adiabatic charge trans-
port is also dependent on the position of the flux tube. The
transport happens between the sites hosting an edgelike state
enclosing the flux tube and the outermost sites of SG-3,
which also host an edgelike state. However, the net charge
transported is quantized, irrespective of the position of the
flux tube. We show that the quantization of the adiabatic
charge, and hence the topological character of the system,
can be understood from the spectral flow occurring near the
Fermi energy. Specifically, the adiabatic charge transported is
nontrivially quantized if at least one pair of edgelike states,
localized significantly far from each other, undergo opposite
spectral flows crossing the Fermi energy.

We also study the local Hall conductivity by explicitly
computing the local transverse current when the system is
subjected to a local step potential. We find that the local
contributions to the Hall conductivity only comes from the

sites which host the edgelike states enclosing the crosshair,
thus establishing a correspondence with the spectral flow of
the edgelike states. We find that the total local contribution
to the Hall conductivity is quantized and is robust to weak
Anderson disorder. Upon increasing the disorder strength, the
contribution to the local Hall conductivity does not remain
highly localized anymore, before finally going to zero at high
disorder strengths.

We use the flux in the flux tube as a tuning parameter to iso-
late a single edgelike state from its degenerate group of states.
We find that the edgelike states can be approximated by a
sum of a few eigenstates of the discretized angular momentum
operator. Our results suggest that instead of treating them to be
analogous to the topological edge states in translationally in-
variant noninteracting systems, some of their properties can be
understood from a perspective of a particle on a tight-binding
polygonal chain with a nonzero flux.

In conclusion, we have explained the microscopic origin
of the topological character and the quantization of the Hall
conductivity in self-similar structures, generated from the SG,
using the perspective of spectral flow and adiabatic charge
pumping. We expect our results to generalize to a wider va-
riety of self-similar structures and finite systems embedded
in two dimensions, given that the systems are able to support
eigenstates which are localized on sites which form loops in
the graph of the Hamiltonian. More specifically, if a finite sys-
tem, embedded in two dimensions, is able to support at least
two different sets of eigenstates, localized on two different
loops such that one loop completely encloses the other and are
spatially separated from each other, then we expect the system
to show spectral flow when the flux through the inner loop
is varied adiabatically. As a result, we expect such systems
to show quantized Hall response. It is still unclear what kind
of self-similar structures or finite systems, in general, would
support such states localized on loops. Also, among self-
similar structures, every structure has an unique fundamental
self-similar repeating unit which is iteratively used to generate
the structure of higher generations. The relation between the
structure of such fundamental self-similar repeating units and
the ability of the system to support localized states on loops
is not known yet. These can be some potential directions for
future work in this area.
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APPENDIX A: ADIABATIC CHARGE TRANSPORT
IN FINITE SYSTEMS IN TERMS OF

INSTANTANEOUS PROJECTORS

We consider a finite noninteracting system, S , with a
Hamiltonian, H (ϕ(t )), where ϕ(t ) is a time-dependent param-
eter. We assume that the Hamiltonian has no other explicit
time dependence and, from now on, in this section, we sup-
press the time dependence of the parameter. The instantaneous
eigenstates can be obtained from the eigenvalue equation:

H (ϕ)|n(ϕ)〉 = En(ϕ)|n(ϕ)〉. (A1)
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We assume that there is a time t = T after which the Hamil-
tonian returns back to itself, up to a gauge transformation.
We now consider a subsystem, B, of the system. The rest
of the system is denoted by S − B. We want to quantify
the net charge, Q, leaking out of the subsystem over a time
period when the system is adiabatically evolved in time. Q is
given by

Q =
∫ T

0
〈d|J|d〉t, (A2)

where J is the current operator and 〈〉 is the expectation value
of the operator in the many-body ground state wave function
at time t . In the adiabatic limit, each single-particle eigenstate
of the Hamiltonian H (ϕ(t )) evolves as

|n(ϕ(t ))〉 = eiθn (t )eiγn (t )|n(ϕ(0))〉, (A3)

where θn(t ) = −(1/h̄)
∫ t

0 En(ϕ(t ′))dt ′ is the dynamical phase
and γn(t ) = ∫ t

0 i〈n(ϕ(t ′))||ṅ(ϕ(t ′))〉dt ′ is the geometrical
phase. So, the many-body time-evolved state in the adiabatic
limit, |�(t )〉, is the Slater determinant of the adiabatically
time-evolved occupied single particle states.

The current operator can be identified from the change of
the total number operator over subsystem, B, which is given
by the von Neumann equation

∂〈nB〉
∂t

= −i〈[nB, H (ϕ)]〉, (A4)

where nB = ∑
b∈B |rb〉〈rb| is the total number operator

over B. Then we identify the current operator as J =
−i[nB, H (ϕ)]. In the case of adiabatic evolution, the time evo-
lution can be generated by the adiabatic Hamiltonian, K (t ) =
i[ṖI , PI ], instead of H [20]. Here PI = ∑

n(ϕ) ∈ occ |n(ϕ)〉〈n(ϕ)|
is the instantaneous projector onto the set of occupied single-
particle states. The derivation of the adiabatic Hamiltonian,
K , can be found in Appendix A of Ref. [20]. So, the adiabatic
current operator is given by

JA = −i[nB, K (t )]

= (nBṖI PI + PI ṖI nB − nBPI ṖI − ṖI PI nB ). (A5)

The expectation value of the adiabatic current operator in
the many-body ground state then becomes

〈JA〉 = 〈�(t )|JA|�(t )〉 = Tr(PI J
A)

= Tr(PI nBṖI PI ) + Tr
(
P2

I ṖI nB
)

− Tr(PI nBPI ṖI ) − Tr(PI ṖI PI nB )

= Tr(nBṖI PI ) + Tr(PI ṖI nB )

− Tr(nBPI ṖI PI ) − Tr(PI ṖI PI nB ), (A6)

where the last equality has been obtained by using the cyclic
property of the trace and the fact that P2

I = PI . Now we use
the identity PI ṖI PI = 0, and we get

〈JA〉 = Tr(nBṖI PI ) + Tr(PI ṖI nB )

= Tr(nBṖI PI ) + Tr(nBPI ṖI )

= Tr
(
nBṖ2

I

) = TrB(ṖI ), (A7)

where TrB(..) is the trace over degrees of freedom in
subsystem B. So, the net charge leaking form B can be
expressed as

Q =
∫ T

0
〈d|JA|d〉t =

∫ T

0
TrB(∂t PI )dt

= TrB(PI (T ) − PI (0)). (A8)

From Eq. (A8) we see that, in the adiabatic limit, the net
charge leaking from the subsystem can be expressed as the
change in the instantaneous projector onto the occupied states
over the pumping cycle, traced over the degrees of freedom
of the subsystem. Now, as the parameter is assumed to get
back to its initial value at time T , the Hamiltonian returns
back to itself, up to a gauge transformation. So, the set of
projectors onto the eigenstates of the Hamiltonian at t = 0,
{|n(ϕ(0))〉〈n(ϕ(0))|}, is the same as the set of projectors onto
the eigenstates at t = T , {|n(ϕ(T ))〉〈n(ϕ(T ))|}. So, if there
is no spectral flow due to the change in ϕ in the instanta-
neous spectra of the Hamiltonian, PI (T ) = PI (0) and there
is no adiabatic charge transport as a result. Clearly, to get
a nonzero adiabatic charge transport from region B, there
must be spectral flow in the instantaneous spectra of the
system.

Now let us consider a scenario where PI (T ) �= PI (0). Let
Ni be the set of eigenstates which are occupied at t = 0
but not at t = T , N f be the set of eigenstates which are
occupied at t = T but not at t = 0, and O be the set of
eigenstates which remain occupied both at t = 0 and t = T .
As we have assumed that the system is particle conserving,
the number of states in Ni and N f are the same, denoted
by N . So, PI (0) = ∑

n∈Ni
|n〉〈n| + ∑

o∈O |o〉〈o| and PI (T ) =∑
m∈N f

|m〉〈m| + ∑
o∈O |o〉〈o|. So, we get

Q = TrB(PI (T ) − PI (0))

= TrB

⎛
⎝ ∑

m∈N f

|m〉〈m| −
∑
n∈Ni

|n〉〈n|
⎞
⎠

=
∑

m∈N f

TrB(|m〉〈m|) −
∑
n∈Ni

TrB(|n〉〈n|). (A9)

If a state |n〉 is completely localized in B, then
TrB(|n〉〈n|) = 1, and if it is completely localized in
S − B, then TrB(|n〉〈n|) = 0. So, if all states in N f and
Ni are completely localized either in B or in S − B,
then

∑
m∈N f

TrB(|m〉〈m|) and
∑

n∈Ni
TrB(|n〉〈n|) would be

integers, giving rise to a quantized adiabatic charge Q. Now, if
all states in Ni and N f are completely localized in S − B, then∑

m∈N f
TrB(|m〉〈m|) = ∑

n∈Ni
TrB(|n〉〈n|) = 0 and Q = 0.

Also, if all states in Ni and N f are completely localized in
B, then

∑
m∈N f

TrB(|m〉〈m|) = ∑
n∈Ni

TrB(|n〉〈n|) = N and
Q = 0. A nontrivial quantized contribution to the adiabatic
charge transport is obtained when a pair of states, |m〉 ∈ N f

and |n〉 ∈ Ni, are localized in such a way that one of them
is completely localized in B and the other is completely
localized in S − B.
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APPENDIX B: CONDITION FOR AN EDGELIKE STATE
TO BE COMPLETELY LOCALIZED ON THE SITES

IMMEDIATELY ENCLOSING A TRIANGLE
OF A GIVEN GENERATION OF SG-3

We start with the Harper-Hofstadter Hamiltonian on SG-3,
given by

Ĥ =
∑
〈 jk〉

Hjkc†
j ck, (B1)

where Hjk = −e−iθ jk , when the sites labeled by the indices
j and k are nearest neighbors and 0 otherwise. θ jk is the
same as defined in Eq. (1) of the main text. Let H denote
the Hamiltonian matrix whose elements are Hi j . Consider a
triangle of a given generation of SG-3. We put a flux tube,
carrying flux 2πϕ, through this triangle. Let us denote the set
of all sites immediately enclosing the triangle to be P , and the
set containing the rest of the sites to be Q. Now consider an
edgelike state |ψ〉 = ∑

j ψ j |r j〉. By breaking into sectors of
P and Q, the Hamiltonian can be represented in the matrix
form as follows:

H =
[

HP HPQ
HQP HQ

]
, (B2)

where HP jk = Hjk , ∀ j, k ∈ P; HPQ jk = Hjk, ∀ j ∈ P, k ∈ Q;
HQP jk = Hjk, ∀ j ∈ Q, k ∈ P; and HQ jk = Hjk, ∀ j, k ∈ Q.
Similarly, the state |ψ〉 can be expressed as

|ψ〉 = |ψP〉 + |ψQ〉, (B3)

where |ψP〉 = ∑
p∈P ψp|rp〉 and |ψQ〉 = ∑

q∈Q ψq|rq〉. In
the vector form, let �P = [ψp1 ψp2 ....ψpNp

]T ∀{pi} ∈ P and
�Q = [ψq1 ψq2 ....ψqNq

]T ∀{qi} ∈ Q be the representations for
|ψP〉 and |ψQ〉, respectively.

If the state is completely localized on sites in P , then
�Q = 0. Now, given that � = [�P �Q]T is an eigenstate of
H , we get that

H� =
[

HP HPQ
HQP HQ

][
�P

0

]
=

[
HP�P

HQP�P

]
= Em

[
�P

0

]
.

(B4)

This implies that �P must be an eigenstate of HP and
HQP�P = 0. �P can be analytically determined. To do that,
we first point out that the sites in P , together with the bonds
with their respective nearest neighbors in P , form a ring.
They can be indexed linearly from 1 to NP , where NP is the
total number of sites in P . So, �P can be written as �P =
[ψ1 ψ2...ψp...ψNp]

T. We do a gauge transformation given

by c†
j → c′†

j = e−i j c†
j , where 1 = 0,  j = ∑ j

n=2 θn−1,n −
( j − 1)2π�/NPφ0 for j ∈ {2, 3, . . . , NP}, where 2π� is the
total flux threaded through the area enclosed by the sites in
P . Under this transformation, �P → � ′P and HP → H ′

P ,
where H ′

P is a Hermitian circulant matrix given by

H ′
P =

⎡
⎢⎢⎢⎢⎣

0 t 0 · · · 0 t∗
t∗ 0 t · · · 0 0
0 t∗ 0 t · · · 0
...

...
...

. . .
...

...

t 0 0 · · · t∗ 0

⎤
⎥⎥⎥⎥⎦, (B5)

and t = e−i2π�/NPφ0 . The eigenvectors of H ′
P are given

by ψ (κ ) = [ωκ ω2κω3κ . . . ωpκ . . . ωNPκ ]T ∀κ ∈ {0, 1, 2, . . . ,

NP − 1}, where ω = ei2π/NP . So, � ′P must be equal to ψ (κ )
for some κ ∈ {0, 1, 2, . . . , NP − 1}. Now, �P can be ob-
tained by inverting the gauge transform, and so we get

�P (κ ) = [ψ1(κ ) ψ2(κ )....ψNp (κ )]T, (B6)

ψp(κ ) = eipωpκ = eipei2π pκ/NP . (B7)

Given the analytical form of �P , we can plug Eq. (B6) into
the equation HQP�P = 0, and get∑

p∈P
HQPq,pψp = 0, ∀q ∈ Q. (B8)

Note that every site q ∈ Q either has exactly two consecu-
tive nearest neighbors in P or zero nearest neighbors in P .
For the sites in Q which have zero nearest neighbors in P ,
HQPq,p = 0 ∀p ∈ P and Eq. (B8) is trivially satisfied. For the
rest of the sites q0 ∈ Q, let us say sites p0 ∈ P and p0 + 1 ∈
P are its nearest neighbors. Then we have HQPq0 ,p0

ψp0 +
HQPq0 ,p0+1ψp0+1 = 0, which implies

e−iθq0 ,p0 eip0 ωp0κ + e−iθq0 ,p0+1 eip0+1ω(p0+1)κ = 0. (B9)

Simplifying Eq. (B9), we get the following condition:

1 + ωκei(p0+1−p0 )e−i(θq0 ,p0+1−θq0 ,p0 ) = 0. (B10)

From the choice of { j}, we get p0+1 − p0 =
θp0,p0+1 − 2π�/NPφ0. Also, θq0,p0 + θp0,p0+1 − θq0,p0+1 =
θq0,p0 + θp0,p0+1 + θp0+1,q0 = −2πφ/φ0, which is nothing but
the flux through the triangle whose vertices are sites q0, p0,
and p0 + 1. Plugging this in Eq. (B10), we get

1 + ωκe−i2π�/φ0NP e−i2πφ/φ0 = 0 (B11)

⇒ i2πκ

NP
− i2π�

NPφ0
− i2πφ

φ0
= (2n + 1)iπ (B12)

⇒ κ − �

φ0
− NP

φ

φ0
= (2n + 1)

2
NP , (B13)

where n ∈ Z. We can express the total flux though the area
enclosed by the P sites as the sum of the flux due to the
magnetic field and the flux through the flux tube, 2π�/φ0 =
2πφ�/φ0 + 2πϕ/φ0, where � is the ratio of the area of the
region enclosed by the P sites and the area of the triangle
whose vertices are the sites q0, p0, and p0 + 1. Plugging this
into Eq. (B13), we get

κ = (2n + 1)

2
NP + (� + NP )

φ

φ0
+ ϕ

φ0
. (B14)

For SG-3, we note that NP = 3z, where z is the number
of sites on one side of the triangle enclosed by the P sites,
and z is always an even number. � is a natural number as can
be expressed in terms of z as � = z2 + 2z − 2. Therefore, we
must have

(� + NP )
φ

φ0
+ ϕ

φ0
= Z, (B15)

κ = (2n + 1)

2
NP + Z, (B16)
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where Z is an integer. From Eqs. (B15) and (B16), we con-
clude that the state labeled by κ is completely localized on the
sites in P if we choose ϕ such that Eq. (B15) is fulfilled for

the value of Z that produces the right κ in Eq. (B16). The
resulting state is an eigenstate of the angular momentum op-
erator with eigenvalue κ .
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