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Gate-tunable Josephson diode in proximitized InAs supercurrent interferometers
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The Josephson diode (JD) is a nonreciprocal circuit element that supports a larger critical current in one
direction compared to the other. This effect has gained growing interest because of promising applications
in superconducting electronic circuits with low power consumption. Some implementations of a JD rely on
breaking the inversion symmetry in the material used to realize Josephson junctions (JJs), but recent theoretical
proposals have suggested that the effect can also be engineered by combining two JJs hosting highly transmitting
Andreev bound states in a Superconducting Quantum Interference Device (SQUID) at a small, but finite flux
bias. We have realized a SQUID with two JJs fabricated in a proximitized InAs two-dimensional electron gas
(2DEG). We demonstrate gate control of the diode efficiency from zero up to around 30% at specific flux bias
values which comes close to the maximum of ∼40% predicated in Souto et al. [Phys. Rev. Lett. 129, 267702
(2022)]. The key ingredients to the JD effect in the SQUID arrangement is the presence of highly transmitting
channels in the JJs, a flux bias, and an asymmetry between the two SQUID arms.

DOI: 10.1103/PhysRevResearch.5.033131

I. INTRODUCTION

A widely used device in semiconductor electronics is the
p − n junction, which is a nonreciprocal element with re-
gards to current flow, able to conduct current primarily in
one direction. The presently ongoing rapid scaling of quantum
computers will require low-dissipative control electronics that
operate close to the quantum chip at low temperatures. These
requirements have renewed the question whether there exists a
superconducting equivalent of the diode, namely, a device that
supports a larger supercurrent in one direction than in another:
the Josephson diode (JD) [1,2].

In a conventional Josephson junction (JJ) [3], the current-
phase relation (CPR) is sinusoidal I = Ic sin(ϕ), with Ic being
the critical current of the junction and with the ground state
corresponding to zero phase bias ϕ0 = 0. For this conven-
tional case, the positive critical current I+

c = maxϕ[I (ϕ)] is
obviously equal to the negative one I−

c = |minϕ[I (ϕ)]|. Since
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the critical supercurrent is reciprocal, there is no supercon-
ducting diode effect (SDE).

A general CPR can have a more complex dependence on
the phase [4]. But, in general, I (ϕ) is a 2π -periodic function,
and if either time-reversal symmetry or inversion symmetry
is preserved, it is an odd function, I (−ϕ) = −I (ϕ) [1]. It can
therefore be written as a Fourier series composed of sin(kϕ)
terms where k is a positive integer and the terms for k > 1 are
higher harmonics. If higher harmonics are present, the CPR is
called nonsinusoidal [5,6]. Such a CPR still does not display
a SDE.

A necessary but not sufficient condition for the SDE to
occur is that time-reversal symmetry is broken. This can be
achieved either by an external magnetic-field of or by means
of ferromagnetic elements built into the device. S-F-S junc-
tions, where F (S) denotes a ferromagnet (superconductor),
were proposed [7,8] and experimentally studied in various
configurations [9–11]. These junctions typically display a π

shift in the CPR and are thus know as π junctions. The
energy ground state moves from ϕ0 = 0 to ϕ0 = π . Despite
the presence of a magnetic field and time-reversal symmetry
thus being broken, these junctions do not display a SDE.

Both inversion symmetry and time-reversal symmetry
are broken in so-called anomalous JJs, also known as ϕ0

junctions, where the ground state of the junction has an
“anomalous” shift to ϕ0 with 0 < ϕ0 < π [12]. This situ-
ation is achieved in multiband conductors with spin-orbit
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interaction [13–19]. Evidence for ϕ0 junctions has been found
in experiments with nanowires with strong spin-orbit inter-
action [20] and in planar Josephson junction arrays [21]. An
anomalous JJ is also a necessary condition, but on its own not
sufficient. Indeed, a CPR of the form I (ϕ) = Ic sin(ϕ − ϕ0)
with 0 < ϕ0 < π is an anomalous JJ, but still with I+

c = I−
c .

The SDE has been observed in materials that display
magneto-chiral anisotropy. Here the normal-state resistivity
itself depends on the sign of the current density and the sign
of the magnetic field [18,22,23]. While this is a small effect
in normal metals, it can become large at the transition to a
superconducting state [24–26]. Recently, a large SDE was
also observed in a 2D NbSe2 superconductor with applied out-
of-plane magnetic field [27] and even in field-free situations
[1,28,29] including twisted graphene [30–32].

Further studies have also considered, among others, polar-
ized supercurrents, magnetic domain walls, vortex pinning,
and combination of s-wave and p-wave pairing, as well as
finite-momentum pairing as the origin of a SDE [33–36].
A SDE was even reported in a scanning-probe microscopy
study where a single magnetic impurity was addressed on the
surface of a superconductor [37].

Last, topological materials with helical edge states can
carry supercurrents with a strong SDE [38–41]. This is evi-
denced in the highly asymmetric Fraunhofer pattern with the
property that Ic(B) �= Ic(−B), where B is the magnetic field.
This arises because of lack of inversion symmetry between the
supercurrent flowing along the two edges of the crystal [38].
This situation is very much alike an asymmetric SQUID.

Already in the 1970s, when superconducting interference
devices were studied in great detail using tunnel junctions,
point contact structures, and Dayem bridges, it was rec-
ognized that the critical current of a SQUID can become
nonreciprocal [42–45]. The origin was understood to emerge
from an asymmetry in the two SQUID arms, but the arms
needed to have a nonnegligible loop inductance too. Although
the CPR of each single junction was sinusoidal, the CPR be-
came nonreciprocal for the SQUID device due to asymmetric
loop inductances.

Today tunable superconductor-semiconductor hybrid de-
vices have become a flourishing research topic [46–50]. In
particular, in JJs made of semiconducting weak links, the
magnitude of the supercurrent is tunable by local gate elec-
trodes, and, in some devices, the shape of the CPR can be
tuned from sinusoidal to highly nonsinusoidal. Consequently,
these devices provide a platform for the engineering of the
SDE with unprecedented tunability. This has recently been
investigated theoretically in Refs. [51,52]. It has been shown
that one can achieve a large SDE by combining two non-
sinusoidal JJs in a dc-SQUID at finite flux bias even with
negligible loop inductances. In this case the nonreciprocal
transport I+

c �= I−
c originates from the interference between

higher-order harmonics in CPR of the JJs.
In the current work, we use gate-controlled JJs fabricated

in an InAs 2DEG proximitized by an Al layer [53,54]. These
rather wide junctions contain many channels with a distribu-
tion of transmission eigenvalues. The nonsinusoidal character
is due to highly transmissive channels that are present in
these devices [55–60]. By tuning the asymmetry between the
SQUID arms with the respective gate voltages we show that

(a) (b)

(c)

FIG. 1. (a) Circuit schematic of a dc SQUID threaded by the
external flux �ext , formed by two gate tunable JJs with nonsinusoidal
CPRs with critical currents Ic1, Ic2 and transparencies τ1, τ2. (b) False-
color electron micrograph of the device. The loop consists of a 10 nm
Al film (blue) grown on top of an InAs 2DEG (green). The JJs are
defined by selectively removing the Al over 150-nm-long stripes on
each branch of the loop. Electrostatic gates (yellow and orange) tune
the charge carrier density in the junction. We use 15 nm of HfO2

(light blue) as a gate dielectric. On the right, a zoom-in of JJ2 is
shown before adding the FG. On top, we show a cross-sectional
schematic of the gate configuration of JJ2 along the dashed black
line. The scale bar in the main figure is 1 µm, and in the zoom-in it
is 300 nm. Dc and ac current bias are defined through the voltage
drop over a large series resistor with value Rb = 1 M�. The SQUID
is shunted to ground with a parallel resistor of value Rs = 10 �.
(c) Differential resistance of JJ1 (left) and JJ2 (right) as a function of
gate voltage and current bias. While one junction is being measured,
the other is pinched off. The top junction has a slightly higher
critical current due to the different channel widths of W1 = 3 µm
and W2 = 2.5 µm.

we can achieve a SDE up to 30%. This comes close to the
maximum theoretically predicted value [51].

In Sec. II we present the device geometry, the experimental
setup, and the basic characterization of the individual JJs. The
nonreciprocal character of the dc-SQUID with JJs having a
nonsinusoidal CPR is then shown in Sec. III. We also define
an analytical framework with which we are able to distinguish
possible origins of the JD effect. Finally, we discuss the mea-
sured gate tunability of the diode efficiency in Sec. IV and end
with the conclusion in Sec. V.

II. DEVICE AND BASIC PROPERTIES

The circuit diagram of the device is shown in Fig. 1(a),
and a colored electron-microscopy picture is presented in
Fig. 1(b). The circuit consists of a dc SQUID formed by two
planar JJs realized in a shallow InAs 2DEG proximitized by
Al layer. The 2DEG is obtained from a quantum well grown
on an InP substrate embedded in In0.75Ga0.25As layers of
which the top layer is 10 nm thick. The stack is terminated
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with an in situ grown 10 nm thin Al layer inducing super-
conductivity in the 2DEG. The SQUID loop and the leads are
defined by etching the Al and, additionally, 300 nm deep into
the semiconductor stack. The top and bottom Josephson junc-
tions (JJ1 and JJ2) in the two branches of the loop are formed
by selectively removing the Al in the form of stripes with
length L = 150 nm and width W1 = 3 µm and W2 = 2.5 µm.

A set of gates, G1, G2, and FG, are used to tune the critical
current of the junctions by applying appropriate gate voltages
VG1, VG2, and VFG. They are made of two Ti/Au layers, iso-
lated from the Al and from each other by hafnium dioxide
(HfO2) layers. VG1 extends over the whole width of JJ1, while
VG2 is shaped to gradually deplete JJ2 laterally, creating a Su-
perconducting Quantum Point Contact (SQPC). An additional
gate, VFG, can be used to fine tune the charge carrier density
in the SQPC. However, throughout the experiment the QPC
functionality is not used and VFG is kept at 0 V.

Our setup sources a current using a 1 M� resistor in series
to a dc voltage superposed by a small ac component with
frequency f = 17.7 Hz, supplied by a lock-in amplifier. The ac
component has an amplitude of 5 nA. The SQUID is addition-
ally shunted at the source to ground with a resistor RS = 10 �

directly placed on the sample holder. This shunt resistor has
two purposes: (1) it limits the maximum voltage that appears
over the junction in the normal state and, thus, the heating and
(2) it adds damping to the device avoiding hysteretic switching
when assessing the critical current in experiments. We mea-
sure the differential resistance of the shunted device using a
voltage amplifier and lock-in techniques. In all plots where
a measured differential resistance dV/dI is shown the shunt
resistor was not subtracted. The measurements presented in
the following were obtained with the SQUID device operating
in a dilution refrigerator with a base temperature of ∼50 mK.

In Fig. 1(c) we show the measured differential resistance
of JJ1 (left) and JJ2 (right) as a function of gate voltage and
bias current. In the following, we approximate the critical
current Ici of the ith junction, i = {1, 2}, by the current bias
value at which the maximum value in differential resistance
is measured. Here the bias current is swept from zero to
1.5 µA, looking at transitions from the superconducting to
the normal state. From the measurements we extract Ici(VGi).
The critical current of both junctions can be tuned from a
few nA close to pinch off at negative gate voltages VG(1,2) �
−1 V to approximately 1 µA. The key features of these hy-
brid semiconducting-superconducting JJs are the gate tunable
critical current and the nonsinusoidal CPR.

In the short-junction limit, i.e., for junctions with a length
L shorter than the superconducting coherence length ξ in the
normal metal, the zero temperature limit of the supercurrent
I (ϕ) is given by [5]

I (ϕ) =
∑

j

(
τ je�

h̄

)
sin(ϕ)√

1 − τ j sin2(ϕ/2)
. (1)

Here τ j is the transmission probability per channel j. In mul-
tichannel devices with disorder, a universal distribution func-
tion of transmission eigenvalues was obtained [55,61–63].
The distribution is bimodal with many low transmissive chan-
nels that contribute little to the current, but also with some
channels having a transmission probability close to 1. These

high-transmissive channels lead to the overall nonsinusoidal
character. This is approximated with an effective (but con-
stant) transmission probability τ ∗ per channel and written as
a single-channel nonsinusoidal CPR given by

I (ϕ) = Ic

AN

sin(ϕ)√
1 − τ ∗ sin2(ϕ/2)

. (2)

For the later discussion of the measurements the critical cur-
rent Ic of the junction and a unitless normalization parameter
AN are introduced. The ratio Ic/AN is given by Nτ ∗e�/h̄ with
N the number of channels. Note, for the single junction we
have I (−ϕ) = −I (ϕ) and thus I+

c = I−
c = Ic. It is also seen

that for small values of τ ∗ the CPR approaches a sinusoidal
dependence. From experimental I (ϕ) curves, we deduce the
critical current Ic of each junction, τ ∗ and AN . Note that only
two parameters are independent.

As shown in Fig. 1(a) the total supercurrent I across the
SQUID is the sum of the currents flowing in both branches I1

and I2 through the two JJs:

I (ϕ1, ϕ2) = I1(ϕ1) + I2(ϕ2). (3)

The two junctions are described by Ic1, Ic2 and τ ∗
1 , τ ∗

2 . The
uniqueness of phase around the loop leads to the so-called
fluxoid relation (modulo 2π ),

ϕ1 − ϕ2 = 2π�ext/�0 = ϕext, (4)

where �ext denotes the externally induced flux, �0 = h/2e
the superconducting flux quantum, and ϕext the respective
phase. In this form of the fluxoid relation the loop inductance
has been neglected. For a finite loop inductance there is an
additional flux contribution which depends on the currents I1

and I2 flowing in each arm. It has been shown that asymmet-
ric loop inductances can also induce a superconducting SDE
[45,64,65]. To estimate the role of loop inductances in our
experiment we perform a full analysis with equations given
in the Appendixes, specifically in Appendix E. Taking Eq. (3)
and Eq. (4) together yields an effective superconducting junc-
tion with a CPR:

I (ϕ) = I1(ϕ) + I2(ϕ − ϕext ). (5)

For a simple sinusoidal CPR, the addition of the two terms
yields a ϕ0 junction without a SDE, even when the two JJ have
different critical currents. In contrast, in the presence of higher
order harmonics, which appear for a nonsinusoidal CPR, con-
structive and destructive interference effects, acting opposite
for the two current bias directions, give rise to unequal critical
currents I+

c �= I−
c and thus to a SDE [51,52].

III. JOSEPHSON DIODE EFFECT

Figure 2(a) shows the differential resistance of the SQUID
as a function of current bias and perpendicular magnetic field
B⊥, the latter providing the flux �ext through the SQUID loop.
We have chosen a gate configuration with VG1 = VG2 = 0 V
for which the two critical currents are similar: Ic1 = 0.87 µA
and Ic2 = 0.67 µA. A clear SDE is visible. For example, at
the place of the orange arrow, we obtain I+

c = 0.64 µA and
I−
c = 0.4 µA.

In this experiment, the current bias is swept from negative
to positive values. This means that we measure the positive
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(a)

(b) (c)

FIG. 2. (a) SQUID oscillations with VG1 = VG2 = 0. The critical
current I+

c and the retrapping current I−
r over one flux period are

highlighted in orange and red, respectively. At fixed magnetic field,
the absolute value of the critical current in the two sweep directions
is not the same. This is best seen in the region −5 < B⊥ < 0 μT
with a visible example taken at the red and orange arrows, where
the SDE has a magnitude of ∼23%. (b) Measurement for a strongly
asymmetric SQUID setting with VG1 = 0 V and VG2 = −1.1 V. The
junction with the large critical current JJ1 serves as the reference
junction. As a consequence, the critical current as a function of flux
now reflects the CPR of the weaker junction JJ2. The CPR is strongly
nonsinusoidal, and a fit (black dashed line) yields τ ∗

2 = 0.8. (c) Plot
of the extracted I+

c (orange) and I−
c (red) taken from the measurement

in (a) and from a measurement where we sweep the current bias from
positive to negative values (see Appendixes). The dashed two curves
(green and blue) show simplified model fits with τ ∗

1,2 = 0.86 and the
critical currents of the junctions taken from Fig. 1(c).

switching current I+
c , but on the negative side, we actually

measure what is called the retrapping current I−
r where the

device switches from the normal to the superconducting state.
Due to dissipation, the junction can overheat in the normal
state giving rise to a hysteresis between the switching and
retrapping currents with the retrapping current being smaller
in magnitude than the switching current. This would result in
an artificial SDE. To exclude this, we have measured the same
plot as in Fig. 2(a) but sweeping now from positive to negative
bias currents. The comparison shows (see Appendix C) that
the hysteresis between retrapping and switching currents is
small and can be neglected. Physically, this is the case due to
the low shunt resistant of Rs = 10 �, which limits the voltage
over the junction to <25 μV and, thus, limits the heating.

Another strong argument against an artificial effect is seen
in Fig. 2(a) when one looks at the switching values at the place
of the red arrow, where I+

c = 0.44 µA and I−
r = 0.6 µA. Here

the sign of the SDE is reversed, I+
c < I−

r . This cannot be ex-
plained by a hysteresis between the switching and retrapping

currents, since the retrapping current should always be smaller
than the switching current.

As introduced before, a contribution from loop inductances
may generate the SDE too, if the loop inductances in the
two arms are different. Applying finite element simulations
(Appendix B), we obtain L1 ≈ 39 pH and L2 ≈ 44 pH. The
relative phase shift between the two SQUID arms due to the
loop inductances at a bias current I = 1 µA is only 2π

�0
(L2 −

L1)I ∼ 0.03 rad and gives a small contribution to the SDE.
We properly simulate the effect of the loop inductances on the
critical current of the SQUID in Appendix F and find that the
loop inductances alone cannot explain the observed SDE in
our experiment.

We also note that the measured CPR of the SQUID in
Fig. 2(a) is periodic with a periodicity of 11.6 μT. Since this
should correspond to an added flux quantum �0 in the area Ah

of the inner SQUID hole, we obtain for Ah = 175 µm2. This
is approximately a factor of 2.3 bigger than the geometrical
area defined by the etched square-shaped hole of size 75 µm2.
This discrepancy can be attributed to the flux-focusing effect
[66]. The magnetic field above the superconductor is screened
by the Meissner effect leading to an enhanced magnetic field
within the inner hole. The enhancement factor can be esti-
mated by the ratio of the outer superconducting loop area of
≈150 µm2 relative to Ah, which yields a factor of 2 in good
agreement with the experiment.

In a sufficiently asymmetric SQUID configuration one can
measure the CPR of the weak junction alone [6]. Figure 2(b)
shows a measurement of the CPR of a single junction, ob-
tained during the same cool down. Here VG1 = 0 V and VG2 =
−1.1 V so that the current in JJ1 is large ∼0.9 µA and in JJ2

it is small ∼0.1 µA. In such a situation JJ1 acts as reference
junction, and the critical current of the weak junction JJ2 can
be obtained from Eq. (5) as

I+
c = max

ϕ
[I1(ϕ) + I2(ϕ − ϕext )], (6)

I+
c (ϕext ) � Ic1 + I2(ϕ̃1 − ϕext ), (7)

where ϕ̃1 is the phase value for which JJ1 has its maximal
value Ic1. Hence, we see that under the condition that the
reference junction dominates, we obtain the phase dependence
of the critical current of the weak junction from the flux
dependence of the critical current of the SQUID. Applying
Eq. (2) to fit the measured data yields for the effective trans-
mission probability τ ∗ = 0.8 ± 0.02. This is a large value,
showing that the CPR is strongly nonsinusoidal, something
that is visibly seen in the graph of Fig. 2(b). If one makes
use of the universal bimodal distribution function of trans-
mission eigenvalues to determine τ ∗ [55,61–63], one obtains
τ ∗ = 0.866. Including different devices nominally fabricated
the same way, we always find a large effective transmission
value of order ∼0.8 in agreement with theoretical expectations
for a multichannel disordered junction in the short junction
limit.

In Fig. 2(c) we compare the oscillations of I+
c and I−

c as a
function �ext with the simplified model of Eq. (5). We take
the measured critical currents of the two junctions as input
parameters, Ic1 = 0.87 μA and Ic2 = 0.67 μA, and assume
τ ∗

1 = τ ∗
2 = τ ∗ as a single fitting parameter. The best agree-

ment is obtained for τ ∗ = 0.86. We note that a similar model
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TABLE I. Conditions for obtaining a SDE (DE). An extended ta-
ble that includes the loop inductances can found in Appendix G. The
first column is used to distinguish the classical sinusoidal CPR (τ ∗ =
0) from a strongly skewed CPR described by a highly transmissive
ballistic A JJ with an effective transmission probability τ ∗ > 0.
α(β) denotes the asymmetry in critical currents (transmission proba-
bilities) of the two junctions.

τ ∗ α β SDE

0 0 n.a. No
0 �= 0 n.a. No

�= 0 0 0 No
�= 0 0 �= 0 Yes
�= 0 �= 0 0 Yes
�= 0 �= 0 �= 0 Yes

calculation based only on loop inductances barely matches the
measurement. It is shown as a comparison in Appendix F.

The fits for I+
c (green) and I−

c (blue) reproduce the relative
shift along the flux axis very well. The shape of the curves
is, however, not reproduced so well. In the region �ext/�0 ∈
[0.25, 0.5] and �ext/�0 ∈ [0.5, 0.75] respectively, the mea-
sured I+

c and I−
c curves are higher than what is obtained

with the model. Deviations between the experimental and the
modeled curves could be attributed to the choice of CPR used
in the model. First, we considered an average transparency
instead of a distribution of transparencies. Second, the expres-
sion of the current carried by the Andreev bound states could
be different from Eq. (2), since our junctions could be in a
regime intermediate to the short and long junction limit. And,
in the third place, spin-orbit effects may affect the CPR too.
For junctions of similar length in the same material system, it
has been shown that spin-orbit interaction splits the ABS into
spinful states with different dispersion relations [67]. Notice-
ably, the experiment indicates that these deviations result in
an increase of the SDE compared to what is predicted by the
simple model.

Having established that a SDE appears in a SQUID with
junctions having a nonsinusoidal CPR with asymmetry, we
summarize in Table I the necessary conditions for the SDE
(DE). To describe the asymmetry we introduce two asym-
metry parameters α and β for the critical currents and the
effective transmission probabilities, respectively:

α = Ic1 − Ic2

Ic1 + Ic2
and β = τ ∗

1 − τ ∗
2

τ ∗
1 + τ ∗

2

. (8)

An extended table, which also considers the effect of loop
inductances, is presented in Appendix G. It shows that the
diode effect appears when the SQUID arms are asymmetric.
The only exception is for sinusoidal JJs, where an asymmetry
in the critical currents in not enough to produce a diode effect.

IV. GATE TUNABLE DIODE EFFICIENCY

The SDE can be quantified via the diode efficiency, defined
as

η = I+
c − I−

c

I+
c + I−

c
. (9)

(a)

(b)

FIG. 3. Magnitude of the diode efficiency |η| as a function of
external flux �ext for different gate configurations as obtained from
the measurements (left) and as calculated from the model (right). The
sign of η is indicated on the visible lobes with + and −. The model
takes into account the numerically simulated loop inductances, their
asymmetry, and the values Ic(1,2) of the two junctions obtained from
the measurements in Fig. 1(c). The JJ transparencies were fixed to
τ ∗

1 = τ ∗
2 = 0.86. (a) |η| as a function of VG2 at fixed VG1, and (b) |η|

as a function of VG1 at fixed VG2. Note that for �ext/�0 = 0.5, which
equals ϕext = π , η = 0 independent on any other parameters.

In Fig. 3 we show the magnitude of the diode efficiency
|η| as a function of external flux �ext/�0 for different gate
configurations as obtained from the experiment (left) and as
calculated from the model (right). In the model we make
use of the relation between critical current and gate voltage
of the individual junctions Ici(VGi) and use these values as
input parameters in the first approximation. We also use the
simulated loop inductance values from which we obtain the
phase response due to screening ϕL = 4π ĪcL̄/�0, the loop
inductance asymmetry γ = (L1 − L2)/(L1 + L2) with L1, L2,
and Īc and τ̄ ∗ the respective mean values. We assume that
the effect of the gate voltage is mainly to change the critical
current value Ici through the number of channels N , while τ ∗

i
roughly stays constant. We fix τ ∗

1 = τ ∗
2 = 0.86, but we note

that the calculated η plot is insensitive if one varies τ ∗
2 between

0.8 and 0.9.
In Fig. 3(a) we plot |η| for different values of VG2 at fixed

VG1. Both in the experiment and in the model, |η| drops for
−0.7 < VG2 < −0.5 V. As seen in Fig. 1(c), this corresponds
to a gate configuration with Ic1 ≈ Ic2, so that α ≈ 0. As ex-
pected, the absence of critical current asymmetry decreases
the diode efficiency. To obtain in the model the same diode
efficiencies η as measured, we had to increase the critical
current of JJ1. In the experiment, we had VG1 fixed at −0.79 V,
which would correspond to Ic1 = 470 nA. However, in order
to match the model with the data, we had to use 710 nA,
corresponding to VG1 = −0.74 V, as indicated in the top left
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corner of the figure. Without this correction, the measured |η|
values would have been larger than what the model predicts.
We attribute this difference in gate voltage to gate jumps that
occur from time to time. We note that there are days between
the measurements in Fig. 1(c) and Fig. 2(a).

In Fig. 3(b) we show the dependence of |η| as a function
of VG1 at fixed VG2 = −0.7 V. As before, to match the model
to the experiment, we had to increase Ic2 from the initially
measured value of 590 nA at VG2 to 650 nA, which correspond
to Ic2 measured at VG2 = −0.66 V.

Both in the experiment and in the model one can observe
the typical butterfly pattern of η as predicted in Ref. [51].
The two arms of maximum |η| meet at the point of mini-
mum asymmetry at �ext/�0 = 0.5 for VG2 ≈ −0.65 V and
VG1 ≈ −0.75 V for Fig. 3(a) and Fig. 3(b) respectively, where
η drops to 0.

The model qualitatively reproduces the gate dependence of
the diode efficiency very well. We obtain a maximum |η| of �
0.3 from the experiment. This 30% efficiency is much larger
than what has previously been obtained in a SQUID with
asymmetric loop inductance [68]. Taking a SQUID model
with a single channel JJ junction, we numerically find for the
maximum efficiency η = 0.37. This is obtained for τ1 = 1 and
τ2 = 0.75 or the reverse. This could be achieved by combining
a single channel ballistic τ = 1 Josephson junction realized
in atomic contacts [6] with a semiconductor-superconductor
hybrid device as we have discussed here.

V. CONCLUSION

In conclusion, we have investigated the origin of the
superconducting diode effect (SDE) in a supercurrent interfer-
ometer realized in a proximitized InAs quantum well stack.
We show that in such a system the SDE can originate from
the nonsinusoidal character of the JJs, and hence, reflecting
a subtle interference between higher-order harmonics of the
CPRs of the individual JJs. In addition to higher harmon-
ics, an asymmetry either in the composition of the Fourier
components in the CPR or in the critical current of the two
JJ, and a finite flux bias ϕext �= {0, π} is required to obtain
a SDE. These conditions ensure that time-reversal symmetry
and inversion symmetry are both broken. A similar conclusion
was drawn by a recent experimental study in three terminal
devices, where a SDE was realized [69]. Future directions
include the possibility to concatenate more SQUIDs in par-
allel in order to further increase the diode efficiency as was
proposed in Ref. [51].

All data in this publication are available in numerical form
[71].

Note. Recently we became aware of a similar study in a dc
SQUID realized in a Ge quantum well structure [70].
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APPENDIX A: FABRICATION AND MEASUREMENT
SETUP

The wafer used in this experiment was grown by molecular
beam epitaxy (MBE). The stack consists from bottom to top of
an InP substrate, a 1-µm-thick buffer realized with In1−xAlxAs
alloys, a 4 nm In0.75Ga0.25As bottom barrier, a 7 nm InAs
layer, a 10 nm In0.75Ga0.25As top barrier, two monolayers of
GaAs acting as a stop etch layer, and 10 nm of Al deposited in
situ without breaking the MBE vacuum. The two-dimensional
electron gas is characterized from a Hall bar device and shows
a peak electron mobility of μ = 12 000 cm2 V−1 s−1 for an
electron density of 16 × 1011 cm−2, corresponding to an elec-
tron mean-free path of le ≈ 230 nm.

The device is fabricated using standard electron beam
lithography techniques. The MESA is electrically isolated
by first removing the top Al film with Al etchant Transene
D, followed by a deep III–V chemical wet etch with
H2O:C6H8O7:H3PO4:H2O2 (220:55:3:3). Next, the Al film on
the MESA is selectively etched with Al etchant Transene D
to define the planar JJ. Electrostatic gates are made of two
Ti/Au layers, isolated from the Al and from each other by
hafnium oxide (HfO2) layers grown by atomic layer deposi-
tion (ALD) at a temperature of 90 ◦C over the entire sample.
The first layer of gates is made of electron-beam evaporated
Ti/Au (5 nm/25 nm) on top of 15 nm HfO2. Connections to
the external circuit are obtained by evaporating Ti/Au (5/85
nm) leads at ±17◦ to overcome the MESA step. A second
layer of gates, made of angle-evaporated Ti/Au (5/85 nm), is
patterned on top of 25 nm of HfO2.

Measurements are carried out in a Triton 200 cryogen-free
dilution refrigerator with a base temperature of ≈50 mK. An
overview of the measurement setup is shown in Fig. 4. The
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(a) (b)

(c) (d)

FIG. 5. Sonnet simulations of the loop inductances. The super-
conducting loop is segmented into an upper (lower) branch 1 (2)
indicated by the white dashed boxes. The respective width are W1 =
3 µm, W2 = 2.5 µm, and WL = 2.75 µm. The two inductances L1,
L2 and the mutual inductance M are deduced from the slope of the
frequency dependent two-port impedances. It is seen that M 
 L1,2

and that there is a small asymmetry of ∼6% in the loop inductances.

setup sources a current using a 1 M� resistor in series to
a dc voltage source on which a small ac component with
frequency f = 17.7 Hz, supplied by a lock-in amplifier, is
superposed. This current is applied to the source contact of
the SQUID on the left with the drain contact on the right side
galvanically connected to ground. The SQUID is shunted at
the source to ground with a resistor RS = 10 �. This shunt
resistor is directly placed on the sample holder. In addition,
a finger capacitance of ≈0.7 pF is patterned in parallel to
the SQUID (lower right of the optical image). The original
purpose of the capacitance was to increase the quality factor
of the Josephson junctions. However, its effect is negligible,
since the capacitance provided by the leads is larger. We
measure the differential resistance of the shunted device using
a voltage amplifier and lock-in techniques. The flux through
the SQUID is generated by a vector magnet.

APPENDIX B: ESTIMATION OF LOOP INDUCTANCES

In the following we will detail the evaluation of the induc-
tance of the loop branches. The loop geometry is defined as
indicated by the white dashed lines in Fig. 5(a). The width
of the two branches corresponds to the junctions width in
the upper and lower path, W1 = 3 µm, W2 = 2.5 µm, and
the width on the left and right sides it is set equal to WL =
(W1 + W2)/2 = 2.75 µm. In reality there is no lateral confine-
ment in the superconductor. Hence, the artificial confinement
increases the inductance values so that the simulated induc-
tances for this geometry yield upper bounds to the inductances
of the device. With finite-element simulations performed in
Sonnet, we compute the two-port impedances Zi,k with i,k ∈
{1, 2} for different frequencies. The impedance is evaluated
between two sets of floating co-calibrated ports, positioned
on the left and right side of the loop. In the simulation we use
InP as a substrate, with a relative dielectric constant εr = 12.4.

(a) (b)

(c)

(d)

(e)

FIG. 6. (a) Two differential resistance plots of the SQUID device
for the same gate settings as a function of external flux �ext and
current bias I . In the upper plot the current was swept downwards
from positive to negative values, while in the lower it was swept
upwards. Panels (b) and (c) compare the critical current values Ic

with the retrapping ones Ir, obtained from (a) and (b) at the position
of the peaks in dV/dI . The arrows ↑,↓ indicate the sweep direction.
Panel (d) compares I+↑

c with I−↓
c , and in (e) the diode efficiency is

shown for three ways using the data in (b)–(d).

The kinetic inductance of the Al film is evaluated by measur-
ing the temperature dependence of the resistance of an Al bar
realized on a different chip from the same wafer. We measure
a critical temperature of 1.25 K and a normal state resistance
of 15.5 �. The kinetic sheet inductance Lkin/� is then obtained
through the low frequency limit of the Mattis-Bardeen screen-
ing theory [72–74]:

Lkin/� = h̄Rn/�
π�0

tanh−1

(
�0

2kBT

)
. (B1)

Here Rn/� is the normal state sheet resistance, �0 the zero-
temperature BCS gap, and T the absolute temperature. Using
Eq. (B1) we extract Lkin/� ≈ 5nH.

APPENDIX C: RETRAPPING VERSUS SWITCHING
CURRENT

In Fig. 6 we compare the switching current with the re-
trapping current values. We show that the two values coincide
in this experiment to a good accuracy. On our opinion this is
due to the low parallel resistor, which keeps the voltage over
the junction small in the normal state, hence, reducing over-
heating effects. Additionally, the shunt resistor adds damping
at the plasma frequency of the junctions, which reduces the
quality factor.

The two measurements in Fig. 6(a) were obtained for ex-
actly the same parameter settings, except for the direction
of current-bias sweep. In the upper (lower) measurement the
current was decreased (increased) starting with positive (neg-
ative) values at +3 μA (−3 μA) and sweeping down (up) to
−3 μA (+3 μA). Figure 6(b) shows the critical and retrap-
ping current, Ic and Ir, extracted from the down-sweep data
at positions where the differential resistance shows a peak.
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FIG. 7. SQUID oscillation at different gate voltage configura-
tions. VG2 is fixed at −0.5 V, while VG1 is swept from −0.57 V
to −0.8 V. The asymmetry in the SQUID oscillations follows the
asymmetry in critical current between the two junctions. We have
Ic1(VG1 = −0.57V ) > Ic2(VG2 = −0.5V ) and Ic1(VG1 = −0.8V ) <

Ic2(VG2 = −0.5V ).

Figure 6(c) shows the same, but extracted from the up-sweep
data. On sweeping downwards, we denote the negative critical
current as I−↓

c and the positive retrapping current as I+↓
r . In

analogy, on sweeping upwards, the positive critical current is
denoted by I+↑

c and the negative retrapping current by I−↑
r . In

Fig. 6(d) we compare the positive and negative critical cur-
rents, both obtained in a proper way using oppositive sweep
directions.

Now we can compare the extracted diode efficiency for
three cases: (1) for the case when we extract the critical
currents from sweeping the current bias into negative direc-
tion only, η↓, (2) into the positive direction only, η↑, and
(3) when we deduce the critical current properly, η↑↓. The
three curves are directly obtained from Figs. 6(b)–6(d). All
three methods yield qualitatively the same efficiencies with
no significant differences. Importantly, one clearly cannot say
that η↑↓ would yield in general lower efficiencies.

APPENDIX D: SQUID OSCILLATIONS AT DIFFERENT
GATE VOLTAGES

In this Appendix we show how the SQUID pattern devel-
ops when the critical current of one junction is tuned from
being larger, equal, and finally smaller than the critical current
of the other junction. Figure 7 shows the differential resistance
of the SQUID as a function of current bias and perpendicular
magnetic field. VG2 is fixed at −0.5 V, while VG1 is swept from
−0.57 V to −0.8 V. As extracted from Fig. 1(c), Ic2(VG2 =
−0.5) ∼ 720 nA, while Ic1(VG1 = −0.57) ∼ 1.12 μA and
Ic1(VG1 = −0.8) ∼ 360 nA (gate voltages are given in units
of V).

The sign of the diode efficiency is mirrored with respect
to the magnetic field value corresponding to half flux quan-
tum when the critical current asymmetry α between the two
junctions changes sign. We also notice a dip in differential

resistance developing around half flux quantum that evolves
with α (see arrow in Fig. 7).

APPENDIX E: MODEL INCLUDING LOOP INDUCTANCES

As introduced in the main text, we model the current-phase
relation of a single junction i ∈ [1, 2] with

Ii(ϕ1) = Niτ
∗
i e�

h̄

sin(ϕi )√
1 − τ ∗

i sin2(ϕi/2)
, (E1)

where Ni stands for the number of channels and τ ∗
i for an

effective transmission probability of junction i. The more
general approach would be to assume a distribution function
for the transmission probability of each channel. To avoid
this complication we assume that all channels have the same
transmission probability τ ∗

i .
We introduce the normalization parameter Ai as

Ai := maxϕi

⎧⎪⎨
⎪⎩

sin(ϕi )√
1 − τ ∗

i sin2(ϕi )

⎫⎪⎬
⎪⎭. (E2)

Note that Ai depends only on τ ∗
i . We thus get the normalized

CPR as

Ii(ϕi ) = Ici

Ai

sin(ϕi )√
1 − τ ∗

i sin2(ϕi/2)
. (E3)

In this notation of the CPR, N has been replaced by the critical
current Ic, which appears now explicitly.

Flux quantization in the loop imposes

ϕ1 − ϕ2 = 2π�/�0. (E4)

Here the total flux in the loop � is given by the external
flux �ext and the contributions from the screening currents
expressed through the loop inductances, L1 and L2, that belong
to the two branches. If mutual inductances are considered too,
one has to introduce new effective inductances L′

1 = L1 − M
and L′

2 = L2 − M, where M describes the mutual inductance.
We obtain for the total flux

� = �ext − L′
1I1(ϕ1) + L′

2I2(ϕ2). (E5)

Therefore, Eq. (E4) now reads

ϕ1 − ϕ2 = ϕext + 2π

�0
[L′

2I2(ϕ2) − L′
1I1(ϕ1)]. (E6)

Our simulations show, however, that the effect of the mu-
tual inductance can be neglected in our experiment. Hence,
there are six remaining parameters in the problem: Ic1, Ic2, τ ∗

1 ,
τ ∗

2 , L1, and L2. Since the appearance of the SDE in a SQUID
is related to asymmetries, we introduce three asymmetry
parameters:

α := Ic1 − Ic2

Ic1 + Ic2
, (E7)

β := τ ∗
1 − τ ∗

2

τ ∗
1 + τ ∗

2

, (E8)

γ := L1 − L2

L1 + L2
. (E9)
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(a)

(d)

(b)

(e)

(c)

FIG. 8. Sequence of simulations for I+
c (green dashed curves)

and I−
c (blue dashed curves) to measured (up-sweep) data I+

c (orange
dots) and I−

r (red dots). In (a) a sinusoidal CPR with the estimated
loop inductance asymmetry is considered, while in graphs (b)–(e)
the effective transparencies τ ∗ of the junctions ar increased. Further
details are given in the text.

The new set of parameters is now given by the three asym-
metries and the average values of the two junctions for the
critical current Īc, the transmission probability τ̄ , and the
inductance L̄.

To find the critical current one has to find the maximum or
minimum of the total supercurrent:

I (ϕ1, ϕ2) = I1(ϕ1) + I2(ϕ2). (E10)

Making use of Eq. (E6), we get

I (ϕ1, I ) = I1(ϕ1) + I2{ϕ1 − ϕext + κL1I1(ϕ1)

−κL2[I − I1(ϕ1)]}, (E11)

with κ = 2π/�0. In the latter form, we have eliminated ϕ2

using the fluxoid condition. However, due to the loop in-
ductances, the equation for the total current I is now itself
implicitly dependent on I . One can still solve this equa-
tion recursively or by introducing Lagrange multipliers to then
search for the maximum or minimum currents, yielding I+

c
and I−

c [64].
To find I+

c numerically, we preset the value of I , 0 � I �
2Īc, starting with a small one and search for solutions ϕ1 of
Eq. (E11). If solutions exist, we increment I by a small step
δI until there are no solutions ϕ1 anymore. This defines I+

c . In
analogy we obtain I−

c .

APPENDIX F: COMPARISON TO DIODE EFFECT DUE
TO LOOP INDUCTANCES

Here we present a comparison of the measured critical
currents I+

c and I−
c shown in Fig. 2(c) with model simulations.

Specifically, we discuss the effect of the loop inductance and
its asymmetry on the SDE. The comparison shows that the
SDE can poorly be reproduced taking only the loop induc-
tances into account. This is shown in Fig. 8.

(a)

(c)

(b)

FIG. 9. Magnitude of the diode efficiency |η| as a function of
the applied external flux �ext expressed in number of magnetic flux
quanta �0, numerically calculated for a SQUID with two sinusoidal
CPRs with an asymmetry (a) in loop inductance γ and (b) in critical
current α. The inductances were chosen such that ϕL = π . In (c) |η|
is plotted for a SQUID without loop inductances and two JJs, each
with a nonsinusoidal single-channel CPR, as a function of τ1 and
normalized external flux for τ2 = 0.7 and for α = γ = ϕL = 0.

Figure 8 shows a sequence of simulations, blue and green
dashed curves, to a set of measurements of I+

c (orange) and
I−
r (red). In all five simulations the critical currents Ic1 and

Ic2 of the two junctions are taken from the experiment, from
Fig. 1(c). Since VG1 = VG2 = 0 we obtain Ic1 = 0.87 μA and
Ic2 = 0.67 μA. In Fig. 8(a) we assume sinusoidal CPRs for
both junctions JJ1 and JJ2, and we take the simulated loop
inductances into account. Due to the slight asymmetry in
loop inductance a small SDE appears. However, this effect
is far smaller than what has been measured. Hence, one can-
not fit the measurement with the loop inductance asymmetry
alone. In Figs. 8(b)–8(e) we keep the loop inductances as
estimated, but change to nonsinusoidal CPRs by increasing
τ ∗

1 = τ ∗
2 to appreciable values ranging 0.5–0.99, indicated in

the figures. As before, we obtain the blue and green dashed
curves taking the known critical currents Ic1 and Ic2 of the
two junctions. The best match in this sequence is found for
τ ∗

1 = τ ∗
2 ≈ 0.86. One can see that the model matches the key

features of the experiment very well. However, there are
deviations, as seen by the stronger curvature that the mea-
surement points display as compared to the model. The
model assumes an almost triangular shape for very large
transparencies τ ∗

1 = τ ∗
2 ≈ 0.99 These differences are yet not

understood

APPENDIX G: CONDITIONS FOR A DIODE EFFECT IN A
SQUID DEVICE

Figure 9 illustrates that an asymmetry is required to ob-
tain a SDE. in Figs. 9(a) and 9(b) sinusoidal CPRs are
assumed. In Fig. 9(a) the loop inductance asymmetry γ
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TABLE II. Conditions for obtaining a superconducting diode-
effect (SDE). In the first column τ ∗ = 0 is used to refer to a
sinusoidal CPR, while τ ∗ �= 0 indicates a highly transmissive CPR
containing higher order terms in the CPR. If L̄ = 0, loop inductances
are not considered, while they play a role in the entries where L̄ �= 0.
α (β) denotes the asymmetry in Ic (τ ∗) of the two JJs, while γ denotes
the asymmetry in the loop inductances in the two arms of the SQUID.

τ ∗ β α L̄ γ SDE

0 n.a. 0 0 n.a. No
0 n.a. 0 �= 0 0 No
0 n.a. 0 �= 0 �= 0 Yes
0 n.a. �= 0 0 n.a. No
0 n.a. �= 0 �= 0 0 Yes
0 n.a. �= 0 �= 0 �= 0 Yes

�= 0 0 0 0 n.a. No
�= 0 0 0 �= 0 0 No
�= 0 0 0 �= 0 �= 0 Yes
�= 0 0 �= 0 0 n.a. Yes
�= 0 0 �= 0 �= 0 0 Yes
�= 0 0 �= 0 �= 0 �= 0 Yes
�= 0 �= 0 0 0 n.a. Yes
�= 0 �= 0 0 �= 0 0 Yes
�= 0 �= 0 0 �= 0 �= 0 Yes
�= 0 �= 0 �= 0 0 n.a. Yes
�= 0 �= 0 �= 0 �= 0 0 Yes
�= 0 �= 0 �= 0 �= 0 �= 0 Yes

is varied, while the critical-current asymmetry α = 0. In
contrast, in Fig. 9(b) α is varied, while γ = 0. The loop
inductance has been chosen such that the average phase drop
over the inductor ϕL = 4π ĪcL̄�0 assumes a large value of
ϕL = π . In Fig. 9(c) a SQUID with two single-channel nonsi-
nusoidal CPRs with different transmission probabilities τ1,2 �=
0 (asymmetry β �= 0) are considered, while α = γ = ϕL = 0.

In general, it is seen that the diode efficiency is zero at
the symmetry points corresponding in Fig. 9(a) to γ = 0, in
Fig. 9(b) to α = 0, and in Fig. 9(c) to τ1 = τ2. Further, η = 0
for ϕext = 2π�ext/�0 = 0, π , and 2π . For these cases one can
show that the CPR of the SQUID is odd in the phase difference
ϕ. This follows from Eq. (5) and the fact that I1(ϕ) and I2(ϕ)
are odd functions in ϕ. In addition, we note that the position
of maximum diode efficiency in flux depends on what kind of
asymmetry dominates. It can take values >30%.

To obtain a SDE in a SQUID loop, an asymmetry is re-
quired. This we have illustrated in Fig. 9, where out of the
three asymmetry parameters α, β, γ only one was differ-
ent from zero. In Table II we show under which conditions
the SDE appears depending on all three asymmetry param-
eters. The table shows that at least one symmetry has to
be broken to get the SDE effect. This is a sufficient con-
dition for almost all cases. There is only one exception.
It arises for sinusoidal CPRs where a difference in critical
currents of the two junctions is not enough for a SDE to
appear.
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