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Network comparison via encoding, decoding, and causality
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Quantifying the relations (e.g., similarity) between complex networks paves the way for studying the latent
information shared across networks. However, fundamental relation metrics are not well-defined between
networks. As a compromise, prevalent techniques measure network relations in data-driven manners, which are
inapplicable to analytic derivations in physics. To resolve this issue, we present a theory for obtaining an optimal
characterization of network topological properties. We show that a network can be fully represented by a Gaus-
sian variable defined by a function of the Laplacian, which simultaneously satisfies network-topology-dependent
smoothness and maximum entropy properties. Based on it, we can analytically measure diverse relations between
complex networks. As illustrations, we define encoding (e.g., information divergence and mutual information),
decoding (e.g., Fisher information), and causality (e.g., Granger causality and conditional mutual information)
between networks. We validate our framework on representative networks (e.g., random networks, protein
structures, and chemical compounds) to demonstrate that a series of science and engineering challenges (e.g.,
network evolution, embedding, and query) can be tackled from a new perspective. An implementation of our
theory is released as a multiplatform toolbox.
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I. INTRODUCTION

Complex networks are universal across different disci-
plines [1]. Important topics in physics (e.g., quantum system
characterization [2–4] and nonequilibrium dynamics analysis
[5–7]), biology (e.g., brain [8–12], metabolic [13–15], and
protein [16–18] networks analysis), computer science (e.g.,
internet analysis [19–21] and information tracking [22,23]),
and social science (e.g., scientific community [24–26] and
opinion formation [27–29] modeling) all benefit from com-
plex networks studies [1].

However, critical challenges to network theories persis-
tently arise due to the increasingly diverse application needs
[1]. Among these challenges, a fundamental yet intractable
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one concerns how to quantify the relations (e.g., similarity)
between different complex networks [30]. To date, main-
stream metrics of network relations are developed in the
contexts of network embedding, matching, and kernel, three
computation-oriented and data-driven perspectives [30,31].
Comprehensive reviews of these three perspectives can be
found in Refs. [30,32], Refs. [33–35], and Refs. [36,37], re-
spectively. In general, embedding-based approaches follow
preset rules to embed networks into low-dimensional metric
spaces and calculate distances between networks [30–32].
These approaches critically depend on embedding rule de-
signs and may lack universal generalization capacities [30].
Matching-based approaches, such as exact [38] and inexact
[36] matching, search for node mappings between networks to
realize optimal matching and measure similarity [34]. These
approaches essentially deal with a kind of quadratic program-
ming problem [33,39,40] that are NP-hard [33] and require
relaxations of problem constraints to find approximate solu-
tions [41–43]. Kernel-based methods evaluate the similarity
between networks by decomposing them into a series of
atomic substructures (e.g., graphlets [44], random walks [45],
shortest paths [46], and cycles [47]), and measuring kernel
value among these substructures (i.e., counting the number
of shared substructures) [36,37]. While these substructures
can reflect network topology properties, they are essentially
handcrafted [31], i.e., extracted by certain manually defined
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functions, and may imply extremely high-dimensional, sparse,
and nonsmooth representations with poor generalization ca-
pacities [48]. In sum, while embedding-, matching-, and
kernel-based approaches have been extensively tested on em-
pirical data (e.g., neural data [37,49–51]), they are inevitably
limited by computational complexity (e.g., matchingbased) or
the dependence on empirical choice of network features (e.g.,
embeddingbased) and kernel functions (e.g., kernelbased)
[49]. Even in cases where these methods are computationally
optimal, they may still be unsatisfactory because they do not
derive intrinsic relations between complex networks analyti-
cally and universally.

Analytic metrics of network relations are indispensable for
studying the physics of complex networks [52] but remain
unknown. Certainly, one can simplify the distance between
networks as the Kolmogorov-Smirnov statistic between their
degree distributions (e.g., see discussions in Ref. [50]) or the
norm distance between their adjacency matrices (or Laplacian
operators). However, these approaches either require that two
networks share the same size or achieve nonideal performance
in network comparison (e.g., see results in Ref. [53]).

To suggest a way to define analytic network relations, we
develop an optimal characterization of complex networks that
simultaneously ensures smoothness (for better reflection of
network topology [53–56]) and maximum entropy (for better
support of information-theoretical analysis [57]) properties in
Secs. II and III. The derived characterizations turn out to be
specific Gaussian variables defined by the functions of the
Laplacian operators of complex networks. Based on this re-
sult, we can define analytic relation metrics (e.g., information
divergence [57], mutual information [57], Fisher informa-
tion [57], and causality [58]) between networks in Sec. IV
and explore their generalization in Sec. V. In Secs. VI-VII,
we demonstrate our approach on representative complex net-
works to realize network comparison by encoding, decoding,
and causal analyses. A toolbox is provided in Ref. [59].

II. QUESTION DEFINITION

To suggest a potential direction, we consider:
(I) How to develop an analytic and universal characteriza-

tion of network topology that is free of subjective selection
of topological properties and computational optimization
problems?

(II) How to enable the characterization derived in question
(I) to define analytic metrics of network relation without fur-
ther constraints?

As we have mentioned in Sec. I, a simple solution of
question (II), such as the Kolmogorov-Smirnov statistic be-
tween degree distributions, cannot fully satisfy the needs of
application. Therefore, we consider more informative metrics,
including information divergence [57], mutual information
[57], Fisher information [57], and causality [58] as potential
candidates. These metrics, at least in our case, require a prob-
abilistic solution (e.g., define a network as a random variable)
of question (I).

This idea inspires us to consider a mapping φ : V → � be-
tween a network G(V, E ) without self-loops and a probability
space (�,F ,P ) with � = R. Here, V and E denote the node
and edge sets of network G, respectively. Function φ defines

FIG. 1. Ideas of solving questions (I) and (II). We define a vari-
able Xφ on network G based on mapping φ. An ideal definition of
Xφ is expected to make the smoothness of φ be completely deter-
mined by network topology. Meanwhile, it is expected to ensure the
maximum entropy property of variable Xφ .

a random variable Xφ = (Xφ (1), . . . , Xφ (n)) distributed on
node set V , where Xφ (i) = φ(vi) and n = |V | (see Fig. 1 for
illustrations).

To properly reflect the network topology of G by Xφ , we
need to consider the smoothness of mapping φ on G measured
by the discrete 2-Dirichlet form of φ [54],

S (φ) = 1

2

∑
vi∈V

∑
(vi,v j )∈E

(
∂φ

∂ (vi, v j )

∣∣∣∣
vi

)2

, (1)

where (vi, v j ) denotes the edge between nodes vi and v j . In
Eq. (1), the edge derivative of φ with respect to edge (vi, v j )
at node vi is defined as [54]

∂φ

∂ (vi, v j )

∣∣∣∣
vi

= √
Wi, j (Xφ ( j) − Xφ (i)), (2)

where W is the nonnegative weighted adjacent matrix of G.
The smaller S (φ) in Eq. (1) is, the smoother φ is on G. To
understand why the smoothness of φ matters in defining Xφ

to reflect the network topology of G, we need to consider the
combinatorial Laplacian L [60] of G,

L = diag ([deg (v1), . . . , deg (vn)]) − W, (3)

where diag(·) generates a diagonal matrix and operator deg(·)
measures node degree. Note that deg(vi ) = ∑n

j=1 Wi j in a
weighted network. Laplacian L captures key topology infor-
mation of network G (e.g., connected components, random
walks on network, and latent Laplace-Beltrami operator [61]),
which has been extensively used in spectral graph theory [61]
and graph signal theory [54]. The first connection between
Laplacian L and the smoothness of φ is well-known [54]:

S (φ) = Xφ
T LXφ, (4)

which suggests that the smoothness of φ can be defined by
Laplacian L (see Fig. 1). The second connection is derived
from the Courant-Fischer theorem [62], which suggests that
the smoothness of φ is related to the eigenvectors and eigen-
values of Laplacian L. Eigenvectors with smaller eigenvalues
imply a smoother φ [54]. Taken together, the smoothness
of φ matters in our analysis because it is closely related to
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the topology information conveyed by Laplacian L. To en-
able variable Xφ to represent network G, we expect that the
smoothness of φ is completely determined by the topology
properties of G.

To properly measure information quantities (e.g., mutual
information) between complex networks applying Xφ , the up-
per bounds of these quantities in Xφ should not be too small.
Otherwise, these quantities may be easily covered by noises
in empirical data due to their small orders of magnitude. In
the present study, we primarily focus on the Shannon entropy
because extensive information upper bounds are related to it
[57]. This idea inspires us to consider maximum entropy dis-
tribution problems [57] while defining mapping φ (see Fig. 1).

In sum, one way for solving questions (I) and (II) is to con-
sider both the smoothness and maximum entropy properties
of mapping φ. Below, we suggest a potential solution.

III. GAUSSIAN VARIABLE DEFINED BY THE FUNCTION
OF LAPLACIAN

To avoid that smoothness, S (φ) in Eq. (1) diverges and
random variable Xφ is expected to have finite first and second
moments on each dimension. Please note that this setting has
no explicit relation with the divergent second moment of the
degree distribution of a scale-free network [63]. The finite mo-
ments of Xφ are only proposed for ensuring the mathematical
simplicity of S (φ) [i.e., a divergent S (φ) is meaningless in
application].

In our theory, we suggest a possible scheme:

E(Xφ ) = 0, (5)

D(Xφ ) = � ∈ Rn×n, (6)

where 0 = (0, . . . , 0) is a vector of zeros, E(·) denotes the
first moment, and D(·) denotes the second moment. Given
Eqs. (5) and (6), we can reformulate Eq. (1) as

E(S (φ)) =
∑

(vi,v j )∈E

√
Wi, j (�ii + � j j − 2�i j ), (7)

where W , the weighted adjacent matrix, is predetermined by
a given network. In Eq. (7), matrix � is the only adjustable
term. To enable Xφ to reflect the topology of G, we suggest to
choose matrix � as

� = L + 1

n
J, (8)

where J is an all-one matrix. The motivation of the above
definition lies in four aspects. First, although L is a singular
matrix, previous studies have proven that L + 1

n J is invertible
if network G is connected [64,65];(

L + 1

n
J

)−1

= L† + 1

n
J, (9)

where † denotes the Moore-Penrose pseudoinverse that satisfy
LL†L = L [66]. This property ensures the possibility to calcu-
late numerous quantities defined with �−1 in Sec. IV. Second,
Eqs. (8) and (9) relate � with L† directly. The pseudoinverse
Laplacian L† is the reproducing kernel of H(G), the Hilbert
space of real-valued functions over the node set fG : V → Rn

whose inner product is 〈 fG, gG〉 = fG
T LgG [67,68]. Because

L† is unique for H(G), we can confirm a unique H(G) given
L†. This property lays foundations for kernel tricks [69–71] on
network G when future studies explore machine learning tasks
on random variable Xφ (e.g., see kernel tricks in causality
analysis [72,73]). Third, Laplacian L and its pseudoinverse L†

directly determine various topology properties of G (e.g., net-
work coherence [74], node importance [75], and the number
of spanning trees [61]). Therefore, Eqs. (8) and (9) ensure the
expressive ability of Xφ about network topology. Fourth, we
can apply Eq. (4) to derive the quadratic form

E(S (φ)) = E(Xφ )T LE(Xφ ) + tr (L�), (10)

= tr

[
L

(
L + 1

n
J

)]
(11)

if Eq. (8) holds. Once network G is connected (i.e., there
is only one zero eigenvalue in {λ1, . . . , λn}), we can further
apply LL† = L†L = I − 1

n J [65,75,76], where I is the unit
matrix, to derive

E(S (φ)) = tr[LL + L(I − L†L)], (12)

= tr(LL + L − LL†L), (13)

= tr (LL). (14)

Equations (11) and (14) suggest a benefit of Eq. (8) that
we can control the expected smoothness of φ on a network
completely by Laplacian L (see Fig. 1).

To ensure the maximum entropy property, we need to ana-
lyze the maximum entropy distribution problem. Considering
a random variable Xφ ∈ Rn with finite first and second mo-
ments defined in Eqs. (5) and (6), we know

H(Xφ ) � H(N (0, �)), (15)

where H(·) denotes the Shannon entropy [57] and N (0, �)
is the n-dimensional Gaussian distribution. Equation (15) is
derived from the fact that the maximum entropy distribution
defined on Rn with given first and second moments in Eqs. (5)
and (6) is the Gaussian distribution [57]. Therefore, we define
random variable Xφ as

Xφ ∼ N
(

0, L + 1

n
J

)
(16)

to reflect the topology of network G (see Fig. 1). In practice,
we can readily derive the accurate entropy value

H(Xφ ) = n

2
+ n

2
ln (2π ) + 1

2
ln

[
det

(
L + 1

n
J

)]
, (17)

where det(·) denotes the determinant.
In sum, a possible solution of questions (I) and (II) is to

represent G by a Gaussian variable in Eq. (13), which ensures
the topology-dependent smoothness and maximum entropy
properties of mapping φ (see Fig. 1). Such a variable is char-
acterized by a function of the Laplacian operator [60], whose
precision matrix is L† + 1

n J .
Interestingly, we notice that Eq. (8) is similar with the

graph signal characterization [77,78] derived by factor anal-
ysis [79] and low-rank models [80,81], which states that a
Gaussian Markov random field representation (a special type
of Gaussian variable) improves graph learning in practice
[77,78]. The difference between Refs. [77,78] and our work
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FIG. 2. Information divergence and mutual information between
complex networks. The information divergence from network Ga to
network Gb, defined by D(X a

φ ‖X b
φ ) in Eq. (20), is not necessarily

equal to the information divergence from network Gb to network Ga

(upper parallel). The mutual information between networks Ga and
Gb, defined by I(X a

φ ;X b
φ ) in Eq. (21), can be understood as the shared

part of entropy quantities H(X a
φ ) and H(X b

φ ) (bottom parallel).

lies in that they assume the covariance matrix as � = L† while
we define � = L + 1

n J . This similarity suggests the validity
of our ideas from the perspective of computation practice. In
general, our definition can be treated as a variant of existing
approaches [77,78]. Our main progress lies in that we offer
a theoretical explanation for the mechanisms underlying the
successes of these engineering practices from the perspectives
of topology-dependent smoothness and maximum entropy. In
Sec. VIII B, we present a comprehensive comparison between
our work and previous studies [77,78].

IV. ANALYTIC METRICS OF NETWORK RELATIONS

After representing two networks Ga and Gb by variables
X a

φ =(X a
φ (1), . . . , X a

φ (n))∼N (0, L(a)+ 1
n J ) and X b

φ=(X b
φ (1),

. . . , X b
φ (n)) ∼ N (0, L(b) + 1

n J ), we can develop analytic
metrics of network relations.

A. Encoding: information divergence and mutual information

For information divergence (or referred to as the Kullback-
Leibler divergence [57]), we can formulate it in a conventional
form

D
(
X a

φ

∥∥X b
φ

) = Eρa [log (ρa) − log (ρb)], (18)

where ρa and ρb are probability densities of X a
φ and X b

φ ,
respectively (see Fig. 2). Because X a

φ and X b
φ are Gaussian

variables, we can derive

log (ρa) = − 1

2
log

[
(2π )n det

(
L(a) + 1

n
J

)]
− 1

2

[
X a

φ

]T(
L†(a) + 1

n
J

)
X a

φ , (19)

which readily leads to

D
(
X a

φ

∥∥X b
φ

) = 1

2

[
tr

[(
L†(b) + 1

n
J

)(
L(a) + 1

n
J

)]

− n + ln
det
(
L(b) + 1

n J
)

det
(
L(a) + 1

n J
)]. (20)

Equation (20) measures the directional difference between the
topology of Ga and Gb. The difference is directional since
D(X a

φ ‖X b
φ ) �= D(X b

φ‖X a
φ ) (see Fig. 2). An important property

of the information divergence defined in Eq. (20) lies in that
it is completely determined by the Laplacian spectra of two
networks. Therefore, it is less suitable for comparing between
isospectral networks (i.e., networks can share a same Lapla-
cian spectrum but have different network topology properties).

For mutual information I (X a
φ ;X b

φ ) that quantifies the
topology information of network Ga encoded by network Gb,
we can calculate (see Fig. 2)

I
(
X a

φ ;X b
φ

) = H
(
X a

φ

)+ H
(
X b

φ

)− H
(
X a

φ ,X b
φ

)
, (21)

where H(X a
φ ) and H(X b

φ ) can be measured based on Eq. (17).
A challenge in Eq. (21) lies in that H(X a

φ ,X b
φ ) is nontrivial

for analytic derivations unless variables X a
φ and X b

φ are jointly
Gaussian [this enables H(X a

φ ,X b
φ ) to be defined by Eq. (17) as

well]. In more general cases where we do not know whether
X a

φ and X b
φ are jointly Gaussian or not, we generate sam-

ples of X a
φ ∼ N (0, L(a) + 1

n J ) and X b
φ ∼ N (0, L(b) + 1

n J )
by inverse transform sampling [82] to estimate H(X a

φ ,X b
φ ) us-

ing the Kozachenko-Leonenko estimator of Shannon entropy
[83,84]. This approach enables us to derive mutual informa-
tion in real situations.

B. Decoding: Fisher information

For Fisher information, we assume that a parameter vector
	 = (θ1, . . . , θk ) ∈ Rk controlled by network Gb can affect
the Laplacian L(a) of network Ga. Fisher information mea-
sures how precisely we can decode the topology information
of Ga from Gb according to parameter vector 	. We denote
X a

φ ∼ N (0, L†(a | 	)) as the Gaussian variable given param-
eter vector 	 (see Fig. 3). Then we can have a special form of
Fisher information matrix depending on the covariance matrix
[85,86]

Fi j (	) = −
∫

ρa(χ ; 	)

{
∂2

∂θiθ j
log[ρa(χ | 	′)]

∣∣∣∣∣
	′=	

}
dχ,

(22)

= 1

2
tr

[(
L†(a | 	) + 1

n
J

)
∂L(a | 	)

∂θi

×
(

L†(a | 	) + 1

n
J

)
∂L(a | 	)

∂θ j

]
, (23)

033129-4



NETWORK COMPARISON VIA ENCODING, DECODING, … PHYSICAL REVIEW RESEARCH 5, 033129 (2023)

FIG. 3. Fisher information between complex networks. The (i, j)
element in the Fisher information matrix, denoted by Fi j (	) in
Eq. (22), can be understood as the information that network Ga

carries about the parameter vector 	 controlled by network Gb. The
information is contained in ρa(· | 	), the probability distribution of
variable X a

φ that is affected by 	. The information quantity can be
understood as the mean sensitivity of ρa(· | 	) toward the variation
of 	.

where ρa(· | 	) is the probability density of X a
φ given 	 (see

Fig. 3). We define

∂L(a; 	)

∂θi
=

⎡⎢⎢⎢⎢⎣
∂L11(a | 	)

∂θi
. . .

∂L1n(a | 	)

∂θi
...

. . .
...

∂Ln1(a | 	)

∂θi
. . .

∂Lnn(a | 	)

∂θi

⎤⎥⎥⎥⎥⎦. (24)

The expectation vector does not occur in Eq. (23) since X a
φ

has zero expectation on each dimension. In application, one
can further calculate Fisher information quantity, tr[F (	)],
as a metric of decoding precision.

C. Causality: Granger causality and conditional
mutual information

To this point, we have analytically derived information
divergence, mutual information, and Fisher information be-
tween complex networks. These metrics lay the foundation
of encoding and decoding analyses on network ensembles.
Compared with these analyses, causality is more technically
nontrivial to study between networks because it is previously
limited to time series [58]. Although dynamic networks fea-
ture time domain evolution [87–89], most networks lack a
well-defined concept of time (e.g., networks may be static). To
develop applicable causality metrics for arbitrary networks,
we explore possible generalization of the mainstream causal-
ity metrics, such as transfer entropy [90–92] and Granger
causality [93–96], from time domain to graph domain. Please
note that transfer entropy is equivalent to conditional mutual
information [57] if we do not apply the terminology of time
series. For the sake of clarity, we only use conditional mutual
information as its name in our framework.

Let us begin with a classic form of Granger causality an-
alyzed by regression models. Our basic idea is to consider
a random partition on network Ga to divide it into two sub-
networks, G◦

a and G�
a . This is equivalent to dividing random

variable X a
φ = (X a

φ (1), . . . , X a
φ (n)) into two subvectors of

FIG. 4. Granger causality and conditional mutual information
between complex networks. To quantify the causal effects from Gb

to Ga, we first do random partition on network Ga to obtain two
subnetworks. Then we predict the topology properties of one sub-
network based on another subnetwork. The prediction may involve
residuals (in terms of Granger causality) or uncertainty (in terms
of conditional mutual information). The causal effects from Gb to
Ga are reflected by the reduction of residuals and uncertainty after
we include the information of Gb into the prediction. By repeating
random partition and prediction, we measure Granger causality and
conditional mutual information in terms of the average reduction of
residuals and uncertainty.

multivariate Gaussian random variables X a,◦
φ and X a,�

φ . With-
out loss of generality, we set X a,◦

φ = (X a
φ (1), . . . , X a

φ (k)) ∼
N (0, L(a, ◦) + 1

n J ) and X a,�
φ = (X a

φ (k + 1), . . . , X a
φ (n)) ∼

N (0, L(a, �) + 1
n J ), where we define

L(a, ◦) =

⎡⎢⎣L11(a) . . . L1k (a)
...

. . .
...

Lk1(a) . . . Lkk (a)

⎤⎥⎦, (25)

L(a, �) =

⎡⎢⎣L(k+1)(k+1)(a) . . . L(k+1)n(a)
...

. . .
...

Ln(k+1)(a) . . . Lnn(a)

⎤⎥⎦, (26)

and we can represent L(a) in a block matrix form L(a) =
[L(a, ◦) L(a,�)
L(a,�) L(a, �) ]. Then, we use X a,◦

φ to predict X a,�
φ with a

linear model:

X a,�
φ = β + X a,◦

φ A + ε, (27)

where A denotes the regression coefficient matrix, β is a con-
stant vector, and ε measures regression residuals. Meanwhile,
we can also use X a,◦

φ and X b
φ to predict X a,�

φ ,

X a,�
φ = β ′ + (X a,◦

φ ⊕ X b
φ

)
A′ + ε′, (28)

where we have applied notion ⊕ to denote the concatenation
of two vectors, i.e., X a,◦

φ ⊕ X b
φ = (X a

φ (1), . . . , X a
φ (k), X b

φ (1),
. . . , X b

φ (n)) (see Fig. 4). According to Refs. [97,98], the
ordinary least squares regression for Eqs. (27) and (28) is
suggested to minimize the determinant of covariance matrix
of residuals (referred to as the generalized variance). The
covariance matrices of residuals for Eqs. (27) and (28) are

�(ε) = �
(
X a,�

φ

∣∣X a,◦
φ

)
, (29)

�(ε′) = �
(
X a,�

φ

∣∣X a,◦
φ ⊕ X b

φ

)
. (30)
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The Granger causality can be defined as the natural logarith-
mic ratio between the determinant values of Eqs. (29) and (30)
[97]:

TG
(
X b

φ → X a
φ

) =
〈

ln

[
det (�(ε))

det (�(ε′))

]〉
, (31)

where the average 〈·〉 is implemented across multiple ran-
domly generated configurations of X a,�

φ and X a,◦
φ [i.e., we

can randomly select h configurations of X a,�
φ and X a,◦

φ to

calculate h values of ln[ �(ε)
�(ε′ ) ] and average across them to

derive Eq. (31)]. Please see Fig. 4 for illustrations. Because
X a,�

φ and X a,◦
φ are jointly Gaussian [97,98], we can readily

derive

�(ε) = L(a, ◦) + 1

n
J −

(
L(a,�) + 1

n
J

)
×
(

L(a, �) + 1

n
J

)−1(
L(a,�) + 1

n
J

)
. (32)

However, �(ε′) cannot be analytically derived by the Lapla-
cians of networks unless we relax conditions (e.g., let X a,�

φ ,
X a,◦

φ , and X b
φ be jointly Gaussian as well). Similar to the

situation in Eq. (21), we suggest that one can generate samples
of X a,�

φ , X a,◦
φ , and X b

φ by inverse transform sampling [82] to
estimate �(ε′) in practice. Please note that our derivations
presented above do not require any knowledge about node
alignment (i.e., node vi in network Ga corresponds to node
v j in network Gb).

Then, we turn to formulating conditional mutual infor-
mation [57] (i.e., the counterpart of transfer entropy defined
between networks):

TT
(
X b

φ → X a
φ

)
= 〈

I
(
X a,�

φ ;X b
φ

∣∣X a,◦
φ

)〉
(33)

= 〈
H
(
X a,�

φ

∣∣X a,◦
φ

)− H
(
X a,�

φ

∣∣X a,◦
φ ⊕ X b

φ

)〉
. (34)

Please see Fig. 4 for illustrations. Similar to Eq. (32), we can
derive

H
(
X a,�

φ

∣∣X a,◦
φ

) = H
(
X a,�

φ ⊕ X a,◦
φ

)− H
(
X a,◦

φ

)
, (35)

= n − k

2
+ n − k

2
log (2π )

+ 1

2
log

[
det
(
L(a) + 1

n J
)

det
(
L(a, ◦) + 1

n J
)] (36)

because X a,�
φ and X a,◦

φ are jointly Gaussian. Similar to the
cases in Eq. (21) and �(ε′), we can not derive a general ex-
pression of H(X a,�

φ |X a,◦
φ ⊕ X b

φ ) = H(X a
φ ,X b

φ ) − H(X a,◦
φ ⊕

X b
φ ) directly. In practice, we can resolve this challenge by

inverse transform sampling [82] the Kozachenko-Leonenko
estimator of Shannon entropy [83,84].

The causality metrics considered here, such as TG(X b
φ →

X a
φ ) and TT (X b

φ → X a
φ ), should be referred to as ap-

parent causality metrics according to Ref. [99] (one can
see similar apparent causality metrics for time series in
Refs. [90–96,100]). During predicting the topology properties
of subnetwork G�

a by the characteristics of subnetwork G◦
a ,

these apparent causality metrics mainly reflect how the residu-
als and uncertainty of prediction are reduced by including the
information of network Gb. A higher reduction degree means
that Gb contains more information about G�

a on average, imply-
ing that network Gb is more similar to network Ga. Therefore,
these metrics can be principally used for network comparison.
Compared with the information divergence, mutual informa-
tion, and Fisher information derived in Eqs. (18)–(24), these
apparent causality metrics convey more knowledge about the
information flow from Gb to Ga.

To derive complete causality metrics that reflect causal
relations more precisely (e.g., enable TG and TT approxi-
mate causal information flow [101]), one needs to consider
TG(X b

φ → X a
φ |Y ) and TT (X b

φ → X a
φ |Y ) given a reference

variable Y . Because the details of introducing Y have been
comprehensively explored in Refs. [97,99,102,103], and these
details do not imply critical challenges for mathematical
derivations, we no longer repeat their analyses here. One can
combine Refs. [97,99,102,103] and our framework to derive
TG(X b

φ → X a
φ |Y ) and TT (X b

φ → X a
φ |Y ) between networks.

V. GENERALIZATION OF ANALYTIC METRICS

One may notice that our derivations in Sec. IV are shown
in a case where X a

φ and X b
φ are both n dimensional, meaning

that networks Ga and Gb both contain n nodes. This limita-
tion arises from the fact that we need to calculate (L†(b) +
1
n J )(L(a) + 1

n J ) in information divergence. The definitions
of mutual information, Fisher information, Granger causality,
and conditional mutual information have no such a limitation
and are generally applicable to arbitrary cases.

In practice, we frequently need to analyze relations be-
tween complex networks with distinct sizes (number of
nodes). To make our information divergence applicable to
these networks, we suggest a practical solution based on
Laplacian energy. Let us consider a case where X a

φ and X b
φ

are m dimensional and n dimensional, respectively. Without
loss of generality, we primarily discuss the case where m > n.
The Laplacian energy of network Ga(Va, Ea) is defined as
[104–107]

L(Ga) =
m∑

i=1

λ2
i = tr (L(a)L(a)), (37)

where (λ1, . . . , λm) are the eigenvalues of L(a). Note that
Eq. (37) is equivalent to Eq. (14). Based on Eq. (37), we
can measure the importance of each node vi in maintaining
topology properties of Ga by Laplacian centrality [105,107]

A(vi,Ga) = L(Ga) − L(Ga/{vi})

L(Ga)
, (38)

where Ga/{vi} means deleting node vi from network Ga. Note
that we have L(Ga) � L(Ga/{vi}), where the equality holds if
and only if vi is an isolated node (i.e., has no influence on
main topology properties of Ga) [105,107]. In general, the
Laplacian centrality of node vi is determined by the num-
ber of walks it participates in Ga, i.e., the number of closed
walks (vi, . . . , vi ), the number of nonclosed walks (vi, . . .)
and (. . . , vi ) where vi is one of the end nodes, the number of
nonclosed walks (. . . , vi, . . .) containing vi as a middle node.
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FIG. 5. The generalization of information divergence. When net-
works Ga and Gb have different sizes (e.g., network Ga contains more
nodes), the information divergence defined in Eq. (20) cannot be cal-
culated directly. Consequently, we need to measure the importance of
nodes in Ga from the perspective of network topology. In Eq. (38), we
introduce A(·,Ga), the importance measurement based on Laplacian
energy, as a possible approach. After assigning the importance of
each node in Ga, we can exclude the nodes with relatively lower im-
portance to make the filtered Ga have the same size as Gb. Information
divergence from the filtered Ga to Gb can be measured and treated as
an approximation of the information divergence from the original Ga

to Gb. The rationality γ of this approximation can be measured as
the fraction of the lost Laplacian energy in the original Laplacian
energy.

In Ref. [107], it is suggested that Eq. (38) can be reformulated
by analyzing walks of length two (containing three nodes).
Specifically, one can derive Eq. (39) following Ref. [107]:

L(Ga) − L(Ga/{vi}) = 4ηc(vi ) + 2ηe(vi ) + 2ηm(vi ), (39)

where ηc(vi ) measures the number of closed walks (vi, v j, vi ),
ηe(vi ) measures the number of nonclosed walks (vi, v j, vk )
and (v j, vk, vi ), and ηm(vi) measures the number of nonclosed
walks (v j, vi, vk ). Applying the weight adjacent matrices
W (a) and M(a) [here M(a) is the weight adjacent matrix of
network Ga/{vi}], we suggest that Eq. (39) can be calculated
as

L(Ga) − L(Ga/{vi})

= 4[W (a)2]ii + 2

⎡⎣∑
j �=k

[W (a)2] jk −
∑
j �=k

[M(a)2] jk

⎤⎦.

(40)

Note that [W (a)2] jk = [W (a)W (a)] jk , the (i, j) element in
matrix W (a)2, is not equivalent to W 2

i j (a), the second power
of (i, j) element in matrix W (a). Combining Eqs. (37) and
(38) and Eq. (40), we can measure the Laplacian centrality of
each node in network Ga and only keep n nodes with relatively
large Laplacian centrality values. In other words, m − n nodes
are filtered because their effects on topology properties of Ga

are less significant (see Fig. 5). We refer to the network after
filtering as Ĝa and denote its Laplacian and Gaussian variable
as L̂(a) and X̂ a

φ , respectively. Then we can approximatively
calculate information divergence in Eq. (20) by replacing L(a)
and X a

φ as L̂(a) and X̂ a
φ (see Fig. 5). In the case where m < n,

we can similarly deal with network Gb following the above
approach.

The rationality γ of the above approximation can be mea-
sured based on the loss of Laplacian energy. Taking the case
where m > n as an instance, we define the rationality of ap-
proximating Ga by Ĝa as (see Fig. 5)

γ (L(Ga),L(Ĝa)) = L(Ĝa)

L(Ga)
. (41)

To this point, we have presented analytic metrics of net-
work relations from the perspectives of encoding, decoding,
and causal analyses in Sec. IV. We have also explored their
generalization in Sec. V. Below, we validate our approach on
representative complex networks to define encoding, decod-
ing, and causal analysis tasks.

VI. ENCODING, DECODING, AND CAUSAL ANALYSES
ON RANDOM NETWORK MODELS

We first consider encoding, decoding, and causal analyses
on random network models, such as Watts-Strogatz model
(with small-world properties) [108], Erdos-Renyi model (each
pair of nodes are connected according to a probability
quantity) [109], and Barabási-Albert model (with scale-free
properties) [110]. These random network models are impor-
tant in statistical physics and mathematics (e.g., for analyzing
percolation on small-world networks [111], Erdos-Renyi net-
works [112], and scale-free networks [113]). Meanwhile,
they are prototypes in analyzing social [114,115], biologi-
cal [116–121], and chemical [122,123] networks. Therefore,
the encoding, decoding, and causal analyses implemented
on these models can be further generalized to diverse real
networks with corresponding topology properties. The main
motivation of our analyses on random network models is to
validate the proposed analytic metrics of network relations
and suggest practical solutions of potential limitations.

A. Experiment designs

In our experiment, a Watts-Strogatz model (each node orig-
inally connects with α = 15 nodes, and edges are randomly
rewired according to a probability of β = 0.7), an Erdos-
Renyi model (each pair of nodes are connected according
to a probability of ρ = 0.15), and a Barabási-Albert model
(there are 50 edges that bridge between a new node to existing
nodes during network construction) are generated and initially
contain 300 nodes. Note that all the network parameters used
in initialization are set for convenience, and our analyses do
not critically rely on these parameters.

We consider three representative network evolution pro-
cesses, i.e., node deletion, edge rewiring, and node adding,
on these initialized networks, where each process con-
sists of 100 iterations. During the node deletion process,
we randomly delete one node and all related edges from
these three networks in each iteration. During the edge
rewiring process, we randomly select one node and rewire
its edges in each iteration. The edge rewiring rules can be
set in diverse forms but should be different from the edge
wiring rules in original random networks (e.g., the rewiring
rules in the Barabási-Albert random network should not be
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preferential attachment). Otherwise, the generated network
after rewiring may not become increasingly different from the
original one as the iteration number n increases. To ensure
the enlarging difference, we define the rewiring processes of
initialized Watts-Strogatz, Erdos-Renyi, and Barabási-Albert
random networks following the wring rules of Erdos-Renyi
(ρ = 0.5), Watts-Strogatz (α = 40 and β = 0.1), and Erdos-
Renyi (ρ = 0.1) models, respectively. During the node adding
process, we add a node in each iteration and connect it with
existing nodes according to certain wiring rules. The wiring
rules are set to be distinct from those in the original networks.
For convenience, we design the wiring of added nodes in
initialized Watts-Strogatz, Erdos-Renyi, and Barabási-Albert
networks following the rules in Erdos-Renyi (ρ = 0.5), Watts-
Strogatz (α = 40 and β = 0.1), and Erdos-Renyi (ρ = 0.6)
models, respectively.

Encoding, decoding, and causal analyses are implemented
between X b

φ , the networks in the nth iteration (n ∈ Z ∩
[1, 100]), and X a

φ , the networks in their initialized forms.
Certainly, one may notice that the decoding analysis has not
been explicitly defined by the above settings. In real cases, the
decoding analysis should be defined according to research de-
mands. In our research, we present an instance of the decoding
analysis based on a parameter vector 	 = (θ1, . . . , θ10) con-
trolled by X b

φ . Parameter vector 	 is designed to affect X a
φ and

make it become X a
φ + ε, where ε ∼ N (0,	) denotes the ef-

fects of 	 on X a
φ . For convenience, we consider a case where

	 is defined as the degree vector (θ1 = deg(v1), . . . , θ10 =
deg(v10)) of a set of nodes {v1, . . . , v10} randomly selected
from network Gb. By repeating random sampling, we can
obtain a set of observations {	i = (θ i

1, . . . , θ
i
10)} of the pa-

rameter vector, each of which corresponds to an effect on
X a

φ to create an observation X a
φ + εi. Based on these settings,

the decoding analysis can be implemented to measure the
information of 	 contained in the probability distribution of
X a

φ + ε.
In our experiment, each kind of network evolution process

is repeated for 50 times such that encoding, decoding, and
causal analyses can be implemented on different realizations
of random network evolution.

B. Experiment results

As n increases, more topology properties are changed due
to node deletion, edge rewiring, or node adding. Therefore,
X a

φ and X b
φ are expected to become increasingly different dur-

ing network evolution processes. Below, we validate whether
the enlarging difference can be captured by our encoding,
decoding, and causal analyses.

In Fig. 6, we compare between the results of encoding,
decoding, and causal analyses obtained in the 1th and 100th it-
erations of network evolution processes. The changes of these
relation metrics are statistically significant if they can pass
the t test [124] (i.e., the distributions of these metrics in the
1th and 100th iterations are statistically different). Otherwise,
they should be treated as less sensitive to network evolution.
As shown in the experiment results, information divergence,
mutual information, and conditional mutual information can
robustly pass the t test with a rigid standard of p < 10−4.
As presented in Fig. 6, these statistically significant relation

metrics can reflect the reduction of network similarities during
network evolution. Specifically, the enlarging difference be-
tween X a

φ and X b
φ can be generally reflected by the increasing

information divergence, the decreasing mutual information,
and the decreasing conditional mutual information. An excep-
tion to this property is the decreasing information divergence
from X b

φ to X a
φ during node deletion. We hypothesize that the

inconsistent variation trends of D(X a
φ ‖X b

φ ) and D(X b
φ‖X a

φ )
during node deletion may arise from the asymmetry properties
of information divergence (i.e., information divergence is a
kind of pseudodistance). Meanwhile, the information diver-
gence generalized by the Laplacian-energy-based approach
in Sec. V may fail to reflect the actual divergence between
networks with different sizes. As for the other metrics that are
not statistically significant in the t test (e.g., Fisher informa-
tion and Granger causality), they do not have clear patterns at
the group level and exhibit high diversities across different re-
alizations of network evolution processes. This phenomenon
may arise from the numerical susceptibility of these metrics
toward concrete configurations of random networks.

In sum, we suggest information divergence, mutual infor-
mation, and conditional mutual information as prior choices
for analyzing random network evolution. The results derived
by Fisher information and Granger causality may be more
numerically susceptible to the topology properties of concrete
random network realizations.

VII. ENCODING, DECODING, AND CAUSAL ANALYSES
ON REAL NETWORKS

Among various tasks in network analysis, assigning net-
work similarity in network ensembles is an important one,
which is closely related to network clustering, query, and clas-
sification tasks in machine learning. Here we implement the
similarity measurement task under our theoretical framework
and other competitive alternatives.

A. Data sets

Three real network data sets are used in our experiment.
The first data set, PROTEINS [125], contains the network
structures of numerous proteins. These proteins are classi-
fied into enzyme and nonenzyme classes. The second data
set, MUTAG [126], is a collection of mutagenic aromatic
and heteroaromatic nitro compounds. Each chemical com-
pound is represented by a network of atoms and is classified
into two classes according to their mutagenic effects on spe-
cific gram negative bacteria. The third data set, ENZYMES
[125], contains protein tertiary structures (i.e., the structure
where polypeptide chains become functional) derived from
the BRENDA enzyme data. There are six kinds of enzymes
included in the data set. These three data sets are filtered
such that all remaining networks are connected graphs (i.e.,
each network has one connected component). Meanwhile,
PROTEINS and ENZYMES data sets are filtered according
to network size to ensure that remaining networks are not too
small (i.e., thresholds are set as 50 and 40 for PROTEINS and
ENZYMES, respectively). Note that the filtering procedure is
proposed for numerical convenience as some of the compared
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FIG. 6. Encoding, decoding, and causal analyses on Watts-Strogatz (WS), Erdos-Renyi (ER), and Barabási-Albert (BA) random networks
during node deletion, edge rewiring, and node adding processes. (a)–(e) The comparison between the encoding, decoding, and causality metrics
derived in the 1th and 100th iterations of the node deletion process. (f)–(j) The comparison between the encoding, decoding, and causality
metrics derived in the 1th and 100th iterations of the edge rewiring process. (l)–(p) The comparison between the encoding, decoding, and
causality metrics derived in the 1th and 100th iterations of the node adding process. Note that the corresponding t statistic will be shown along
with the data if the comparison can pass the t -test with a standard of p < 10−4.

approaches in our experiment may meet numerical issues on
small or disconnected networks.

B. Compared approaches

Apart from our proposed information divergence (ID),
mutual information (MI), Fisher information (FI), Granger

causality (GC), and conditional mutual information (CMI),
numerous classic approaches are also implemented in our
experiment for comparison.

The first family of approaches, provided by the Net-
Comp toolbox [127], assign the difference between two
networks by calculating the Lp distance between the m largest
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eigenvalues of adjacency matrices (A), Laplacian operators
(L), and normalized Laplacian operators (nL). For each matrix
representation, we calculate L1, L2, and L∞ distances to mea-
sure similarities (we set m = 10 for convenience). According
to the selection of distance and matrix representation, the
results are referred to as A1, A2, AInf, L1, L2, LInf, nL1,
nL2, and nLInf, respectively. For instance, nLInf refers to the
L∞ distance between the eigenvalue vectors of normalized
Laplacian operators. Other metrics can be interpreted in simi-
lar ways.

The second family of approaches embed networks as vec-
tors applying the Graph2Vec framework [31] (note that we
set the embedded vector length as 128). Network difference is
measured as the Lp or cosine distance between the embedded
vectors of networks. According to the applied distance, the
derived results are referred to as G2Vec1, G2Vec2, G2VecInf,
and G2VecCos, respectively. For example, G2Vec1 refers to
the L1 distance while G2VecCos denotes the cosine distance.

The third family of approaches are rooted in the theory
of optimal transport between graphs [53,128]. In general,
we represent each network G as a Gaussian variable Xφ ∼
N (0, f (L)), where f (L) denotes a function of Laplacian L.
In our experiment, we set f (L) = L + 1

n J [same as Eq. (16)
and referred to as GOT-L], f (L) = L† + 1

n J (referred to as
GOT-LPinv), and f (L) = exp(−τL) (we set τ = 0.5 and re-
fer to it as GOT-Exp). Then, we can analytically derive the
Wasserstein distance between each pair of the defined Gaus-
sian variables to assign the difference between corresponding
networks. Please see Refs. [53,128] for detailed calculation
approaches.

Other considered approaches are proposed from diverse
perspectives and have distinct characteristics (see Ref. [129]
for a comprehensive review). In our experiment, we ap-
ply onion divergence (OnD, the Jensen-Shannon divergence
between the onion decomposition results of two networks)
[130,131], degree divergence (DD, the Jensen-Shannon diver-
gence measured between degree distributions) [132], portrait
divergence (PD, the Jensen-Shannon divergence between
network portraits) [133], NetLSD distance (NetLSD, the
Frobenius norm of the difference between the heat trace
signatures of normalized Laplacian operators) [134], Ipsen-
Mikhailov distance (IM, a kind of spectral comparison
between Laplacian operators) [135], distributional nonback-
tracking spectral distance (DNBD, the difference between
the eigenvalues of the nonbacktracking matrices of networks)
[136], and NetSimile (NetSimile, the difference between mul-
tiple statistical features of networks) [137].

C. Experiment designs

Our experiment consists of three main steps. First, we
calculate each network relation metric among networks to
generate the corresponding network relation matrix R, where
Ri j denotes the relation metric between networks Gi and G j

(e.g., when mutual information is considered, element Ri j

measures the mutual information between Gi and G j). For the
network relation metrics whose larger values suggest larger
differences between networks (e.g., our proposed information
divergence and all the implemented classic relation metrics),
matrix R can directly serve as a distance matrix, denoted by D.

For the network relation metrics whose larger values denote
larger similarities between networks (e.g., our proposed mu-
tual information, Fisher information, Granger causality, and
conditional mutual information), we transform matrix R to a
distance matrix D following Di j = −Ri j + maxi, j Ri j . For the
sake of simplicity, we average between Di j and Dji to make
the derived distance matrix symmetric.

Second, we use these distance matrices to constrain the
computing process of the t-SNE analysis [138], a kind of
unsupervised machine learning approach for dimension re-
duction. The constraint is realized by replacing the default
distance measurement in the t-SNE analysis (e.g., Lp distance
in most common toolboxes) with our precomputed distance
matrix D. Based on this setting, the results of the t-SNE
can reflect the properties of the customized matrix D. In our
experiment, we apply the t-SNE to embed networks into a two
dimensional space.

Third, we evaluate the validity of the t-SNE constrained
by matrix D by a k-nearest neighbor query task. In this task,
we search the k-nearest neighbor for each network in the em-
bedded space and compare between their labels (i.e., the class
information). The k-nearest neighbor is determined using the
L2 distance. If the metric used for defining matrix D can
properly capture the relation between networks, the selected
network is expected to share the same label with its k-nearest
neighbor (i.e., they belong to the same class) when k is not
too large. We treat a query as correct if the network and its
queried neighbor belong to the same class. Otherwise, the
query is treated as wrong. By implementing queries on all
networks in the embedded space, we can calculate the query
accuracy (i.e., the proportion of correct queries among all
queries) to evaluate the validity of network relation metric.
An ideal network relation metric should achieve a high query
accuracy on each data set.

D. Experiment results

For each data set, we visualize its embedded spaces derived
from the t-SNE analysis constrained by different network
relation metrics in Fig. 7. Class labels are distinguished ac-
cording to colors. Compared with classic approaches, our
information divergence (ID), mutual information (MI), and
conditional mutual information (CMI) create more clear data
distributions in the embedded spaces, where each class of
networks are close to each other to form a cluster with clear
patterns. As for Fisher information (FI), Granger causality
(GC), and classic approaches, they imply more blurry embed-
ded distributions with low data separability between different
classes.

To quantitatively validate our above observations, we
present the k-nearest neighbor query accuracy associated
with each network relation metric (k ∈ {2, 3, 4, 5}) in Fig. 8.
Consistent with Fig. 7, the query accuracy values achieved
by ID, MI, and CMI are higher than those achieved by
other metrics. FI and GC generally achieve similar accu-
racy values with classic approaches. These results suggest
the applicability of our framework in characterizing network
relations.

In sum, we have compared our proposed network relation
metrics with other approaches [31,53,127–137] in network
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FIG. 7. The t SNE constrained by different network relations on (a) PROTEINS, (b) MUTAG, and (c) ENZYMES data sets.

embedding and query tasks. Our experiments demonstrate that
our framework can achieve competitive or better performance
in these tasks, suggesting the potential of our approach in
studying diverse science and engineering questions related to
network comparison.

VIII. DISCUSSION

A. Progress compared with previous works

Compared with previous data-driven works [30,32–37],
one of the main progresses accomplished in our research is
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FIG. 8. The k-nearest neighbor query accuracy (k ∈ {2, 3, 4, 5}) evaluated on the t SNE constrained by different network relations on
(a) PROTEINS, (b) MUTAG, and (c) ENZYMES data sets.

to suggest a general way to represent the topology properties
of an arbitrary network. Our theory explores a mapping φ to
map an arbitrary network G(V, E ) to a random variable Xφ

distributed on node set V . The random variable is defined as
Xφ ∼ N (0, L + 1

n J ), a Gaussian variable characterized by a
function of the Laplacian L of network G. On the one hand,
such a definition ensures that the average smoothness of map-
ping φ on network G is fully determined by the information
of network topology properties contained in Laplacian L. On
the other hand, this definition satisfies the requirements of
maximum entropy property of variable Xφ to promote the ap-
plicability in measuring information quantities. Based on Xφ ,
we further define encoding (information divergence and mu-
tual information), decoding (Fisher information), and causal
analyses (Granger causality and conditional mutual informa-
tion) between complex networks. We have validated these
analyses on random network models, protein-protein inter-
action network, and chemical compound network ensembles.
Our proposed metrics, especially information divergence, mu-
tual information, and conditional mutual information, can
properly capture the dynamic evolution of random networks
and outperform classic approaches [31,53,127–137] in the
comparison between real networks. A release of our algo-

rithms can be found in Ref. [59]. In the future, one can
further consider a Fisher-Rao metric in information geometry
[139,140] and a Wasserstein-2 metric in optimal transport
[53,139–141], both of which can be readily generalized to
Gaussian variables.

B. Mathematical relations between our theory
and related results

To understand the difference between our work and pre-
vious studies [53,77,78,141], we begin with discussing the
meaning of the following covariance matrix:

�♥ = L† + 1

n
J, (42)

which is directly related to the covariance matrix in
Refs. [53,77,78,141]. As suggested by Eq. (9), the covariance
matrix in Eq. (42) is exactly the inverse of our result � =
L + 1

n J , i.e., �♥ = �−1. If one defines a Gaussian variable
X♥

φ ∼ N (0, �♥), then its precision matrix Q♥ equals our
proposed covariance matrix

Q♥ := �♥−1 = �. (43)
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Because of the partial correlation between X ♥
φ (i) and X ♥

φ ( j),

the actual values of X♥
φ on nodes vi and v j is fully character-

ized by the precision matrix [142],

corr
(
X ♥

φ
(i), X ♥

φ
( j)
∣∣X♥

φ \ {X ♥
φ

(i), X ♥
φ

( j)})
:= − Q♥

i j√
Q♥

ii Q♥
j j

, (44)

= − �i j√
�ii� j j

, (45)

it is trivial to know that variables X ♥
φ (i) and X ♥

φ ( j) are ex-
pected to have a stronger partial correlation if nodes vi and
v j are connected by an edge with larger weight (i.e., a larger
value of −�i j). Similarly, variables X ♥

φ (i) and X ♥
φ ( j) are

expected to share no significant relation if nodes vi and v j are
disconnected. Therefore, the Gaussian variable defined by �♥
is more applicable to the cases where edge weights reflect the
consistent relations between nodes (i.e., positive correlations
or coherence). According to Eq. (10). the expected smooth-
ness of mapping φ in such a Gaussian variable is

E(S (φ)) = E(Xφ )T LE(Xφ ) + tr(L�♥), (46)

= tr

[
L

(
L† + 1

n
J

)]
, (47)

= tr(I ) − 1

n
tr(J ) + tr[L(I − L†L)], (48)

= n − 1. (49)

Equations (48) and (49) are derived from the fact that
LL†L = L [66] and LL† = L†L = I − 1

n J [65,75,76]. In gen-
eral, Eqs. (46)–(49) mean that the expected smoothness of
mapping φ in a network characterized by X♥

φ ∼ N (0, �♥)
is independent of the network topology properties conveyed
by L. On the contrary, the expected smoothness is fully de-
termined by the network size. We speculate that this property
may limit the capacity of X♥

φ ∼ N (0, �♥) to describe com-
plex networks with high heterogeneity.

In our results, the Gaussian variable is Xφ ∼ N (0, L +
1
n J ), where the expected smoothness of mapping φ is fully
characterized by L via E(S (φ)) = tr(LL) [see Eq. (14)]. The
covariance matrix � of such a random variable implies that
variables Xφ (i) and Xφ ( j) are expected to evolve inversely
(i.e., stronger negative covariance) if nodes vi and v j are con-
nected by an edge with larger weight. Meanwhile, variables
Xφ (i) and Xφ ( j) have no significant relation if nodes vi and
v j share no edge between them. In other words, the Gaussian

variable defined by � is more applicable to the cases where
edge weights reflect opposite relations between nodes (i.e.,
negative correlations or anticoherence). Meanwhile, it may
have higher potential to characterize heterogeneous networks
where node difference matters.

In sum, the proposed covariance matrix � = L + 1
n J and

its inverse �♥ = L† + 1
n J are applicable to opposite condi-

tions, respectively. Although we primarily use � to define
encoding, decoding, and causal analyses in our paper, all
derived results can be readily reformulated using �♥. Our
released toolbox [59] allows users to choose between � and
�♥ for a better network characterization.

C. Limitations

As an initial attempt, there remain limitations in our
work for further exploration. Here we suggest two limitations
whose solutions may advance related fields.

The first limitation arises from the requirements of non-
negative edge weights in defining the Laplacian L. There
exist numerous real networks whose edge weights can be
negative (e.g., in neural populations, inhibitory synapses have
negative weights). Although the effects of negative weights
on the eigenvalues of L have drawn increasing attention
(e.g., see Refs. [143–145]), an optimal definition of L on
networks with negative weights remains exclusive. Similarly,
the second limitation occurs when one considers networks
with directed edges. While notable progress has been ac-
complished in defining L on directed networks [146,147],
these achievements cannot completely address our problems
because an asymmetric version of L does not support the def-
inition of Gaussian variable (the covariance matrix � must be
symmetric).
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