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Crossover from Boltzmann to Wigner thermal transport in thermoelectric skutterudites
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Skutterudites are crystals with a cagelike structure that can be augmented with filler atoms (“rattlers”),
usually leading to a reduction in thermal conductivity that can be exploited for thermoelectric applications.
Here, we leverage the recently introduced Wigner formulation of thermal transport to elucidate the microscopic
physics underlying heat conduction in skutterudites, showing that filler atoms can drive a crossover from the
Boltzmann to the Wigner regimes of thermal transport, i.e., from particlelike conduction to wavelike tunneling.
At temperatures where the thermoelectric efficiency of skutterudites is largest, wavelike tunneling can become
comparable to particlelike propagation. We define a Boltzmann deviation descriptor able to differentiate the two
regimes and relate the competition between the two mechanisms to the materials’ chemistry, providing a design
strategy to select rattlers and identify optimal compositions for thermoelectric applications.
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I. INTRODUCTION

Heat is a waste product of many and diverse energy in-
tensive technologies, from vehicle exhausts in transportation
to nuclear and natural gas power plants production, to large-
scale manufacturing. Ongoing research is focused on finding
strategies to convert such waste heat into electricity, and
thermoelectric materials are among the most promising candi-
dates [1] for this task, and for augmenting sustainable energy
supplies in the near future. The thermoelectric figure of merit
reaches a record value of 3.1 at 783 K in polycrystalline SnSe
[2], even greater than the value obtained for single crystals
[3] due to enhanced scattering. While many efforts have fo-
cused on designing materials with enhanced thermoelectric
performance [4,5], understanding how to maximize energy-
conversion efficiency by decreasing thermal conductivity has
been hindered by the lack of a microscopic theory capturing
the mechanisms of heat conduction in poor thermal conduc-
tors. Fittingly, the recently developed Wigner formulation of
thermal transport [6,7] allows to describe heat conduction in
anharmonic crystals and in solids with ultralow or glasslike
conductivity; this is exactly the case of thermoelectrics.
The Wigner formulation offers a comprehensive approach
to describe heat transport across different regimes, cover-
ing on the same footing harmonic “Boltzmann,” anharmonic
“Wigner” and amorphous solids and glasses regimes. A crys-
tal exhibiting Boltzmann thermal transport is characterized
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by phonon-interband spacings much larger than the phonon
linewidths; in these materials particlelike heat conduction
dominates [6–8] and the Peierls-Boltzmann transport equation
[9,10] describes accurately thermal conductivity [11,12]. In
amorphous solids and glasses wavelike tunneling dominates
and the Wigner formulation recovers the Allen-Feldman for-
mulation [13] accounting also for anharmonicity [14]. Last,
crystals exhibiting Wigner thermal transport can be consid-
ered as the intermediate regime between the first two and are
characterized by interband spacings which are comparable to
phonon linewidths. The Peierls-Boltzmann equation fails to
describe the wavelike contributions [15–18] in materials with
ultralow thermal conductivity, that are captured by the Wigner
transport equation [6,7].

Among others, skutterudites have been extensively stud-
ied for their possible applications in thermoelectrics [19–21]
showing both high electrical and low thermal conductivities.
The cagelike structure of skutterudites is a critical feature
for thermoelectricity [21,22]: the voids present in the struc-
ture can be occupied by loosely bound atoms (“fillers” or
“rattlers”) that can reduce thermal conductivity and enhance
the thermoelectric figure of merit [23]. However, the inter-
pretation of filler vibrations remains not fully understood
[16,24,25]. The explanation of the rattling motion based on
filler vibrations concentrated in specific energy ranges [24]
was contradicted by a theoretical study suggesting the pres-
ence of a strong hybridization between the vibrations of the
filler atoms and specific phonon bands of cage atoms [25].
This concept was then generalized to that of a “coherent
interaction between fillers and host matrices” [16], which is
more intricate than the simplistic “bare rattling.” Here, we em-
phasize that also the latter explanation did not investigate the
role of the filler in terms of phonon wavelike heat conduction
and so we aim to clarify the fundamental mechanisms behind
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FIG. 1. Calculated κtot (solid), κP (dotted), and κC (dashed) for unfilled FeSb3, CoSb3, and IrSb3 and for their related filled compounds
RFe4Sb12 (R = Ba, Ca, Nd, Yb), RCo4Sb12 (R = I, In, La, Yb), and RIr4Sb12 (R = Yb), between 100 and 800 K. Experimental κtot are taken
from Ref. [34] for RFe4Sb12 (R = Ba, Ca, Nd, Yb), Refs. [35,36] for CoSb3, Refs. [37,38] for ICo4Sb12, Ref. [39] for InCo4Sb12, Refs. [40,41]
for LaCo4Sb12, Refs. [42,43] for YbCo4Sb12, and Refs. [44,45] for IrSb3. Symbols represents different experimental measurements, also
color-coded according to the material. Experimental data referring to partial concentration of the filler are specified adjacent to the symbols.
The universal T −1 trend of κP [16,46] is also shown; κtot displays a milder decay than κP.

the reduction of thermal conductivity—and thus the related
thermoelectric performance—applying the Wigner transport
equation.

II. METHOD

The Wigner formulation of thermal transport [6,7] yields
the following thermal conductivity expression:

κ
αβ
tot = κ

αβ

P,SMA + 1

(2π )3

∫
BZ

∑
s �=s′

ω(q)s + ω(q)s′

4

×
[

C(q)s

ω(q)s
+ C(q)s′

ω(q)s′

]
v α (q)s,s′v β (q)s′,s

×
1
2 [�(q)s + �(q)s′ ]

[ω(q)s′ − ω(q)s]2 + 1
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d3q, (1)

where ω(q)s is the angular frequency of a phonon having

wave vector q and mode s, C(q)s = h̄2ω2(q)s

kBT 2 N̄(q)s[N̄(q)s +
1] is the specific heat of that phonon population, N̄(q)s is
the equilibrium Bose-Einstein distribution at temperature T ,
v α (q)

s,s′ and v β (q)
s,s′ are the cartesian components of the

velocity operator, which generalizes the concept of group ve-
locity, and �(q)s = 1

τ (q)s
is the phonon linewidth of a phonon

with lifetime τ (q)s. The symbol BZ in Eq. (1) represents
an integral over the Brillouin zone. κ

αβ

P,SMA in Eq. (1) is the
Peierls-Boltzmann particlelike conductivity, which is driven
by phonon-phonon scattering in the single-mode relaxation
time approximation (SMA). The additional Wigner term in
Eq. (1) is a positive-definite tensor (καβ

C ) emerging from the
phase “coherences” between pairs of phonon eigenstates; i.e.,
from the wave-tunneling between two nondegenerate bands

(s �= s′) [26,27]. To explore the relative strength of the parti-
clelike and wavelike heat-conduction mechanisms, we study
three different families of skutterudites, where we compute
from first-principles (see Appendices for details) all the quan-
tities needed to evaluate Eq. (1) for unfilled FeSb3, CoSb3,
and IrSb3, and for the filled compounds RFe4Sb12 (R = Ba,
Ca, Nd, Yb), RCo4Sb12 (R = I, In, La, Yb) and RIr4Sb12

(R = Yb). We note, in passing, that skutterudites contain
elements for which DFT+U [29–32] might improve upon
self-interaction errors for localized electrons [33]; these as-
pects are discussed in Appendix D.

III. DISCUSSION

The resulting thermal conductivities, together with their
good agreement with the available experimental data, are
shown in Fig. 1 in the temperature range from 100 to 800 K.
By focusing on the high-performance high-temperature
regime (T � 600K) and comparing κP and κC, it is clearly
seen how unfilled skutterudites are in the Boltzmann regime,
displaying dominant particlelike conduction. Moreover, in
the high-temperature region, κ � κP ∝ T −1, as predicted by
the Peierls-Boltzmann equation [46,47]. However, filled skut-
terudites display Wigner regime of thermal transport, with a
milder decay of κtot as also observed for many highly an-
harmonic crystals [16,17,48]. Among the materials studied,
we highlight how Yb-filled materials show the most evident
Wigner regime, i.e., κP ∼ κC, while for BaFe4Sb12 the behav-
ior is more close to the Boltzmann regime, i.e., κP > κC. It is
worth noting that some experimental measurements show an
increase in conductivity at very high temperatures (� 700 K);
this could be understood as driven by radiative and electronic
heat transfer [49,50], unrelated to the increase in coherences’
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FIG. 2. Distribution of phonon lifetimes τ (q)s = �(q)−1
s as a function of energy h̄ω(q)s for unfilled (upper panels) and Yb-filled (lower

panels) skutterudites at 800 K. The area of each scatter point is proportional to the contribution to the total lattice thermal conductivity and
colored according to the origin of the contribution: c = [κ̄P(q)s − κ̄C(q)s]/[κ̄P(q)s + κ̄C(q)s], where particlelike is green (c = 1), wavelike is
blue (c = −1) and intermediate mechanisms have intermediate colors, with red corresponding to 50% of particlelike and 50% of wavelike
contributions [7]. The Wigner limit in time (dashed-black line) corresponds to a phonon lifetime equal to the inverse of the average interband
spacing (τω = 	ω −1

avg ). The dashed-purple hyperbola shows the Ioffe-Regel limit in time [7,28] (τ IR = ω−1), below which phonons are no
longer well-defined quasi-particles. The pie charts have an area proportional to the total lattice thermal conductivity, and the slices resolve
the particlelike conductivity (green) and the wavelike conductivity (blue). The black symbols connected by black lines are the points whose
coordinates are the average energies and lifetimes projected on atoms [see Eqs. (A3) and (A4)]. Open (closed) symbols refer to unfilled (filled)
skutterudites. The projections on the filler, transition-metal and antimony atoms are given by crosses, triangles and squares, respectively. The
phonon lifetimes distribution for the remaining filled skutterudites are given in Appendix F 2.

conductivity. At high temperatures, radiative effects on ther-
mal transports are expected to be important because radiative
thermal conductivity should increase as T 3 [51], while in
semiconductors the electronic contribution can be important
when, as temperature rises, electrons are excited to the con-
duction band [50].

To elucidate the physics underlying the low thermal con-
ductivity of efficient thermoelectric skutterudites, we make a
comparison between phonon lifetimes and average phonon
interband spacing 	ωavg = ωmax

3Nat
(ωmax being the maximum

phonon frequency and Nat the number of atoms in the primi-
tive cell) [7], to describe how much each phonon contributes
to the wavelike vs. the particlelike conduction mechanisms.
As given in Ref. [7] (see Appendix E of Ref. [7] for a detailed
derivation), it is possible to resolve how much each phonon
(q)s contributes to the particlelike and wavelike conductivi-
ties. The ratio between the two is approximately equivalent
to the ratio between the phonon linewidth and the average
phonon interband spacing,

κ̄C(q)s

κ̄P(q)s
� �(q)s

	ωavg
= 1

τ (q)s	ωavg
, (2)

where κ̄P(q)s and κ̄C(q)s are the mode-dependent average
trace of the thermal conductivity tensor for particlelike and
wavelike heat conduction, respectively. From this one can
define the Wigner limit in time τω = 1

	ωavg
, that determines

the nonsharp crossover from a regime of dominant particlelike
conduction to one of dominant wavelike conduction.

In Fig. 2 we show the distribution τ (q)s of the phonon life-
times as a function of the energy h̄ω(q)s for the unfilled (upper
panels) and Yb-filled (lower panels) skutterudites at 800 K.
Phonons above the Wigner limit in time [i.e., with τ (q)s > τω]
contribute mainly to particlelike conductivity, while phonons
below this limit [i.e., with τ (q)s < τω] contribute mainly to
the wavelike conductivity. We note that in all the compounds
studied (see Appendix F 2) the phonon lifetimes sit well above
the Ioffe-Regel limit in time τ IR = ω−1 [7] (dashed-purple),
confirming that phonons in these materials are well defined
quasi particles and that the Wigner formulation is valid [7]. If
this were not the case, then full spectral function approaches
[52,53] would be required. The clouds of phonon lifetimes
in Fig. 2 remain distinctly above the Wigner limit for the
unfilled compounds, while they are centered around the
Wigner limit for the Yb-filled compounds. This allows to
identify the crossover from the Boltzmann regime of unfilled
skutterudites to the Wigner regime of Yb-filled ones, where
phonon coherences become significant. Moreover, Fig. 2 also
shows the atom-resolved energies and lifetimes [see Eqs. (A3)
and (A4)], indicating how, in general, different atoms
contribute to different regions of the distribution. We see that
Yb fillers drive the characteristic lifetimes toward the Wigner
limit in time, while the characteristic energies of the Ir/Co/Fe
atoms, and of Sb are only slightly shifted higher. Given a
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certain phonon lifetime, the frequency associated to the filler
is significantly lower than that of the other atom types in the
structure, suggesting that indeed Yb behaves like a rattler [54].
These findings extend those discussed in Ref. [16], where it
was suggested that fillers interact with the host matrix coher-
ently, albeit without resolving the single-atom contributions
in the energy-lifetime distribution. In fact, the present analysis
shows how filling with Yb lowers all the lifetimes, not only
those of the filler itself. Moreover, from Eq. (2) we see that
when the wavelike contribution to the thermal conductivity
is much bigger than the particlelike one, κC � κP, the
linewidths are comparable to the phonon interband spacing.
We also highlight that in the long-wavelength limit q → 0 the
linewidths of the optical modes �(ω)s with s > 3 remain finite
(and, as shown in Fig. 2, smaller than ω, ensuring that the
quasiparticle picture is well defined) and the optical phonon
bands flatten in proximity of q = 0; these conditions imply
that when q → 0 optical phonons contribute exclusively to the
wavelike conductivity. In contrast, for acoustic phonons the
linewidths �(ω)s with s = 1, 2, 3 tend to zero as ω → 0–as
shown in Fig. 2, the linewidths tend to zero faster than ω,
ensuring that the quasiparticle (nonoverdamped) condition
ω > �(ω)s is respected–so the overlap between different
phonon bands is negligible and the wavelike contribution
of acoustic phonons to the conductivity is negligible. This
implies that, while approaching q → 0, the acoustic modes
contribute particlelike to the conductivity, and their zero
specific heat at q = 0 implies that they contribute zero at
the limiting point q = 0. The particlelike behavior of the
acoustic modes when approaching q → 0 can be intuitively
understood. In fact, we recall that the lifetime of acoustic
phonons is mainly determined by anharmonic phonon-phonon
collisions, which are totally inelastic scattering events as they
do not conserve the number of phonons. Thus, the scattering
time 1/�(ω)s of nonoverdamped acoustic phonons coincides
with their decoherence time—a condition that, in addition to
the lack of significant overlap with different phonon bands, is
indicative of particlelike behavior [55].

Then, we want to describe how each chemical species
that composes the skutterudite structure influences the relative
strengths of κP and κC. Since the Boltzmann or Wigner regime
is regulated by the competition between the phonon lifetimes
and the Wigner limit in time [7] [see Eq. (2)], we introduce a
Boltzmann deviation descriptor (B) defined as the inverse of
the product between the skutterudite characteristic lifetime—
i.e., the Matthiessen’ sum of the average lifetimes resolved
on atom types (see Appendix A for details)—and the average
phonon interband spacing [7]:

B = 1

τ̄	ωavg
=

⎧⎨
⎩

1
τU	ωavg

, with τU = τMτSb
τM+τSb

,

1
τ F	ωavg

, with τ F = τRτMτSb
τRτM+τRτSb+τMτSb

,
(3)

where τ̄ is the average lifetime (A4), F and U superscripts
symbolize filled and unfilled skutterudites, R the rattler, and
M the Ir/Co/Fe metal. In the strategy for obtaining an average
lifetime we first perform a convolution of the lifetimes of
each phonon mode into a frequency-dependent representation
[see Eq. (A1)]. Then we exploit the phonon partial density
of states (PDOS) for evaluating the contribution coming from
each atomic species in the material [see Eq. (A4)]. In this

FIG. 3. (Upper panel) Relation between the relative strength of
particlelike and wavelike conduction, κ̄P

κ̄C
, at 800 K and B as given in

Eq. (3); unfilled (filled) symbols represent unfilled (filled) skutteru-
dites. Circles, triangles and squares represent Fe-, Co- and Ir-based
skutterudites, respectively. The black dashed line correspond to the
κ̄P
κ̄C

= B−1 power law interpolating the data [see Eq. (B7)]. The
shaded regions show a smooth crossover from a dominant particle-
like heat conduction in green, to a competing particle- and wavelike
mechanism in red. The burgundy cross represents the correlation for
YbFe4Sb12 at 300 K. (Lower panel) Relation between the relative
strength of particlelike and wavelike conduction ( κ̄P

κ̄C
) at 800 K and

the descriptor η given in Eq. (4). The linear correlation between η

and B shows how skutterudites’ chemistry determines the degree of
Wigner thermal transport in these materials. The color scale goes
from red (Wigner regime) to green (Boltzmann regime).

way, being able to take into account the lifetime of vibrations
of the different atom types present in the structure (namely,
filler and cage atoms), B is able to quantify the deviation
from the Boltzmann regime of thermal transport induced
by fillers.

In the upper panel of Fig. 3 we show the correlation
between κ̄P

κ̄C
and B at 800 K. Interestingly, it can be shown ana-

lytically (see Appendix B) that, for a constant DOS, κ̄P
κ̄C

= B−1

and the upper panel of Fig. 3 shows computational proof of
this. It is worth noting that the correlation for, e.g., YbFe4Sb12,
at 300 K (burgundy cross in the upper panel of Fig. 3) shows
how the relation κ̄P

κ̄C
= B−1 remains valid at different tempera-

tures.
Finally, we want to understand how skutterudites’ chem-

istry comes into play in discriminating the ability of the filler
atom to move inside the cage and how this is related to
B. The mean-square displacement (MSD) is often used in
the literature to describe vibrating systems characterized by
loosely bound atoms with long and elongated bonds [56] (see
Appendix G for its formal definition). From this follows that
we can define a heuristic parameter η that captures how filler’s
vibrations fill the space available in the skutterudite’s cage:

η =
∣∣∣∣MSDR − MSDSb

MSDSb

dSb−R − dSb−Sb

dSb−Sb

∣∣∣∣, (4)

where dSb−R is the distance between the filler atom and the
atoms of the cage, dSb−Sb is the bond length defining the Sb
icosahedral cage where the filler is located and MSDR and
MSDSb are the mean-square displacement of the rattler and
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the Sb cage atoms, respectively. We note that, by definition,
η = 1 for unfilled skutterudites.

In the lower panel of Fig. 3 we show the correlation
between κ̄P

κ̄C
and η at 800 K obtained for each of the filled

skutterudites studied. This confirms the trend obtained for
κ̄P
κ̄C

in the upper panel of Fig. 3, and validates numerically
the predictions from Eqs. (2) and (B7). Most importanly, η

allows to connect the physics behind Wigner heat transport
to the chemistry of the skutterudites: we find that η correlates
linearly with B. In this sense, η can be used to provide a com-
putationally cheap and close-to-being quantitatively accurate
estimate of the degree of Wigner regime of thermal transport
for a material. This underscores how B is proportional to the
rattling motion of the filler, quantified by η, and is therefore
able to distinguish between optimal filler atoms for the reduc-
tion of κtot from those for which the thermal behavior remains
similar to that of unfilled skutterudites. For example, the
filled skutterudite BaFe4Sb12 displays Boltzmann regime of
thermal transport, since its η is significantly lower than that of
the other filled skutterudites. We also observe that a rescaling
of the filler’s atomic weight translates into negligible changes
of κtot, thus confirming that thermal transport is determined
by bonding chemistry (see Appendix E for details). In the end,
it is worth noting that only the MSDs (harmonic properties)
and the crystal chemical bonds enter the definition of η, and
thus already at this level it is possible to give an approximate
estimate of the degree of Wigner behavior of a thermoelectric
material. Since the price of computing harmonic properties
(MSDs) is orders of magnitude lower than that for computing
anharmonic ones (phonon lifetimes), one could screen for
cagelike thermoelectric materials with a strong wavelike con-
tribution to conductivity through the parameter η. In practice,
one may exploit this parameter to perform high-throughput
computational screening of materials characterized by Wigner
regime of thermal transport promising for thermoelectric
applications.

IV. CONCLUSION

In conclusion, we have used the Wigner formulation of
thermal transport to investigate the microscopic physics un-
derlying heat conduction in skutterudites, showing a crossover
from Boltzmann to Wigner thermal transport when filling
with, e.g., Yb atoms. Unfilled skutterudites display Boltzmann
regime of thermal tranport, while filled ones change behavior
from Boltzmann to Wigner regime depending on the filler
atom and its bonding properties. We showed that, given the
same host structure, the materials displaying the lowest con-
ductivity are precisely those in which the κP

κC
ratio between

particlelike and wavelike contributions is larger. We also elu-
cidated how the degree of Wigner heat conduction (quantified
by the Boltzmann deviation descriptor, B, derived from the
microscopic harmonic and anharmonic quantities entering in
the Wigner theory of thermal transport) is correlated to the
relative motion between the filler atom and the cage; the latter
being dependent on the chemical composition of the skutteru-
dite structure (captured by the harmonic and computationally
much cheaper parameter η). Thus, the rattling motion of the
filler causing good thermoelectric performances can be seen
a direct manifestation of phonon coherences becoming as

important as phonon population. Thereby, this study paves the
way for the identification of the most suitable chemical com-
positions to engineer new and efficient cagelike thermoelectric
materials.
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APPENDIX A: ANALYTIC DERIVATION OF A
BOLTZMANN DEVIATION DESCRIPTOR

To derive a Boltzmann deviation descriptor (B) which cap-
tures the relative strength of the particlelike and wavelike heat
conduction mechanisms, we start by resolving the phonon
lifetime and total lattice thermal conductivity as a function of
the frequency, τ (ω) and κ (ω), respectively. In this way we are
able to compare the filled skutterudites’ properties with those
of unfilled skutterudites, while keeping a unique theoretical
scheme. To do this we exploit the Gaussian representation
of the δ function to obtain the phonon lifetime and thermal
conductivity as functions of frequency:

τ (ω) = limε→0+
∑

q,s τ (q)s e− (ω(q)s−ω)2

2ε2 ε−1

limε→0+
∑

q,s e− (ω(q)s−ω)2

2ε2 ε−1
, (A1)

κ (ω) = limε→0+
∑

q,s κ (q)s e− (ω(q)s−ω)2

2ε2 ε−1

limε→0+
∑

q,s e− (ω(q)s−ω)2

2ε2 ε−1
. (A2)

Within this frequency representation we want to determine
how much each atom contributes to a certain phonon lifetime
and energy. Such an atomic-resolved contribution can be ob-
tained by using the partial density of states (PDOS) of the
different types of atoms. In this way we can condense the
information coming from the phonon frequency and phonon
lifetimes spectra into two single scalars. It is worth noting that
κ (ω) is used to keep track of the contribution that each phonon
with frequency ω provides to the total conductivity. In such a
way, the characteristic energy and lifetime expressions read as
follows:

h̄ω̄i =
∫ ωmax

0 ∂ω h̄ω κ (ω) PDOSi(ω)∫ ωmax

0 ∂ω κ (ω) PDOSi(ω)
, (A3)

τi =
∫ ωmax

0 ∂ω τ (ω) κ (ω) PDOSi(ω)∫ ωmax

0 ∂ω κ (ω) PDOSi(ω)
, (A4)

where i = R, M, or Sb (M or Sb) represents the atom type for
filled (unfilled) skutterudites. Since the Boltzmann or Wigner
crystal behavior is regulated by the competition between
phonon lifetime and Wigner limit in time [7] [see Eq. (2) of
the main text], we can use the lifetimes resolved on the atoms
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FIG. 4. PDOS of YbFe4Sb12.

and the average phonon interband spacing to define B:

B = 1

τ̄	ωavg
=

{
1

τU	ωavg
, with τU = τMτSb

τM+τSb
,

1
τ F	ωavg

, with τ F = τRτMτSb
τRτM+τRτSb+τMτSb

,

(A5)

where the F and U superscripts symbolize filled and unfilled
skutterudites, respectively. B is devised to resolve, on average,
how far the phonons are from the particle-wave crossover. It
is worth noting, as shown in Fig. 2 of the main text, that it is
not strictly necessary to obtain the average lifetime entering
Eq. (A5) by discriminating the contributions resolved on the
atoms (vertical coordinates of the black points in Fig. 2 of
the main text with the Matthiessen’ sum. An identical result
would also be obtained by mediating directly over all the
phonon lifetimes (this is not true for the frequencies); in fact,
the average lifetimes resolved on the atoms condense the
information coming from the entire phonon lifetime cloud.

Finally, it is worth noting that the black symbols in Fig. 2
of the main text, whose x coordinates are given by Eq. (A3),
are displaying y coordinates given by atom types resolved
lifetimes [Eq. (A4)] which resemble the peaks in the PDOS of
the related material (see Fig. 4). Therefore, we can conclude
that our analysis based on the convolution of phonon modes
q, s to their ω-dependent analogous allows to correctly capture
the lifetime of vibrations of the different atom types present in
the structure.

APPENDIX B: ANALYTIC RELATION BETWEEN κP
κC

AND A BOLTZMANN DEVIATION DESCRIPTOR

It is possible to give an analytical explanation for the inter-
esting power relation, κP

κC
= B−1, obtained from Fig. 3 of the

main text.
As discussed in the main text, the ratio between the

wavelike and particlelike contributions to the lattice thermal
conductivity is approximately equivalent to the ratio between
the phonon linewidth and the average phonon interband spac-
ing,

κ̄C(q)s

κ̄P(q)s
� �(q)s

	ωavg
= 1

τ (q)s	ωavg
. (B1)

The above equation can be written as

κ̄P(q)s

κ̄C(q)s

δ(ωs(q) − ω̄)

δ(ωs(q) − ω̄)
� τ (q)s	ωavg

δ(ωs(q) − ω̄)

δ(ωs(q) − ω̄)
, (B2)

where δ(ωs(q) − ω̄) is the Dirac δ and ω̄ is the average fre-
quency of the crystal obtained by averaging the ω̄i given in
Eq. (A3), where i = R, M, or Sb (M or Sb) represents the
atom type for filled (unfilled) skutterudites. Since Eq. (B2)
holds ∀q we can integrate numerator and denominator of both
sides over the Brillouin zone:

1
(2π )3

∫
BZ ∂q κ̄P(q)s

1
(2π )3

∫
BZ ∂q κ̄C(q)s

δ(ωs(q) − ω̄)

δ(ωs(q) − ω̄)

�
1

(2π )3

∫
BZ ∂q τ (q)s	ωavgδ(ωs(q) − ω̄)

1
(2π )3

∫
BZ ∂q δ(ωs(q) − ω̄)

. (B3)

Given the definition of 	ωavg, where it is assumed that the
phonon bands are uniformly spaced, from the previous equa-
tion we obtain the expression

κ̄P(ω)

κ̄C(ω)
� τ (ω)	ωavg

DOS(ω)
(B4)

that holds ∀ω. We can then write∫ ωmax

0 ∂ω κ̄P(ω)∫ ωmax

0 ∂ω κ̄C(ω)
� 	ωavg

∫ ωmax

0 ∂ω τ (ω)∫ ωmax

0 ∂ω DOS(ω)

= 	ωavg
∫ ωmax

0 ∂ω τ (ω)DOS(ω)∫ ωmax

0 ∂ω DOS(ω)

×
∫ ωmax

0 ∂ω DOS(ω)∫ ωmax

0 ∂ω DOS2(ω)
. (B5)

In this way we have

κ̄P

κ̄C
� τ̄	ωavg

∫ ωmax

0 ∂ω DOS(ω)∫ ωmax

0 ∂ω DOS2(ω)
. (B6)

If we assume DOS(ω) to be a constant we simply end with

κ̄P

κ̄C
� τ̄	ωavg → κ̄P

κ̄C
� B−1. (B7)

APPENDIX C: COMPUTATIONAL DETAILS

1. Approximations to the exchange-correlation
energy functional

The equilibrium crystal configuration of the skutteru-
dites studied were obtained using the Quantum ESPRESSO
(QE) distribution [57] through Kohn-Sham density functional
theory (DFT) [58,59] calculations with projector-augmented-
wave (PAW) [60] (for Ba, Nd, Yb, I, In, La, Fe) and
ultrasoft (US) (for Ca, Co, Ir) pseudopotentials, as suggested
by the standard solid-state pseudopotentials (SSSP) library
[61–63]. We employed the generalized gradient approxi-
mation (GGA), formulated by the Perdew-Burke-Ernzerhof
(PBE) [64] exchange-correlation functional for all com-
pounds. This conclusion was reached after testing the LDA,
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TABLE I. Optimized structure parameters (acalc.) of unfilled FeSb3, CoSb3, and IrSb3 and of their related filled compounds RFe4Sb12

(R = Ba, Ca, Nd, Yb), RCo4Sb12 (R = I, In, La, Yb), and RIr4Sb12 (R = Yb) compared with the available experimental data (aexpt.) given
alongside. 1, 2, and 3 superscripts refer to an experimental concentration of the filler equal to 0.8, 0.23, and 0.3 per unit cell, respectively.

Material FeSb3 BaFe4Sb12 CaFe4Sb12 NdFe4Sb12 YbFe4Sb12 CoSb3 ICo4Sb12 InCo4Sb12 LaCo4Sb12 YbCo4Sb12 IrSb3 YbIr4Sb12

acalc. 9.209 9.236 9.191 9.179 9.178 9.119 9.203 9.198 9.226 9.129 9.392 9.407
aexpt. 9.212 [67] 9.201 [34] 9.159 [34] 9.136 [34] 9.159 [34] 9.055 [68] 9.122 [37]1 9.060 [40]2 9.063 [43]3 9.250 [44]

PBE and PBEsol [65] functionals with respect to the agree-
ment with the cell parameter measured experimentally.

Before the geometry optimization, the convergence of
total energy, forces and pressure with respect to the k-
mesh, kinetic energy cutoff and value of the spreading
(smearing) for brillouin-zone integration was achieved us-
ing a 6 × 6 × 6 grid, 60 Ry and 0.02 Ry, respectively. We
employed the Marzari-Vanderbilt smearing [66]. The conver-
gence thresholds used to obtain the parameters entering the
DFT calculations are given by 0.05 Ry variation of the total
energy, 1 kbar variation of total pressure and 0.001 Ry/Bohr
variation of total force.

2. Structures optimization

The geometry optimization of the unit cell of all the com-
pounds studied was carried out by using the set of converged
parameters discussed in the previous section. The calculated
lattice parameters (acalc.) of the materials studied together
with the related experimental values (aexpt.) are summarized
in Table I. Overall, the obtained values are in good agree-
ment with the available experimental data, apart from the
Ir-based skutterudites where the unit cell size is slightly
overestimated.

3. Interatomic force constants calculations

The harmonic interatomic force constants (IFCs)
needed to evaluate the scattering term in the Wigner
transport equation were calculated through the Quantum
ESPRESSO PHonon package by means of density functional
perturbation theory (DFPT) [69] calculations on a 3 × 3 × 3
Monkhorst-Pack grid.

We generated supercell structures with random atomic
displacements by exploiting the hiPhive [70] code. This
tool relies on compressive sensing methods that efficiently
construct sparse solutions for linear systems (which in the
present case reflect the short-range nature of IFCs). The ordi-
nary least-squares optimization was used to provide solutions
of the linear problem. The third-order IFCs were calculated
through DFT evaluation of atomic forces acting on displaced
atoms by using a 2 × 2 × 2 supercell with a 3 × 3 × 3 k grid.

4. Thermal properties calculations

The phonon scattering rates and the lattice thermal con-
ductivity were calculated with the Phono3py [71] package
which solves the Wigner transport equation with the SMA
approximation. We took into account the scattering effects due
to anharmonicity (up to the three-phonon interaction) and to
isotopic disorder.

Furthermore, we use the SHENGBTE [72] code (and its
thirdorder.py auxiliary tool) to benchmark the results
obtained with the hiPhive+Phono3py workflow discussed
above.

The lattice thermal conductivity calculations were per-
formed using the smearing method through the Quantum
ESPRESSO D3Q package [6,73–75] and the tetrahedron method
[76,77] implemented in Phono3py [71].

In the following paragraph we discuss the method used
to obtain the optimized parameters needed for deriving the
thermal properties of the materials studied. Again, we show
the convergence study for YbFe4Sb12, taken as a prototype
structure. We analyze the differences in terms of lattice ther-
mal conductivity results due to the different methods used to
derive the IFCs discussed so far.

5. Convergence with respect to calculation parameters

A systematic study of the convergence for lattice ther-
mal conductivity calculations of YbFe4Sb12 with respect to
the number of hiPhive input atomic configurations is sum-
marized in Fig. 5. All the calculations in Fig. 5 rely on
the second-order force constants obtained through Quantum
ESPRESSO DFPT calculations, as they are more precise and
less expensive than the supercell ones; as known, this is due
to the translational invariance that allows to work in reciprocal
space within the Brillouin zone only. Moreover, all the calcu-
lations were carried out using D3Q package with the smearing
method. We then focus on the calculations performed with
SHENGBTE (thirdorder.py). For these it is necessary to
specify only the cutoff value of the third order of interac-
tion since, as we have already said, the second-order force
constants were obtained with DFPT. The cutoff definition in
SHENGBTE is given by the maximum distance between two
atoms over which they are considered as noninteracting. So,
this means that before starting the calculation, one has to
choose up to which level the interaction is considered (which
reflects the precision one wants to achieve) and then, by vary-
ing it, see when the result of the lattice thermal conductivity
calculation does not depend on it. The reference value for our
calculations is given by considering the third order of inter-
action in SHENGBTE up to the sixth nearest neighbor atom. In
this case, the result obtained is the one given by the red curve
in Fig. 5; this is because, given the interaction range defined
by the number of nearest neighbor atoms to be considered,
SHENGBTE automatically evaluates the related cutoff value in
angstroms.

Also, once specified the number of nearest neighbors,
SHENGBTE, returns the atomic positions configurations needed
to implement the small displacement method. The number of
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FIG. 5. Convergence of the lattice thermal conductivity of
YbFe4Sb12 with respect to the number of input atomic configurations
and the third- and second-order cutoffs of interaction used for the
hiPhive calculation and with respect to the third-order cutoff of
interaction used for the SHENGBTE calculation. The first column of
the legend refers to the calculations performed with hiPhive, in fact
both the number of input structures (atomic positions configurations
randomly generated) and the cutoffs of interactions are specified.
The second column instead contains the calculations carried out
with SHENGBTE and the experimental reference data. Note that all
the calculations were carried out using the second-order force con-
stants obtained through Quantum ESPRESSO DFPT calculations. For
hiPhive calculations the first value of the cutoffs is the one of the
second order of interaction while the second is the one of the third
order of interaction. Instead, for SHENGBTE calculations, the only
cutoff value that appears is clearly the one of the third order of
interaction. The cutoff values are measured in angstroms (Å). The
experimental values are taken from Ref. [34].

these input configurations is therefore strictly related to the
value of the cutoff (or number of nearest neighbors) that one
chooses. In this sense, therefore, we have a cutoff of 7.9 Å
(red curve) when considering the interaction up to six nearest
neighbors, 7.7 Å (dark green curve) for five nearest neighbors
and 6.0 Å (brown curve) for three nearest neighbors. As it can
be seen again from Fig. 5, the red and dark green curves,
in addition to having the same trend, are also very close to
each other, meaning that considering the interaction up to
five nearest neighbors is already enough to achieve conver-
gence for SHENGBTE calculations. From what has just been
discussed, it is now clear why it was decided to take the red
curve calculation as the reference one.

Now we analyze in detail the convergence of hiPhive
calculations. As can be seen in the first column of the legend
of Fig. 5, for hiPhive calculations it was necessary to specify
also the cutoff value of the second order of interaction (given
that the second-order force constants obtained from DFPT are
still the used ones). In fact, hiPhive needs the values of the
cutoffs on both orders of interaction to be able to correctly
fit both the second and third-order force constants, which
are obtained simultaneously. This means that the convergence
should no longer be studied on the single value of the cutoff
of the third order of interaction, but on the configuration of
cutoff values of second and third order of interaction together.

Also, in hiPhive calculations, the number of input struc-
tures is specified a priori. Therefore, as can be seen from
Fig. 5, the used number of structures is also a parameter for
which the convergence has to be studied. In fact, the used
number of hiPhive structures, and therefore the number of
self-consistent calculations needed, is far less than those re-
quired in a SHENGBTE calculation. For example, to perform a
SHENGBTE calculation with the interaction up to the sixth near-
est neighbor, it was necessary to perform 1292 self-consistent
calculations. As will be clearer below, a result very simi-
lar to the one obtained in this way is deduced through 100
self-consistent calculations where the input structures were
generated with hiPhive. The difference between these two
methods is that in the first case the number of self-consistent
calculations depends on the specified cutoff value of the in-
teraction while in the second case this is not true; this is why
convergence must also be tested with respect to the number of
input structures.

Furthermore, since hiPhive implements a compressive
sensing method, also the definition of cutoff is slightly differ-
ent from that provided for SHENGBTE: the cutoff in hiPhive
is defined as the maximum distance between two atoms (over
which they are considered as noninteracting) within the same
cluster, where cluster simply stands for a subset of lattice
points. The size of a cluster (commonly referred to as the clus-
ter radius) is defined as the average distance to the geometrical
center of the cluster. hiPhive works by decomposing the
supercell into clusters of points in the lattice. Then it defines
a set of symmetry equivalent clusters that allows to reduce
the computational cost of the calculation as many elements
of the force constant matrices are related to each other by
symmetry operations. Finally, the irreducible set up of param-
eters is obtained by applying all symmetry operations allowed
by the space group of the ideal lattice and the acoustic sum
rules.

As it is easy to see from Fig. 5, the second-order cut-
off is always greater than or equal to the third-order cutoff.
This is intuitively due to the fact that pair interactions have
longer range than many-body interactions, and so second- and
third-order cutoffs have to be chosen consistently as to avoid
overfitting problems.

The idea behind the convergence test in the hiPhive cal-
culation lies in choosing the second-order cutoff as extreme
as possible, i.e., the maximum value that the code can handle
before encountering double clusters and so aborting the fitting
procedure. In the study of Fig. 5, this maximum value for
the second-order cutoff is 7.9 Å. Note that this value has
nothing to do with the number of input structures used in the
calculation but depends exclusively on the size of the system,
i.e., the size of the supercell.

Once the value of the second-order cutoff has been fixed,
it is possible to study how the lattice thermal conductivity
results change as the value of the third-order cutoff (chosen
to be equal or smaller than that of the second order) varies. To
avoid overfitting, it is possible to consider a greater number of
input structures or to reduce the demand of cutoff values. In
fact, the black and blue lines in Fig. 5, representing, respec-
tively, the calculation with 30 structures, second-order cutoff
value of 7.9 Å and third-order cutoff value of 6.0 Å, and the
calculation with 100 structures, second-order cutoff value of
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FIG. 6. Convergence of the lattice thermal conductivity of a
generic skutterudite with respect to the number of input config-
urations and the cutoff values of the second and third order of
interaction.

7.9 Å and third-order cutoff value of 7.9 Å, both return a result
close to the reference red curve.

It can therefore be said that the calculations relating to
the black and blue curves in Fig. 5 correctly describe the
same physics. It is worth mentioning that the variation of the
third-order cutoff value between these two calculations was
not selected randomly. In fact, for all the materials studied, it
was possible to find a trend in lattice thermal conductivity as a
function of cutoff values and number of structures like the one
summarized in Fig. 6. Although from Fig. 6 it can be clearly
seen that the lattice thermal conductivity keeps varying as the
cutoff values change, what is important to underline is that
the surface formed by the calculation on the 100 structures
is much flatter than the one obtained from the 30 structures.
This suggests that, once a configuration of cutoff values is
fixed, as the number of the input structures increases, an
increasingly flat surface is obtained in which therefore the
conductivity varies less and less. This behavior is explained as
follows: increasing the initial data set ensures greater accuracy
of the fitting method, but clearly the big gain in computational
savings would be lost.

However, Fig. 6 provides additional information. Given
the same second-order cutoff value, the conductivity result
calculated on the 100 structures is very similar to that cal-
culated on the 30 structures, in which the third-order cutoff
value is lower than that used for the 100 structures. To clarify
what has just been said it may be useful to focus on two
particular pairs of points in the plot of Fig. 6. For example,
for the pairs of points (with fixed second-order cutoff value
equal to 6.0 Å) given by (6.0 Å, 4.50 Å) for the 30 structures
calculation and (6.0 Å, 4.75 Å) for the 100 structures calcula-
tion, we can see roughly the same value of the lattice thermal
conductivity. Note that we have defined these points where
the first coordinate is the second-order cutoff value and the
second coordinate is the third-order cutoff value. Again this

FIG. 7. Comparison of D3Q with smearing method and
Phono3py with tetrahedron method calculations in YbFe4Sb12. The
used smearing value used is measured in Wm−1K−1 and the k-points
grid has also been specified. The experimental values are taken from
Ref. [34].

can be shown also for the pairs of points given by (6.0 Å,
5.50 Å) for the 30 structures calculation and (6.0 Å, 5.75 Å)
for the 100 structures calculation, and so on. In analogy to this
deduction, the optimal parameters configuration for a small
number of input structures (30 structures) in Fig. 5 was given
by second- and third-order cutoff values equal to 7.9 Å and
6.0 Å, respectively.

6. Comparison between different calculation methods

Figure 7 summarizes the lattice thermal conductivity calcu-
lations carried out using D3Q package with smearing method
and Phono3py software with tetrahedron method. It can
be clearly seen that, regardless of the k-mesh used, the two
different Phono3py calculations almost perfectly match the
reference one, obtained by using D3Q package with smearing
method (red curve in both Figs. 5 and 7). In particular, this
technology ends up to be less expensive and faster because it
makes a strong use of symmetries and calculates the lattice
thermal conductivity in many fewer points than D3Q does.

Note that smearing and k-points mesh values were sub-
jected to convergence: by varying the smearing from 2 to 4 or
6 cm−1 and the mesh from 9 × 9 × 9 to 11 × 11 × 11, 13 ×
13 × 13, or 15 × 15 × 15 the final results did not change.

Thanks to the convergence tests and the comparison of
different calculations of the lattice thermal conductivity, it
was possible to provide a configuration of parameters and
methods to be used for the calculation of the lattice thermal
conductivity for all the materials studied; this configuration is
summarized in Table II.

TABLE II. Computational methods and parameters used for the lattice thermal conductivity calculations of the materials studied.

Software package Number of structures Cutoffs values (Å) Integration method k-mesh

hiPhive 30 7.9 and 6.0 Tetrahedron method 9 × 9 × 9
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FIG. 8. Total lattice thermal conductivity (solid), particle-
like contribution (dotted), and wavelike contribution (dashed) of
YbFe4Sb12 obtained from DFT calculations on top of hiPhive

displaced atomic position configurations (green) for both second-
and third-order interatomic force constants, PHonon DFPT calcu-
lations for second-order force constants, and DFT calculations on
top of hiPhive displaced atomic position configurations for third-
order force constants (blue) and DFT + U calculations on top of
hiPhive displaced atomic position configurations (red) for both
second- and third-order interatomic force constants. Here “2” and
“3” superscripts refer to the order of the interatomic force constants.
A Hubbard parameter U = 2.5 eV was used for the DFT + U calcu-
lations. Note that the PBE + U + hiPhive calculation derives from
the related antiferromagnetic electronic state with lowest energy,
while the PBE+ Quantum ESPRESSO DFPT and PBE + hiPhive

ones derive from the related nonmagnetic electronic state with lowest
energy.

7. Phonon scattering processes considered
in the Wigner transport equation

To solve the WTE [Eq. (1) of the main text] we take
into account anharmonic and isotopes scattering processes
through the standard collision operator as defined in Ref. [73].
We do not consider the boundary scattering as we are refer-
ring to large samples whose finite size effects of the crystal
are negligible [73]. In the kinetic regime of thermal trans-
port [74], where Umklapp scattering events dominate, and
so where the lattice thermal conductivity (κtot) becomes very

low at medium-high temperatures (as in the case of filled
skutterudites), a good estimate of the particlelike conductivity
is given by the single-mode approximation (SMA) [11,73].
Solving the WTE with this approximation allows to write
κtot in the following compact form given in Eq. (1) of the
main text.

APPENDIX D: MAGNETIC ORDER AND DFT+HUBBARD

The nonmagnetic phase of FeSb3 displays imaginary
phonon frequencies, as already highlighted in other works
[32,78]. Therefore, we follow Ref. [32] where an antiferro-
magnetic (AFM) ground state was obtained for FeSb3 in the
primitive unit cell and the experimental paramagnetic phase
of this material was addressed through the special quasiran-
dom structure (SQS) method [79], which is used to maximize
magnetic moments disorder [80,81] minimizing the total en-
ergy in supercell representation. In the aforementioned work a
DFT+Hubbard [29–31,82–85] approach was used to correct
the self-interaction error (SIE) [33,86] of partially occupied
iron d orbitals due to approximate forms of DFT.

We chose to benchmark the problem by studying
YbFe4Sb12 with the DFT + Hubbard functional (DFT + U)
and allowing for magnetic orders. Also for YbFe4Sb12 an
AFM ground state has been obtained. It should be noted that
the calculation of the second-order interatomic force constants
is practically not feasible using DFPT. This is so because at
the first iteration of the resolution of the linear system set up
for the computation of the force constants it is necessary to
converge the bare (noninteracting) response function χ0 which
requires a huge computational power.

What we show here is that the thermal properties, such
as the lattice thermal conductivity, do not vary appreciably
if instead a nonmagnetic ground state without Hubbard cor-
rections is considered. This analysis therefore confirmed that
magnetism in skutterudites plays a fundamental role but does
not particularly affect thermal transport. In fact, by looking at
Fig. 8 we can clearly see how the reference DFT result that we
have discussed so far, that is, the calculation obtained through
the use of the DFPT second-order force constants and the
hiPhive third-order ones (blue), is completely analogous to
that obtained through DFT + U and allowing for AFM order
(red).

FIG. 9. Phonon dispersions of nonmagnetic YbFe4Sb12 obtained using PBE+Quantum ESPRESSO DFPT (blue), antiferromagnetic
YbFe4Sb12 with PBE+U+hiPhive (red) and nonmagnetic YbFe4Sb12 with PBE+hiPhive (green).
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FIG. 10. Total lattice thermal conductivity of BaFe4Sb12 ob-
tained by substituting the atomic weight of Ba with that of Yb (solid
green), by substituting the atomic weight of Ba with that of Ca
(dotted red) and by using the actual atomic weight of Ba (dashed
blue).

The phonon dispersions obtained from the second-order
force constants used for the lattice thermal conductivities of
Fig. 8 are shown in Fig. 9. We clearly see how the highest
computational level we can reach with the DFT+Hubbard
theory returns phonons similar to those considered in the text.

APPENDIX E: EFFECT OF FILLER ATOMIC
WEIGHT SUBSTITUTION

We want to highlight once more that the complexity of
the physics underlying heat transport in skutterudites is due
to the chemistry of the various elements that compose them.
The trend of the thermal conductivity of BaFe4Sb12 (the filled
Fe-based skutterudite showing the smallest wave-tunneling
contribution to thermal transport) starting from the inter-
atomic force constants calculated by replacing the atomic
weight of Ba (137.327 amu), respectively, with that of Yb
(with atomic weight close to Ba, 173.045 amu) and that of
Ca (with much lower atomic weight than Ba, 40.078 amu)
is given in Fig. 10. It is evidently seen that the difference in
atomic weight does not appreciably affect the lattice thermal
conductivity. We clearly observe how the substitution of the
filler’s atomic weight does not influence the thermal conduc-
tivity, showing that a rescaling of the filler’s atomic weight
translates into negligible changes of κtot, and thus confirming
that thermal transport is determined by the bonding chemistry.

APPENDIX F: VIBRATIONAL PROPERTIES
OF THE SKUTTERUDITES STUDIED

1. Phonon dispersions of the skutterudites studied

In Fig. 11 we summarize the phonon dispersions of the
skutterudites studied. As can be easily seen, for all the ma-
terials we do not observe imaginary phonon frequencies.

FIG. 11. Phonon dispersions of the skutterudites studied. Note that the phonon dispersion of FeSb3 comes from DFPT calculations carried
out on top of the antiferromagnetic electronic ground state, while for the other materials the nonmagnetic ground state was considered.
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FIG. 12. Phonon lifetimes distribution τ (q)s = 1
�(q)s

as a function of the energy h̄ω(q)s for the skutterudites studied at 800 K.

2. Phonon lifetimes distribution
of the skutterudites studied

In Fig. 12 we summarize the phonon lifetimes distributions
of the skutterudites studied.

3. Phonon lifetimes distribution of the YbFe4Sb12

at 300 K, 800 K, and 1200 K

To quantify what happens at different temperatures, we
look at the phonon lifetimes vs energy plots at T = 300, 800,

and 1200 K (Fig. 13). We see that for T � 800 K the
Wigner-crystal behavior is increasingly important, with co-
herences conductivity becoming larger than population’s
conductivity.

APPENDIX G: MEAN-SQUARE
DISPLACEMENT DEFINITION

The mean-square displacement (MSD) entering Eq. (4)
of the main text can be defined also for crystals following
Eq. (10.71) of Ref. [87]. The atomic displacement, u, is

written as

uα ( jl, t ) =
√

h̄

2Nmj

∑
q,s

[ωs(q)−
1
2 (âs(q)e−iωs (q)t

+ â†
s (−q)eiωs (q)t )eiq·r( jl )γ α

s ( j, q)], (G1)
where j and l are the labels for the jth atomic position in the
lth unit cell, t is the time, α is an axis, m is the atomic mass,
N is the number of the unit cells, q is the wave vector, s is
the index of phonon mode. γ is the polarization vector of the
atom jl and the band s at q. r( jl is the atomic position and ω

is the phonon frequency. Finally, â and â† are the annihilation
and creation operators of phonon. The expectation value of
the squared atomic displacement is then calculated as [88]

〈|uα ( jl, t )|2〉 = h̄

2Nmj

∑
q,s

ωs(q)−1(1+2ns(q, T ))
∣∣γ α

s ( j, q)
∣∣2

,

(G2)

where ns(q, T ) is the phonon population given by the Bose-
Einstein distribution.
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FIG. 13. Distribution of phonon lifetimes τ (q)s = �(q)−1
s as a function of energy h̄ω(q)s for YbFe4Sb12 at 300 K (left), 800 K (center),

and 1200 K (right). We see that the wavelike contribution reaches a plateau at 800 K as we do not have further appreciable increase of κC up
to 1200 K.
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