
PHYSICAL REVIEW RESEARCH 5, 033121 (2023)

Competing relaxation channels in continuously polydisperse fluids: A mode-coupling study
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We perform a systematic analysis of continuously polydisperse hard-sphere fluids as a function of the degree
of polydispersity within the framework of the mode-coupling theory of the glass transition (MCT). Our results
show that a high degree of polydispersity tends to stabilize the liquid phase against vitrification, the magnitude
of which depends on the shape of the polydispersity distribution. Furthermore, we report on a separation
between the localization lengths of the smallest and largest particles. A diameter-resolved analysis of the
intermediate scattering functions reveals that this separation significantly stretches the relaxation patterns, which
we quantitatively study by an analysis of the dynamical exponents predicted by the theory. Our observations have
strong implications for our understanding of the nature of dynamical heterogeneities and localization lengths in
continuously polydisperse systems with hard-core interactions. These results suggest that the dynamics of the
smallest particles is of central importance to understand structural relaxation of such systems, already in the
mildly supercooled regime where MCT is usually applicable.
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I. INTRODUCTION

Size polydispersity, i.e., a heterogeneity in particle sizes, is
often inevitable and even necessary to produce stable super-
cooled liquids. Indeed, without such dispersity, most liquids
and colloidal suspensions soon crystallize upon supercool-
ing or compression [1,2]. In fact, size-polydisperse systems
form the bulk of the modern literature on computational stud-
ies of the glass transition, in particular with the advent of
enhanced sampling procedures such as swap Monte Carlo,
which require extremely high degrees of size polydisper-
sity for high efficiency [2,3]. While size polydispersity has
been shown to stabilize the liquid phase in the supercooled
regime, for both simple colloidal systems [2–5] as well as
for polymeric ones [6], the introduction of different particle
species also inherently complicates the structural and dynam-
ical aspects of glass-forming systems [7–9]. In particular,
the behavior of the smallest particles appears to be of cru-
cial importance for the system’s global structural relaxation
[10,11].

From a theoretical perspective, the mode-coupling the-
ory of the glass transition (MCT) is the only microscopic
framework capable of making quantitative predictions on the
dynamics of dense, supercooled liquids [12–14] from purely
structural considerations (i.e., the liquid’s pair correlation
function). The theory provides a set of equations of motion for
several dynamical observables: the coherent and incoherent
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intermediate scattering functions, as well as the mean-square
displacement if appropriate limits are taken [14]. In the case
of simple glass formers, MCT predicts a phase transition to
an ideal glass state which can be rigorously studied using
techniques from the bifurcation of iterated maps [15]. Beyond
this, MCT’s principal successes lie in the prediction of ac-
curate form factors [e.g., Debye-Waller and Lamb-Mössbauer
(LM) factors] as well as the hallmarked two-step and stretched
exponential relaxation of intermediate scattering functions.
Furthermore, the theory predicts nontrivial associated scaling
laws and dynamical exponents (and algebraic relations be-
tween them) which many liquids in the supercooled regime
have been found to obey both in computer simulations and ex-
perimentally [16–19]. Moreover, the theory can describe more
intricate dynamics such as reentrant behavior in, e.g., mildly
asymmetric binary mixtures [20], systems with short-range at-
tractions [21,22], or systems in strong geometric confinement
[23], as well as more exotic phase transitions, in particular
glass-glass transitions [21,24,25] and partially arrested states
[25,26]. Recent work has also demonstrated that the theory is
capable of making predictions on dynamical heterogeneities,
something that was initially deemed impossible due to the
inherent absence of many-body correlations in the theory
[14]. Indeed, a careful treatment reveals that MCT predicts
a diverging (dynamical) correlation length associated with its
ideal glass transition [27].

Within the context of MCT, polydispersity-induced effects
have been widely studied in binary and ternary mixtures, in-
cluding for large size ratios (i.e., high polydispersity degrees)
[28,29]. Furthermore, Weysser et al. [30] have tested MCT for
a system of mildly continuously polydisperse (∼5%) quasi-
hard spheres where the diameters are drawn from a uniform
distribution. By performing an appropriate multicomponent
analysis of the mixture, they reported good agreement for
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the collective and single-particle observables predicted by the
theory, except at low wave numbers for the latter (a typical
shortcoming of the theory, especially for single-particle ob-
servables). Their work has clearly highlighted the importance
of treating polydispersity accurately by comparing predictions
from effective monodisperse MCT and multicomponent MCT
for up to five components. Beyond this, little is known on how
the degree of size polydispersity quantitatively affects MCT’s
predictions in continuously polydisperse mixtures.

This work aims to extend these prior studies by providing
a systematic and quantitative study of the glassy dynamics
predicted by MCT as the degree of polydispersity of continu-
ously polydisperse mixtures is varied. The focus of this work
is on MCT predictions solely, without resorting to explicit
comparisons with experimental or simulation results. There
are various reasons for this choice; first, this removes the
need for computationally intensive simulations since the MCT
equations of motion can be solved within reasonable compu-
tational time, at least up to 10 different particle components
using the latest open-source code implementation of MCT
[31]. Furthermore, there are already many experimental and
computational studies that have demonstrated that continu-
ously size polydisperse mixtures display nontrivial dynamical
features [10,11,32] which are by-products of the continuous
aspect of polydispersity. Secondly, and perhaps more im-
portantly, it is now universally accepted that MCT does not
account for the experimentally observed dynamical crossover,
which is a widely seen phenomenon that signals a change of
dynamics upon entering the more deeply supercooled regime
[33,34]. The physical mechanisms that drive the crossover
are known as activated events, and they are believed to be
associated with increasingly cooperative relaxation [35–39].
This in fact forms one of the main criticisms against the
theory, and in practice it limits MCT’s range of applicability
to only the mildly supercooled regime. Here we turn this
deficiency into an advantage, as it allows us to probe how the
degree of polydispersity affects one well-known and dominant
relaxation mechanism in the mildly supercooled regime in a
way that is completely independent from the other mecha-
nisms that are beyond the scope of the theory. This enables us
to disentangle potential polydispersity-induced effects which
have remained unstudied in recent simulation works on very
deeply supercooled liquids [38,39], yet are present already at
mildly supercooled states where MCT would be applicable.

II. THEORY

We consider an equilibrium, underdamped mixture of
N particles that can be divided into n distinct compo-
nents, each made up of Nσ particles of type σ , where σ =
1, 2, . . . , n. We define the incoherent intermediate scattering
functions (ISFs) per species at wave-vector k as F (s)

σ (k, t ) ≡
N−1

σ 〈∑Nσ

j=1 exp{ik · [rσ
j (0) − rσ

j (t )]}〉, where rσ
i (t ) denotes

the position of particle i of species σ at time t . We note
that the ISF only depends on the wave number k = |k| since
we consider a translationally and rotationally invariant sys-
tem. The angular brackets denote an ensemble average. Using
standard projection operator methods, the incoherent ISF for
species σ is found to satisfy the following integrodifferential

equation:

F̈ (s)
σ (k, t ) + �(s)

σ (k)2F (s)
σ (k, t )

+
∫ t

0
dτK (s)

σ (k, t − τ )Ḟ (s)
σ (k, τ ) = 0 (1)

with �(s)
σ (k)2 ≡ k2kBT/mσ , where mσ is the mass of particle

type σ , kB is Boltzmann’s constant, and T denotes the temper-
ature. The MCT memory kernel K (s)

σ (k, t ) reads

K (s)
σ (k, t ) = kBT ρ

k3mσ

∫
R3

dq
(2π )3

(k · q)2cσγ (q)cσλ(q)

× Fγ λ(q, t )F (s)
σ (|k − q|, t ), (2)

where ρ is the bulk density and cαβ (k) is the partial two-body
direct correlation function, which is related to the par-
tial static structure factor Sαβ (k) by cαβ (k) ≡ ρ−1{δαβ/xα −
[S−1(k)]αβ} [40]. Throughout this work, Greek indices re-
fer to particle species labels. The superscript (s) refers to
a “self”-(tagged) quantity. Furthermore, Einstein summation
convention is used throughout the manuscript.

Within MCT, the incoherent ISF depends on the coherent
one, which is defined as

Fαβ (k, t ) ≡ N−1

〈
Nα∑
i=1

e−ik·rα
i (0)

Nβ∑
j=1

eik·rβ
j (t )

〉
. (3)

The coherent ISF satisfies the following equation of motion:

F̈αβ (k, t ) + �αγ (k)2Fγ β (k, t )

+
∫ t

0
dτKαγ (k, t − τ )Ḟγ β (τ ) = 0, (4)

in which �αβ (k)2 ≡ k2kBT xα/mα · [S−1(k)]αβ and where the
collective memory kernel Kαβ (k, t ) is approximated by a bi-
linear functional of the coherent ISF. This is the celebrated
mode-coupling approximation, which reads

Kαβ (k, t ) = kBT ρ

2mαxβ

∫
R3

dq
(2π )3

Vαγ η(k, q)Vβκε (k, q)

× Fγ η(q, t )Fκε (|k − q|, t ). (5)

We denote by xσ ≡ Nσ /N the fraction of particle species σ .
The coupling constants Vαβγ (k, q) can be expressed in terms
of the partial two-body direct correlation function [13,14,20].
Overall MCT thus culminates in a closed set of dynamical
equations, which can be solved self-consistently once the
system-specific static inputs (in the form of the static struc-
ture factors, bulk density, temperature, and particle mass) are
known.

Since our goal is to investigate how the degree of size
polydispersity in continuously polydisperse mixtures modi-
fies the theory’s principal predictions [14,41], let us briefly
recall them. There exists a critical packing fraction ϕc be-
yond which an “ideal glass” forms (i.e., the point where the
density correlation functions no longer decay to zero at any
finite time). This marks an ergodicity breaking point. When
approached from the liquid side, the transition point is accom-
panied by a strict divergence of the structural relaxation time
τα ∼ |ϕ − ϕc|−γ with a critical exponent γ . The structural
relaxation time τα is typically defined as the point where

033121-2



COMPETING RELAXATION CHANNELS IN … PHYSICAL REVIEW RESEARCH 5, 033121 (2023)

the correlation functions have decayed to a small threshold
value (e.g., 1/e or 0.1), although more formal definitions also
exist [41].

Close to ϕc, both the coherent and incoherent ISFs develop
a distinct two-step relaxation pattern with a long-lived plateau
at intermediate times. Around this plateau, the ISFs admit the
following asymptotic expansions to leading order:

Fαβ (k, t ) =
{

fαβ (k) + K (+)
αβ (k)(t/t0)−a + O((t/t0)−2a),

fαβ (k) − K (−)
αβ (k)(t/t0)b + O((t/t0)2b)

(6)

and

F (s)
σ (k, t ) =

{
f (s)
σ (k) + K (+)

σ (k)(t/t0)−a + O((t/t0)−2a),

f (s)
σ (k) − K (−)

σ (k)(t/t0)b + O((t/t0)2b),
(7)

where fαβ (k) denotes the plateau height of the partial co-
herent ISF [also known as the partial Debye-Waller (DW)
factor], and f (s)

σ (k) is that of the incoherent contributions to
the ISF [also known as the Lamb-Mössbauer (LM) factor],
respectively. One should consider the (+) solutions on the
approach towards the plateau, and the (−) solutions upon
departure from it. The quantity t0 is some reference timescale
that determines the range of validity of the asymptotic ex-
pansion, usually defined as the point at which the coherent
(incoherent) ISF equals the value of the associated DW (LM)
factor at the critical point [41]. The factorization theorem [14]
indicates that every term in the asymptotic series separates
into a purely wave-number-dependent contribution K (also
known as the critical amplitude), and a solely time-dependent
function that, to leading order, behaves as a power-law with
exponents a, b depending on whether one is above or below
the critical plateau. The exponent b is commonly known as
the von-Schweidler exponent [42]. Furthermore, the three dy-
namical exponents are related by the following two relations:

γ = 1

2a
+ 1

2b
and

�(1 − a)2

�(1 − 2a)
= �(1 + b)2

�(1 + 2b)
, (8)

where �(x) denotes the Gamma function. We note that the ex-
ponents are system-dependent, but for a given system they are
universal for the correlation functions discussed above. Since
all species share the same exponents, the species-averaged
quantity F (s)(k, t ) ≡ xσ F (s)

σ (k, t ) also admits the same asymp-
totic expansions, albeit with different critical amplitudes.

In addition to accounting for the highly nontrivial scaling
laws discussed above, MCT also provides a physically intu-
itive picture for glassy dynamics in terms of the cage effect.
Briefly, this feedback effect stems from the self-consistent,
nonlinear form of the memory kernel of Eq. (5), which renders
MCT incredibly sensitive to subtle changes in the microstruc-
ture of the liquid (as quantified by the static structure factor).
In particular, at the wave vector corresponding to the first peak
of the static structure factor, which typically changes the most
upon supercooling, the relaxation dynamics is predicted to
slow down significantly, which in turn also drives the slow-
down of all surrounding wave vectors via the self-consistent
mode-coupling. Since this process is initiated at the length

FIG. 1. MCT state diagram in the polydispersity-packing frac-
tion plane for polydisperse mixtures of hard-sphere liquids whose
diameters are sampled from the three distributions described in the
main text. The panels on the right-hand side illustrate the distribu-
tions of particle sizes P(D).

scale of the first solvation shell, the microscopic origin of
the macroscopic slowdown is attributed to caging, whereby
particles become trapped in local cages formed by their near-
est neighbors. This ultimately culminates in the collective
freezing of density fluctuations at the ideal glass transition.

III. NUMERICAL METHODS

In the remainder of this work, we examine in detail how the
degree of size polydispersity affects the dynamical behavior
of a three-dimensional hard-sphere fluid near the ideal MCT
transition. We study results for three different continuous dis-
tributions P(D) of particle diameters D:

(i) A uniform distribution Puni(D) defined as

Puni(D) = 1

(Dmax − Dmin)
, D ∈ [Dmax, Dmin], (9)

where Dmax and Dmin denote the maximal and minimal diam-
eters of the distribution, respectively.

(ii) A Gaussian distribution PGauss(D) defined as

PGauss(D) = 1√
2π�2

e−(D−D)2/�2
(10)

with mean D and standard deviation �.
(iii) An inverse cubic distribution Pinv(D) defined as

Pinv(D) = A

D3
, D ∈ [Dmax, Dmin], (11)

where Dmax and Dmin denote the maximal and minimal diam-
eters of the distribution, respectively, and the normalization
reads A = 1/2 + 1/(σ − 1), where σ ≡ Dmax/Dmin is the size
ratio of the largest to the smallest particle [3].

The three distributions are shown on the rightmost panels
of Fig. 1. We focus on different probability distributions as
recent work has shown that not only the degree of polydis-
persity, but also the shape of the distribution matters near
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dynamical arrest [10]. We note that the inverse cubic distri-
bution has recently become very popular in computational
studies of deeply supercooled liquids, due to its exceptional
equilibration efficiency when combined with the enhanced
sampling swap Monte Carlo method [3].

To numerically solve Eqs. (1)–(4), we approximate the size
distributions by discretized versions. The particles’ effective
diameters are determined from a quantization of the probabil-
ity distributions into n = 10 quantiles (i.e., the distribution of
particle diameters is sampled uniformly and thus a randomly
selected particle has an equal probability of belonging to any
particular bin). The effective diameter of particles of each bin
is then set equal to the center of mass of the given bin. We
show in Appendix A that an effective 10-component descrip-
tion is sufficient for the regimes of polydispersity investigated
in this work. We also rescale the quantized diameter list such
that it has unit mean. The width of the distributions (and thus
the degree of size polydispersity) can be tuned by varying the
range of the allowed diameters (Dmin, Dmax for the uniform
and inverse cubic distributions) or the half-width � for the
Gaussian distribution. To allow for a fair comparison between
different distributions, we characterize the degree of polydis-
persity by a polydispersity index denoted δ, defined as the
standard deviation of the (quantized) diameter list. Since the
mean is fixed, the value of δ implicitly sets the upper and lower
bounds of the particle diameters for a given distribution P(D).

To permit a completely fit-parameter-free, first-principles
study, we use analytic partial static structure factors for hard
spheres obtained from the multicomponent version of the
Percus-Yevick (PY) approximation [43]. These serve as our
structural input to the MCT equations at a given density. We
note that the multicomponent PY approximation has been
used in polydisperse MCT studies in the past, leading to
convincing predictions compared to simulation results [44].
Furthermore, Frenkel et al. [45] have demonstrated that the
PY approximation was capable of accurately capturing the
structure of (highly) continuously polydisperse hard-sphere
mixtures of log-normally distributed diameters.

The equations of motion (1)–(4) are solved for the effective
10-component mixture over a logarithmically coarse-grained
time grid [28,46], which has recently been implemented in
an open-source solver for integrodifferential equations of the
mode-coupling type [31]. The wave-vector integrals were
performed (in spherical coordinates) over a grid of 100
equidistant points between kmin = 0.2 and kmax = 39.8. We
set the mass of all particles as well as the thermal energy to
unity: mσ = 1 ∀ σ and kBT = 1. More details on the numer-
ical routines, in particular with respect to numerical stability,
can be found in Appendix B.

IV. STATE DIAGRAM

We first study the location of the predicted glass transition
for continuously polydisperse systems as a function of the
degree of polydispersity. To determine the state diagram, we
solve Eq. (4) for the long-time limit (t → ∞) by using a
Picard iteration procedure and performing a bisection search
for the critical point ϕc. In Fig. 1 we show the state diagram
as determined by MCT for the three different distributions
defined above. At low polydispersities, we find reentrant

behavior for all three cases, which has also been observed in
the past in mildly size-asymmetric binary hard spheres in the
context of MCT [20,47–49]. As the polydispersity index is
increased further, we see that the critical points are shifted
to higher packing fractions for all distributions considered.
This indicates that, according to MCT, a higher degree of
size polydispersity stabilizes the liquid phase. This trend has
also been observed in recent simulation studies of continu-
ously polydisperse systems [10], and in studies of strongly
size-asymmetric binary mixtures, both in simulation [48] and
within the context of MCT [20]. Physically, the shift of ϕc

toward higher values with increasing δ can be attributed to
entropically induced effective attractions between particles
with large size differences [50], which are known to stabilize
the liquid phase [21,51].

For all three distributions studied here, considering a
line at a fixed packing fraction ϕ could therefore lead to
nonmonotonic dependence of the relaxation time. This is
particularly true near packing fractions close to that of the
single-component MCT transition ϕ = 0.519. For instance,
at this point in the low to moderate polydispersity regime
(δ < 0.15), one initially expects an increase of relaxation
time as the degree of polydispersity increases, followed by
a glass region which eventually reenters the liquid regime
at high degrees of polydispersities, for δ � 0.2. In the latter
regime, we observe that the dynamics become faster as the
degree of polydispersity is increased. This last observation
is in line with prior studies on polydisperse Lennard-Jones
fluids, where increasing the degree of polydispersity also leads
to a speed-up of the dynamics [32].

It can be seen that the uniform and Gaussian distribution
yield nearly identical critical points, except at very high poly-
dispersities. The stabilization of the liquid phase is largest for
the inverse cubic distribution, for which the critical packing
fraction can be shifted beyond ϕc = 0.540. Note that this
particular distribution also permits supreme equilibration effi-
ciency in the supercooled liquid phase with swap Monte Carlo
[3]; whether these two observations bear the same physical
origin deserves further investigation. We also recall that the
nature of the inverse cubic distribution is such that there is
an abundance of small particles compared to the large ones.
Our findings, therefore, indicate on purely theoretical grounds
that not only the relative size of the particles is crucial for the
system’s stability against vitrification, but also the number of
particles of each size. This also explains the deviation of the
Gaussian distribution from the uniform one for δ > 0.4, as the
former has more small particle outliers at fixed δ, which would
fluidize the system.

In the limit of very high polydispersity indices δ, we find
that for the uniform distribution, the critical point saturates
to a constant value. This suggests that, at least at the level
of MCT, there is a “maximal” polydispersity index beyond
which the long-time dynamics are no longer affected. This
behavior has also been observed in highly asymmetric bi-
nary mixtures in the past [20]. The saturation at large δ is
more subtle in the case of the Gaussian and inverse cubic
distributions, but we anticipate it should also be reached at
sufficiently high polydispersities (δ > 0.5). We note, how-
ever, that at such high degrees of polydispersity, we cannot
rule out the existence of exotic partially arrested states, as is
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FIG. 2. Species-averaged (full line) and partial (dashed lines) incoherent intermediate scattering functions [denoted F s(k, t ) and F (s)
σ (k, t ),

respectively]. The curves have been obtained by numerically solving for Eq. (1) for polydispersity degree δ = 0.1 (a), 0.24 (b), and 0.38 (c) for
a uniform distribution of diameters. The corresponding packing fractions are ϕ = 0.515 (a), 0.518 (b), and 0.522 (c). For all three panels, the
lowest dashed curve corresponds to the smallest particle diameter considered and the highest corresponds to the largest one (with a monotonic
increase in between).

predicted by MCT for binary mixtures where the size ratio of
the smallest to the largest particles is below Dmin/Dmax � 0.35
[25]. In the present study, the size ratio Dmin/Dmax � 0.25 and
0.20 for the uniform and Gaussian distributions of diameters,
respectively, if δ � 0.40. It is therefore not unthinkable that
a partially arrested glass exists in this portion of parameter
space. The size ratio for the inverse cubic distribution remains
smaller for equivalent values of δ, although the same scenario
is anticipated for higher degrees of polydispersity. The study
of these more exotic glass states in continuously polydisperse
mixtures is, however, beyond the scope of this work and is left
for future study.

Lastly, we have verified that the same MCT state diagram is
found for a finer wave-vector grid (see Fig. 12 in Appendix B),
as well as for other quantizations for the particle diameters
(fewer bins), which indicates that all the trends observed
in Fig. 1 are genuine and not an artifact of our numerical
routines.

In the remainder of this work, we focus on the dynamics
of polydisperse systems where the particle diameters follow
a uniform or inverse cubic distribution. This choice is mo-
tivated by the similarity between the MCT predictions for
the Gaussian distribution and the uniform one. Furthermore,
all the results that follow have been evaluated at the wave
number k corresponding to the peak of the species-averaged
static structure factor S(k) ≡ ∑

αβ Sαβ (k). This peak position
is weakly polydispersity-dependent near the critical point, as
shown in Fig. 13 (in Appendix C).

V. DYNAMICAL FEATURES OF STRUCTURAL
RELAXATION

A. Incoherent intermediate scattering
functions and form factors

We now move on to study the dynamical features of
structural relaxation in polydisperse mixtures. To isolate the
effects of polydispersity, we compare systems at a fixed relax-
ation time τα = 1010 (a.u.), where τα is defined as the point
where the diameter-averaged incoherent ISF has decayed to
some small value ε, i.e., F (s)(k, τ α ) = ε with ε = 10−5. We
choose τα = 1010 (a.u.) to probe the dynamics fairly close to

the MCT critical point, and ε = 10−5 to ensure that all particle
species have fully relaxed. One could also perform a study
at fixed packing fraction ϕc instead of fixed relaxation time
τα , while varying the polydispersity, but this would render
the comparisons more difficult as τα is highly polydispersity-
dependent.

We show in Fig. 2 the species-averaged (full line) and
the partial incoherent ISF (dashed lines) for three different
levels of polydispersity δ = 0.1, 0.24, 0.38 for a uniform size
distribution. In particular, looking at the partial incoherent
ISF, we see that for δ = 0.24 there is a decade of difference
in the relaxation times for the smallest (lowest dashed line)
and the largest particles (highest dashed line), and nearly four
decades for δ = 0.38. The difference in particle-size resolved
relaxation times becomes even more extreme if one uses a
more conventional definition of the structural relaxation time,
e.g., the point where F (s)(k, τα ) = 1/e. This also implies that
in the case of highly polydisperse mixtures, some caution
is warranted when studying structural relaxation: on general
grounds, one expects the relaxation time to be defined as
some point beyond which the correlator has decayed from its
plateau by a certain amount, yet for the smallest particles the
plateau height can become incredibly low. Hence, the meaning
of “structural relaxation” may be qualitatively affected when
using the definition F (s)

σ (k, τα ) = 1/e (indicated by the hori-
zontal black line in Fig. 2), since for small particles this would
probe only the short-time dynamics.

As can already be inferred from Fig. 2, the Lamb-
Mössbauer factor, which is essentially the height of the
plateau of the ISF, is highly species-dependent. This indicates
that local mobility is strongly dependent on particle diameter,
since the inverse Fourier transform of the LM factor is related
to the Van Hove function, i.e., the probability of observing
a given displacement during an infinite observation window
[14]. More precisely, the half-width of the LM factor is in-
versely proportional to the root-mean-squared displacement
of a given particle [13], which we refer to as a localiza-
tion length. Let us first consider how the diameter-averaged
form factors are affected by the polydispersity. In Fig. 3
we show the species-averaged LM factors f (s)(k) ≡ xσ f (s)

σ (k)
evaluated at the MCT critical point for various values of the
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FIG. 3. Diameter-averaged Lamb-Mössbauer factors determined
from MCT for multicomponent hard-sphere mixtures in the Percus-
Yevick approximation as a function of dimensionless wave number
kD. Left panel: uniform distribution with polydispersity index δ;
right panel: inverse-cubic distribution with polydispersity index δ.

polydispersity index. For both distributions and for all wave
numbers, the LM factors decrease monotonically with in-
creasing δ. Additionally, they decay over longer wavelengths
when the polydispersity index is increased, suggesting that
the average localization length of all particles is increased
by increasing size polydispersity. Furthermore, we find that
the averaged LM factor is progressively less Gaussian with
increasing δ, which indicates that the local energy landscape
around a given particle is progressively anharmonic [14].

To understand this, we argue that as the polydispersity
index is increased, the notion of a local trapping cage becomes
less relevant for the smallest particles. We show in Fig. 4 the
diameter-resolved LM factors on a semilogarithmic scale. For
low degrees of polydispersity [panels (a) and (b)], we find the
Gaussian result f (s)

σ (k) ∝ exp (−(kD)2), which suggests that
all particles effectively behave as if they were in a harmonic
trap [14]. As the polydispersity index is increased [panels
(c) and (d)], we find that, while the largest particles retain a
Gaussian LM factor, the smallest ones strongly deviate from
1. Furthermore, the latter tend to decay faster as a function
of k, signaling a much larger localization length. This sup-
ports the idea that the smallest particles are able to navigate
heterogeneously (while still being localized) through narrow
channels within the matrix of larger, more strongly localized
ones. The red curves in Fig. 4, which represent the diameter-
averaged LM factor, demonstrate that at high polydispersity
indices [panels (c) and (d)], the non-Gaussian character of the
diameter-averaged LM factor can be imputed to the smallest
particles. These findings are consistent with earlier results on
bidisperse mixtures [26], as well as experimental and compu-
tational work on continuously polydisperse systems [10,52].

We find, however, that MCT is incapable of resolving an-
other known observation in strongly polydisperse mixtures,
namely that small particles escape their cage much earlier than
large ones. Indeed, such reports have been made for simulated
binary mixtures in the past [28], and more recently for the
same inverse cubic distribution used in the first part of this
work with δ ≈ 0.23 [11]. In these two studies, it was found

FIG. 4. Diameter-resolved Lamb-Mössbauer factors determined
from MCT for multicomponent hard-sphere mixtures in the Percus-
Yevick approximation as a function of the squared dimensionless
wave number kD on a log-linear scale. The red line denotes the
diameter-averaged Lamb-Mössbauer factor.

that there is a dynamical separation between the smallest
and the largest particles. Yet, MCT’s asymptotic predictions
are such that near the critical point considered here, species-
resolved intermediate scattering functions decay from their
respective plateaus at the same time, thus failing to capture
the dynamical separation. This failure of MCT suggests that
the theory effectively overestimates the coupling between dif-
ferent species, ultimately leading to an ideal glass transition
scenario. This limitation is attributed to the general absence of
activated events in the theory, which, if included, would man-
ifest as additional relaxation channels, restoring ergodicity.
The way in which these couple to the degree of polydispersity
remains, however, an open question.

B. Critical dynamical exponents

Let us now focus on the critical exponents associated with
the dynamical MCT scaling laws. We recall that these expo-
nents are generally system-dependent, and therefore they also
depend on the chosen size distribution. However, given the
qualitatively equivalent behavior of the uniform and inverse
cubic size distributions above, we consider here only the case
in which the particle diameters follow a uniform distribution.
Similar qualitative trends are expected to hold for other con-
tinuously polydisperse mixtures.

Although the critical scenario of MCT is unaffected by
polydispersity (at least at reasonable degrees of polydisper-
sity), we nonetheless observe important quantitative effects
of polydispersity on the critical exponent γ and the dynam-
ical exponents a, b. We determine γ by fitting the power
law to the relaxation time τα ∼ |ϕ − ϕc|−γ for a set of nu-
merical solutions in the range 10−2 � |ϕ − ϕc| � 10−5. The
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FIG. 5. (a) Critical exponent γ as a function of the degree of
polydispersity δ. This exponent governs the divergence of the relax-
ation time. (b) Dynamical exponent a, which governs the asymptotic
behavior of the correlator when approaching the plateau from above.
(c) Dynamical exponent b (the von Schweidler exponent) which
governs the asymptotic behavior of the correlator when departing
from the plateau. In the three panels, the error bars correspond to the
uncertainty of the results of the fitting procedure (see Appendix D
for details).

dynamical exponents a, b are then determined by solving the
system Eq. (8) using standard root-finding techniques.

We find that the exponent γ increases monotonically
with the level of polydispersity δ, as shown in Fig. 5(a).
This increase implies a stronger divergence of the relaxation
time, and thus a higher degree of fragility with increas-
ing polydispersity. Note here that we quantify the degree
of fragility of supercooled liquids as the deviation from an
Arrhenius scaling of the relaxation time in terms of a power
law, whereas fragility is generally measured from fits to the
Vogel-Fulcher-Tammann equation [53]. Concomitantly, the
dynamical exponents a and b are found to decrease monoton-
ically with δ [see Figs. 5(b) and 5(c)]. The quantitative values
of the critical exponents that we report here are also in line
with earlier studies of polydisperse quasihard sphere mixtures
[30]. Moreover, we find that all exponents saturate around
a polydispersity index of δ = 0.4, which coincides with the
point at which the predicted value of ϕc becomes constant for
this size distribution (see Fig. 1). These results further confirm
that, within MCT, there is an upper bound for δ beyond which
the dynamics are no longer affected by polydispersity for this
distribution.

On general grounds, the critical exponents can be related
to a dynamical length scale within the framework of inho-
mogeneous MCT [27]. Briefly, the growth of the (nonlinear)
dynamical susceptibility (i.e., the response of the coherent
ISF to an infinitesimal localized perturbation of the density
field near criticality) is governed by the values of the two
dynamical exponents a and b. The dynamical length scale,
which measures the size of a strongly dynamically correlated
region, grows as ξ (t ) ∝ t a/2. Since a decreases with δ, this
implies that increasing the polydispersity index hampers the

growth of the dynamical length scale. This observation is in
agreement with previous experimental findings [32], where
it was found that lower polydispersities imply stronger dy-
namical heterogeneities. The above result is also consistent
with the intuitive picture that we propose here: there exists a
subpopulation of particles with large localization lengths (the
smallest ones), which fluidizes the system and thus makes it
more difficult for the correlation length to grow in time, due
to the inherent scrambling of the small particles in the voids
surrounding the largest ones.

C. Stretched exponential relaxation

It is well known that the coupling of different relaxation
modes can lead to stretched exponential behavior [54]. In
standard MCT, such stretching is usually attributed to the
coupling of different wave vectors, but the additional coupling
of different particle species can lead to further stretching of the
dynamics. Indeed, our species-averaged dynamics for the in-
termediate scattering functions (full lines in Fig. 2), as well as
the averaged von Schweidler exponent b (Fig. 5), indicate that
additional relaxation channels provided by size polydispersity
yield a stretching of the relaxation.

To more quantitatively analyze the influence of polydis-
persity on the structural relaxation, we perform a detailed
analysis of the long-time tail of the incoherent ISFs. Specifi-
cally, we fit a Kohlrausch function to the long-time decay of
the species-averaged correlator F (s)(k, t ),

F (s)(k, t ) = f (s)(k) exp

[
−

(
t

τα

)βKWW
]
, (12)

in order to extract the Kohlrausch-Williams-Watts (KWW)
stretching exponent βKWW (see Appendix D for details). Note
that, within the context of MCT, this asymptotic form is
strictly valid only in the infinite wave-number limit k → ∞
[46,55], but it is also frequently employed to fit MCT pre-
dictions at finite wave numbers [17,30] and it is a standard
quantifier of relaxation in complex media [54]. Our results
for βKWW for a uniform size distribution are presented in
Fig. 6(a). As the polydispersity degree is increased, we find
that βKWW decreases monotonically until it saturates beyond
δ ≈ 0.4 at a low value around βKWW ≈ 0.60. This saturation,
which we recall is also observed in the state diagram and in
the critical exponents, again strengthens the idea that there is
a degree of polydispersity beyond which MCT’s predictions
are no longer affected.

We subsequently perform a diameter-resolved analysis of
the relaxation by computing the KWW exponent from the
partial incoherent ISFs, which we denote βKWW. The results
are shown in Figs. 6(b) and 6(c) for δ = 0.24 and 0.38, respec-
tively. The KWW exponent monotonically increases with the
particle diameter in a continuous mixture. Furthermore, we
find that the species-averaged exponent [dashed black lines
in Figs. 6(b) and 6(c)] is very close to that of the value for
the smallest particles. Since the stretching exponent is related
to the degree of heterogeneity in relaxation timescales, it is
not surprising that the diameter-averaged exponent is in fact
governed by that of the more dynamically heterogeneous par-
ticles (i.e., the smallest ones). This interpretation is coherent
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FIG. 6. (a) Kohlrausch-Williams-Watts exponent for the species-
averaged incoherent intermediate scattering function F s(k, t ) as a
function of the polydispersity index δ. (b),(c) Kohlrausch-Williams-
Watts exponent for species-specific incoherent intermediate scat-
tering functions as a function of the particle diameter D, for
polydispersity degree δ = 0.24 and 0.38, respectively. The horizontal
dashed line represents the species-averaged value βKWW. Error bars
are smaller than the scatter point size.

with the notion that the growth rate of correlated regions is
restrained by polydispersity, since the smallest particles are
much more mobile than the largest ones.

D. Competing relaxation channels

Lastly, we study the superposition of relaxation mecha-
nisms induced by size polydispersity in a mixture with a
uniform size distribution. To this end it is useful to translate
our MCT results into frequency space. We follow standard
procedure [56] and define the imaginary part of the response
spectra Im[χ (k, ω)] ≡ χ ′′(k, ω) associated with F (s)(k, t ) as

χ ′′(k, ω) = −
∫ ∞

−∞
d log(t )

dF (s)(k, t )

d log(t )

ωt

1 + (ωt )2
, (13)

and analogously for the species-specific quantities, which we
denote by χ ′′

σ (k, ω).
Figure 7(b) shows the response spectra for different poly-

dispersity degrees at a fixed relaxation time τα , rescaled by
the average LM factor such that the low-frequency peaks (as-
sociated with structural α-relaxation) all collapse at the same
height. Note that minor deviations from a perfect collapse are
noticeable, which are attributed to our numerical accuracy
in determining solutions at fixed relaxation time. It can be
seen that the α-peak broadens toward higher frequencies as
the polydispersity index δ increases. This fanning is associ-
ated with an increased stretching of the long-time structural
relaxation of F (s)(k, t ), in line with the results of Fig. 6(a) and
explicitly shown in Fig. 7(a). Compared to the monodisperse
case (full line in Fig. 7), we infer that polydispersity induces
additional relaxation channels that now compete with each
other, thus resulting in a significantly broader spectrum [see
Fig. 7(b)]. We also find that as the degree of polydispersity
increases, the relative height of the boson peak (i.e., the

FIG. 7. (a) Species-averaged incoherent intermediate scattering
functions obtained by numerically solving for Eq. (1) for polydis-
persity degree δ. (b) Corresponding susceptibility spectra χ ′′

s (k, ω)
rescaled by the averaged Lamb-Mössbauer factor. Note that the x-
axis is rescaled by the frequency ω0 at which the minimum of the
spectrum occurs. The solid line corresponds to the single-component
MCT result in both panels.

high-frequency peak of the spectrum) increases with re-
spect to that of the α-peak. Since the two spectral peaks
are separated by the caging regime (i.e., the minimum of
the spectrum), this further corroborates that the degree of
polydispersity influences the ratio between structural relax-
ation before and after the caging regime. In particular, for
the highest polydispersity index considered in this work, the
magnitude of the boson peak exceeds that of the principal
α-relaxation, which implies in the time domain [Fig. 7(a)]
that more than 50% of the decay in density correlations occurs
before reaching the caging plateau.

Let us now inspect the α-peak of the spectrum more
closely. The dashed lines in Figs. 8(a) and 8(b) represent the
spectrum of the fitted stretched exponentials at polydispersi-
ties δ = 0.24 and 0.38 for varying packing fractions towards
the critical point. For all cases, we find that the signal is well
captured up to the vicinity of the spectral minimum, where
a smooth transition occurs between stretched exponential re-
laxation and the von Schweidler excess: χ ′′(ω) ∼ ω−b [shown
for clarity in panels (c) and (d)]. Note, however, that this
transition is hard to see, since the von Schweidler exponent
and the slope of the stretched exponential are very similar. To
understand the microscopic origin of the excess in the relax-
ation spectrum, we study the diameter-resolved susceptibility
spectra, shown in Figs. 8(c) and 8(d) by the colored lines.
Here it is important to recall that the asymptotic properties
of MCT around the minimum of the spectra are universal.
In particular, the theory predicts that the von Schweidler ex-
ponent b for the species-resolved susceptibilities χ ′′

σ (k, ω →
ω−

0 ) ∼ K (−)
σ (k)ω−b is diameter-independent [29,41] [although

it is system-dependent, as previously shown in Fig. 5(c)]. The
results of Figs. 8(c) and 8(d) reveal that the particle-resolved
susceptibilities (full colored lines) indeed all share the same
power laws, but the location of the low-frequency α-peak
is, however, diameter-dependent. To the left of the α-peak,
the highest curve corresponds to that of the largest diameter,
while the lowest curve corresponds to the smallest diameter.
At the minimum ω0 the reverse situation is found, as indicated
by the black arrows pointing toward increasing diameters.
Hence, the curves must cross at some point beyond which the
smallest particles contribute “in excess” to the spectrum.
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FIG. 8. (a),(b) Species-averaged susceptibility spectra on a dou-
ble logarithmic scale as the critical packing fraction ϕc is approached
from below for polydispersity degree δ = 0.24 and 0.38, respec-
tively. Dashed lines correspond to the spectrum of a Kohlrausch fit
for the diameter-averaged susceptibility χ ′′(k, ω); see Appendix D
for details. (c),(d) Species-averaged susceptibility (scatter points)
and species-resolved susceptibility (colored) on a double logarithmic
scale at a distance |ϕ − ϕc| = 10−5 to the critical point. Dashed
black lines correspond to the spectrum of a Kohlrausch fit for the
diameter-averaged susceptibility χ ′′(k, ω); see Appendix D for de-
tails. The arrows indicate the direction of increasingly large particle
diameters D.

In fact, MCT guarantees that the distance between the
α-peaks of particles with different diameters is fixed as one
approaches the transition, since they all share the same critical
exponent γ . Hence, as we get closer to the critical point, the
spectral contributions from the smallest particles at frequen-
cies past the caging regime do not increase in magnitude,
and the entire effect remains subtle. However in molecular-
dynamics simulations, we know that this is not valid, and that
in fact, beyond the spurious transition predicted by MCT, the
distance between the α-peaks of particles with different diam-
eters must increase, since the time interval between which the
smallest and the largest particles relax increases with deeper
supercooled systems [11]. This raises an important question
regarding the exact nature and the true microscopic origins
of relaxational excess observed in the spectrum of simple
yet polydisperse glass formers. In particular, it would be of
interest to compare the value of the excess wing exponent
reported in [38] with that of the von-Schweidler exponent for
the same system, and to perform a similar diameter-resolved
analysis of the relaxation spectra in order to check whether
there is a homogeneous spectral contribution with respect to
particle diameters.

VI. CONCLUSION

In this work, we have analyzed the dynamics of contin-
uously polydisperse glass-forming liquids through the lens
of mode-coupling theory. We have demonstrated that in-
creasing the degree of size polydispersity first slows down
the dynamics before pushing the critical point ϕc to higher

packing fractions, thus stabilizing the liquid phase. Of the
three size distributions that we have considered, the liquid
stabilization effect is largest for the inverse cubic distribu-
tion. This generalizes earlier MCT results on simpler, binary
mixtures. A detailed study of the Lamb-Mössbauer factors
has revealed that the smaller particles have much longer lo-
calization lengths than the larger ones, and strongly deviate
from the standard Gaussian behavior. This leads to visible
deviations from Gaussian behavior also in diameter-averaged
quantities.

Our analysis of the particle-averaged dynamics near the
critical point shows that increasing the degree of polydisper-
sity induces a significant stretching of the KWW exponent, a
lowering of the critical dynamical exponents a, b, and a net
growth of the critical exponent γ that governs the divergence
of the relaxation time. Our results thus indicate that increasing
the polydispersity index affects the fragility of the liquid, as
well as dynamical heterogeneities whose growth is dictated
by the dynamical exponents a and b [27,57].

By performing a diameter-resolved analysis, we have
shown that the Kohlrausch-Williams-Watts stretching expo-
nent of the diameter-averaged dynamics is dominated by
the dynamics of the smaller particles, which have signifi-
cantly lower Kohlrausch-Williams-Watts exponents compared
to their larger counterparts. This leads us to infer that temporal
heterogeneities in the dynamics are also mainly due to the
smaller particles. This conclusion is also in partial agreement
with recent observations in molecular-dynamics simulations
[11], where it has been shown that smaller particles have
strongly heterogeneous dynamics compared to their larger
counterparts. We have further studied the manifestation of this
effect in the susceptibility spectra of the relaxation, which
exhibit a broadening and von Schweidler excess that becomes
more pronounced upon increased polydispersity. We can at-
tribute this broadening to two factors: first, to the increasing
temporal heterogeneities of the small particles as they exhibit
low stretching exponents (compared to the larger ones), and
second, to the shift in spectral peak positions of the small-
est particles. It is important to note, however, that the von
Schweidler excess remains strictly governed by the critical
exponent b, but since b itself changes with polydispersity, so
does the spectrum. A detailed diameter-resolved investigation
using computer simulations could verify if these observations
persist beyond the MCT regime.

Overall, our results demonstrate that size polydispersity
imposes important and nontrivial effects on glassy dynam-
ics. This is particularly relevant in the context of deeply
supercooled liquids that typically require a large degree of
polydispersity in order to permit equilibration at temperatures
below the MCT crossover temperature. Our work reveals,
on purely theoretical grounds, that even in the mildly su-
percooled regime where MCT is usually deemed applicable,
the presence of polydispersity can induce complex dynamical
features. It is possible that some of these polydispersity-
specific features might carry over into the more deeply
supercooled regime.

Furthermore, we have shown that strongly continuously
polydisperse mixtures of hard spheres display features of
both collective glassy behavior for the largest particles, and
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localization in narrow channels for the smallest ones. In this
sense, such systems provide an interesting intermediate step
between effectively monodisperse glasses and the more mini-
mal model of the random Lorentz gas used to study transport
in heterogeneous environments [58], which is governed by
percolation in physically relevant dimensions.
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APPENDIX A: VALIDITY OF EFFECTIVE DISCRETE
REPRESENTATIONS FOR CONTINUOUSLY

POLYDISPERSE HARD SPHERES

We first discuss the validity of the discrete representa-
tion of a continuous distribution of particle sizes. We show
in Fig. 9 the structure factors for a uniform continuous
distribution of particle diameters, as determined from multi-
component Percus-Yevick hard spheres, for two degrees of
polydispersity δ = 0.2 and 0.4 as a function of an effective
n-component representation at fixed packing fraction ϕ =
0.521. The top panels show the convergence of the peak
of the averaged structure factor S(k∗) as a function of the
number of resolved components. We judge that an effective
10-component description is sufficient to accurately resolve

FIG. 9. (a),(b) Convergence of the static structure factor for a
uniform distribution of diameters at fixed polydispersity δ = 0.2
and packing fraction (ϕ = 0.521) of a discrete description of the
continuously polydisperse system. (c),(d) Same as panels (a),(b) for
a polydispersity index of δ = 0.4.

FIG. 10. Convergence of the diameter-averaged incoherent inter-
mediate scattering function F (s)(k, t ) as a function of the number of
resolved diameters n for a polydispersity index δ = 0.4 at packing
fraction ϕ = 0.521.

the total structure of the system, motivating the choice in
the main text. Similar results are found for other degrees of
polydispersity, packing fractions, as well as for other types of
distributions.

To further illustrate this point, we plot in Fig. 10 the con-
vergence of the resulting MCT solutions as a function of the
number of resolved species for the diameter-averaged incoher-
ent intermediate scattering function. We find that the curves
for n = 6, 8, and 10 effective components have converged
to the same value. To make the convergence manifest, we
have dashed the n = 10 curve. Similar results are found for
other degrees of polydispersity and other ranges of packing
fractions. Lastly, we show in Fig. 11 that the qualitative pic-
ture of the phase diagram is independent of the number of
resolved diameters for a uniform distribution of diameters.
Similar results are found for the other distributions.

APPENDIX B: NUMERICAL DETAILS

The equations of motion (1)–(4) were solved using a
time-doubling algorithm [28,46], which has recently been
implemented in an open-source solver for integrodifferential
equations of the mode-coupling type [31]. The wave-vector
integrals were performed (in bipolar coordinates) over a
grid of Nk = 100 equidistant points between kmin = 0.2 and
kmax = 39.8. We have checked the stability of our results

FIG. 11. Convergence of the phase diagram for a uniform dis-
tribution of diameters as a function of the number of resolved
components n.
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FIG. 12. Phase diagram computed with two different wave-
vector grids. Circle scatter points correspond to those shown in
the main text. The upward-facing triangles correspond to a wave-
vector grid with twice the resolution, and resolved over smaller
wavelengths.

against a finer grid with kmin = 0.2 and kmax = 60.0, with
Nk = 300 equidistant points in between (which doubles the
resolution compared to the one presented in the main text).
Results are shown in Fig. 12; we observe no qualitative differ-
ences between the two wave-vector grids.

APPENDIX C: STATIC STRUCTURE FACTORS

We show in Fig. 13 the averaged static structure factor
S(k), as determined from multicomponent Percus-Yevick hard
spheres, for various polydispersity indices, evaluated at the
critical point ϕc for an effective 10-component continuously
polydisperse mixture. For both distributions, as the degree
of polydispersity is increased, we see that the magnitude
of the first peak of the averaged structure factor drastically
diminishes. In the case of the uniform distribution, we find
that the peak is modestly shifted to lower wave numbers,
signaling a slight increase in the average cage size. We see,
however, that in the case of the inverse cubic distribution, the

FIG. 13. Diameter-averaged static structure factors for effective
10-component mixtures with polydispersity δ as determined from
Percus-Yevick hard spheres. Left: uniform distribution of particle
diameters; right: inverse cubic distribution.

structure is completely washed out as the polydispersity index
is increased, and in fact the qualitative aspect of the structure
factor is significantly changed by the abundance of very small
particles.

APPENDIX D: FITTING PROCEDURES

1. Kohlrausch law

We fit the stretched exponential Kohlrausch law for the
averaged and species-resolved incoherent intermediate scat-
tering functions when they lie between half of and one-tenth
of the corresponding Lamb-Mössbauer factor, i.e., C(t ) ∈
[C∞/2,C∞/10] for a correlation function C(t ) exhibiting a
plateau at C∞. This ensures that we are well away from the
MCT von Schweidler decay, but also in a range that is com-
parable with what would generally be done for experimental
and simulation results, as the long time tails have a tendency
to be statistically unreliable. We note that in the case in which
the plateau is extremely low, as is the case for the smallest
particles in the very high polydispersity limit [see Fig. 2(c)],
we cannot reasonably perform the fit.

We would like to add that fitting a stretched exponential
decay to correlation functions is a complicated matter. This is
partly due to the fact that on general grounds, such an asymp-
totic form cannot be rigorously justified. However, this does
not mean that the KWW exponent extracted is not useful: it is
a quantifier of relaxation that allows for an easy comparison in
many different systems. We simply wish to emphasize that the
quantitative values of the KWW exponent are very sensitive
to the fitting interval. To address this, we have checked that
various fitting intervals (i.e., including a reasonably larger
portion of the tail) does not affect the qualitative picture we
presented, although it does affect the quantitative picture.

2. Critical exponents

To extract the critical exponents a, b from the MCT so-
lutions, we use a set of solutions at a distance |ϕ − ϕc| ∈
[10.0−6, 10.0−5] for the distance to the critical packing frac-
tion ϕc, and we determine the exponent of the diverging
relaxation time γ , which satisfies τα ∝ |ϕ − ϕc|−γ . We then
make use of the following two identities, which can be rigor-
ously derived from the theory [13,14]: γ = 1/2a + 1/2b and
�(1 − a)2/�(1 − 2a) = �(1 + b)2/�(1 + 2b), which can be
numerically solved for the exponents a and b using standard
root-finding methods.

3. Spectral susceptibility

We compute the spectral susceptibility χ ′′(k, ω) (i.e.,
the imaginary part of the dynamical compressibility) by
integrating Eq. (13) numerically over a logarithmic scale
using a trapezoidal rule over a range of times exceed-
ing complete structural relaxation to ensure appropriate
convergence. We have checked that more advanced integra-
tion methods yield the same results (i.e., Gauss-Kronrod
quadrature). The time derivative of the intermediate scat-
tering function in the integrand was obtained using spline
interpolation.
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