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Loading classical data into quantum computers represents an essential stage in many relevant quantum
algorithms, especially in the field of quantum machine learning. Therefore, the inefficiency of this loading
process means a major bottleneck for the application of these algorithms. Here, we introduce two approximate
quantum-state preparation methods for the noisy intermediate-scale quantum era inspired by the Grover-Rudolph
algorithm, which partially solve the problem of loading real functions. Indeed, by allowing for an infidelity ε and
under certain smoothness conditions, we prove that the complexity of the implementation of the Grover-Rudolph
algorithm without ancillary qubits, first introduced by Möttönen et al., results intoO(2k0 (ε) ), with n the number of
qubits and k0(ε) asymptotically independent of n. This leads to a dramatic reduction in the number of required
two-qubit gates. Aroused by this result, we also propose a variational algorithm capable of loading functions
beyond the aforementioned smoothness conditions. Our variational Ansatz is explicitly tailored to the landscape
of the function, leading to a quasioptimized number of hyperparameters. This allows us to achieve high fidelity
in the loaded state with high speed convergence for the studied examples.

DOI: 10.1103/PhysRevResearch.5.033114

I. INTRODUCTION

Quantum computing has triggered a great interest in the
past decades due to its theoretical capability to outperform
classical information processing. Even though noise and deco-
herence are major drawbacks for the computational capacity
of current quantum computers, quantum advantage has been
experimentally achieved [1–3]. Unfortunately, these accom-
plishments lack any industrial or scientific relevance, so the
search of a useful application still remains. In this sense,
the realistic experimental implementation of many promising
quantum algorithms in several fields like solving systems of
linear equations [4,5], performing data fitting [6], computing
scattering cross sections [7,8], pricing financial derivatives
[9–11], or initial conditions in differential equations [12–14]
is constrained by the assumption that data can be efficiently
loaded into a quantum device. In this context, the efficient
loading of classical data into quantum computers is a particu-
larly important problem and represents a major bottleneck of
the practical application of quantum computation in the noisy
intermediate-scale quantum (NISQ) era, especially with the
emergence of the quantum machine learning field [15–20].
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There exist different quantum embedding techniques trans-
forming classical data into quantum information [18,21]. In
particular, we can distinguish two main embedding proto-
cols depending on how the information is encoded. On the
one hand, there is the basis embedding, in which each bit
value “0” or “1” is mapped to computational qubit state |0〉
or |1〉, respectively [22]. In this way, the embedded quan-
tum state corresponds to a uniform superposition of the
bitwise translations of binary strings. On the other hand,
the amplitude-embedding technique encodes the normalized
vector of classical data, which is now not necessarily binary,
into the amplitudes of a quantum state [23–35]. In particular,
these feature maps have been proposed to load discretized
real valued functions [24–27] with relevant applications in
loading initial conditions for solving partial derivatives equa-
tions [11–14], computing Monte Carlo integrations [9,10,36],
and quantum field theory [37,38]. However, a practical im-
plementation of these approaches generally incurs into an
overhead of resources, which can be reflected into either an
exponential number of entangling gates [26–29,39,40] or the
employment of a huge number of ancillary qubits [31–33].
A rather different approach sustained by the Solovay–Kitaev
theorem [41,42] is based on the application of quantum
generative models to efficiently accomplish an approximate
amplitude encoding of discretized real valued functions
[43,44]. Nonetheless, in these generic Ansätze, increasing the
number of hyperparameters does not necessarily reflect in im-
proving the expressability of the Ansatz to capture the function
details [45]. Additionally, these variational methods usually
suffer from training problems such as local minima and barren
plateaus [46].
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In this article, we present two approximate quantum algo-
rithms to load real functions into quantum computers for the
NISQ era. Our first protocol, inspired by the Grover-Rudolph
algorithm and its implementation proposed by Möttönen et al.
[26,27], implements the algorithm without ancillary qubits
with complexity O(2k0(ε) ) for functions whose second loga-
rithm derivative is upper bounded by a constant, with n the
number of qubits, ε the infidelity with respect to the exact
state, and k0(ε) asymptotically independent of n. This leads
to a dramatic reduction in the number of required two-qubit
gates. Inspired by this result, we also introduce and bench-
mark a variational quantum circuit with applications in a
broader family of functions. Our proposed Ansatz is adapted
to the structure of the function, which intuitively correlates
hyperparameters and expressibility. Moreover, by taking the
angles provided by the Grover-Rudolph protocol, we can de-
fine a suitable initial training angle set, which considerably
improves the training process, avoiding barren plateaus and
local minima. Finally we have numerically proven resilience
of our algorithm against several noise sources.

II. GROVER-RUDOLPH ALGORITHM

The method of Grover and Rudolph, originally proposed
in Ref. [26], describes a constructive protocol to load into an
n-qubit quantum state the discretized version { fi} of certain
integrable density function f : [xmin, xmax] ⊂ IR → IR+ as

|�( f )〉n =
2n−1∑
i=0

√
fi|i〉. (1)

A. Grover and Rudolph algorithm without ancillas

The first proposal in the literature that provided an ex-
plicit circuit implementation of the Grover-Rudolph idea
without using ancillary qubits was proposed by Möttönen
et al. [27]. Without using ancillas, this protocol provides
a constructive algorithm which applies a sequence of op-
eration blocks, F (k−1)

k (y, θ(k−1)), to the initial state |0〉⊗n.
For k ∈ {1, . . . , n}, each k-qubit block, F (k−1)

k (y, θ(k−1)) =∑2k−1−1
l=0 |l〉〈l| ⊗ Ry(θ (k−1)

l ), corresponds to a uniformly con-
trolled y-axis rotation, where the lth component of the angle
vector θ(k−1) is calculated as

θ
(k−1)
l (l ) = 2 arccos

⎛
⎜⎝
√√√√∫ xmin+(l+1/2)δk

xmin+lδk
f (x)dx∫ xmin+(l+1)δk

xmin+lδk
f (x)dx

⎞
⎟⎠. (2)

Here, δk = xmax−xmin
2k−1 and l ∈ {0, . . . , 2k−1 − 1} is the index cor-

responding to the (l + 1)th subinterval of the 2k−1 partition of
the interval [xmin, xmax]. Each multicontrolled gate comprising
F (k−1)

k (y, θ(k−1)) is denoted by ∧k−1[Ry(θ (k−1)
l )] and bisects

the (l + 1)th partition interval of the function by using the
conditional probability of being in the right or left side of the
interval, as depicted in Fig. 1.

In the complete algorithm, the total number of angles
needed scales as

∑n−1
m=1 2m−1 = 2n − 1, which is exponen-

tial in the number of qubits and requires an exponential
number of multicontrolled CNOT gates. Therefore, without
using ancillary qubits, the required number of two qubit gates

FIG. 1. Effect of the uniformly controlled y-axis rotation
F (k−1)

k (y, θ(k−1) ) for k = 3 and n qubits. Each multicontrolled gate
comprising F (k−1)

k (y, θ(k−1) ) bisects the (l + 1)th partition interval of
the function by using the conditional probability of being in the right
or left side of the interval.

scales exponentially as the number of angles required do, and
therefore the circuit complexity of implementing the Grover-
Rudolph algorithm without ancillas is O(2n).

We can conclude that this protocol without ancillas is the-
oretically capable of loading a discretized density function at
the cost of an exponential overhead of resources [39,40] to
prepare the state in Eq. (1) using blocks F (k−1)

k (y, θ(k−1)).

B. Grover and Rudolph algorithm with ancillas

According to the original Grover-Rudolph algorithm
[26], for each step k, we can efficiently prepare |�k〉 =∑2k−1

l=0

√
f (k)
l |l〉 by first loading the rotation angles, Eq. (2),

with bit precision m into a bit string of m ancillary registers
and then performing k controlled rotations of angle 2π/2 j ,
j = 1, . . . , m controlled by the ancillary registers. Indeed, the
encoding of the rotation angles can be efficiently achieved if
we have access to the oracle:

|�k〉 =
2k−1∑
l=0

√
f (k)
l |l〉|0〉⊗m → |�k〉

=
2k−1∑
l=0

√
f (k)
l |i〉 ∣∣θ (k−1)

l (l )
〉︸ ︷︷ ︸

m bit precision

. (3)

An example case when this operation can be efficiently
performed is when the function θ

(k−1)
l (l ) can be well approx-

imated by a polynomial and then implemented by employing
a polynomial amount of classical half adder operations, i.e.,
NAND gates. Lastly, the NAND gates are efficiently mapped
into Toffoli quantum gates by making use of at most three
qubits per classical bit [47]. As this map is input dependent,
it enables us to compute it simultaneously for all θ

(k−1)
l (l )

when the input state is a quantum superposition. However,
this oracle is not explicitly provided in the original manuscript
and the efficient circuit to which the authors refer is not
presented, remaining as an oracle. Additionally, the origi-
nal manuscript of Grover and Rudolph does not provide the
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(a) (b)

FIG. 2. (a) Quantum circuit performing the protocol presented in Theorem 4, based on the Grover-Rudolph method for a system of n
qubits. We cluster the angles of the blocks for k � k0 + 1 > 2, leading to a drastic reduction in the number of gates needed. (b) Values of k0 for
η ∈ [0, 8π ], ε ∈ [0.0001, 0.01], and n → ∞, following Eq. (10), where the dotted lines correspond to the contour lines and denote the change
of values. We can appreciate that k0 � 10 for most of the cases.

analytical bounds of these approximations (m bit precision;
oracle implementation), as well as implicitly makes use of
additional ancillary qubits which incurs into an important cost
for the NISQ era. Last but not least, some recent works have
risen criticism about the feasibility of this original proposal
[14,48,49]. Moreover, to our best knowledge, there is no ex-
plicit efficient implementation of this oracle in terms of gates
without employing ancillary qubits.

III. FIRST ALGORITHM

Inspired by the Grover-Rudolph algorithm [26], we present
an efficient method to encode discretized density functions
into quantum states. By permitting an error in the final state
and assuming certain smoothness conditions, an angle cluster-
ing significantly reduces the required entangling gates.

Definition 1. Let f : [0, 1] → IR+ be a positive function
in L2([0, 1]). We define the n-qubit normalized representative
state of f (x) as the n-qubit state | f (x)〉n = ∑2n−1

l=0 f (lδn)|l〉,
with δn = 1

2n−1 and
∑2n−1

l=0 f 2(lδn) = 1.
According to this definition, we encode the discretized

function into the amplitude of a quantum state, in contrast
to the Grover-Rudolph algorithm, which does it in the prob-
ability, Eq. (1). We also consider our function defined in the
interval [0, 1] as a standardization criterion.

Theorem 1. Let f : [0, 1] → IR+ be a positive inte-
grable function in L2([0, 1]) and 0 � η � 8π a constant
such that η = supx∈[0,1] |∂2

x log f 2(x)|. Then, it is possible
to approximate the n-qubit representative state of f (x),
| f (x)〉n, by a quantum state |�( f )〉n such that the fidelity
|〈�( f )| f (x)〉n|2 � 1 − ε with at most 2k0(ε) − 1 two-qubit
gates, with

k0(ε) = max

{⌈
−1

2
log2

(
4−n − 96

η2
log(1 − ε)

)⌉
, 2

}
, (4)

and the circuit to perform it is provided in Fig. 2(a).
Let us analyze each part of the algorithm. First, we pro-

vide a sufficient condition on the target density function to
guarantee an upper bound over the difference between two
contiguous angles.

Lemma 1. Let f be a continuous function such that f :
[0, 1] → IR+ and consider a block comprising a uniformly

controlled rotation of k qubits. Then, the difference between
two contiguous angles is bounded by the second derivative of
the logarithm of f in the following way:

∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣ � δ2
k

4
max

y′∈[lδk ,(l+1)δk ]

∣∣(∂2
y log f (y)

)∣∣
y=y′

∣∣, (5)

where δk = 1
2k−1 , l ∈ {0, . . . , 2k−1 − 2}.

Consequently, if |∂2
y log f (y)| � η, then for each block

comprising a uniformly controlled rotation of k qubits, the
difference between any two angles is bounded by∣∣θ (k−1)

l − θ
(k−1)
l ′

∣∣ � δk

4
η, ∀l, l ′ ∈ {0, . . . , 2k − 1}. (6)

This result allows us to cluster angles of each block in which
Eq. (6) is fulfilled. Thus we define a cluster representative
angle, θ̃ (k−1), as∣∣θ̃ (k−1) − θ

(k−1)
l

∣∣ � δk

8
η := ηk, ∀l ∈ {0, . . . , 2k − 1}, (7)

∀k � k0, with k0 + 1 the index of the first block in which
Eq. (6) is fulfilled (successive blocks also verify it). Note
that |∂2

y log f (y)| � η is a sufficient condition for the bound in
Eq. (5); however, if in a singularity point it grew slower than
1
δ2

k
, the difference between consecutive angles still vanishes as

we will analyze later.
We now analyze how clustering the angles according to

Eq. (7) affects the final error of the process, measured by
means of the fidelity with respect to the exact discretized
state | f (x)〉n. Considering an n-qubit system, the unitary gate
to prepare the quantum state representing the target den-
sity function can be written in terms of the blocks as Un =
Un−1(θ(n−1)) . . .U0(θ(0) ), where we define Uk−1(θ(k−1)) :=
F k−1

k (y, θ(k−1)) ⊗ 1⊗(n−k).

Let Ũn denote the operation Un when the rotation angles
corresponding to each block k are replaced by a representa-
tive, θ̃ (k−1), such that its difference with any angle of the block
is at most ηk , i.e., |θ (k−1)

l − θ̃ (k−1)| � ηk for l = 0, . . . , 2k−1 −
1 and k = 1, . . . , n. Then, the following lemma can be proven.

Lemma 2. Consider a system of n qubits and an error
ηk between any angle of the kth block and its representa-
tive such that ηk � π , with k = 1, . . . , n. Then, the fidelity
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FIG. 3. (i) Simulations of | f (x)〉8 and |�( f )〉8 resulting of loading the normal distribution according to Theorem 4, n = 8, ε = 0.05, and
different values of σ : (a) σ = 1, (b) σ = 0.6, (c) σ = 0.4, and (d) σ = 0.3. The numerical results for each experiment are given in Table I.
(ii) Simulations of |�[sin(x)]〉5 and |�(θ)〉5 resulting of loading the normalized sine function by training the variational Ansatz, learning rate
γ = 1.5, n = 5, k0 = 2, and different values of p(k): (a) p(k) = 1, (b) p(k) = 2, (c) p(k) = 3, and (d) p(k) = k.

between the final states with and without clustering, F =
|〈0|⊗nU†

nŨn|0〉⊗n|2, satisfies

F �
n∏

k=1

cos2 (ηk/2). (8)

Assuming that we cluster angles of the blocks for k � k0 +
1 > 2, then

F �
n∏

k=k0+1

cos2

(
η

82k

)
� e− η2

96 (4−k0 −4−n ) := Fk0 , (9)

since cos(x) � e−x2
for x � π/2. Therefore, if an infidelity

ε = 1 − Fk0 is allowed and the angles of all blocks comprised
of more than k0(ε) qubits are clustered, with k0 given by
Eq. (4), then the fidelity satisfies F � 1 − ε. In the asymptotic
limit of n → ∞, we have that k0(ε) tends to

k0(ε) → max

{⌈
−1

2
log2

(
−96

η2
log(1 − ε)

)⌉
, 2

}
, (10)

which is independent of the system size, n. In Fig. 2(b), we
have depicted the values of k0 at this limit, for η ∈ [0, 8π ]
and ε ∈ [0.0001, 0.01].

We finally study the implementation cost of the proposed
protocol. We only take into account the latter type of gates
and ignore single-qubit operations [50]. Using the result of
[39,40], which illustrates how a uniformly controlled rotation
of k qubits can be implemented with 2k−1 CNOTs, the com-
plexity of the circuit described in Theorem 4 is O(2k0(ε) ).

A. Normal distribution

We apply the algorithm given by Theorem 4 to a normal
distribution with a mean value μ = 0.5 and for different val-
ues of the variance σ . We numerically benchmark the fidelity
attained by our first protocol using the value of k0 resulting of
Eq. (4) when we assume a maximum infidelity of ε = 0.05
and a system of eight qubits. Notice that, for this distribu-
tion, η = 2/σ 2. In Fig. 3(i) and Table I, we have depicted
the results from the simulations of | f (x)〉8 and |�( f )〉8, for

different values of σ . We appreciate that the condition of F �
0.95 = 1 − ε is not only satisfied in all cases, but the fidelities
obtained are considerably better. Furthermore, the significant
reduction in the number of two-qubit gates required to achieve
these results is noteworthy. In the worst case, for σ = 0.3, the
quantity of gates needed represents the 12.16% of the original
set, while the fidelity of the experiment reaches 0.99841.

B. Generalization: Singular points

In this section we study the generalization of Theorem 4
when the functions are allowed to have singularities on the
boundary that grow slower than the size of the grid.

Consider a function f : [0, 1] → R+ with∣∣∂2
x log f (x)

∣∣ −−→
x→0

∞. (11)

An example is the beta density function, defined as

f (x) = xα−1(1 − x)β−1

B(α, β )
, (12)

with α, β > 0 and B(α, β ) the beta function. Then, the second
derivative of its logarithm is

∂2
x log f (x) = 1 − α

x2
+ 1 − β

(1 − x)2
. (13)

TABLE I. Numerical data for the simulations depicted in
Fig. 3(i). The values of k0 have been computed using Eq. (4). In
addition, the number of two-qubit gates is given by 2k0 − 1 and the
last column is the percentage between the required gates and the total
given by the Grover-Rudolph algorithm, which for n = 8 are 255.

σ η k0 Fidelity No. TQG %TQG

1.0 2.00 2 0.99961 3 1.18
0.6 5.56 2 0.99730 7 2.75
0.4 12.50 3 0.99725 15 5.88
0.3 22.22 4 0.99841 31 12.16
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FIG. 4. Example of the reduction of gates for the block of three
qubits F 2

3 (ŷ, θ(2) ), where it is assumed that both θ
(2)
01 and θ

(2)
10 can be

approximated by θ̃ .

Thus, for α �= 1, we have a singularity at x = 0. Also, we see
that, if β �= 1, there is a singularity at x = 1.

In this situation, |∂2
x log f (x)| cannot be bounded by a finite

factor η in the whole interval and, hence, Theorem 4 cannot
be applied. However, under certain circumstances, this issue
can be solved. Recall that, in Lemma 1, we obtained that the
difference between two consecutive angles in a block of k
qubits satisfies

∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣ � δ2
k

4

∣∣∂2
x log f (x)

∣∣, (14)

with δk = 1
2k−1 , l ∈ {0, 1, . . . , 2k−1 − 2}, and x = lδk . Since

the singularity is found in x = 0, there exists a kmax from
which the maximum of |∂2

x log f (x)| in [2−kmax+1, 1] is found
in x = 2−kmax+1. Then,

∣∣θ (kmax−1)
l+1 − θ

(kmax−1)
l

∣∣ � 1

4

∣∣∂2
x log f (x)|x=2−kmax+1

∣∣
22kmax−2

. (15)

Next, if for the limit k → ∞ the term
|∂2

x log f (x)|x=2−k+1 |2−2k+2 → 0, this value is decreasing
and there exists a k∗ � kmax from which an η =
|∂2

x log f (x)|x=2−k∗+1 | can be set so the clustering conditions
δk
8 η � π ⇒ η � 2k−18π are satisfied. This k∗ acts as the k0

of Theorem 4 and represents the last block without clustering.
Then, for k > k∗, the angles corresponding to the interval
[2−k+1, 1] can be clustered, following our protocol. The case
for a singularity in x = 1 is analogous and in Fig. 4 the
resulting gates corresponding to the process of clustering the
inner angles for a block of three qubits are depicted. Given
that Ry(θ̃ )Ry(−θ̃ ) = 1, we can complete the identity of the
clusterized block by subtracting θ̃ from the rest of the angles.

In this situation, if we consider that singularities exist in
x = {0, 1}, the total number of two-qubit gates required to

load f into a quantum state is

No. TQGs =
k∗∑

k=1

2k−1 + 2
n∑

k=k∗+1

(80k − 398)

= 2k∗ − 1 + 2(n − k∗)(20k∗ + 20n − 179). (16)

See the Appendix A for further details in gate decomposition.
Notice that this result is only valid for k∗ > 6, but since we
are interested in the asymptotical behavior of the protocol, it
is not an issue. All in all, we obtain that the complexity of
this process is exponentially dependent on k∗ with an extra
polynomial term.

On the other hand, if a singularity is found in (0, 1), we end
up with multiple clusters of angles in each block. The reason
behind this is that the clusters are formed with contiguous
angles. Therefore, the reduction of gates is not significant and
the protocol cannot be performed efficiently (polynomial).
However, if the representatives of the disjointed clusters are
equal, then we can create a single cluster, so the reduction is
doable. In this sense, we have numerically observed that, far
from the singularities, all angles converge to a value of π/2,
but we have not found an analytical proof yet.

Let us see an example of a function that meets the previous
description and analyze the outcome of the protocol. Consider
the function

f (x) = 1

N
ex3/2

(17)

in [0, 1], where N is the normalization factor, and a system of
n = 10 qubits. The second derivative of its logarithm is

log f (x) = x
3
2 − log N ⇒ ∂x log f (x) = 3

2

√
x (18)

⇒ ∂2
x log f (x) = 3

4
√

x
. (19)

Hence ∂2
x log f (x) has a singularity at x = 0. First of all,

since ∂2
x log f (x) is a monotonic decreasing function, its max-

imum in the interval [2−k+1, 1] is found in x = 2−k+1, for any
k = 1, . . . , n. Then, we can set kmax = 1. Next, we need to
compute the limit of |∂2

x log f (x)|x=2−k+1 |2−2k+2:∣∣∂2
x log f (x)

∣∣
x=2−k+1

∣∣2−2k+2

= 3

4
√

x

∣∣∣∣
x=2−k+1

2−2k+2 = 3

4
2

1
2 (k−1)2−2k+2

= 3

4
2− 3

2 k+ 3
2 −−−→

k→∞
0. (20)

Therefore, the difference in the angles is bounded and we can
select a k∗ � 1 for which the conditions of Theorem 4 are
satisfied in [2−k∗+1, 1]. The first condition we need to check is
the inequality given by

δk

8
η � π, (21)

with η = |∂2
x log f (x)|x=2−k+1 | = 3

4 2
1
2 (k−1). Then,

3
32 2

1
2 (k−1)2−k+1 = 3

32 2
1
2 (1−k). (22)

Since this term is decreasing, its maximum is found when
k = 1, with a value of 3

32 < π . Thus this condition is met
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FIG. 5. Simulation of | f (x)〉10 and |�( f )〉10 for the function
defined in Eq. (17), n = 10, ε = 0.01, and the clustering process
performed for k = 3, . . . , n.

for any k = 1, . . . , n, so we can select k∗ = 1. Addition-
ally, if we compute the value of k0 with ε = 0.01 and η =
|∂2

x log f (x)|x=2−k∗+1 | = 0.75 using Eq. (4), we obtain k0 = 2.
Then, the last block to remain unclustered must be the maxi-
mum between k0 and k∗, which in this case is 2.

Now, in Fig. 5, we have depicted the result of the ex-
periment of the considered function for a system of n = 10
qubits and the clustering starting with the three-qubit block,
following the protocol described in this section. With a fidelity
of 0.99975, larger than the one required, we have that the final
state |�( f )〉10 successfully captures the features of f with a
reduction of the complexity of two-qubit gates from O(210) to
O(22).

C. Analysis of resilience to noise in NISQ era

In this subsection, we present a theoretical and numerical
analysis of how experimental errors affect different clustering
levels in our first protocol and their impact on the final fidelity.
The crucial point here is that, when digital accuracy increases,
the number of gates requested grows exponentially. As the
introduction of these gates implies a growing experimental
error in NISQ quantum processors, we observe a trade-off, see
Fig. 6, between the clusterization error and the experimental
error, quite similar to the trade-off observed in digital quan-
tum simulations between the number of Trotter steps and the
experimental error in Refs. [51,52]. This balance is crucial for
algorithms in noisy quantum processors. Reproducing a sim-
ilar reasoning as the one in the aforementioned reference and
references thereof, we first propose an approximated model
of how the experimental error combined with the clustering
error of our algorithm scales as a function of the number of
nonparallel two-qubit gates. Then, we perform some numer-
ical simulations introducing multiple realistic noises in our
algorithm to support our theoretical predictions.

In order to establish a theoretical framework to understand
the behavior of our system when clusterization and experi-
mental errors are considered, we make the assumption that the
main source of experimental noise comes from the two-qubit
gates, while ignoring the noise arising from single-qubit rota-
tions. Additionally, we consider that the application of each of
these gates onto a quantum state, denoted as ρ, is modeled in

FIG. 6. Total fidelity, Ftotal, in terms of the clustering infidelity
assumed in the protocol according to the expression ε(k0 ) ∼ 1 −
e−η2/24(4−k0 −4−n ), where η = 22.22, k0 = 1, . . . , 6, and n = 6. As we
can appreciate, the expected fidelity of our protocol is above the
fidelity resulting of implementing the protocol without clustering in
noisy devices, which dramatically tends to zero. Actually, the fidelity
reaches a maximum for k0 = 4, which corresponds to a clustering
error ε0 = 0.0726.

the following form:

ρ → (1 − ξ )U †ρU + ξŨ †ρŨ , (23)

where U corresponds to the desired dynamics while the
second term introduces a certain Taylor expansion of the
deviation from the exact evolution, with ξ � 1. After m non-
parallel gates, ignoring quadratic terms in ξ , the infidelity of
the state has approximately evolved according to

1 − Fexp ∼ m ξ ‖Ũ‖ (24)

as the leading term. Note that the argument could be extended
by replacing Ũ → T (·), an arbitrary quantum channel, but
the calculation is more complicated to produce a similar ar-
gument. In a rough approximation, for a certain value of the
clustering index k0, the total fidelity of the protocol run on
a NISQ device has a contribution coming from this exper-
imental noise together with the digital infidelity due to the
clustering procedure. We can approximate this quantity by

Ftotal ∼ e−η2/24(4−k0 −4−n ) − 2ξ‖Ũ‖(−1 + 2k0 ), (25)

which, in terms of the clustering error ε and by using that 1 −
ε ∼ e−η2/24(4−k0 −4−n ) and hence 2k0 − 1 ∼ (4−n − 96

η2 log(1 −
ε))−

1
2 − 1, can be expressed as

Ftotal ∼ 1 − ε − 2ξ‖Ũ‖
[(

4−n − 96

η2
log(1 − ε)

)− 1
2

− 1

]
.

(26)

From the equation above, we can find the value of cluster-
ing error ε0 for which Ftotal achieves its maximum by deriving
the function. This condition holds as

4 (1 − ε0)2 [4−n − μ log(1 − ε0)]3 = α2μ2, (27)

with α = 2ξ‖Ũ‖ and μ = 96/η2, which is a transcendent
equality, so it cannot be analytically solved. However, for
the range of parameters in which we are interested and for

sufficiently small, we can approximate ε0 ∼ α 2n− 3
2√

3
.

In order to provide a numerical example for this expres-
sion, we analyze a normal distribution with σ = 0.3 encoded
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TABLE II. Noise parameters’ description and their value. We
have estimated the numerical values from the calibration data pro-
vided for the IBM device “ibm_jakarta.”

Parameter Description Value

SQG time Single qubit gate time (ns) 35
CX time CX gate time (ns) 540
rD Deviation ratio for the single qubit gates 2457 × 10−4

Pbf Bit-flip error during the rz gate 2457 × 10−4

CNOTerror Deviation ratio for CX gate 8328 × 10−3

pmeas Readout error 223 × 10−1

pth Thermal population of the ground state 0.01
T1 Decoherence time (us) 114.84
T2 Dephasing time (us) 38.65

in n = 6 qubits. For the experimental error, we consider α =
2ξ ||Ũ || = 0.0087. We depict the results of this analysis in
Fig. 1. If we compare results from this analysis, we can see
that the maximum fidelity is achieved for a value of ε0 =
0.0726, while the predicted value reads ε0 = 0.1131.

Once the theoretical framework has been established, let us
carry out some numerical simulations analyzing the robust-
ness (in terms of fidelity) against different noises. The main
objective is to support the aforementioned analytical findings.
The guidelines of the numerical experiment are described as
follows. The circuit is transpiled to a native set of gates given
by CNOT, Id, Rz (θ ), X and Sx. The noise quantum channels
considered are (i) bit flip (Pbf), (ii) amplitude damping (T1),
(iii) dephasing (T2), (iv) gate errors (rD, CNOT error), and (v)
measurement error (pmeas).

For a realistic scenario, we have taken the value of these
errors from the IBM Jakarta quantum processor, which are
summarized in Table II. Considering this setup, we have
studied again the normal distribution with σ = 0.3 encoded
in n = 6 qubits, focusing on the fidelity and l2 norm (nor-
malized with the system size such that it converges to the
L2 norm in the continuous limit) with respect to the ex-
act discretized state. The numerical results are depicted in
Fig. 7, which also shows a trade-off between the cluster-
ing and the experimental error. More explicitly, the maximal

fidelity, respectively the minimal error measure with the
norm L2, is achieved for a clusterization level k0 = 2, which
reproduces the structure showing a trade-off between errors
predicted by our theoretical model. However, the maximum is
reached for a smaller value of k0, compared to the predictions,
as the theoretical model is a first order simplification which
becomes not that accurate when the presence of more kinds
of noises is assumed. This means that our idea based on
clustering can be implemented with shallow but not trivial
circuits and presumably offers a robust performance for the
NISQ era.

Consequently, although our protocol introduces a control-
lable error, it significantly reduces the depth required for the
computation as well, resulting in a more balanced and reliable
outcome. In the presence of experimental noise, our algorithm
achieves a good balance between fidelity (experimental +
clustering errors) and feasibility (realistic depth), which is
crucial for this stage of quantum computing, where computers
are characterized by high error rates and limited coherence
times.

IV. VARIATIONAL QUANTUM CIRCUIT

A. Ansatz

Based on the previous protocol, we propose a variational
Ansatz for loading functions beyond the conditions required
by Theorem 1. We consider (z + s + 1)p(k) hyperparameters
for each k-qubit block satisfying k > k0, where z and s are
respectively the number of zeros and singular points in the
function, p(k) is the polynomial number in k denoting the
number of hyperparameters allowed per singular point/zero
for the kth block, and k0 = max{ k | z + s + 1 � 2k}. As-
suming p(k) � 1, the minimum number of hyperparameters
needed to capture the singular behavior of the function is
z + s + 1. Therefore, for each k-qubit block F (k−1)

k (ŷ, θ) com-
prising more than z + s + 1 parameters, we cluster the angles
which do not correspond to the position of zeros or singu-
larities. In this form, this proposal establishes an intuitive
correlation between the number of hyperparameters p(k) and
the expressability of the circuit to capture the details of
the target functions in the most relevant points. By using

(a) (b) (c)

FIG. 7. (a), (b) Total fidelity, Ftotal, in terms of the clustering infidelity assumed and k0 in the protocol according to the expression ε(k0 ) ∼
e−η2/24(4−k0 −4−n ), where η = 22.22, k0 = 1, . . . , 6, and n = 6 for the ideal and noisy cases. (c) l2 normalized error in terms of the clustering
in the same conditions. The maximal fidelity, respectively the minimal error measure with the l2 norm, is achieved for a clusterization level
k0 = 2, which corresponds to ε0 = 0.7222.
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FIG. 8. Illustration of the proposed variational circuit for a general function. (a) Target function. The proposed landscape generalizes the
possible cases of special points that lead to singularities in the second logarithmic derivative. The special points are classified in the legend of
the graph, where z denotes the zeros, s the singularities, and the index denotes whether the slope in the contiguous points has the same sign,
index = 1, or not, index = 2. This is translated to a minimum amount of seven necessary parameters required to capture the local behavior
of the function in these points, one per index = 1 and 2 per index = 2. We add an additional parameter which represents the clusterization.
(b) Variational circuit. The blocks which have a number of angles lower than or equal to the necessary parameters will remain unclustered.
From the first block which has more angles, we proceed to reduce the number of angles to the number of parameters by clustering the ones
that do not correspond to the special points. This leads to a significant reduction in the number of gates. (c) Zoom in of the F 4

5 (y, θ) block
clusterization. As we only need eight parameters, the 16 angles of this block are reduced to the half. We keep one local rotation for the
clustering parameter and seven multicontrolled gates corresponding to the intervals where the singularity is located.

the decomposition of the multicontrolled rotations [39,40],
the number of two-qubit gates which must be included in the
variational circuit sums up to

No. TQGs =
k0∑

k=1

2k−1 + (s + z)
n∑

k=k0+1

p(k)(80k − 398)

= 2k0 − 1 + rk0+1(n, s + z), (28)

with m the number of zeros/singularities and rk0+1(n, s + z)
growing polynomially with the system size n. A remarkable
advantage of this Ansatz is the training procedure, since the
Grover-Rudolph algorithm provides a suitable set of initial
training angles which considerably enhances the convergence
of the protocol with respect to a random initialization. This
fact, together with a scaling in the number of hyperparameters
p(k) substantially slower than the system size, allows us to
avoid the training procedure to get stuck into both local min-
ima and barren plateaus. In Fig. 8, we illustrate how to select

the hyperparameters of the variational circuit for a general
function containing multiple zeros and singular points.

B. Training process

We proceed to illustrate the training method for the varia-
tional circuit proposed in this article. This process consists of
iterative steps in which a loss function that measures how far
the outcome is from the desired state is recursively minimized
to obtain the optimal parameters.

Consider a function f and n qubits. The desired quantum
state is

|�( f )〉n =
2n−1∑
l=0

fl |l〉, (29)

where the fl terms are discrete approximations to the objective
function, as presented in Definition 1. Now, given a set of
angles θ, our Ansatz U (θ) returns the state

|�(θ)〉n = U (θ)|0〉, (30)
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where |0〉 ≡ |0〉⊗n, and the components of the obtained state
are products of sines and cosines.

Let us now introduce the mean squared error loss function,
defined as

L(n, f , θ) = 1

2n

2n−1∑
l=0

[ fl − �l (θ)]2

= 1

2n

2n−1∑
l=0

[
f 2
l + �l (θ)2 − 2 fl�l (θ)

]
, (31)

where �l (θ) := 〈l|�(θ)〉n.
This process aims to find the optimal parameters θ for

which |�(θ)〉n approximates |�( f )〉n, which is equivalent to
minimizing the loss function. Here, we use the gradient de-
scent method [53] to do so.

Then, given any angle θ
(k−1)
l , with k ∈ {1, . . . , n} and l ∈

{0, 2k−1 − 1}, its value gets updated after each training step in
the following way:

θ
(k−1)
l = θ

(k−1)
l − γ

∂L(n, f , θ)

∂θ
(k−1)
l

, (32)

where γ is the learning rate. Let us now compute the expres-
sion of the derivative:

∂L(n, f , θ)

∂θ
(k−1)
j

= 1

2n

2n−1∑
l=0

2[�l (θ) − fl ]
∂�l (θ)

∂θ
(k−1)
j

. (33)

Since �l (θ) is a product of sines and cosines, its partial
derivative with respect to a given angle is

∂�l (θ)

∂θ
(k−1)
j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
2

sin (θ (k−1)
j /2)

cos (θ (k−1)
j /2)�l (θ) if j2n−k+1 � l < ( j + 1)2n−k,

1
2

cos (θ (k−1)
j /2)

sin (θ (k−1)
j /2)

�l (θ) if ( j + 1)2n−k � l < ( j + 1)2n−k+1,

0 otherwise.

(34)

Finally, different stopping criteria exist to put an end to
the training process. A simple example is to fix a number of
training steps. Another criteria, which is the one we consider
for our numerical simulations, is to set a tolerance for the
loss function. Therefore, when the difference between the
cost function of two consecutive steps is less than the given
tolerance, the process is considered satisfactory.

As a summary, in Algorithm 1 we have depicted the pseu-
docode corresponding to the training process.

C. Examples

Let us now illustrate the behavior of the variational circuit
different density functions.

1. Sine function

As a first example, we have tested the variational circuit
with the normalized sine function sin x in the domain [0, 3

2π ].
This example contains zeros in x = 0 and x = π and clearly
does not satisfy the conditions in Theorem 4 or a possible
generalization, since it is not even positive. In order to train the

Algorithm 1. Algorithm for the training process.

Require: n qubits, normalized function f , objective state |�( f )〉n,

circuit U (θ) with hyperparameters, stopping criteria, and

learning rate γ .

1: Initialize parameters θ

2: while stopping criteria is not met do

3: |�(θ)〉n ← U (θ)|0〉
4: Compute loss function L(n, f , θ)

5: θ ← θ − γ
∂L(n, f ,θ)

∂θ

6: end while

parametrized quantum circuit, we use the mean squared error
loss function and the gradient descent as optimization method,
with a learning rate γ = 1.5. In Fig. 3(ii), we illustrate the
arising loaded states of our trained circuits for different values
of p(k) = 1, 2, 3 and k (the last case means the introduction
of k hyperparameters per zero of the function) and a system
comprising n = 5 qubits, with k0 = 2. For the studied cases,
our trained Ansatz is able to load the sine function with a
fidelity larger than 0.97. Additionally, in Fig. 9, we show the
resulting fidelity of the different combinations of the number
of qubits and p(k), for n ∈ {5, . . . , 10} and k0 = 3.

2. Black–Scholes distribution

As a second example, let us now apply the proposed varia-
tional circuit to the Black-Scholes distribution, which is given

FIG. 9. Fidelity of loading f (x) = sin x, x ∈ [0, 3π/2], for dif-
ferent combinations of n ∈ {5, . . . , 10}, learning rate γ = 1.5 and
p(k), with k0 = 3. The axis corresponding to the total number of
angles is in logarithmic scale.
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FIG. 10. (i) Simulations of |�[BS(x)]〉5 and |�(θ)〉5 for the Black-Scholes distribution, n = 5, k0 = 2, and different values of p(k):
(a) p(k) = 1, (b) p(k) = 2, and (c) p(k) = 3. Parameters of the distribution: K = 45 and c = 3. Training parameters: k0 = 2, learning rate
γ = 1.5, and tolerance of 10−9. We can appreciate that in all cases the circuit is able to capture the main features of the target state; consequently
all fidelities are close to 1. (ii) Results of training the variational Ansätze for a different number of qubits (n = 15, 16, 17, 18) to load the
Black-Scholes distribution. We compare the training results (numbers of step and final infidelity) of 40 randomly initialized parameters versus
the initialization with Grover-Rudolph method angles. These randomly initialized parameters are generated by drawing samples from a uniform
distribution between the values of zero and π . As we can appreciate the initialization with the Grover-Rudolph method always achieves the
best performance, while most random initializations get stuck around a fidelity value (vertical lines). Training parameters: k0 = 2, p(k) = 1,
learning rate γ = 1.5, and tolerance of 10−9.

by

BS(x) =
{

K − e−x/s if − log (Ks) � x < 0,

K − ex/s if 0 < x � log (Ks),
(35)

with s = Kc, where K and c are the parameters. The zeros are
found in x = ± log (Ks).

We benchmark the performance of our Ansatz for loading
the Black-Scholes distribution, Eq. (35), into a five-qubit sys-
tem. We choose the parameters of the distribution K = 45 and
c = 3 and, for the training parameters, we consider k0 = 2, a
learning rate of γ = 1.5, and a tolerance of 10−9. In Fig. 10(i),
we depict the results from the numerical simulations of the
discretized state |�[BS(x)]〉5 and the trained Ansatz |�(θ)〉5,
for different values of p(k) and n = 5 qubits. We can appre-
ciate that in all cases the circuit is able to capture the main
features of the target state; consequently all fidelities are close
to 1. We highlight that for p(k) = 3 the resulting state and the
objective one are almost equal, ε = 5e−5.

We also provide an analysis for larger systems. In Table III,
we depict the numerical results for |�[BS(x)]〉12 and |�(θ)〉12

in a 12-qubit system, with k0 = 2, and different values of
p(k). We are able to obtain large fidelities with only a few
percentage of the original angles, which implies that, with
only a small portion of the initial parameter space, the circuit
can approximately simulate the target state efficiently.

Finally, in Fig. 10(ii) and Table IV we analyze the per-
formance of initializing the value of the parameters with the
angles provided by the Grover-Rudolph method for different
sizes of the system. We present the training results of the
Ansatz initialized with several random angles sets and with
the angles provided by the Grover-Rudolph method. We an-
alyze the performance in terms of infidelity and number of
steps of the training. We can observe how this initialization

reduces drastically the number of steps, as well as enables us
to achieve the largest fidelities.

V. CONCLUSIONS

In this article, we have considered the problem of load-
ing real valued functions into a quantum computer, which
is a major bottleneck for solving partial derivatives equa-
tions [11–14], computing Monte Carlo integrations [9,10,36],
and quantum field theory [37,38] and quantum machine
learning [15,17–20]. First, inspired by the Grover-Rudolph
algorithm [26] without ancillas, we have analytically proven
that the complexity for implementing our method on an n-
qubit system scales as O(2k0(ε) ), with ε the infidelity with
respect to the exact state and k0(ε) asymptotically independent
of n. This reduction of two-qubit gates leads to a significant
speedup, which allows us to implement quantum protocols in-
volving data embeddings in large qubit systems. Additionally,
we have generalized this method for functions containing a
certain type of singularities, obtaining promising results for

TABLE III. Numerical data for the simulations of |�[BS(x)]〉12

and |�(θ)〉12, n = 12, and different values of p(k), with k0 = 2. The
value No. Angles is the number of independent angles necessary to
generate |�(θ)〉12 and %Angles is in comparison with the full circuit.
We are able to obtain large fidelities with only a few percentage of
the original angles, which implies that, with only a small portion of
the initial parameter space, the circuit can approximately simulate
the target state efficiently.

p(k) Fidelity No. Angles %Angles

1 0.99303 33 0.806
2 0.99838 52 1.269
3 0.99890 70 1.709
k 0.99913 142 3.468
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TABLE IV. Numerical results of training the variational Ansätze for a different number of qubits (n = 15, 16, 17, 18) to load the Black-
Scholes distribution. We compare the training results (numbers of step and final infidelity) of 40 randomly initialized parameters versus the
initialization with Grover-Rudolph method angles. These randomly initialized parameters are generated by drawing samples from a uniform
distribution between the values of zero and π . Training parameters: k0 = 2, p(k) = 1, learning rate γ = 1.5, and tolerance of 10−9.

n Fidelity (GR) Steps (GR) Avg. fidelity (random) Avg. steps (random) Max fidelity (random) Dif. fid. GR vs avg. random

15 0.99317 13 0.99261 82 0.99295 0.00056
16 0.99316 13 0.99211 59 0.99271 0.00105
17 0.99314 14 0.99052 57 0.99145 0.00262
18 0.99309 13 0.98566 31 0.99199 0.00743

density functions with singularities that satisfy the expanded
theorem conditions. Furthermore, we have proposed a vari-
ational Ansatz inspired by our previous protocol. We have
observed that it can efficiently and accurately load functions
with zeros and singularities. Our proposed Ansatz is tailored to
the landscape of the function, providing an intuitive correla-
tion between hyperparameters and expressability. Moreover,
our previous protocol allows us to define a suitable initial
training angle set, which considerably improves the training
process, avoiding barren plateaus and local minima. As a
future work, tensor networks could be used to prove the qua-
sioptimality in the minimal number of hyperparameters in the
variational Ansatz.
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APPENDIX A: GATES DECOMPOSITION
AND COMPLEXITY

1. Uniformly controlled rotation

Let us consider n − 1 control qubits, a target nth qubit,
an axis of rotation u, and a vector of 2n−1 angles θ. Then, a
uniformly controlled rotation F n−1

n (u, θ), depicted in Fig. 11,
is a sequence of multicontrolled rotations ∧n−1[Ru(θi )] com-
prising the 2n−1 combinations of control bits.

Analytically this gate can be expressed as

F n−1
n (u, θ)=

2n−1−1∏
i=0

[|i〉〈i| ⊗ Ru(θi )+(1n−1×n−1−|i〉〈i|) ⊗ 1]

(A1)

and, since
∑2n−1

i=0 |i〉〈i| = 1n×n and 〈i| j〉 = δi j , we can sim-
plify it to

F n−1
n (u, θ) =

2n−1−1∑
i=0

|i〉〈i| ⊗ Ru(θi). (A2)

2. Cost of multicontrolled rotations

Let us now analyze the cost of implementing a multicon-
trolled rotation in terms of single- and two-qubit gates.

Theorem 1. Let us consider an n-qubit system. Then, the
multicontrolled rotation ∧n−1[Ry(θ )] can be decomposed em-
ploying two one-qubit controlled rotations ∧1[Ry(±θ/2)] and
two ∧n−2(X ), as illustrated in Fig. 12

Proof. First, let us see that Ry(θ ) = XRy(−θ/2)XRy(θ/2):

XRy(−θ/2)X =
(

0 1

1 0

)(
cos(θ/4) sin(θ/4)

− sin (θ/4) cos(θ/4)

)(
0 1

1 0

)

=
(

0 1

1 0

)(
sin(θ/4) cos(θ/4)

cos (θ/4) − sin(θ/4)

)

=
(

cos(θ/4) sin(θ/4)

− sin (θ/4) cos(θ/4)

)
= Ry(θ/2). (A3)

Then,

XRy(−θ/2)XRy(θ/2) = Ry(θ/2)Ry(θ/2) = Ry(θ ). (A4)

The intuition behind this decomposition is that, when all
the control states are in |1〉, we obtain the desired rotation, as
illustrated in Eq. (A4). Also, when the controlled rotations are
activated but the ∧n−2(X ) is not, we obtain the identity, since
Ry(−θ/2)Ry(θ/2) = 1, as expected. The same occurs when
the ∧n−2(X ) gates are activated but the controlled rotations
are not. Finally, when none of the controls are triggered, the
circuits in both sides are equal to 1⊗n.

FIG. 11. Circuit corresponding to the uniformly controlled rota-
tion gate F n−1

n (u, θ), with n − 1 control qubits, a target at the nth
qubit, an axis of rotation u, and a set of angles θ.
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FIG. 12. Circuit showing the decomposition of ∧n−1[Ry(θ )] em-
ploying two controlled rotations ∧1[Ry(±θ/2)] and two ∧n−2(X )
gates.

Now, let us check that the circuits are equivalent. On the
left-hand side, we have

∧n−1[Ry(θ )] = |1〉⊗(n−1)〈1|⊗(n−1) ⊗ Ry(θ )

+ (1⊗(n−1) − |1〉⊗(n−1)〈1|⊗(n−1)) ⊗ 1. (A5)

On the right-hand side

∧n−2(X ) ∧1 [Ry(−θ/2)] ∧n−2 (X ) ∧1 [Ry(θ/2)]

= [|1〉⊗(n−2)〈1|⊗(n−2) ⊗ 1 ⊗ X (A6)

+ (1⊗(n−1) − |1〉⊗(n−2)〈1|⊗(n−2) ⊗ 1) ⊗ 1]

× [1⊗(n−2) ⊗ (|1〉〈1| ⊗ Ry(−θ/2) + |0〉〈0| ⊗ 1)]

× [|1〉⊗(n−2)〈1|⊗(n−2) ⊗ 1 ⊗ X (A7)

+ (1⊗(n−1) − |1〉⊗(n−2)〈1|⊗(n−2) ⊗ 1) ⊗ 1]

× [1⊗(n−2) ⊗ (|1〉〈1| ⊗ Ry(θ/2) + |0〉〈0| ⊗ 1)], (A8)

where we have ignored the identities on the left-hand side
of the equation for the sake of simplicity. If we expand the
previous expression, we obtain the following:

[|1 · · · 1〉〈1 · · · 1| ⊗ XRy(−θ/2)

+ |1 · · · 10〉〈1 · · · 10| ⊗ X + F (−θ/2)] (A9)

× [|1 · · · 1〉〈1 · · · 1| ⊗ XRy(θ/2) (A10)

+ |1 · · · 10〉〈1 · · · 10| ⊗ X + F (θ/2)], (A11)

where we have defined the projector

F (α) ≡ [(1⊗(n−1) − |1 · · · 1〉〈1 · · · 1|
− |1 · · · 10〉〈1 · · · 10|) ⊗ 1]

× [1⊗(n−2) ⊗ (|1〉〈1| ⊗ Ry(α) + |0〉〈0| ⊗ 1)]

= 1⊗(n−2) ⊗ |1〉〈1| ⊗ Ry(α) + 1⊗(n−2) ⊗ |0〉〈0| ⊗ 1

− |1 · · · 10〉〈1 · · · 10| ⊗ 1−|1 · · · 1〉〈1 · · · 1| ⊗ Ry(α).

(A12)

It is straightforward to see that both terms |1 · · · 1〉〈1 · · · 1| ⊗
XRy(α) · F (α) and |1 · · · 10〉〈1 · · · 10| ⊗ X · F (α) are equal to
zero, due to the projector F (α). Then, we have

∧n−2(X ) ∧1 [Ry(−θ/2)] ∧n−2 (X ) ∧1 [Ry(θ/2)]

= |1 · · · 1〉〈1 · · · 1| ⊗ Ry(θ ) + |1 · · · 10〉〈1 · · · 10| ⊗ 1

(A13)

+ F (−θ/2)F (θ/2), (A14)

where we have used XRy(−θ/2)XRy(θ/2) = Ry(θ ) and
XX = 1. Let us now compute the last term:

F (−θ/2)F (θ/2)

= 1⊗(n−2) ⊗ |1〉〈1| ⊗ Ry(−θ/2)Ry(θ/2) (A15)

− |1 · · · 1〉〈1 · · · 1| ⊗ Ry(−θ/2)Ry(θ/2)

+1⊗(n−2) ⊗ |1〉〈1| ⊗ 1 − |1 · · · 10〉〈1 · · · 10| ⊗ 1

(A16)

− |1 · · · 10〉〈1 · · · 10| ⊗ 1 + |1 · · · 10〉〈1 · · · 10| ⊗ 1

− |1 · · · 1〉〈1 · · · 1| ⊗ Ry(−θ/2)Ry(θ/2)

+ |1 · · · 1〉〈1 · · · 1| ⊗ Ry(−θ/2)Ry(θ/2)

= (
1⊗(n−1) − |1 · · · 1〉〈1 · · · 1| − |1 · · · 10〉〈1 · · · 10|)⊗ 1,

(A17)

where we have used Ry(−θ/2)Ry(θ/2) = 1 and

1⊗(n−2) ⊗ |1〉〈1| ⊗ 1 + 1⊗(n−2) ⊗ |0〉〈0| ⊗ 1 = 1⊗(n−1) ⊗ 1.

(A18)
Finally,

∧n−2 (X ) ∧1 [Ry(−θ/2)] ∧n−2 (X ) ∧1 [Ry(θ/2)]

= |1 · · · 1〉〈1 · · · 1| ⊗ Ry(θ ) + |1 · · · 10〉〈1 · · · 10| ⊗ 1

+ (1⊗(n−1)−|1 · · · 1〉〈1 · · · 1|−|1 · · · 10〉〈1 · · · 10|) ⊗ 1

= |1 · · · 1〉〈1 · · · 1| ⊗ Ry(θ )

+ (1⊗(n−1) − |1 · · · 1〉〈1 · · · 1|) ⊗ 1

= ∧n−1[Ry(θ )], (A19)

as we wanted to prove. �
Corollary 1. The order of complexity of implementing the

∧n−1[Ry(θ )] gate is linear in n, for n > 6. In fact, ∧n−1[Ry(θ )]
can be decomposed with 80n − 398 two-qubit gates.

proof. Following Theorem 1, we know that the multicon-
trolled rotation ∧n−1[Ry(θ )] can be decomposed into two one-
qubit controlled rotations, ∧1[Ry(θ/2)] and ∧1[Ry(−θ/2)],
and two ∧n−2(X ). Therefore, we need to study the number
of two-qubit gates necessary to implement the last two gates
∧n−2(X ).

Corollary 7.4 from [54] states that, for n > 6, ∧n−2(X )
can be realized with 8(n − 5) ∧2 (X ). Then, we reduce the
problem to obtain the cost of the Toffoli gate, ∧2(X ).

Lemma 6.1 from the previous reference [54] states that
any one-qubit unitary, ∧2(U ), can be implemented with five
two-qubit gates comprising two CNOTs, two ∧1(V ), and one
∧1(V †), with V 2 = U . In our case, we have U = X . Then, we
can choose V = 1−i

2 (1 + iX ). We provide the exact decom-
position of the Toffoli gate using the previous description in
Fig. 13.

Finally, if n > 6, then the number of gates required for
decomposing ∧n−1[Ry(θ )], considering only two-qubit oper-
ators, is

No. gates(∧n−1[Ry(θ )]) = 2 + 2 × [8(n − 5) × 5]

= 80n − 398. (A20)

�
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FIG. 13. Circuit of the decomposition of the Toffoli gate,
∧n−2(X ), using five two-qubit controlled operations, where V 2 = X .

APPENDIX B: THEOREM PROOFS

1. Relation between the difference in the angles
and the target function

Theorem 2. Let f be a continuous function such that f :
[0, 1] → R+ and consider a block comprising a uniformly
controlled rotation of k qubits. Then, the difference between
two contiguous angles is bounded by the second derivative of
the logarithm of f in the following way:∣∣θ (k−1)

l+1 − θ
(k−1)
l

∣∣ � δ2
k

4
max

y′∈[lδk ,(l+1)δk ]

∣∣[∂2
y log f (y)

]∣∣
y=y′

∣∣,
(B1)

where δk = 1
2k−1 , l ∈ {1, . . . , 2k−1 − 1}.

Proof. The discrete expression of the angles for a block
comprised of uniformly controlled rotation with k qubits, first
introduced in [55], is given by

θ
(k−1)
l = 2 arccos

⎛
⎜⎝
√√√√∫ (l+1/2)δk

lδk
f (x)dx∫ (l+1)δk

lδk
f (x)dx

⎞
⎟⎠, (B2)

with δk = 1
2k−1 and l ∈ {1, . . . , 2k−1 − 1}. We can define the

continuous extension of the previous function as

θ (k−1)(y) := 2 arccos

⎛
⎜⎝
√√√√∫ y+δk/2

y f (x)dx∫ y+δk

y f (x)dx

⎞
⎟⎠, (B3)

where the original expression can be recovered replacing y =
lδk .

Now, given a function g and a displacement μ, we define
the numerical derivative of g with respect to μ as

∂ (μ)
y g(y) := g(y + μ) − g(y)

μ
. (B4)

Notice that for μ → 0, ∂ (μ)
y g(y) → ∂yg(y), the usual deriva-

tive. Then, for two consecutive angles, we have∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣ = ∣∣δk
(
∂ (δk )

y θ (k−1)(y)
)∣∣

y=lδk

∣∣. (B5)

Now, we require a connection between the difference in
the angles and the partial derivative of Eq. (B3). The mean
value theorem guarantees that the numerical derivative, which
corresponds to the slope of the straight line connecting θ

(k−1)
l

and θ
(k−1)
l+1 , is constrained by the maximum absolute value of

the exact derivative in that interval. Then, we have∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣ � δk max
y′∈[lδk ,(l+1)δk ]

∣∣(∂yθ
(k−1)(y))

∣∣
y=y′

∣∣. (B6)

Let us now develop the term of the exact derivative of the
function θ (k−1)(y):

∂yθ
(k−1)(y) =

[ f (y + δk ) − f (y)]
∫ y+δk/2

y f (x)dx − [ f (y + δk/2) − f (y)]
∫ y+δk

y f (x)dx∫ y+δk

y f (x)dx
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx
. (B7)

By introducing [ f (y + δk/2) − f (y + δk/2)] in the first term and reorganizing the expression, we have

∂yθ
(k−1)(y) =

[ f (y + δk ) − f (y + δk/2)]
∫ y+δk/2

y f (x)dx∫ y+δk

y f (x)dx
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx
−

[ f (y + δk/2) − f (y)]
( ∫ y+δk

y f (x)dx − ∫ y+δk/2
y f (x)dx

)
∫ y+δk

y f (x)dx
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx

=
[ f (y + δk ) − f (y + δk/2)]

∫ y+δk/2
y f (x)dx∫ y+δk

y f (x)dx
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx
−

[ f (y + δk/2) − f (y)]
∫ y+δk

y+δk/2 f (x)dx∫ y+δk

y f (x)dx
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx

=
√∫ y+δk/2

y f (x)dx
∫ y+δk

y+δk/2 f (x)dx∫ y+δk

y f (x)dx

⎛
⎝ f (y + δk ) − f (y + δk/2)∫ y+δk

y+δk/2 f (x)dx
− f (y + δk/2) − f (y)∫ y+δk/2

y f (x)dx

⎞
⎠, (B8)

where the first term is positive. Now, since (
√

a − √
b)2 = a + b − 2

√
ab � 0, we have the well-known inequality for the

geometric and arithmetic means
√

ab � a+b
2 . Then, if we select a =

∫ y+δk /2
y f (x)dx∫ y+δk
y f (x)dx

and b =
∫ y+δk

y+δk /2 f (x)dx∫ y+δk
y f (x)dx

, it leads to

√∫ y+δk/2
y f (x)dx

∫ y+δk

y+δk/2 f (x)dx∫ y+δk

y f (x)dx
� 1

2

∫ y+δk/2
y f (x)dx + ∫ y+δk

y+δk/2 f (x)dx∫ y+δk

y f (x)dx
= 1

2
. (B9)
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With this result, we get the following inequality for the abso-
lute value of the derivative of θ (k−1)(y):∣∣∂yθ

(k−1)(y)
∣∣

� 1

2

∣∣∣∣∣∣
f (y + δk ) − f (y + δk/2)∫ y+δk

y+δk/2 f (x)dx
− f (y + δk/2) − f (y)∫ y+δk/2

y f (x)dx

∣∣∣∣∣∣.
(B10)

By using again the numerical derivative defined in
Eq. (B4), we can simplify the previous expression in the
following way:

f (y + δk ) − f (y + δk/2)∫ y+δk

y+δk/2 f (x)dx
− f (y + δk/2) − f (y)∫ y+δk/2

y f (x)dx︸ ︷︷ ︸
:=h(y)

(B11)

= h(y + δk/2) − h(y)

= δk

2
∂ (δk/2)

y h(y). (B12)

Also, since f must be integrable, its primitive F exists. Then,

h(y) = f (y + δk/2) − f (y)∫ y+δk/2
y f (x)dx

= f (y + δk/2) − f (y)

F (y + δk/2) − F (y)

= ∂ (δk/2)
y f (y)

∂
(δk/2)
y F (y)

. (B13)

Let us now plug it into the inequality

∣∣∂yθ
(k−1)(y)

∣∣ � 1

2

∣∣∣∣∣δk

2
· ∂ (δk/2)

y

(
∂ (δk/2)

y f (y)

∂
(δk/2)
y F (y)

)∣∣∣∣∣
= δk

4

∣∣∣∣∣∂ (δk/2)
y

(
∂ (δk/2)

y f (y)

∂
(δk/2)
y F (y)

)∣∣∣∣∣. (B14)

If we follow the same argument as in Eq. (B6), we have
that the term of the numerical derivative is upper bounded by
the exact derivative, in the absolute value, which corresponds
to the second derivative of the function’s logarithm. Hence the
following inequality holds:

|∂yθ
(k−1)(y)|[lδk ,(l+1)δk ] � δk

4
max

y′∈[lδk ,(l+1)δk ]

∣∣[∂2
y log f (y)

]∣∣
y=y′

∣∣.
(B15)

Finally, by plugging this result in Eq. (B6), we obtain∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣
� max

y′∈[lδk ,(l+1)δk ]

∣∣∣∣δ2
k

4
max

y′∈[lδk ,(l+1)δk ]

∣∣[∂2
y log f (y)

]∣∣
y=y′

∣∣∣∣∣∣
= δ2

k

4
max

y′∈[lδk ,(l+1)δk ]

∣∣[∂2
y log f (y)

]∣∣
y=y′

∣∣, (B16)

as we wanted to prove. �
Corollary 2. Let f be a continuous function such that f :

[0, 1] → R+ and consider a block of uniformly controlled
rotations of k qubits. Then, if ∃η � 0 such that |∂2

y log f (y)| �

η ∀y ∈ [0, 1],

∣∣θ (k−1)
l+1 − θ

(k−1)
l

∣∣ � δ2
k

4
η. (B17)

Corollary 3. For a nonstandardized function f :
[xmin, xmax] → R+, the result in Corollary 2 holds with
the modification in the bound∣∣θ (k−1)

l+1 − θ
(k−1)
l

∣∣ � δ2
k · η

4L2
, (B18)

where L = xmax − xmin and δk = L
2k−1 .

Proof. The change of variables that map the x′ ∈ [0, 1] with
x ∈ [xmax − xmin] is given by

x = xmin + x′L. (B19)

Now, by using the chain rule, we obtain

∂ f

∂y′ = ∂ f

∂y

∂y′

∂y′ = ∂ f

∂y
L ⇒ ∣∣∂2

y log f (y)
∣∣ � η̃

L2
. (B20)

�
Corollary 4. Let η be such that |∂2

y log f (y)| � η ∀y ∈
[0, 1]. Then, the difference between any two angles is∣∣θ (k−1)

l − θ
(k−1)
l ′

∣∣ � δk

4
η, (B21)

∀l, l ′ ∈ {1, . . . , 2k−1}.
Proof. The worst scenario is when l = 1 and l ′ = 2k−1. In

this case, by using the triangular inequality, we have∣∣θ (k−1)
1 −θ

(k−1)
2k−1

∣∣ �
∣∣θ (k−1)

1 −θ
(k−1)
2

∣∣+ · · · + ∣∣θ (k−1)
2k−1−1 − θ

(k−1)
2k−1

∣∣
� δk

4
η, (B22)

since there are less than δ−1
k elements in the sum. �

In this situation, we can define the representative angle
θ̃ (k−1) for the clustering process as the one corresponding to
the middle part of the interval, satisfying∣∣θ̃ (k−1) − θ

(k−1)
l

∣∣ � δk

8
η, ∀l ∈ {0, 1, . . . , 2k−1 − 1}.

(B23)

2. Error bound of the algorithm

a. Relation between the difference in the angles and the fidelity

Let us consider a system with n qubits; thus the unitary gate
to prepare the quantum state representing the target density
function can be written in terms of the blocks as

Un = Un−1(θ(n−1)) · · ·U0(θ(0) ), (B24)

where we define

Uk−1(θ(k−1)) := F k−1
k (y, θ(k−1)) ⊗ 1⊗(n−k). (B25)

Let Ũn denote the operation Un given a representative with
an error ηk between the angles for each block, i.e., |θ (k−1)

l −
θ̃ (k−1)| � ηk for l = 0, . . . , 2k−1 − 1 and k = 1, . . . , n.

Theorem 3. Consider a system of n qubits and an error
ηk between any angle of the kth block and its representa-
tive such that ηk � π , with k = 1, . . . , n. Then, the fidelity
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between the final states with and without clustering, F =
|〈0|⊗nU†

nŨn|0〉⊗n|2, satisfies

F �
n∏

k=1

cos2 (ηk/2). (B26)

Proof. We use induction to prove the inequality. Hence
we start with the elemental case of n = 1 and later proceed
assuming it is satisfied for n − 1 and check if it holds for n.

n = 1:

〈0|U†
1Ũ1|0〉 =〈0|R†

y (θ (0) )Ry(θ̃ (0) )|0〉

=〈0|R†
y (θ (0) − θ̃ (0) )|0〉 = cos

(
θ (0) − θ̃ (0)

2

)
.

(B27)

Notice that the angles, given by

θ
(n−1)
l = 2 arccos

⎛
⎜⎝
√√√√∫ xmin+(l+1/2)δn

xmin+lδn
f (x)dx∫ xmin+(l+1)δn

xmin+lδn
f (x)dx

⎞
⎟⎠, (B28)

take values between 2 arccos(1) = 0 and 2 arccos(0) = π .
Then, since the cosine is a decreasing function in the interval
[0, π/2] and η � π , we have that

|θ (0) − θ̃ (0)| � η1 ⇒ cos

(
θ (0) − θ̃ (0)

2

)
� cos (η1/2)

⇒ F � cos2 (η1/2). (B29)

n > 1. Assume the condition holds for n − 1. We aim to
recover the expression of 〈0|⊗n−1U

†
n−1Ũn−1|0〉⊗n−1 so we can

use the induction hypothesis. Therefore, as we did for n = 1,
we sandwich the operator

(
F n−1

n

(
y, θ(n−1)))†

F n−1
n

(
y, θ̃

(n−1))
(B30)

with the state |0〉 at each side. From now on during this proof,

to simplify the notation, we denote the gate F k−1
k (y, θ̃

(k−1)
) as

Uk−1(θ(k−1)). Then, for n,

〈0|⊗nU†
nŨn|0〉⊗n = 〈0|⊗nU†

0

(
θ (0)

) · · ·U†
n−1

(
θ(n−1))Un−1

(
θ̃

(n−1)) · · ·U0
(
θ̃ (0)

)|0〉⊗n

= 〈0|⊗(n−1) ⊗ 〈0|(U †
0

(
θ (0)

)⊗ 1⊗(n−1)
) · · · (U †

n−2

(
θ(n−2))⊗ 1)

(
U †

n−1

(
θ(n−1)))

× (
Un−1

(
θ̃

(n−1)))(
Un−2

(
θ̃

(n−2))⊗ 1) · · · (U0
(
θ̃ (0)

)⊗ 1⊗(n−1)
)|0〉⊗(n−1) ⊗ |0〉

= 〈0|⊗(n−1)
(
U †

0

(
θ (0)

)⊗1⊗(n−2)
) · · · (U †

n−2

(
θ(n−2)))⎛⎝ 1∑

i1,...,in−1=0

|i1 . . . in−1〉〈i1 . . . in−1|〈0|R†
y

(
θ

(n−1)
i1...in−1

− θ̃ (n−1)
)|0〉

⎞
⎠

× (
Un−2

(
θ̃

(n−2))) · · · (U0
(
θ̃ (0))⊗ 1⊗(n−2))|0〉⊗(n−1). (B31)

Notice that we now we can substitute the rotation terms in the following way:

〈0|R†
y

(
θ

(n−1)
i1...in−1

− θ̃ (n−1))|0〉 = cos

(
θ

(n−1)
i1...in−1

− θ̃ (n−1)

2

)
� cos (ηn/2), (B32)

since θ
(n−1)
i1...in−1

, θ̃ (n−1), ηn ∈ [0, π ] ∀i1, . . . in−1 ∈ {0, 1}. However, before introducing the inequality, we need to check that the rest
of the terms have the same sign. To do so, we first sandwich the terms corresponding to the block n − 2 with the state |0〉 as well:

〈0|⊗nU†
nŨn|0〉⊗n = 〈0|⊗(n−2)

(
U †

0 (θ (0)
)⊗ 1⊗(n−3)

) · · · (U †
n−3

(
θ(n−3)))

×
⎡
⎣ 1∑

i1,...,in−1=0

|i1 . . . in−2〉〈i1 . . . in−2|〈0|R†
y

(
θ

(n−2)
i1...in−2

)|in−1〉〈in−1|Ry
(
θ̃ (n−2))|0〉

× cos

(
θ

(n−1)
i1...in−1

− θ̃
(n−1)
i1...in−1

2

)](
Un−3

(
θ̃

(n−3))) · · · (U0
(
θ̃ (0)

)⊗ 1⊗(n−3)
)|0〉⊗(n−2). (B33)

Here, since all the angles are between 0 and π , we have that

〈0|R†
y

(
θ

(n−2)
i1...in−2

)|0〉〈0|Ry
(
θ̃ (n−2)

)|0〉 = cos
θ

(n−2)
i1...in−2

2
cos

θ̃ (n−2)

2
� 0, (B34)

〈0|R†
y

(
θ

(n−2)
i1...in−2

)|1〉〈1|Ry
(
θ̃ (n−2)

)|0〉 = sin
θ

(n−2)
i1...in−2

2
sin

θ̃ (n−2)

2
� 0, (B35)
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∀i1, . . . in−2 ∈ {0, 1}. Then, by proceeding analogously with the rest of the blocks, we obtain that all terms are positive. Hence
we can apply the inequality:

〈0|⊗nU†
nŨn|0〉⊗n � 〈0|⊗(n−1)

(
U †

0

(
θ (0)

)⊗ 1⊗(n−2)
) · · · (U †

n−3

(
θ(n−3))⊗ 1

)

×
⎛
⎝ 1∑

i1,...,in−2=0

|i1 . . . in−2〉〈i1 . . . in−2| ⊗
1∑

in−1=0

R†
y

(
θ

(n−2)
i1...in−2

)|in−1〉〈in−1|Ry
(
θ̃ (n−2)

)⎞⎠
× (

Un−3
(
θ̃

(n−3) ⊗ 1
)) · · · (U0

(
θ̃ (0)

)⊗ 1⊗(n−2))|0〉⊗(n−1) cos(ηn/2)

= 〈0|⊗(n−1)
(
U †

0 (θ (0) ) ⊗ 1⊗(n−2)
) · · · (U †

n−3

(
θ(n−3))⊗ 1

)

×
⎛
⎝ 1∑

i1,...,in−2=0

|i1 . . . in−2〉〈i1 . . . in−2| ⊗ R†
y

(
θ

(n−2)
i1...in−2

)
Ry
(
θ̃ (n−2)

)⎞⎠
× (

Un−3
(
θ̃

(n−3))⊗ 1
) · · · (U0(θ̃ (0)

)⊗ 1⊗(n−2)
)|0〉⊗(n−1) cos(ηn/2)

= 〈0|⊗(n−1)U
†
n−1Ũn−1|0〉⊗(n−1) cos (ηn/2). (B36)

Finally, using the induction hypothesis, we conclude that

〈0|⊗nU†
nŨn|0〉⊗n �

n−1∏
k=1

cos (ηk/2) cos (ηn/2) =
n∏

k=1

cos (ηk/2)

⇒ F �
n∏

k=1

cos2 (ηk/2). (B37)

�
Notice that one of the conditions of the previous Theo-

rem is that ηk � π ∀k ∈ {1, . . . , n}. Recall that, as seen in
Eq. (B23), ηk ≡ δk

8 η. Therefore, we obtain the following con-
dition for the value of η for Theorem 3 to be satisfied:

δk

8
η � π ⇒ η � 2k−18π. (B38)

In particular, if this holds for the smallest k, with value 1, it
will be satisfied for the rest of the blocks. Then, we can write
the previous condition simply as η � 8π .

b. Expression of k0

Assume only clusterization for k > k0:

F �
n∏

k=k0+1

cos2

(
η

4 × 2k

)
�

n∏
k=k0+1

e−2( η

4×2k )2

= e−2 η2

16

∑n
k=k0+1 4−k

, (B39)

since cos(x) � e−x2
for x � π/2. Also, the sum is a geometric

series with value
n∑

k=k0+1

4−k = 1

3
(4−k0 − 4−n). (B40)

Then,

F � e− 2
3

η2

16 (4−k0 −4−n) := Fk0 . (B41)

Let us finally find an expression for k0 given minimum fidelity
Fk0 = 1 − ε:

−2

3

η2

16
(4−k0 − 4−n) = log Fk0 , (B42)

(4−k0 − 4−n) = −3

2

16

η2
log Fk0 , (B43)

4−k0 = 4−n − 3

2

16

η2
log Fk0 , (B44)

−k0 log 4 = log

(
4−n − 3

2

16

η2
log Fk0

)
, (B45)

k0 = −
log

(
4−n − 3

2
16
η2 log 1 − ε

)
log 4

. (B46)

Note that, in the limit for both F0 → 1 and η → ∞, we
have that

k0 → − log(4−n)/ log(4) = n, (B47)

as expected.
Also, since k0 must be an integer, we take the ceiling of its

value. In addition, we consider the minimum of this parameter
to be 2, so the condition of η � 8π is satisfied. Hence the final
expression for k0 is

k0 = max

{⌈
−1

2
log2

(
4−n − 96

η2
log(1 − ε)

)⌉
, 2

}
, (B48)

where we have defined ε ≡ 1 − F0.
Once we have a fixed number of uniformly controlled

rotation blocks, k0, for which there is no clustering, we count
the number of necessary gates. The gate F k−1

k (ŷ, θ) can be
implemented with 2k−1 CNOTs and 2k−1 single-qubit gates
[40]. Thus the total number of gates is

No. CNOTs =
k0∑

k=1

2k−1 = 2k0 − 1, (B49)
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No. SQGs =
k0∑

k=1

2k−1 +
n∑

k=k0+1

1 = 2k0 − 1 + n − k0.

(B50)

3. Final protocol

Definition 1. Let f : [xmin, xmax] → IR+ be a positive
function in L2([xmin, xmax]). We define the n-qubit nor-
malized representative state of f (x) as the n-qubit state
| f (x)〉n = ∑2n−1

j=0 f (xmin + jδn)| j〉, with δn = xmax−xmin
2n−1 and∑2n−1

j=0 f 2(xmin + jδn) = 1.
Theorem 4. Let f : [0, 1] → IR+ be a positive inte-

grable function in L2([0, 1]) and 0 � η � 8π a constant
such that η = supx∈[0,1] |∂2

x log f 2(x)|. Then, it is possible
to approximate the n-qubit representative state of f (x),
| f (x)〉n, by a quantum state |�( f )〉n such that the fidelity
|〈�( f )| f (x)〉n|2 � 1 − ε with at most 2k0(ε) − 1 two-qubit
gates, with

k0(ε) = max

{⌈
−1

2
log2

(
4−n − 96

η2
log(1 − ε)

)⌉
, 2

}
,

(B51)

and the circuit to perform it is given in Fig. 14.

FIG. 14. Quantum circuit performing the protocol presented in
this section, based on the Grover-Rudolph method for a system of n
qubits.

Proof. Using Theorem 2 and Corollary 4, we can de-
fine the representative angle for each block as in Eq. (B23).
Then, by applying Theorem 3 with the development between
Eqs. (B39) and (B46), it is clear that the fidelity will be
larger than or equal to 1 − ε. Finally, Eq. (B49) states that the
number of two-qubit gates necessary to realize this protocol is
2k0 − 1, as we wanted to prove. �
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