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Bridging coherence optics and classical mechanics:
A generic light polarization-entanglement complementary relation
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While optics and mechanics are two distinct branches of physics, they are connected. It is well known that the
geometrical/ray treatment of light has direct analogies to mechanical descriptions of particle motion. However,
connections between coherence wave optics and classical mechanics are rarely reported. Here we report links
of the two through a systematic quantitative analysis of polarization and entanglement, two optical coherence
properties under the wave description of light pioneered by Huygens and Fresnel. A generic complementary
identity relation is obtained for arbitrary light fields. More surprisingly, through the barycentric coordinate
system, optical polarization, entanglement, and their identity relation are shown to be quantitatively associated
with the mechanical concepts of center of mass and moment of inertia via the Huygens-Steiner theorem for
rigid body rotation. The obtained result bridges coherence wave optics and classical mechanics through the two
theories of Huygens.
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I. INTRODUCTION

Renowned as one of the greatest scientists in history, Huy-
gens made groundbreaking contributions to various branches
of natural science, with notable achievements in the fields of
optics and mechanics [1]. His remarkable insights and discov-
eries continue to shape our understanding of these disciplines.
Huygens is considered as the starting point of systematic wave
explanation of light in the 1670s [2] and the Huygens-Fresnel
principle [3] was the basis for the advancement of physical
optics, describing coherence phenomena of light including
interference, diffraction, polarization, etc. [4], as well as the
recently recognized property of vector-space entanglement
[5–20] (a direct consequence of a multi-degree-of-freedom
amplitude wave theory [17]). On a completely different sub-
ject, through the study of pendulum oscillation that led to
his invention of the first pendulum clock, Huygens also made
pivotal contributions to the development of fundamental me-
chanical concepts of center of mass (COM) and moment
of inertia (MOI) describing rigid body motions, leading to
the well-known Huygens-Steiner theorem (also called the
parallel-axis theorem) [21]. Although both owe to the con-
tributions of Huygens, almost no links of the two theories
have been explored or even anticipated due to their apparent
distinctions. To bridge this gap, here we provide an approach
that demonstrates the interplay of the two subjects through the
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analysis of two optical coherence properties: polarization and
entanglement.

As one of the earliest discovered fundamental features of
light, polarization was only gradually better understood along
with the slow recognition of the light’s wave nature [4,22], and
it is conventionally understood as the directional property, or
degree of freedom (DOF), of light (electromagnetic) wave os-
cillation. Recently, it has been further shown that polarization
coherence needs at least one additional DOF to be fully char-
acterized [9,23]. This allows the discussion of its connection
to another two-DOF property, i.e., entanglement [24]. Here
we carry out a systematic analysis of both polarization (P)
and entanglement (K) for a generic light field and obtain a
universal complementary relation P2 + K2 = 1 regardless of
the dimensionality.

On the other hand, attempts of geometric understanding
of entanglement have been made in various contexts [25–31].
With a geometric mapping of optical coherence parameters to
point masses, via the barycentric coordinate system [32], we
further establish a surprising quantitative relation between the
obtained generic optical polarization-entanglement comple-
mentary identity and the rigid body Huygens-Steiner theorem
through the specific mechanical concepts of COM and MOI.
Our method and results open a systematic avenue for un-
derstanding quantitative and conceptual connections between
coherence optics and mechanics.

II. POLARIZATION-ENTANGLEMENT
COMPLEMENTARY RELATION

We start with the most general form of an arbitrary light
field, which can be written as

|E〉 = |x〉|Ex〉 + |y〉|Ey〉 + |z〉|Ez〉. (1)
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Here we have adopted the Dirac vector notation | 〉, as in
Ref. [9], solely to emphasize the fact that both polarization
components |x〉, |y〉, |z〉 and amplitude components |Ex〉, |Ey〉,
|Ez〉, describing the remaining degrees of freedom such as
temporal mode, spatial mode, etc., are vectors in their re-
spective vector spaces. When normalized by the total light
intensity I = 〈Ex|Ex〉 + 〈Ey|Ey〉 + 〈Ez|Ez〉, it becomes

|e〉 = α|x〉|ex〉 + β|y〉|ey〉 + γ |z〉|ez〉, (2)

where α, β, and γ are real normalized coefficients defined as
α = √〈Ex|Ex〉/I , β = √〈Ey|Ey〉/I and γ = √〈Ez|Ez〉/I with
α2 + β2 + γ 2 = 1. The normalized amplitude vectors are de-
fined as |ei〉 = Ei/

√〈Ei|Ei〉, with i = x, y, z. For the generic
three-dimensional (3D) field, the cross correlation among
amplitude components |ex,y,z〉 can be arbitrary and, most gen-
erally, described by complex values δ1 = 〈ex|ey〉, δ2 = 〈ex|ez〉,
and δ3 = 〈ey|ez〉, respectively.

The 3D polarization coherence of the light field can be
characterized by the 3 × 3 coherence matrix [33–37], which
can be decomposed into nine Gell-Mann matrices [38] and is
obtained as

W3D =

⎡
⎢⎣ α2 αβδ1 αγ δ2

αβδ∗
1 β2 βγ δ3

αγ δ∗
2 βγ δ∗

3 γ 2

⎤
⎥⎦. (3)

To have a systematic analysis for arbitrary dimensions
(e.g., arbitrary 2D beam, 3D field, etc.), here we adopt the
degree of 3D polarization coherence [33,39,40] as

P3 =
√

3

2

(
TrW2

3D − 1

3

)
, (4)

which varies between 0 and 1, with 0 meaning com-
plete unpolarization (i.e., 〈Ex|Ex〉 = 〈Ey|Ey〉 = 〈Ez|Ez〉 �= 0
and 〈Ei|Ej〉 = 0 with i, j = x, y, z and i �= j) and 1 indicating
fully polarized. Here, the subscript indicates the dimension-
ality 3. This measure is consistent with the conventional 2D
definition of degree of polarization for arbitrary light beams
[4]. It means how much the light field is concentrated to a
single polarization direction (or vector). Mathematically, it
can be reexpressed through the eigenvalues m1, m2, m3 of the
coherence matrix (3) as

P3 =
√

1 − 2 × 3(m1m2 + m1m3 + m2m3)

3 − 1
. (5)

Here the normalization of (2) results in m1 + m2 + m3 = 1. It
is worthwhile to note that the definition of degree of polariza-
tion coherence P3 is equivalent to the normalized purity of the
polarization degree of freedom reduced from a quantum state
of the form (2) [41].

On the other hand, another coherence quantity, i.e., en-
tanglement, between the polarization space {|x〉, |y〉, |z〉} and
the amplitude space {|Ex〉, |Ey〉, |Ez〉} of the general 3D field
represents a 3 × 3 bipartite pure-state scenario. Therefore,
Schmidt analysis [42–44] can be applied with the quantita-
tive Schmidt number measure K = 1/

∑3
i=1 λ2

i . Here,
√

λi,
i = 1, 2, 3, are the Schmidt coefficients and can be shown to
coincide with the eigenvalues of the normalized polarization
coherence matrix (3), i.e., λi = mi, i = 1, 2, 3. The Schmidt

number K varies between 1 and 3 for the 3D light field,
i.e., K3 ∈ [1, 3], where K3 = 1 indicates zero entanglement
with only one nonzero Schmidt coefficient and K3 = 3 means
maximal entanglement with equal Schmidt coefficients,
m1 = m2 = m3.

To compare with the normalized 3D degree of polarization
(4), entanglement K is also normalized as

K3 =
√

3

2

(
1 − 1

K3

)
. (6)

Obviously, K3, called Schmidt weight [29], ∈ [0, 1] with
K3 = 0, 1 meaning minimum (zero), maximal entanglement,
respectively. Some tedious but straightforward calculations
show that K3 can be further expressed in terms of the
eigenvalues,

K3 =
√

3(m1m2 + m1m3 + m2m3). (7)

By comparing Eqs. (5) and (7), one can immediately arrive
at the complementary identity relation,

P2
3 + K2

3 = 1. (8)

This is our first major result. It illustrates an intrinsic
complementary behavior of polarization coherence with en-
tanglement for arbitrary light fields. It will be shown later
that this result can systematically reduce to arbitrary two-
dimensional light beams or generalize to any N-dimensional
structural fields.

III. CENTER OF MASS

To further understand the optical polarization coherence
and entanglement along with their generic complementary
relation (8), we now describe a two-step geometric mapping
procedure that links to mechanical concepts. We employ the
barycentric coordinate system, introduced by Möblus in 1827
[32], in which the location of a point is specified by reference
to a regular simplex (an equilateral triangle for points in a
plane, a regular tetrahedron for points in three-dimensional
space, etc.).

Step 1. Let the polarization coherence matrix eigenvalues
m1, m2, m3 represent the values of three point masses.

Step 2: Place these point masses at the vertices of an
equilateral triangle inscribed in a unit circle O; see Fig. 1 for
illustration. With such a mapping, it is then ready to analyze
the connection to mechanical properties.

It is worthwhile to point out that the equilateral triangle is
employed due to the fact that its symmetry is consistent with
the symmetry in the optical coherence quantities. That is, the
distance between the geometric center O and the center-of-
mass point M is invariant under permutation of the masses
m1, m2, m3. This is aligned with the fact that the degrees of en-
tanglement and polarization are symmetric about the Schmidt
coefficients

√
m1,

√
m2,

√
m3. These optical quantities are

invariant under local observation basis changes that relate to
the permutation of

√
m1,

√
m2,

√
m3.

The three-mass system has a center-of-mass point M that is
located inside the two-dimensional triangle �m1m2m3. Then
the coordinates (X (1), X (2) ) of M are simply determined as

X ( j)mtot = x( j)
1 m1 + x( j)

2 m2 + x( j)
3 m3, (9)
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FIG. 1. Geometric illustration of mapping optical polarization
coherence and entanglement to mechanical concepts of COM and
MOI for arbitrary 3D light fields. The three masses m1,2,3 are placed
at the vertices of an equilateral triangle (that is inscribed in the
circle O) and M is the center-of-mass point. The lengths of OM, MB
represent the values of degree of polarization P3 and entanglement
K3, respectively. Here the line MB is perpendicular to OM and it
intersects with the circle O at point B. The Pythagorean theorem
of the right triangle �OMB directly represents the complementary
relation (8). IM , IO are the moments of inertia that correspond to
rotations along the entanglement line MB and its parallel partner that
passes through point O, respectively. The sizes of the point-mass dots
indicate m1 � m2 � m3 without loss of any generality.

where mtot is the total mass (normalized to 1) and x( j)
i

represents the jth coordinate of the ith mass mi, with i =
1, 2, 3 and j = 1, 2. When taking O as the origin of the
2D coordinate system, the distance between O and M can
be simply determined as OM =

√
(X (1) )2 + (X (2) )2. Further-

more, the distance between the mass center M and point B,
which is the cross point of the circle O with line MB (per-
pendicular to OM), can also be obtained directly as MB =√

1 − (X (1) )2 − (X (2) )2. Surprisingly, it can then be shown
that

P3 = OM and K3 = MB. (10)

That is, the degree of 3D polarization P3 equals the value of
the distance between the geometric center O and the mass
center M, and the degree of entanglement K3 equals the value
of the distance between mass center M and point B. When
the three masses are equal, the center-of-mass point M coin-
cides with the geometric center O so that OM = 0 (MB = 1),
indicating complete unpolarization P3 = 0 (maximal entan-
glement K3 = 1). When the total mass is concentrated on one
point mass (e.g., m1), the remaining two masses vanish. Then
the center of mass M coincides with point m1, with OM = 1
(MB = 0) indicating complete polarization P3 = 1 (zero en-
tanglement K3 = 0). This indicates a different application of
the barycentric coordinate system, i.e., it can interpret the opti-
cal polarization coherence P3 as the distance of two points: the
point of interest (m1, m2, m3) and the completely unpolarized
point (1/3, 1/3, 1/3), and similarly for entanglement K3. The
detailed proof of this quantitative connection for the general-
ized N-dimensional case is given in the Appendix, Sec. 1.

As a result, the polarization-entanglement complementary
relation (8) can now be represented by the Pythagorean theo-

rem of the right triangle �OMB that connects the mass center
M, geometric center O, and point B, illustrated by the blue
dashed lines in Fig. 1,

P2
3 + K2

3 = 1 ⇔ OM
2 + MB

2 = OB
2
. (11)

Equations (10) and (11) represent the second major result,
showing direct quantitative connections of optical polariza-
tion, entanglement, and their complementary relation to the
mechanical concept of center of mass.

IV. MOMENT OF INERTIA

The center of mass of a system is related to another me-
chanical concept, moment of inertia, when the rotation axis
passes through the mass center M. Combined with the above
discussion, the entanglement line MB, as shown in Fig. 1,
serves as a crucial rotation axis, about which the moment of
inertia IM of the three-mass system can be obtained as IM =
m1r2

1 + m2r2
2 + m3r2

3 , where ri, i = 1, 2, 3, are the distances
of mass mi to the axis MB.

The moment of inertia with respect to the parallel line
that passes through the geometric center O (see illustration
in Fig. 1) can also be achieved as IO = m1s2

1 + m2s2
2 + m3s2

3,
where si, i = 1, 2, 3, are the distances of mass mi to the
parallel axis. Then the Huygens-Steiner theorem [45,46] (also
called parallel-axis theorem) reads

IO = IM + mtotd
2, (12)

where d is the distance between the two paralleled axes and
mtot = 1 due to normalization of (3). This straightforwardly
leads to the quantitative relations

P3 = √
IO − IM and K3 =

√
1 − IO + IM, (13)

which is the third major result. They establish direct quanti-
tative connections between optical coherence quantities and
mechanical quantities.

The polarization coherence and entanglement of a generic
light field can now be interpreted as the difference between
two moments of inertia, IO and IM , of the three-mass system.
Complete unpolarization P3 = 0 (or maximal entanglement
K3 = 1) now simply means the moment of inertia IM coin-
cides with IO so that IO − IM = 0, while complete polarization
P3 = 1 (or zero entanglement K3 = 0) indicates the mo-
ments of inertia IM and IO are maximally separated with
IO − IM = 1. This provides a different way of understand-
ing and obtaining optical coherence quantities through the
mapped point-mass scenario.

On the other hand, the mechanical properties of such a
three-mass system (or N-mass system as extended in the fol-
lowing) can also be understood and achieved with the optical
polarization coherence and entanglement. These mechanical
properties include center of mass, momentum of inertia, as
well as their related properties such as angular momentum
L = Iω, with ω being rotation frequency, rotational energy
E = Iω2/2, etc.

V. GENERALIZATION TO ARBITRARY DIMENSIONS

The above polarization-entanglement complementary rela-
tion (8) along with its connection to the mechanical concepts
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of center of mass and moment of inertia can be further gener-
alized to arbitrary dimensional tensor structures. In this case,
the concept of polarization is not restricted to describe the
three wave oscillation directions of the 3D space any longer.
It is extended to represent all vectors of a generic vector space
of arbitrary dimension [24,47].

A generic N-dimensional two-space (or two-degree-of-
freedom) tensor structure can be written as

|E〉 =
N∑

l=1

|Gl〉|Zl〉, (14)

where |Gl〉 are normalized basis vectors of one vector space
(e.g., the infinite-dimensional spatial degree of freedom of
light) and |Zl〉 represent the amplitudes that group all remain-
ing degrees of freedom as a single large vector space (e.g.,
the combination of wave oscillation directions and temporal
modes of light).

The above state is a direct N-dimensional extension of the
light field (2), but with the vector space {|Gl〉} singled out. The
extended concept of “polarization” simply means all the basis
vectors |Gl〉 (corresponding to |x〉, |y〉, |z〉 in the general 3D
light field case). Then the degree of polarization is directly
extended to mean how much this field |E〉 is concentrated
to a single superposed vector in this G space. As a result,
this generalized polarization coherence can be systematically
defined as [24,47]

PN =
√

N

N − 1

(
TrW2

ND − 1

N

)
, (15)

which is a direct extension of (4) with

WND =
∑

k,l〈Zk|Zl〉|Gl〉〈Gk|∑
k〈Zk|Zk〉 (16)

being the normalized N-dimensional (ND) polarization co-
herence matrix of the G space, with k, l = 1, 2, 3, . . . , N .
Here, PN is normalized between 0 and 1, indicating complete
unpolarization and polarization, respectively.

Entanglement of the N-dimensional two-space field (14)
can be analyzed systematically by Schmidt decomposition as
in the 3D case, and quantitatively measured by the Schmidt
weight as

KN =
√

N

N − 1

(
1 − 1

KN

)
, (17)

where KN = 1/
∑N

i=1 m2
i is the Schmidt number, with

√
mi

being the Schmidt coefficients and the mi are the eigenvalues
of the N × N coherence matrix WND. Here, KN is bounded
between 0 and 1, indicating zero and maximal entanglement,
respectively.

Combining the degree of generic polarization and entan-
glement for the generic ND structure, one is then led to the
generalized identity

P2
N + K2

N = 1. (18)

This generic entanglement-polarization complementary re-
lation suggests that the intrinsic opposite behaviors of
polarization and entanglement in a general field are universal

FIG. 2. Geometric illustrations of mapping optical polarization
coherence and entanglement to mechanical concepts of COM and
MOI for arbitrary 2D beams and 4D generic structural fields. (a) For
the 2D case, two masses m1,2 are placed at the vertices of the regular
1 simplex (a segment) and the 0 sphere O has two end points B, B′.
(b) For the 4D case, four masses m1,2,3,4 are placed at the vertices
of the regular 3 simplex (a tetrahedron) inscribed in the 2 sphere O.
For both cases, M is the center of mass and the lengths of OM, MB
represent the values of degree of polarization PN and entanglement
KN , respectively. Line MB is perpendicular to OM and it intersects
with the (N − 2)-sphere O at point B. The Pythagorean theorem
of the right triangle �OMB directly represents the complementary
relation (A7). IM , IO are the moments of inertia that correspond to
rotations along the entanglement line MB and its parallel partner
that passes through O, respectively. The sizes of the point-mass dots
indicate m1 � m2 � m3 � m4 without loss of any generality.

for all light fields. The absence of polarization coherence is
always accompanied by the display of maximal entanglement,
and vice versa. The proof of Eq. (A7) is provided in the
Appendix, Sec. 1.

It is important to note that when N = 2, the field re-
duces to the arbitrary two-dimensional optical beam case.
Then, P2 is exactly the conventional degree of polariza-
tion [4,48] and entanglement K2 is exactly the well-known
entanglement measure concurrence [49]. Figure 2(a) illus-
trates the 2D complementary relation with triangle �OMB.
This two-dimensional relation is consistent with wave-particle
complementarity relations; see, for example, Refs. [24,50–
55].

The connection to mechanical concepts can also be
extended systematically following the two-step geometric
mapping prescription.
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Step 1. Let the eigenvalues (or the square of the Schmidt
coefficients) m1, . . . , mN of the polarization coherence matrix
(16) represent the values of N point masses.

Step 2. Place these point masses at the N vertices of a
regular (N − 1) simplex inscribed in a unit (N − 2) sphere
with origin O.

Consistent with the case of 3D generic light field, the
value of the degree of polarization PN is exactly the dis-
tance from O to the center-of-mass point M, i.e., PN =
OM, and the value of degree of entanglement KN = MB
where MB ⊥ OM and B is the cross point with the unit
(N − 2)-sphere O; see illustration in Fig. 2. Then the right
triangle �OMB with OM

2 + MB
2 = OB

2
directly represents

the generic polarization-entanglement complementary rela-
tion P2

N + K2
N = 1. A detailed proof of these generalized

results is provided in the Appendix, Sec. 2.
Furthermore, the moment of inertia of the N-mass system

with respect to the entanglement line MB and the parallel line
that passes through O exactly obeys the same quantitative re-
lation as in the 3D case (13), connecting to optical polarization
coherence and entanglement as

PN = √
IO − IM and KN =

√
1 − IO + IM . (19)

To this end, we have shown that all three major results (8),
(11), (13) about the generic 3D light field can be reduced to
arbitrary 2D beams and extended to arbitrary ND structural
fields. The optical polarization-entanglement complementary
relation is a generic feature for all light fields. The quantitative
connections of optical coherence quantities (polarization and
entanglement) with mechanical concepts of center of mass
and moment of inertia are also universal for all light fields.

VI. SUMMARY

In summary, we have established a generic polarization-
entanglement complementary relation P2

N + K2
N = 1 for arbi-

trary light fields of 2D and 3D polarizations and for general
fields of N-dimensional structural polarization. The comple-
mentarity suggests that polarization and entanglement are two
intrinsically opposite coherence properties of all light fields.
The absence of polarization coherence is always accompa-
nied by the display of entanglement, and vice versa. It is
worthwhile to point out that such a complementary behavior is
general and independent of specific measures. That is, one can
also use other measures to characterize this behavior, e.g., the
von Neumann entropy S [56] for entanglement in the 2D case;
then it will lead to a quantitatively different, but qualitatively
similar complementary relation S + [(1 + P2) ln(1 + P2) +
(1 − P2) ln(1 − P2)]/2 = 1, where S is a monotonically de-
creasing function of P2.

A geometric mapping technique based on the barycentric
coordinate system is introduced to correspond the eigenvalues
(or Schmidt coefficients) of the polarization coherence matrix
to point masses that are located at the vertices of a regular
simplex. Based on the mapping, optical polarization and en-
tanglement (indication of the Huygens-Fresnel wave theory)
are shown to be quantitatively connected to the seemingly
unrelated mechanical concepts of center of mass and moment
of inertia (result of the Huygens-Steiner theorem).

The obtained quantitative relations in (10), (11), and (13)
and their N-dimensional extensions open an avenue that links
coherence optics to mechanics. These relations provide a me-
chanical and geometrical picture to interpret and understand
the meaning of coherence optical concepts such as complete
polarization, partial polarization, complete unpolarization,
separable, partial entanglement, maximal entanglement, etc.
Based on the obtained quantitative results, we expect that
other relevant optical concepts such as degree of coherence,
cross correlation, entropy, etc. can be connected to additional
mechanical concepts including angular momentum, rotational
energy, etc.

Finally, the tensor structure of the light field (2) or its
generalized form (14) is analogous to that of a quantum pure
state. Therefore, our analysis of the polarization-entanglement
complementarity and the connection to mechanical concepts
also applies to quantum systems with respective different
physical interpretations.
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APPENDIX

1. Polarization-Entanglement Complementary Relation

This section provides the proof of the polarization-
entanglement complementary relation for arbitrary field of
N-dimensional (ND) structural polarization. The degree of
polarization is defined as

PN =
√

N

N − 1

(
TrW2

ND − 1

N

)
, (A1)

where WND is the ND polarization coherence matrix. Then it
can be rewritten as

P2
N = N

∑N
k=1 m2

k − 1

N − 1
, (A2)

where m1, m2, . . . , mN are the N eigenvalues of WND.
Given the fact that WND is normalized, the sum of all

eigenvalues equals identity, i.e.,
∑N

k mk = 1. Then one has

P2
N = N

( ∑N
k=1 m2

k − 1
) + N − 1

N − 1

= N
[ ∑N

k=1 m2
k − ( ∑N

k mk
)2] + N − 1

N − 1

= N
( − ∑

i< j 2mimj
) + N − 1

N − 1

= 1 − N

N − 1

∑
i< j

2mimj . (A3)

On the other hand, the degree of entanglement in terms of
the Schmidt weight is defined as

KN =
√

N

N − 1

(
1 − 1

KN

)
, (A4)

033110-5



XIAO-FENG QIAN AND MISAGH IZADI PHYSICAL REVIEW RESEARCH 5, 033110 (2023)

where

KN = 1

m2
1 + m2

2 + · · · + m2
N

(A5)

is the Schmidt number that is defined based on the Schmidt
coefficients (which coincide with the eigenvalues of the po-
larization coherence matrix WND), m1, m2, . . . , mN . Then the
Schmidt weight can be rewritten as

K2
N = N

N − 1

[
1 − (

m2
1 + m2

2 + · · · + m2
N

)]
= N

N − 1

∑
i< j

2mimj . (A6)

By combining (A3) and (A6), one immediately retrieves
the polarization-entanglement complementary identity for ar-
bitrary dimensions,

P2
N + K2

N = 1. (A7)

2. Degree of Polarization and Center of Mass

This section provides the rigorous proof that the generic
ND degree of polarization PN equals the distance between the
geometric center O and the center-of-mass point M of the N-
mass system. The N point masses are placed at the N vertices
of a regular (N − 1) simplex inscribed in a unit (N − 2) sphere
with origin O.

A regular (N − 1) simplex, or a unit (N − 2) sphere,
lives in a (N − 1)-dimensional space. For symmetry
purpose, we set O as the origin of this (N − 1)-dimensional
coordinate system. Then the coordinates of all N point
masses m1, m2, . . . , mN can be described as (x(1)

1 , x(2)
1 , . . . ,

x(N−1)
1 ), (x(1)

2 ,x(2)
2 , . . . , x(N−1)

2 ), . . . , (x(1)
N ,x(2)

N , . . . , x(N−1)
N ),

respectively, where x( j)
i represents the jth coordinate for point

mass i.
Then the coordinates of the center-of-mass point

(X (1), X (2), . . . , X (N−1)) can be determined as

X ( j) =
∑N

i=1 x( j)
i mi

mtot
, (A8)

for all j = 1, 2, . . . , N − 1. The distance between the origin
O and center-of-mass point M can be computed directly as

OM =
√√√√N−1∑

j=1

|X ( j)|2 =

√√√√√N−1∑
j=1

∣∣∣∣∣
N∑

i=1

x( j)
i mi

∣∣∣∣∣
2

, (A9)

which can be explicitly expressed as

OM
2 =

N−1∑
j=1

[
N∑

i=1

(
x( j)

i

)2
m2

i +
∑
i<i′

2x( j)
i mix

( j)
i′ mi′

]

=
N∑

i=1

m2
i −

∑
i<i′

2

N − 1
mimi′

= −
∑
i<i′

2mimi′ + 1 −
∑
i<i′

2

N − 1
mimi′

= 1 −
∑
i<i′

N

N − 1
2mimi′

= P2
N . (A10)

That is, the distance OM is exactly the degree of polarization
PN . Here we have used the fact that the distance from each
point mass mi to the origin O is 1, i.e.,

∑
j (x

( j)
i )2 = 1 for all

i, as well as the fact that the distance between any two point
masses of a regular (N − 1) simplex is d = √

2N/(N − 1).
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