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Bound states in the continuum in subwavelength emitter arrays
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Ordered lattices of emitters with subwavelength periodicities support unconventional forms of light-matter
interactions arising from collective effects. Here, we propose the realization and control of subradiant optical
states within the radiation continuum in two-dimensional lattices. We show how bound states in the contin-
uum (BICs) which are completely decoupled from radiative states emerge in non-Bravais lattices of emitters.
Symmetry breaking results in quasi-BICs with greatly extended lifetimes, which can be exploited for quantum
information storage. The analytical derivation of a generalized effective polarizability tensor allows us to study
the optical response of these arrays. We discuss how thanks to the quasi-BICs, a rich phenomenology takes place
in the reflectivity spectrum, with asymmetric Fano resonances and an electromagnetically induced transparency
window. Finally, we exploit these lattices as quantum metasurfaces acting as efficient light polarizers.
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I. INTRODUCTION

The spontaneous decay of quantum emitters through cou-
pling to radiative modes is an intrinsic quantum property of
the emitters and represents a major source of decoherence in
quantum photonic platforms. The suppression of this loss pro-
cess is a key building block of quantum photonic technologies
[1–3] and can be achieved through preparation of photons in
dark optical states [4,5]. Dark, or subradiant, states emerge
due to destructive interference arising from collective inter-
actions between several quantum emitters [6], and provide a
reduced coupling to radiative modes. This results in extended
lifetimes that can improve the storage and processing of quan-
tum information. Subradiant optical states have been observed
in atom clouds in vacuum [7–11] or near an optical fiber [12],
as well as with artificial emitters such as superconducting
qubits [13,14].

Recently, structured arrays of quantum emitters have also
been proposed as a platform to realize subradiant states. These
consist of periodic arrays of emitters with subwavelength peri-
odicity, where coherent dipole-dipole interactions between all
the emitters in the lattice give rise to cooperative effects that
strongly modify the optical properties of the quantum emitters
[15–21]. These arrays support subradiant guided modes that
only radiate due to the finite size of the system and can be har-
nessed for selectively improving radiation in a given desired
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channel [22], for mediating nontrivial emitter-emitter inter-
actions when additional emitters are placed nearby [23–28]
or for generating topological edge modes [29,30]. Periodic
atomic arrays with hundreds of emitters have been experi-
mentally realized by means of optical tweezers [31–34] or
optical lattices [35,36], and an atomic optical mirror based on
collective interactions has already been demonstrated [37,38].

On the other hand, subradiant modes can also arise within
the radiation continuum. For instance, cooperative resonances
can result in a reduced collective decay rate compared with
that of an isolated quantum emitter [39] and magnetic re-
sponses can be created at optical frequencies [40,41]. Here,
we propose the realization of completely dark states within
the radiation continuum in subwavelength emitter arrays. To
do so we exploit the concept of bound states in the continuum
(BICs). While optical BICs have energies embedded in the
radiation continuum, that is, are above the light line, they can-
not couple to radiative modes and thus are completely dark.
Instead of propagating, photons in a BIC remain bound to the
structure and can serve as storage of quantum information.
BICs were first proposed in quantum mechanics as states that
localize in space while having an energy higher than the po-
tential well that confines them [42], and then experimentally
verified and analyzed in a photonic crystal slab [43]. Over
the past years, BICs have been generalized to different wave
physics scenarios [44], prominently in optics due to their po-
tential for nanophotonic applications such as optical sensing
[45,46] and lasing [47–53], or at telecom wavelengths using
dielectric nanoparticles [54].

II. NON-BRAVAIS SUBWAVELENGTH EMITTER ARRAYS

In order to generate BICs in subwavelength emitter arrays,
we consider a two-dimensional non-Bravais lattice of emitters
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FIG. 1. Subwavelength emitter arrays arranged in a square lat-
tice. (a) Sketch of a lattice with a basis of 2. Two sets of emitters with
resonance frequencies ωa,i (i = 1, 2) are arranged in a square lattice
of periodicity a and lattice vectors R1 = ax = ax and R2 = ay = ay.
The basis vector is T = (tx, ty ). (b) Schematics of different radiative
processes in the lattice. A mode with two emitters in the unit cell that
are in phase is superradiant: Its decay rate is much larger than that
of the individual emitters (top). If the two emitters are in antiphase,
the mode has zero radiative decay and is decoupled from radiation:
This is a BIC (bottom). Finally, a detuning of the emitters allows
for a small radiative decay that is greatly reduced with respect to
individual emitters, in a quasi-BIC (bottom).

(see Fig. 1). Each lattice site contains one emitter, which in the
single excitation approximation, can be modeled as two-level
systems with resonance wavelengths λi and frequencies ωi =
2πc/λi, with i signifying a particular emitter in the lattice. The
emitters’ positions are given by Rμ

n = Rn + Tμ, with {Rn}
giving the positions of all unit cells (n = 1, . . . , N) and {Tμ}
being the basis vectors of the sublattices (μ = 1, . . . , M),
which join the origin of the unit cell with each of the emitters
in the basis. The dynamics of the emitters can be described
through an effective non-Hermitian Hamiltonian (see appen-
dices) [22,55]:

H

h̄
=

NA∑
j=1

(
ω j − i

� j

2

)
1σ j

ee

−
NA∑

j=1 i �= j

ωiω j

ε0c
[℘∗

i · Gi j · ℘ j]σ
i
egσ

j
ge. (1)

Here, the index i runs over all the emitters in the lattice, NA is
the total number of emitters in the array, σ

j
ge,eg are the atomic

transition operators between the ground and excited states,
�i = |℘i|2ω3

i /(3π h̄c3) are the spontaneous decay rate of the
emitters, and ℘i the dipole moments, whose components cor-
respond to three mutually orthogonal transitions when the
emitter’s response is isotropic (as assumed here). The second
term in the Hamiltonian represents the photon-mediated in-
teractions among all the emitters in the array. This is dictated
by the 3 × 3 Green’s dyadic, Gi j = G(|ri − r j |), with G(r) =

1
4π

[1 + ∇ ⊗ ∇/k2]eik|r|/|r|, which includes short-, medium-,
and long-range interactions. Here and in Eq. (1), 1 is the 3 × 3
identity matrix and k = ω/c.

For infinite periodic lattices, the eigenstates of
the Hamiltonian [Eq. (1)] are Bloch modes, S†

k =
1√
N

∑N
n=1

∑M
μ=1 σ n,μ

eg eik·rn , with k the Bloch wave vector, and
where we label the atomic operators with lattice and sublattice
indices. The eigenstates and eigenenergies satisfy H |�k〉 =
h̄(ωk − i γk

2 )|�k〉, and are thus obtained from the diagonaliza-
tion of a 3M × 3M matrix whose 3 × 3 blocks representing
intra- and intersublattice interactions are given by

N̂μν =
(

ωμ − i
�μ

2

)
1δμν +

(
�̂μν (k) − i

�̂μν (k)

2

)
. (2)

Again, 1 is the 3 × 3 identity matrix and we have introduced
the tensors

�̂μν (k) = −3π�ac

ωa
Re[℘̂∗ · Ŝμν (k‖, ωa) · ℘̂], (3)

�̂μν (k) = 6π�ac

ωa
Im[℘̂∗ · Ŝμν (k‖, ωa) · ℘̂], (4)

which, for a fixed {μ, ν} pair, are 3 × 3 matrices.
Ŝμν (ω, k‖),which depends only on the Bloch wave vector in
the plane of the array stands for the Fourier transform of the
dipole-dipole interaction, the lattice sum,

Ŝμν (k‖) =
N
′∑

m=1

Ĝ(Rm + Tν − Tμ)e−ik‖Rm , (5)

where the primed symbol indicates that the sum excludes the
term m = 1 when μ = ν [56].

We now restrict ourselves to study the in-plane modes
of a two-dimensional (2D) lattice, which are the relevant
ones under normal incidence excitation. The in-plane modes
dispersion of a non-Bravais lattice with two sites per cell
of identical emitters (ω1,2 = ωa, �1,2 = �a, and isotropic in-
plane dipole moment) with periodicity a = 0.2λa is shown
in Fig. 2. The basis vector of the lattice considered in panel
(a) is T = (0.5, 0.5)a, such that the array is a Bravais lattice
with smaller rotated unit cell, and the four normal modes are
degenerate by pairs at normal incidence and at the edges of
the Brillouin zone. The plot shows the eigenenergies, ωλ

k =
ωa + �λ(k‖), and decay rates, γ λ

k = �a + �λ(k‖), which are
color coded in the band structure and λ is an index that labels
the eigenvalues. Here, �λ(k‖) and �λ(k‖) are, respectively,
the real and imaginary parts of the eigenvalues of the 4 × 4
complex matrix of in-plane interactions,

�̂‖(k‖) − i
�̂‖(k‖)

2
=
[
�̂11

‖ − i�̂11
‖ /2 �̂12

‖ − i�̂12
‖ /2

�̂21
‖ − i�̂21

‖ /2 �̂22
‖ − i�̂22

‖ /2

]
,

(6)

where we have omitted the explicit dependence on k‖ on the
right-hand side. The �̂

μν

‖ and �̂
μν

‖ matrices correspond to
xy blocks of the intra- and intersublattice interaction tensors
defined by Eqs. (3)–(5).

As can be observed in the figure, there are two sets of
radiative modes, that is, within the light cone (gray area).
However, by looking at their decay rate we see that the two
at lower energies are superradiant, with γk 	 �a, while the
two at higher energies are subradiant, with γk 
 �a. The
decay rate of these subradiant modes is plotted as an inset,
where we see how γk 
 �a and γk → 0 as k‖ → 0. This is
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FIG. 2. Band structure for in-plane modes of two lattices of
identical emitters, ω1,2 = ωa. The mode decay rate is shown in color
(legends on the right-hand side). A detail of the decay rates of the
subradiant modes in the continuum range is shown in the insets.
(a) Lattice with T = a(0.5, 0.5), with the subradiant modes mapped
at �. (b) Lattice with T = a(0.4, 0.4), with BICs at �. In both
panels a = 0.2λa. The light line is marked with dashed lines, and
the radiation continuum is shaded in gray. The insets show the decay
rate of the two subradiant eigenmodes.

in agreement with the fact that these modes lie beyond the
light line of the lattice with smaller unit cell, and are mapped
into the zone center by folding. In real space, they corre-
spond to the two dipoles in the unit cell being antialigned,
a configuration that for symmetry reasons cannot radiate to
the far field. In panel (b), a non-Bravais lattice is considered
by taking T = (0.4, 0.4)a, which lifts the band degeneracies
of panel (a). In this case, modes above the light line are
actually within the radiation continuum. However, the decay
rate of the two subradiant modes at k‖ = 0 is γk = 0, as can
be seen from symmetry analysis of the eigenstates. Normal
incidence implies Ŝ21(k‖ = 0) = Ŝ12(k‖ = 0), and due to the
lattice symmetry S11

xy/yx = 0 and S12
xy/yx = 0. Therefore, at the

� point, Eq. (6) has two pairs of nondegenerate eigenvalues,
yielding cooperative shifts,

�±,i(k‖ = 0) = − 3
2�aλaRe

[
S11

ii ± S12
ii

]
, (7)

and decay rates,

�±,i(k‖ = 0) = 3�aλaIm
[
S11

ii ± S12
ii

]
, (8)

corresponding to one symmetric and one antisymmetric mode
per spatial degree of freedom (i = {x, y}). Making use of
the fact that Im[S11

xx ] = Im[S12
xx ] − (3λa)−1, we find �−(k‖ =

0) = −�a and γk = 0 for the subradiant modes. Thus, even
if the radiative decay of the antisymmetric modes is larger
than in the case of panel (a), it is completely suppressed at
normal incidence, as shown in the inset panel. These are then
subradiant modes embedded in the continuum, confirming the
existence of BICs at normal incidence.

III. OPTICAL RESPONSE BICS AND QUASI-BICS

Next we study the optical properties of the emitter array by
looking at the reflectivity, which can be calculated from the
total dipole moment of the lattice excited by an incident plane
wave with s or p polarization (see appendices), as

Rσσ ′ (k‖) = |eσ · α̂eff · eσ ′ |2
(Aλε0/π )2

. (9)

Here, A is the unit cell area, σ = s, p, and α̂eff is the effective
polarizability tensor [57–60]. This is a 3 × 3 matrix that rep-
resents the total response of the array in a Cartesian basis and
is obtained by summing over the sublattice responses,

[
α̂−1

eff (ω, k‖)
] =

M∑
μ

M∑
ν

β̂
μν

eff . (10)

Here we have introduced a generalized effective polarizability
tensor, [

β̂
−1
eff (ω, k‖)

]μν = 1

αμ(ω)
δμ,ν − k2

ε0
Ŝμν (k‖), (11)

which is a 3M × 3M tensor (see appendices).
Figure 3 shows the array reflectivity at normal incidence

for a square lattice with one (a) and two emitters (b),(c) per
unit cell, as a function of frequency detuning with respect
to the emitter’s resonance δ1 = ω − ωa and lattice period,
a/λa. The second emitter is placed at a high symmetry point
(the center of the cell), as considered in Fig. 2(a). Here, a
p-polarized incident wave (E0 = E0ûx) is assumed. Due to
lattice symmetry (Ŝμν

xx = Ŝμν
yy ), the response is equal for both

polarizations Rss = Rpp = R.
Panel (a) corresponds to a lattice with a basis of one emitter

per unit cell. Through the cooperative shift, �(k‖ = 0) =
− 3

2�aλaRe[Sxx(k‖ = 0)], the cooperative response of the lat-
tice gives rise to a resonance for δ1 = � (green dashed line),
due to the collective excitation of the in-plane modes by the
incident field [20,40]. For shorter periods, a 
 λa, Re[Sxx] →
∞ and the resonance is largely redshifted towards negative
detunings. As the periodicity increases, the cooperative shift
turns positive and the resonance crosses the zero detuning line,
going back to negative detunings as a → λa since Re[Sxx] →
∞ again. On the other hand, the radiative width decreases as
the period increases, giving rise to resonances with linewidth
γ → 3�a/(4π ) as a → λa [57,61–68].

By adding a second emitter per unit cell, the collective
response of the lattice is modified through the interplay be-
tween the intra- and intercell lattice sums, S11

xx and S12
xx [see
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FIG. 3. Normal incidence reflectivity as a function of detuning
and periodicity for a lattice with a basis of one emitter per cell (a),
with two identical emitters per cell (b), and with two detuned emitters
per cell (c). In (b), two subradiant degenerate modes are marked with
a purple dashed-dotted line (δ1 = �−). The superradiant mode is
marked with a green dashed line (δ1 = �+). (c) Symmetry breaking
through detuning one of the emitters (ω2 = ω1 + �a/2) allows for
the emergence of quasi-BICs. In (b) and (c) T = (a/2, a/2).

Eq. (7)]. The reflectivity spectrum of the same system as
in Fig. 2(a) is shown in Fig. 3(b). The superradiant mode,
δ1 = �+, is marked with a dashed green line, and the sub-
radiant mode, δ1 = �−, with a dashed-dotted purple line. The
interplay between both sublattices modifies the behavior of
the resonance reflectivity peak compared to that of panel (a).
First, for a 
 λa, the lattice sums Re[S12

xx ] → 2Re[S11
xx ], such

that the cooperative shift of the superradiant mode �+ → 2�,
while that of the subradiant modes �− → −�. Hence, while
the superradiant mode lies at negative detuning for low pe-
riods, the subradiant one lies at positive detuning. Next, as
the periodicity increases, there is a value of the period where
Re[S12

xx ] = 0, implying that the four in-plane eigenmodes are
degenerate, and the superradiant and subradiant modes cross.
For the chosen lattice, this occurs at a = 0.39λa (see Fig. 6
in Appendix C). Thus, for larger values of the period the
subradiant mode is the one lying at lower detuning, while the
superradiant one stays at higher detuning. In fact, when a →
λa, Re[S12

xx ] → −Re[S11
xx ], resulting in �+ → 0, and the super-

radiant mode tends to zero detuning and 3�a/(2π ) linewidth,
in contrast to panel (a).

Next, we introduce a small perturbation in the system
which breaks its rotational symmetry and allows us to access
the subradiant modes from the far field by transforming them
into quasi-BICs. We do this by detuning one of the emitters
in the unit cell. This strategy has been used to individually
address lattice dark states, showing how they can store and
release single photons [69–71]. The optical response of this
type of lattice is shown in Fig. 3(c), for ω2 = ω1 + �a/2.
The symmetry breaking results in a finite linewidth for the

subradiant mode, which thus transforms into a quasi-BIC that
can couple to the far field and therefore, becomes visible at
normal incidence. Interestingly, their radiative width is small,
�− 
 �a, and controllable through the system’s parameters.

We now study in detail the optical properties of the square
non-Bravais lattice with broken sublattice symmetry. In order
to explore the contribution of the superradiant and subradi-
ant modes to the collective response, we analytically recast
the effective polarizability as the sum of two contributions,
corresponding to the superradiant (+) and subradiant or quasi-
BIC (−) modes (see appendices and Ref. [68] for a related
expression in the context of plasmonic lattices),

αxx
eff(ω, k‖) = α0�a

[
�+(k‖)

δ+(ω) − �+(k‖)
+ �−(k‖)

δ+(ω) − �−(k‖)

]
,

(12)

where α0 = 6πε0c3/ω3
a and the decay rate of the

emitters is assumed to be �1 = �2 = �a. The terms
�± and �± are defined respectively as �±(k‖) = 1

2 ±
S12

xx (k‖)[[S12
xx (k‖)]2 + (δ−)2]−1/2 and �±(k‖) = S11

xx (k‖) ±
sgn(−�12

xx )
√

[S12
xx (k‖)]2 + (δ−)2 + i�a/2, with both exp-

ressions being solely functions of the incident field’s
momentum. The term δ− = (ω1 − ω2)/2 is a constant
and the frequency dependency is solely introduced in Eq. (12)
through the term δ+(ω) = −[δ1(ω) + δ2(ω)]/2. Given that
the reflectivity of the lattice is proportional to |α̂e f f |2 [see
Eq. (9)] the interference between the two modes gives rise to
a very rich spectrum.

Figures 4(a)–4(c) show the reflectivity spectrum of the ar-
ray at fixed values of the lattice period a/λa,1 = 0.2, 0.39, 0.8,
marked with vertical lines in Fig. 3(c). These spectra show
three different regimes of interaction, defined by the relative
position between the superradiant and the subradiant (quasi-
BIC) modes, and their radiative widths. In the lower row,
panels (a.2)–(c.2) display the corresponding resonance fre-
quency of the superradiant modes as the crossing between δ+
(green line) and the real part of �+ (dashed purple), as given
by Eq. (12). Correspondingly, the quasi-BIC is marked by the
crossing between δ+ and �− (dotted pink). As seen in panels
(d.1) and (d.2), at short periods the superradiant mode lies at
lower frequencies than the quasi-BIC [Re(�)+ < Re(�)−],
and has a very large radiative width [Im(�)+ 	 �a]. As a
consequence, the quasi-BIC mode emerges as a very sharp
and asymmetric spectral feature [see panel (a), for a = 0.2λa].
As the period increases the two modes approach in frequency
and become degenerate when Re[S12

xx ] = 0, in this case at
a = 0.39λa. This results in an electromagnetically induced
transparency window [39,72,73], as shown in panel (b). The
coherent interaction between the degenerate modes leads to a
symmetric spectrum with a narrow window of complete trans-
parency. Finally, for longer periods the superradiant mode lies
at higher frequencies [Re(�)+ > Re(�)−,; see panel (d.1)],
and its radiative width decreases [see panel (d.2)]. This results
in a narrow and asymmetric quasi-BIC peak, separated by
a zero reflectivity point from a broader peak [see panel (c),
a = 0.8λa], a qualitatively different Fano profile from that
shown in panel (a). These results show how the reflectivity
spectrum of the emitter array can be tuned by geometrical
means, such as lattice periodicity.
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FIG. 4. Spectra of non-Bravais square lattices with two detuned emitters per cell in different parameter regimes. (a.1)–(c.1) Reflectivity
spectrum at normal incidence for lattices with periods a/λa,1 = 0.2, 0.39, 0.8 as a function of detuning δ1 = ω − ω1, with ω2 = ω1 + �a/2.
Asymmetric Fano resonances (a),(c) and electromagnetic induced transparency (b) emerge due to the quasi-BICs. The bottom panels (a.2)–(c.2)
show the peak positions as the crossings δ+ = Re[�±], for the superradiant and subradiant modes in the spectra shown in the three panels above
[see Eq. (12)]. Panels (d.1) and (d.2) show the real and imaginary parts of �± as a function of lattice period.

IV. THE NON-BRAVAIS SUBWAVELENGTH EMITTER
ARRAY AS A POLARISER

As we have shown, the optical properties of the lattice are
strongly determined by the interplay between the two sublat-
tices through cooperative dipole exchanges between emitters.
As a consequence, the array’s reflectivity (or transmission),
resonance frequency, and bandwidth can be controlled and lin-
ear optical elements can be designed [74,75]. We now exploit
this to show how arrays with two emitters per unit cell can
serve as efficient polarizers and identify different regimes of
operation. In order to design emitter arrays that act as polar-
izers, we consider geometrical configurations that do not have
a diagonal mirror plane as the one studied above. This results
in Sμν

xx �= Sμν
yy and as a consequence the response to s- and p-

polarized incident fields is different, allowing one to filter the
polarization of the transmitted light. To assess the efficiency of
the bipartite emitter lattices as polarizer we plot the visibility
of the transmitted components, (Tss − Tpp)/(Tss + Tpp). This
measure of the polarizing efficiency is depicted in Fig. 5 as
a function of the lattice period a/λa1 and frequency detuning
for two representative lattices. Panel (a) corresponds to the
lattice with emitters aligned along the y axis [basis vector
T = (0, 0.6)a], which reduces to a rectangular lattice [74].
The large x/y asymmetry of intersublattice interactions gives
rise to a highly efficient polarizer, with the visibility display-
ing a broad peak at positive detuning reaching values of +1.
At these points only s-polarized waves are transmitted, and
transmission of p-polarized light is completely suppressed
(transmission plots can be found in the appendices). Con-
versely, at negative detunings visibility of −1 is reached,
with only p-polarized light being transmitted. This behavior

is explained by the fact that Re[S12
yy ] > 0 and Re[S12

xx ] < 0 for
all periods (see appendices). In contrast, for the configuration
shown in panel (b), with basis vector T = (0.7, 0.5)d , the high
visibility peak of p-polarized transmission shifts to negative
detunings. Next, we exploit the quasi-BIC resonances gener-
ated with detuned emitters to achieve control of the polarizer
bandwidth. Panels (c) and (d) plot the transmittance spectra
for the two lattices, with periodicity a/λa = 0.5, indicated
by a vertical dashed line in the contour plots. Tss is shown
in red and Tpp in blue. Two cases are shown in each panel:
The spectra for identical emitters in both sublattices (ω2 = ω1,
dashed lines), and with detuned emitters (ω2 = ω1 + �a/2,
solid lines). Complete contour plots for detuned emitters can
be found in the appendices. In both cases, the presence of
the quasi-BIC modes allows us to realize narrow windows of
efficient polarizing effect. Note it is possible to tune perfect
transmittance for one polarization while completely canceling
the other for very narrow frequency windows, as shown for
instance in panel (d) at detuning δ1 ∼ 0.5�a, with Tss = 1 and
Tpp = 0.

V. CONCLUSIONS

In conclusion, we have proposed the use of two-
dimensional non-Bravais lattices of quantum emitters to
realize subradiant modes that are not spatially confined to the
array. Perfectly periodic emitter arrays with more than one
sublattice support BICs, which are completely dark (subra-
diant) modes lying within the radiation continuum and thus
accessible from the far field. Their frequency can be tuned
through the geometrical parameters of the lattice. Symmetry
breaking through, e.g., sublattices of slightly detuned emitters,
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FIG. 5. Visibility of transmission at normal incidence for a lat-
tice with basis vector T = (0, 0.6)a (a), and T = (0.7, 0.5)a (b) as
function of the lattice period a/λa and frequency detuning δ1/�a.
The grey dashed line indicates the lattice period a/λ1 = 0.5 fixed in
panels (c-d), for the basis vectors of (a-b) respectively. Panels (c-d)
show the transmission of each polarization, Tss in pink and Tpp in
green, as function of the detuning δ1/�a. The dashed lines correspond
to lattices with ω2 = ω1 while the solid line is used for lattices with
detuned emitters, ω2 = ω1 + �a/2.

results in subradiant modes of finite radiative width but high
quality factor which emerge as sharp Fano peaks in the optical
spectrum. By tuning the lattice geometry, it is possible to
achieve an electromagnetically induced transparency window.
The low radiative width of the subradiant modes studied here
can be potentially exploited for the purpose of quantum infor-
mation storage. Two-dimensional lattices of quantum emitters
can be experimentally realized in a cold emitters platform
[37,38]. Deviations from a perfect array of point dipoles limit
the cooperativeness of the lattice. For instance, finite spread
of the wave functions results in a distribution of the dipole’s
positions away from lattice sites which yield to frequency
shifts, reduction in peak heights, and ultimately loss of nar-
row resonances. These effects scale with (σ/a)2, σ being the
variance of the spatial distribution [20,69,76], such that for a
given distribution arrays with shorter period are more affected.
On the other hand, the radiative decay of the lattice becomes
purely coherent as the period approaches the wavelength, and

imperfections have a strong effect in this regime [67]. Thus,
the regime of intermediate periods is expected to be optimal.
Quantum emitter arrays could also be realized in the solid
state [77,78].

We have also shown how to employ these lattices as
quantum metasurfaces acting as polarizers, with controllable
resonance frequency and bandwidth. Finally, symmetry-
protected BICs possess a topological charge [79] which can
be imprinted on the incident light in order to create nontrivial
beams.
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APPENDIX A: CLASSICAL SCATTERING PROBLEM

We consider a 2D lattice of emitters in a non-Bravais
lattice. The emitters positions are given by Rμ

n = Tμ + Rn,
with {Rn} giving the positions of all unit cells (n = 1, . . . , N)
and {Tμ} being the basis vectors of the sublattices (μ =
1, . . . , M), which join the origin of the unit cell with each of
the emitters in the basis. In a two-level system approximation,
the optical response of each emitter is characterized by an
isotropic polarizability,

α(ω) = −α0
�a/2

δ + i�a/2
, (A1)

where δ = ω − ωa is the frequency detuning with respect to
the resonance frequency of the two-level system, ωa, �a its
decay rate, and α0 = 6πε0/k3

a , with ka = ωa/c. Since the size
of the emitters is small enough with respect to the relevant
wavelength of the electromagnetic field we can apply the
dipole approximation and write a self-consistent equation for
the dipole moments of the emitters,

1

αμ(ω)
pμ

n = Einc
(
Rμ

n

)+
N∑

m=1

′
M∑

ν=1

k2

ε0
Ĝ
(
Rμ

n , Rν
m

)
pν

m. (A2)

Here, the primed sum indicates that terms m = n are excluded
from the sum when μ = ν to exclude self-interactions, and
we take equal emitters for each sublattice, but we allow for
the polarizability of the emitters in different sublattices to
be different. The photon-mediated interactions between the
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FIG. 6. Relevant components of the real and imaginary parts of

the lattice sums Ŝ, that is, the cooperative shift and width, as a
function of lattice periodicity for the bipartite case considered in
Fig. 2 of the main text and at normal incidence (k‖ = 0). Panel
(a) shows the real parts of S̃11

xx /�a depicted in blue, and S̃12
xx /�a

in orange, while the corresponding imaginary parts are shown in
panel (b).

emitters are given by the free-space Green’s dyadic,

Ĝ(r, r′) = 1

4π

(
1 + 1

k2
∇ ⊗ ∇

)
eik|r−r′ |

|r − r′| , (A3)

where k = ω/c.
For a given incident field, Einc(k‖) = E0eik·r, with k =

(k‖, kz ), k‖ the momentum component in the plane of the ar-
ray, and kz = √k2 − |k‖|2 the momentum component perpen-
dicular to the array, we apply Bloch’s theorem, pμ

n = pμeik‖Rn ,
and arrive at a matrix equation for the dipole moments,

M∑
ν=0

(
1

αμ(ω)
δμ,ν − k2

ε0
Ŝμν (ω, k‖)

)
pμ = Eμ

inc. (A4)

Here, Eμ
inc = E0eik‖Tμ , and Ŝμν (ω, k‖) stands for the Fourier

transform of the dipole-dipole interaction. This is the lattice
sum,

Ŝμν (ω, k‖) =
N∑

m=1

′ Ĝ(Rm + Tν − Tμ)e−ik‖ Rm , (A5)

where the primed symbol indicates that the sum excludes
the term m = 1 when μ = ν, such that we do not include
self-interactions. In compact matrix form, Eq. (A4) reads as

M̂ p = Einc, (A6)

with M̂μν (ω, k‖) = 1δμ,ν/α
μ(ω) − (k2/ε0)Ŝμν (ω, k‖).

Through the lattice sums, which depend only on the
geometry of the lattice and not on the properties of the
emitters, the above matrix equation models the collective
electromagnetic interaction between all the emitters within
the single excitation approximation.

APPENDIX B: HAMILTONIAN FORMALISM

Within the dipole approximation, the Hamiltonian of a
collection of quantum emitters interacting with the quantized

FIG. 7. Reflectivity at normal incidence of (a) Bravais and
(b) non-Bravais lattice (superradiant mode) as the period approaches
the wavelength. Different colors correspond to different values of
a/λa as detailed in the legend.

electromagnetic field is

H = h̄
NA∑
j=1

∑
α=x,y,z

ω jσ
j

αα + h̄
∑

σ=s,p

∫
d3k ωka†

kσ akσ

−
NA∑
j=1

d j · E(R j ). (B1)

Here, NA is the total number of emitters in the array such
that the sum in j runs over all emitters. Isotropic emitters are
assumed. Each atom has three degenerate excited states |e〉 =
|α〉 with α = x, y, z, with dipole moments oriented along each
Cartesian axis, dα = deα , with eα the unit vector along the eα

axis. The dipole moment of each atom is d j = d j (ex, ey, ez ),
and the three transition frequencies and free-space decay rates
of each atom, ω j and � j , are assumed equal. The third term
in the Hamiltonian represents the dipolar interaction between
the emitters and the electromagnetic field at the position of the
emitter. As mentioned, the dipole moment is a vector quantity,
and so is the electric field. The field is given by the input field
and the field scattered by all the other emitters,

E(r, ω) = Einc(r, ω) + ω2

ε0c2

NA∑
i=1

G(r, ri, ω)di(ω). (B2)
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FIG. 8. Real and imaginary parts of the lattice sums at normal incidence as a function of the lattice period a/λ1: xx components in the top
part, and yy components in the lower part. Intrasublattice terms are depicted in blue while intersublattice ones appear in orange. The left part
corresponds to a lattice with basis vector T = (0, 0.6)d , while the right part to a lattice with basis vector T = (0.7, 0.5)d .

Since the propagation of both classical and quantum fields is
governed by Maxwell’s equations, the above equation is valid
also for the quantized field operator, Ê(r), and dipole operator,
d̂(r). The dipole-dipole interaction is given by the Green’s
dyadic (a 3 × 3 tensor).

Then, we take the Markov approximation. This assumes we
can take ω ≈ ωi, the resonance frequency of the emitters, thus
neglecting frequency dispersion in the Green’s function. This
is a good approximation since the atomic optical response
has a very narrow bandwidth around its resonance frequency.
With this,

Ê(r) = Êinc(r) +
NA∑
i=1

ω2
i

ε0c2
G(r, ri, ωi )d̂i, (B3)

such that the interaction term is

H = −
NA∑

j=1,i �= j

∑
α,β

d̂α
j · ω2

i

ε0c2
Gαβ (R j, Ri, ωi ) · d̂β

i , (B4)

where the dipole operators are d̂α
i = ℘α∗

i σ̂ i
αg + ℘α

i σ̂ i
gα , with

℘α the dipole matrix element of the relevant transitions. Next,
in the Born-Markov approximation, the adiabatic elimination
of the reservoir degree of freedom yields a non-Hermitian
effective spin Hamiltonian:

H = h̄
NA∑
j=1

(
ω j − i

� j

2

)
1σ j

ee

−
NA∑

i=0 i �= j

ω2
i

ε0c2
|℘i||℘ j |[℘̂∗

j · G(R j, Ri, ωi ) · ℘̂i]σ
j

egσ
i
ge

(B5)

with ℘̂i = ℘i/|℘i|. Here we have assumed isotropic atomic
transitions and we recall that the Green’s dyadic is a 3 × 3
tensor representing the three Cartesian degrees of freedom.

Considering the case of a non-Bravais lattice, we can ex-
press the sums as

H = h̄
N∑

n=1

M∑
μ=1

(
ωμ

n − i
�μ

n

2

)
σ n,μ

ee

−
N∑

m=1
n=1

′
M∑

μ=1
ν=1

(
ων

m

)2
ε0c2

∣∣℘ν
m

∣∣∣∣℘μ
n

∣∣
× [℘̂μ∗

n · G
(
Rμ

n , Rν
m, ων

m

) · ℘̂ν
m

]
σ n,μ

eg σ m,ν
ge , (B6)

where the primed sum indicates that the term n = m is ex-
cluded from the sum when μ = ν. All emitters within the
same sublattice are identical, so ωμ

n = ωμ and �μ
n = �μ. Ad-

ditionally, we consider emitters in different sublattices that
are only slightly detuned, (ωμ − ων )/ωμ 
 1, such that in
the interaction Hamiltonian we take ων = ων=1 = ωa, with
ωa being the resonance frequency of emitters in a refer-
ence sublattice. Last, we also assume (�μ − �ν )/�μ 
 1 and
(℘μ − ℘ν )/℘μ 
 1, such that �μ ≈ �a and ℘ν ≈ ℘a for all
μ. With this we can write

H = h̄
N∑

n=1

M∑
μ=1

(
ωμ − i

�a

2

)
σ n,μ

ee − h̄
N∑

m=1
n=1

′
M∑

μ=1
ν=1

3π�ac

ωa

× [℘̂∗ · G
(
Rμ

n , Rν
m, ωa

) · ℘̂
]
σ n,μ

eg σ m,ν
ge , (B7)

where we have used the fact that the free-space decay rate,
�a = |℘a|2ω3

a/(3πε0h̄c3).
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FIG. 9. Band structures of bipartite square lattice with T =
(0.5, 0.5)a and ω1,2 = ωa for increasing lattice periodicity: (a) a =
0.3λa, (b) a = 0.4λa, (c) a = 0.5λa.

For an infinite array we consider Bloch modes,

S†
k = 1√

N

N∑
n=1

M∑
μ=1

σ n,μ
eg eik·rn , (B8)

σ n,μ
eg = 1√

N

∑
k

Ske−ik·rn , (B9)

where k is a wave vector in the Brillouin zone, and we have

H/h̄ =
∑

k

M∑
μ=1

M∑
ν=1

[(
ωμ − i

�a

2

)
1δμν − 3π�ac

ωa

∑
m

′ ℘̂∗

· [G(Rm + Tν − Tμ, ωa)e−ik·Rm ] · ℘̂

]
S†

kSk, (B10)

where the identity in the first terms is the 3 × 3 identity
matrix, accounting for the three spatial components.

In the above equation, we identify the lattice sum,

Ŝμν (k‖, ωa) =
′∑
m

Ĝ(Rm + Tν − Tμ, ωa)e−ik‖Rm , (B11)

such that we can write the Hamiltonian as

H/h̄ =
∑

k

M∑
μ,ν

[(
ωμ − i

�a

2

)
1δμν

+
(

�̂μν (k) − i
�̂μν (k)

2

)]
S†

kSk. (B12)

Here we have introduced the cooperative shift and decay ten-
sors,

�̂μν (k) = −3π�ac

ωa
Re[℘̂∗ · Ŝμν (k‖, ωa) · ℘̂], (B13)

�̂μν (k) = 6π�ac

ωa
Im[℘̂∗ · Ŝμν (k‖, ωa) · ℘̂]. (B14)

Finally, we can write

H/h̄ =
∑

k

M∑
μ,ν

Nμν

k S†
kSk, (B15)

with

Nμν

k (k‖, ωa) =
(

ωμ−i
�a

2

)
1δμν +

(
�̂μν (k‖)−i

�̂μν (k‖)

2

)
.

(B16)

The eigenstates satisfy

H |�k〉 = h̄
(
ωk − i

γk

2

)
|�k〉, (B17)

so that the real and imaginary parts of the eigenvalues of N
give the cooperative frequency shift and the collective decay
rate, ωk and γk. Clearly, we see that the eigenstates of the sys-
tem found using a quantum formalism are the same as those
found using the classical approach, provided that the intensity
is low and the transitions are not saturated. Thus, once the
eigenfrequencies and eigenstates are found, we restore to the
classical approach to find the reflectivity of the lattice.

APPENDIX C: REFLECTIVITY

From the coupled dipole equation, Eq. (A4), one can find
the dipole moments under a given incident field,

p(k‖) = M̂−1(ω, k‖)Einc(k‖). (C1)

Here, p = [p0, . . . pM] and similarly for Einc. Thus, we can
identify the inverse of the coupled dipole matrix as a general-
ized effective polarizability,[

β̂
−1
eff (ω, k‖)

]μν = 1

αμ(ω)
δμ,ν − k2

ε0
Ŝμν (k‖). (C2)

This generalized effective polarizability of the array is a 3M ×
3M tensor, as corresponds to the three spatial coordinates and
the M emitters in the unit cell. The effective polarizability
tensor is obtained by summing over the sublattice indices. It
is a 3 × 3 tensor and represents the total response of the array
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in the Cartesian basis. At normal incidence,

[α̂eff(ω, k‖)] =
M∑
μ

M∑
ν

β̂
μν

eff (C3)

since the incident field does not introduce extra phases be-
tween the different sublattices.

On the other hand, when considering a reflectivity problem
with a plane wave incident on the array, the electric field can
be written in the basis of s and p polarizations, with unit
vectors, ep,s ⊥ ek‖ , given by

e±
p = ± kz

kk‖
(kx, ky,∓k2

‖/kz ), (C4)

e±
s = 1

k‖
(ky,−kx, 0). (C5)

Then the incident and reflected fields can be written through
their projection over the two polarizations, Eσ = eσ · E(k‖),

Eσ
inc =

∑
σ ′=p,s

δσσ ′Eσ ′
0,k‖e

ik‖·r‖eikzz, (C6)

Eσ
ref =

∑
σ ′=p,s

rσσ ′ (k‖)Eσ ′
0,k‖e

ik‖·r‖e−ikzz, (C7)

with rσσ ′ being the components of the reflectivity matrix in
the polarization basis, rσσ ′ = eσ · r̂ · eσ ′ .

The reflected field is given by the total field radiated by the
dipoles in the array after they are excited by the incident wave.

From the average transverse effective current generated by the
dipoles, J‖ = −iωp/A, with A the unit cell area, we have

Eref,‖(k‖) = −1

2
Z0J(k‖) = iω

2A
Z0p(k‖) = ik

2Aε0
p(k‖),

(C8)

where p stands for the total dipole moment vector in a unit
cell which is given by the effective polarizability through
Eqs. (C1) and (C2).

Taking into account the field polarizations, the reflection
coefficients are given by

rσσ ′ (k‖) =
∣∣Eσ

ref (k‖)
∣∣∣∣Eσ ′

inc

∣∣ = ik

2Aε0
|eσ · α̂eff · eσ ′ | (C9)

with incident field Eσ ′
inc = E0eσ ′ . With this, the array reflectiv-

ity is

Rσσ ′ (k‖) = |rσσ ′ (k‖)|2 = |eσ · α̂eff · eσ ′ |2
(2Aε0/k)2

= |eσ · α̂eff · eσ ′ |2
(Aλε0/π )2

.

(C10)

For lattices with more than one particle per unit cell, we recall
that α̂eff represents the total effective polarizability of the unit
cell, such that the sublattice indices are summed over, while
the e vectors act on the spatial indices of the tensor.

1. Bipartite lattices

For lattices with two particles per cell, the coupled dipole equation reads as[
p1

p2

]
=
[
α1(ω)−11 − (k2/ε0)Ŝ11(ω, k‖) −(k2/ε0)Ŝ12(ω, k‖)

−(k2/ε0)Ŝ21(ω, k‖) α2(ω)−11 − (k2/ε0)Ŝ22(ω, k‖)

]−1[
E1

E2

]
. (C11)

The generalized effective polarizability in the above matrix equation can be recast as

β̂eff = 3πε0c3

⎡
⎢⎣

ω3
1

�1

(
(−ω + ω1 − i�1/2)1 − ω2

ω2
1

3π�1c
ω1

Ŝ11(ω, k‖)
) −ω3

1
�1

ω2

ω2
1

3π�1c
ω1

Ŝ12(ω, k‖)

−ω3
2

�2

ω2

ω2
2

3π�2c
ω2

Ŝ21(ω, k‖) ω3
2

�2

(
(−ω + ω2 − i�2/2)1 − ω2

ω2
2

3π�2c
ω2

Ŝ22(ω, k‖)
)
⎤
⎥⎦

−1

. (C12)

Given that |ω1 − ω2| 
 ω1 and linearizing, ω = ω1, we have

β̂eff = 3π�1ε0c3

ω3
1

⎡
⎣(−ω + ω1 − i�1/2)1 − ˆ̃S11(ω1, k‖) − ˆ̃S12(ω1, k‖)

− ˆ̃S21(ω1, k‖) (−ω + ω2 − i�1/2)1 − ˆ̃S22(ω1, k‖)

⎤
⎦

−1

, (C13)

where for convenience we have defined

ˆ̃S = 3π�1c

ω1
Ŝ(ω1, k‖) = −�̂ + i

�̂

2
(C14)

and we identify 3π�1ε0c3/ω3
1 = α0�1/2.

The total dipole moment needed to calculate the reflectivity of a 2D array is

ptot
x =

2∑
μ=1

2∑
ν=1

[αeff]
μν
xx [Einc]μx = p1

x + p2
x, (C15)

with

p1
x = [βeff]

11
xx [Einc]1

x + [βeff]
12
xx [Einc]2

x, (C16)

p2
x = [βeff]

21
xx [Einc]1

x + [βeff]
22
xx [Einc]2

x, (C17)

where at normal incidence we have [Einc]1
x = [Einc]2

x = E0, and the generalized effective polarizability is given by Eq. (C13).
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We now write explicitly the effective polarizability tensor of the bipartite square lattice. We first note that the equivalence of
the two sublattices implies Ŝ11 = Ŝ22. Symmetry of the square lattice and normal incidence imply S11

xx = S11
yy , S11

xy = S11
yx = 0, and

Ŝ12(k‖ = 0) = Ŝ21(k‖ = 0). In general, the other lattice sum elements are different from zero. We consider the x, y components,
which are decoupled from the z ones,

β̂eff = α0
�1

2

⎡
⎢⎢⎢⎢⎢⎣

−ω2 + ω1 − i�1/2 − S̃11
xx 0 −S̃12

xx −S̃12
xy

0 −ω2 + ω1 − i�1/2 − S̃11
xx −S̃12

xy −S̃12
yy

−S̃12
xx −S̃12

xy −ω2 + ω2 − i�2/2 − S̃11
xx 0

−S̃12
xy −S̃12

yy 0 −ω2 + ω2 − i�2/2 − S̃11
xx

⎤
⎥⎥⎥⎥⎥⎦

−1

.

(C18)

The above can also be rearranged as

β̂eff = α0
�1

2

⎡
⎢⎢⎢⎢⎢⎣

−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx 0 −S̃12
xy

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx −S̃12
xy 0

0 −S̃12
xy −ω + ω1 − i�1/2 − S̃11

xx −S̃12
yy

−S̃12
xy 0 −S̃12

yy −ω + ω2 − i�2/2 − S̃11
xx

⎤
⎥⎥⎥⎥⎥⎦

−1

(C19)

representing {xx, xy, yx, yy} blocks instead of {11, 12, 21, 22} ones.
In general, the above expression tells us that the interaction between the two sublattices will couple the two polarizations.

However, if the second sublattice is placed at a high symmetry point, we can simplify more. For instance, for a square lattice, if
the second sublattice is placed on one of the mirror lines of the lattice (horizontal, vertical, or diagonal), we have S12

xy = 0 and
the problem block diagonalizes, each block corresponding to one polarization. Furthermore, along the diagonal mirror line, we
also have S12

xx = S12
yy , and

β̂eff = α0
�1

2

⎡
⎢⎢⎢⎢⎢⎣

−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx 0 0

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx 0 0

0 0 −ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx

0 0 −S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx

⎤
⎥⎥⎥⎥⎥⎦

−1

.

(C20)

Hence in this case the two polarizations are completely equivalent at normal incidence, as expected due to the symmetry of the
lattice. For one polarization,[

p1
x

p2
x

]
= α0

�1

2

[−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx

]−1[
E1

x

E2
x

]
, (C21)

and the generalized effective polarizability tensor is

β̂
xx
eff = α0

�1

2

[−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx

]−1

. (C22)

At normal incidence, the dipole moments in each sublattice are

p1
x = α0

�1

2

−ω + ω2 − i�2/2 + (S̃12
xx − S̃11

xx

)
(−ω + ω1 − i�1/2 − S̃11

xx

)(−ω + ω2 − i�2/2 − S̃11
xx

)− (S̃12
xx

)2 E0, (C23)

p2
x = α0

�1

2

−ω + ω1 − i�1/2 + (S̃12
xx − S̃11

xx

)
(−ω + ω1 − i�1/2 − S̃11

xx

)(−ω + ω2 − i�2/2 − S̃11
xx

)− (S̃12
xx

)2 E0, (C24)

and the total dipole moment,

ptot
x = α0

�1

2

−2ω + ω1 + ω2 − i�1/2 − i�2/2 + 2
(
S̃12

xx − S̃11
xx

)
(−ω + ω1 − i�1/2 − S̃11

xx

)(−ω + ω2 − i�2/2 − S̃11
xx

)− (S̃12
xx

)2 E0, (C25)

where the lattice sums are evaluated at k‖ = 0.
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Thus, the effective polarizability of the array is

αxx
eff = α0

�1

2

−(δ1 + i�1/2 + δ2 + i�2/2) + 2
(
S̃12

xx − S̃11
xx

)
(
δ1 + i�1/2 + S̃11

xx

)(
δ2 + i�2/2 + S̃11

xx

)− (S̃12
xx

)2 , (C26)

and the copolarized reflectivity, Rpp = Rss,

Rpp(k‖ = 0) =
(

α0�1

2Aλε0/π

)2
∣∣∣∣∣ −(δ1 + i�1/2 + δ2 + i�2/2 + 2

(
S̃12

xx − S̃11
xx

)
(
δ1 + i�1/2 + S̃11

xx

)(
δ2 + i�2/2 + S̃11

xx

)− (S̃12
xx

)2
∣∣∣∣∣
2

. (C27)

In order to look for the resonances of the effective polarizability (and thus of the reflectivity spectrum) it is useful to express
it using new variables,

δ+ = −(δ1 + δ2)/2 = −ω + (ω1 + ω2)/2, (C28)

δ− = −(δ1 − δ2)/2 = (ω1 − ω2)/2, (C29)

which yields

αxx
eff = α0�1

δ+ − i�/2 + S̃12
xx − S̃11

xx

(δ+ − �+)(δ+ − �−)
, (C30)

where we have assumed �1 ≈ �2, given that the decay rates are much smaller than the frequencies, and introduced the quantities

�± = S̃11
xx ± sgn

(−Re
(
S̃12

xx

))√(
S̃12

xx

)2 + (δ−)2 + i�/2. (C31)

Then, we can write

αxx
eff = α0�1

[
�+

δ+ − �+
+ �−

δ+ − �−

]
, (C32)

with

�± = 1

2
± sgn

(−Re
(
S̃12

xx

)) S̃12
xx

2
√(

S̃12
xx

)2 + (δ−)2
. (C33)

This expression was derived for a bipartite array of plasmonic nanoparticles in Ref. [68]. In the emitter array, the only frequency
dependence in these expressions is through δ+ = −ω + (ω1 + ω2)/2,

αxx
eff(ω, k‖) = α0�1

[
�+(k‖)

δ+(ω) − �+(k‖)
+ �−(k‖)

δ+(ω) − �−(k‖)

]
, (C34)

while the other quantities depend only on the Bloch wave vector through the linearized lattice sums,

�±(k‖) = −�11
xx (k‖) + i

�11
xx (k‖)

2
± sgn

(−�12
xx

)√(−�12
xx (k‖) + i

�12
xx (k‖)

2

)2

+
(

ω1 − ω2

2

)2

+ i
�1

2
, (C35)

�±(k‖) = 1

2

⎛
⎜⎝1 ± sgn

(−�12
xx

) −�12
xx (k‖) + i�12

xx (k‖)/2√(−�12
xx (k‖) + i�12

xx (k‖)/2
)2 + (ω1 − ω2)2/4

⎞
⎟⎠. (C36)

Equivalently,

�±(k‖) = −�11
xx (k‖) ± �(k‖) + i

�11
xx (k‖)

2
+ i

�1

2
, (C37)

�±(k‖) = 1

2

(
1 ± −�12

xx (k‖) + i�12
xx (k‖)/2

�(k‖)

)
, (C38)

with

�(k‖) = sgn
(−�12

xx

)√(−�12
xx (k‖) + i

�12
xx (k‖)

2

)2

+
(

ω1 − ω2

2

)2

. (C39)

The real and imaginary parts of the lattice sums, which
correspond to the cooperative shift and decay, respectively,
are depicted as a function of the lattice periodicity in Fig. 6.

We see how Re[S12
xx ] changes from positive to negative as the

period increases, which explains the frequency ordering of the
subradiant and superradiant modes as a function of the period

033108-12



BOUND STATES IN THE CONTINUUM IN … PHYSICAL REVIEW RESEARCH 5, 033108 (2023)

shown in Fig. 3 of the main text. Electromagnetic induced
transparency (EIT) arises precisely when Re[S12

xx ] = 0 since
the modes become degenerate, as can be seen from Eq. (C20).

a. Zero detuning

When the two sublattices are not detuned, ω2 = ω1, we
have δ− = 0, δ+ = −δ1, �− = 0, �+ = 1. Therefore,

αxx
eff = α0

�1

2

�+
δ+ − �+

− α0
�1/2

δ1 − �11
xx − �12

xx + i
(
�1 + �11

xx + �12
xx

)
/2

, (C40)

which results in a Lorentzian response and we can iden-
tify scalar functions as cooperative shift, �(k‖) = �11

xx (k‖) −
�12

xx (k‖), and decay, �(k‖) = �11
xx (k‖) − �12

xx (k‖).
Reflectivity spectra for the non-Bravais lattice studied in

Fig. 2 of the main text are shown in Fig. 7(b) for different
values of the lattice periodicity compared to the wavelength.
As the periodicity approaches the wavelength the line
color approaches red. As discussed in the main text, the
position of the superradiant mode tends to zero detuning,
δ = 0, in contrast to the Bravais lattice case shown in
panel (a). Furthermore, the superradiant mode linewidth
is given by γ = �a + �+, with �+ = 3�aλaIm[S11

xx +
S12

xx ] = �a[3/(2π )(λa/a)2 − 1] → �a[3/(2π ) − 1], and
γ → 3�a/(2π ).

b. Going back to the Bravais lattice

For the case of one particle per cell, all the inter-sublattice
lattice sums vanish and we recover the usual result,

αxx
eff = −α0

�1/2

ω − ω1 − �11
xx (k‖) + i

[
�1 + �11

xx (k‖)
]
/2

, (C41)

where �11
xx and �11

xx correspond to the cooperative shift and
cooperative decay, respectively.

Here, we see how the linewidth of the mode is
given by γ = �a + �11

xx . At normal incidence we can use
Im[S]11

xx = λa/(4πa2) − (3λ−1
a ), and �11

xx = 3�aλaIm[S]11
xx →

3�a/(4π ) − �a as a → λa. The mode linewidth then tends to
γ → 3�a/(4π ).

2. Designing a polarizer: Bipartite lattice with different
response to s and p polarizations

Here we consider a different geometry that breaks the
symmetry between s and p polarizations. For that purpose we
consider a square array where the second sublattice is placed
on a horizontal or vertical mirror line. This breaks the diagonal
mirror symmetry of the lattice studied in the previous section,
resulting in different responses to different polarizations, but
still avoids cross-polarized terms. Again, we write explicitly
the effective polarizability tensor. At normal incidence the
symmetry of the lattice implies S11

xx = S11
yy , S11

xy = S11
yx = 0 and

S12
xx = S21

xx �= S12
yy = S21

yy , S12
xy = S12

yx = 0. Hence in this case we
still have a block diagonal matrix,

β̂eff = α0
�1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx 0 0

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx 0 0

0 0 −ω + ω1 − i�1/2 − S̃11
yy −S̃12

yy

0 0 −S̃12
yy −ω + ω2 − i�2/2 − S̃11

yy

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

(C42)

representing {xx, yy} blocks that are accessed by light of different polarization. We can now write for the two polarizations,

β̂
xx
eff = α0

�1

2

[−ω + ω1 − i�1/2 − S̃11
xx −S̃12

xx

−S̃12
xx −ω + ω2 − i�2/2 − S̃11

xx

]−1

(C43)

and

β̂
yy
eff = α0

�1

2

[−ω + ω1 − i�1/2 − S̃11
yy −S̃12

yy

−S̃12
yy −ω + ω2 − i�2/2 − S̃11

yy

]−1

. (C44)

Thus, the effective polarizability of the array along the x direction is

αxx
eff = α0

�1

2

−(δ1 + i�1/2 + δ2 + i�2/2) + 2
(
S̃12

xx − S̃11
xx

)
(
δ1 + i�1/2 + S̃11

xx

)(
δ2 + i�2/2 + S̃11

xx

)− (S̃12
xx

)2 , (C45)

while along the y direction,

α
yy
eff = α0

�1

2

−(δ1 + i�1/2 + δ2 + i�2/2) + 2
(
S̃12

yy − S̃11
yy

)
(
δ1 + i�1/2 + S̃11

yy

)(
δ2 + i�2/2 + S̃11

yy

)− (S̃12
yy

)2 . (C46)
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Therefore, the polarization-dependent reflectivity, Rpp �= Rss, is given by

Rss(k‖ = 0) =
(

α0�1

2Aλε0/π

)2
∣∣∣∣∣ −(δ1 + i�1/2 + δ2 + i�2/2) + 2

(
S̃12

xx − S̃11
xx

)
(
δ1 + i�1/2 + S̃11

xx

)(
δ2 + i�2/2 + S̃11

xx

)− (S̃12
xx

)2
∣∣∣∣∣
2

, (C47)

Rpp(k‖ = 0) =
(

α0�1

2Aλε0/π

)2
∣∣∣∣∣∣

−(δ1 + i�1/2 + δ2 + i�2/2) + 2
(
S̃12

yy − S̃11
xx

)
(
δ1 + i�1/2 + S̃11

xx

)(
δ2 + i�2/2 + S̃11

xx

)− (S̃12
yy

)2
∣∣∣∣∣∣
2

. (C48)

Then, in this case, the response of the lattice to light of
different polarization can be very different, as it is strongly
influenced by the directional interaction among sublattices.
Figure 8 shows the real and imaginary parts of the lattice
sums for the lattices as a function of the lattice period, for
the lattices used and the main text. The blue line denotes the
intrasublattice interactions while the orange one represents
intersublattices interactions. The top panels show the xx com-
ponents of the lattice sums, corresponding to s-polarized wave

FIG. 10. Reflectivity R for bipartite lattices of periods a/λa,1 =
0.2, 0.39, 0.8, from top to bottom. R is plotted as a function of
frequency, parametrized with the detuning of the first atom, δ1 =
ω − ω1, and the detuning between the two emitters, ω2 − ω1. The
horizontal gray lines denote zero detuning, ω = ω1, while the diago-
nal ones denote equal emitters, ω2 = ω1.

excitation, while the bottom panels show the yy components
corresponding to p-polarized waves.

APPENDIX D: RETARDATION EFFECTS

Here we present complementary band structures to the
results shown in Fig. 2 of the main text, where we consid-

FIG. 11. Response of a bipartite lattice with basis vector T =
(1, 1)a/2 + (x, 0)a and emitters with detuned frequencies ω2 =
ω1 + �a/2. The top panel shows the lattice periodicity at which EIT
is found for each polarization as a function of x, the displacement of
the second sublattice. The red and blue dots correspond to the reso-
nance condition for s and p polarizations, respectively. Reflectivity
spectra shown below are plotted for different values of the lattice
period and size of the basis vector, x, for the two polarizations.
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FIG. 12. Transmission spectra (Tss and Tpp) as a function of detuning δ1/�a and lattice period a/λ1. In the top panels the emitters are
identical, ω2 = ω1, while in the bottom panels ω2 = ω1 + �a/2. The two top columns correspond to a lattice with basis vector T = (0, 0.6)a,
and the two bottom columns to T = (0.7, 0.5)a.

ered a bipartite lattice with periodicity a/λa = 0.2. Figure 9
presents the bands for larger values of lattice periodicity. This
completes the study of the crossing between the subradiant
and superradiant modes discussed in the main text for normal
incidence. We observe that for period a/λa = 0.3 the subra-
diant modes appear at higher frequency than the superradiant
ones, as shown in panel (a). For periodicity a/λa = 0.39 a
fourfold accidental degeneracy appears at � bands for a/λa =
0.4 which are shown in panel (b). For longer periodicities
the subradiant modes slightly decrease in frequency, while the
superradiant modes move to higher frequencies, as shown for
a/λa = 0.5 in panel (c). We also observe how as the period
increases the light line has a stronger effect on the modes.
However, being at the center of the zone, the BICs are not
affected by retardation effects.

Additionally, we also show a study of the anticrossing
behavior of the subradiant and superradiant modes. The reflec-
tivity of the lattice for periodicities a/λa = 0.2, 0.39, 0.8, is
depicted in Fig. 10 as a function of the detuning of the incident

light with respect to the first emitter and the detuning among
the emitters of the two different sublattices. From the countour
plots we can observe the avoided crossing between the broad,
superradiant modes and the narrow, subradiant modes. For
a/λa = 0.2 (left) and a/λa = 0.8 (right), the BICs can be
observed as vanishing reflectivity for zero detuning between
the two sublattices, with asymmetric Fano peaks appearing for
finite detuning. On the other hand, when a/λa = 0.39 (center),
the subradiant and superradiant modes overlap and we observe
an anticrossing between two modes of equal width: This is
the case of EIT, identified by the zero reflectivity point at zero
detuning.

APPENDIX E: ELECTROMAGNETIC
INDUCED TRANSPARENCY

In the main text we discussed the EIT behavior for the lat-
tice respecting the diagonal mirror symmetry. At a given value
of periodicity we have Re[S12

xx = 0], and as a consequence
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the superradiant and the quasi-BIC modes are degenerate,
resulting in an EIT window. For the lattice considered in
the main text this occurs at a/λa = 0.39 for ω2 = ω1 + �a/2
[Fig. 3(b)]. For this geometry, we have seen that symmetry
implies Sμν

xx = Sμν
yy such that the two polarizations are equiva-

lent. As a consequence, four modes are degenerate at the EIT
condition, two BICs corresponding to the x and y degrees of
freedom, and two superradiant modes corresponding to the x
and y. Here we explore how the breaking of the lattice diago-
nal mirror symmetry results in two EIT windows at different
frequencies, one for each polarization.

We start from the configuration presented in the main text
(Figs. 2–4), and consider a basis vector that displaces the sec-
ond sublattice along the horizontal direction, T = a/2(1, 1) +
(x, 0)a. This breaks the diagonal mirror symmetry, implying
Sμν

xx �= Sμν
yy , such that the fourfold degeneracy splits into two

pairs of modes: The quasi-BIC and the superadiant mode
pair corresponding to the x direction split from the pair
corresponding to the y direction. Thus, the EIT behavior is
conserved for each polarization separately. The EIT window
for s and p polarizations can be tracked by Re[S12

xx ] = 0 and
Re[S12

yy ] = 0, respectively, which shift to lower and higher
values of the periodicity as the second sublattice is displaced
more and more along x. Figure 11 (top) displays the EIT
periodicity for the two polarizations as the second sublattice
is displaced.

Increasing the size of the basis vector along x, we observe
that for incident s-polarized waves, the EIT response appears
at lower values of the period, while for p polarizations it
appears at larger periods. The panels below display reflectivity
spectra for s and p polarizations (left and right columns,
respectively), for the values of lattice period that display EIT
as the basis vector size increases (from top to bottom). As can
be seen, an EIT window can be found for both polarizations.

APPENDIX F: TRANSMISSION

Figure 12 shows transmittance spectra for s and p polariza-
tions as a function of detuning and lattice periodicity for the

FIG. 13. Visibility of transmission components (Tss − Tpp)/
(Tss + Tpp) as a function of detuning δ1/�a and lattice period a/λ1

with detuned emitters, ω2 = ω1 + �a/2. In (a) T = (0, 0.6)a and in
(b) T = (0.7, 0.5)a.

two lattices considered in Fig. 5 of the main text and in Fig. 8.
Finally, in Fig. 13 we show the visibility of transmission

components (Tss − Tpp)/(Tss + Tpp) at normal incidence for
the two lattices used in the main text as polarizers, but with
detuned emitters, ω2 = ω1 + �a/2. The contour plots show
the efficiency of the polarizer effect as a function of the lattice
period and detuning. The quasi-BICs that arise with frequency
detuning result in the emergence of very narrow features. The
dashed vertical line represents the period used for the plots
shown in Fig. 5 of the main text.
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Domínguez, and A. Manjavacas, Super- and subradiant lattice
resonances in bipartite nanoparticle arrays, ACS Nano 14,
11876 (2020).

[69] O. Rubies-Bigorda, V. Walther, T. L. Patti, and S. F. Yelin,
Photon control and coherent interactions via lattice dark states
in atomic arrays, Phys. Rev. Res. 4, 013110 (2022).

[70] K. E. Ballantine and J. Ruostekoski, Quantum single-photon
control, storage, and entanglement generation with planar
atomic arrays, PRX Quantum 2, 040362 (2021).

[71] H. H. Jen, M.-S. Chang, and Y.-C. Chen, Cooperative single-
photon subradiant states, Phys. Rev. A 94, 013803 (2016).

[72] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[73] S. D. Jenkins, J. Ruostekoski, N. Papasimakis, S. Savo, and N. I.
Zheludev, Many-Body Subradiant Excitations in Metamaterial
Arrays: Experiment and Theory, Phys. Rev. Lett. 119, 053901
(2017).

[74] B. X. Wang, C. Y. Zhao, Y. H. Kan, and T. C. Huang, Design of
metasurface polarizers based on two-dimensional cold atomic
arrays, Opt. Express 25, 18760 (2017).

[75] N. S. Baßler, M. Reitz, K. P. Schmidt, and C. Genes, Linear
optical elements based on cooperative subwavelength emitter
arrays, Opt. Express 31, 6003 (2023).

[76] M. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V.
Porto, A. V. Gorshkov, and D. Chang, Optimization of photon
storage fidelity in ordered atomic arrays, New J. Phys. 20,
083048 (2018).

[77] G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve,
L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin,
and H. Park, Large Excitonic Reflectivity of Monolayer MoSe2

Encapsulated in Hexagonal Boron Nitride, Phys. Rev. Lett. 120,
037402 (2018).

[78] H. Kim, H. Dehghani, H. Aoki, I. Martin, and M. Hafezi, Op-
tical imprinting of superlattices in two-dimensional materials,
Phys. Rev. Res. 2, 043004 (2020).

[79] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić,
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